
SIMULATING THE DICKMAN DISTRIBUTION

LUC DEVROYE AND OMAR FAWZI

Abstract. In this paper, we give a simple algorithm for sampling from the Dickman distribution.
It is based on coupling from the past with a suitable dominating Markov chain.

1. Introduction

Following Embrechts and Goldie (1994), a perpetuity is a random variable

Y = W1 +W1W2 +W1W2W3 + · · ·+W1W2 . . .Wn + · · ·
where the Wi’s are i.i.d. random variables distributed as W , where W ≥ 0 and EW = m < 1. It
occurs in various fields such as financial modelling, hydrology, analytic number theory, insurance
mathematics, the analysis of Hoare’s selection algorithm, weighted path lengths in increasing trees,
the limit law for sums of powers of edge lengths in random minimal spanning trees, and in the
study of component spectra in logarithmic combinatorial structures. Key references are de Bruijn
(1951); Goldie and Grübel (1996); Grübel and Rösler (1996); Hwang and Tsai (2002); Kesten
(1973); Kuba and Panholzer (2006); Nietlispach (2007); Penrose and Wade (2004); Takács (1955);
Vervaat (1979). These are special cases of more general random variables that may be written as

A0 + A1W1 + A2W1W2 + A3W1W2W3 + · · ·
(Embrechts et al., 1997, section 8.4) and that occur as solutions of random recurrence relations or
in financial mathematics.

The special case of a Vervaat perpetuity occurs when W = U1/β, β > 0, where U is a uniform
[0, 1] random variable. When W = U , we obtain the well-known Dickman distribution Dickman
(1930).

The question we ask here is how we can exactly generate such random variates given that we
have an infinite source of i.i.d. uniform [0, 1] random variates at our disposal. The literature
on approximate algorithms for perpetuities is large; see e.g., Chamayou (1997) or Chamayou and
Dunau (2003). As our perpetuities form a special subfamily of the infinitely divisible distributions,
one might consider applying general approximation algorithms for infinitely divisible distributions
with given Lévy measures. The earliest mention of this is in Bondesson (1982) and Bouleau (1988).
More recent work by Damien et al. (1995) and Walker (1996) uses Gibbs sampling.

Devroye (2001) derived a rejection algorithm for the Vervaat perpetuities. Knape (2006) refined
this work. Fill (2004) and Fill and Huber (2009) found an exact algorithm based on the perfect
simulation paradigm proposed by Propp and Wilson (1996). They had to modify the Propp-Wilson
method and introduced the notion of a dominating Markov chain from which one could sample
backwards. Kendall and Thönnes (2004) provide a similar method that can also be applied to
Vervaat perpetuities.

In this paper, we give our own version of this dominated coupling from the past method, which
distinguishes itself from the algorithms mentioned above in the closeness of the dominating chain’s
stationary distribution to the Dickman distribution. For example, from Goldie and Grübel (1996);
Grübel and Rösler (1996), we know that the tails of Vervaat perpetuities drop off like the tails
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of a Poisson distribution. So, by selecting a dominating Poisson random variable, things will fall
into place very naturally. In our method for the Dickman distribution, the expected number of
iterations before coalescence is less than 2.32.

2. The procedure

Preliminaries. Our objective is to sample from the stationary distribution of the Markov chain
(Yt) defined by

Yt+1 = (1 + Yt)Ut+1.

where U1, U2 . . . are i.i.d. uniform [0, 1]. We use a Markov chain defined in a slightly different way.
Define the function f as

f : (x, u, v) 7→ bu(x+ 1)c+

{
v if bu(x+ 1)c ≤ bxc
v(x− bxc) else

, (x, u, v) ∈ [0,∞)× [0, 1]2.

and define the sequence

Xt+1 = f(Xt, Ut+1, Vt+1)

where Ut+1 and Vt+1 are independent uniform [0, 1]. For a fixed x, f(x, Ut+1, Vt+1) is uniformly
distributed on [0, x + 1]. Thus, (Xt) and (Yt) have the same transition kernel, and thus the same
stationary distribution. The update function f is used instead of the simpler function (x, u) 7→
(1 +x)u in order to ensure coupling in finite time. In fact, for fixed U and V , (1 +x)U 6= (1 +x′)U
when x 6= x′ whereas the range of x 7→ f(x, U, V ) is discrete.

For the algorithm we describe, f acts as a multigamma coupler (Murdoch and Green, 1998)
f ′(x, u, v) = u(x + 1)1u(x+1)≥1 + v1u(x+1)<1. The reason we mention f instead of f ′ is that f has
more chances of coalescence than f ′. Even though this is not explicitly used by the algorithm we
present, it might be useful in other contexts that we mention later in the paper. Moreover, it will
be shown that f can be dominated using a simple update function g.

Coupling from the past cannot be applied directly to this Markov chain because it is not uni-
formly ergodic, which basically means that coalescence cannot happen (Foss and Tweedie, 1998).
In Kendall (1998), Dominated cftp was introduced in order to handle unbounded state spaces.
The idea is to introduce a Markov chain (Dt) coupled to our Markov chain (Xt), such that Xt ≤ Dt

for all t, and (Dt) has a stationary distribution that we can simulate.

Defining the dominating chain. Observe that

f(x, u, v) ≤ g(bxc, u) + v,

where g : (n, u) 7→ bu(n+ 2)c, (n, u) ∈ N× [0, 1]. Define (Zt) taking integer values as

Zt+1 = g(Zt, Ut+1) = bUt+1(Zt + 2)c.

The sequence (Zt) dominates (Xt) in the sense that if bXtc ≤ Zt, then

bXt+1c ≤ bg(bXtc, Ut+1) + Vt+1c ≤ g(Zt, Ut+1) = Zt+1

with probability 1. Now the important observation is that the limiting distribution of the Markov
chain (Zt) is Poisson with parameter 1. In fact, if Z follows the Poisson distribution with parameter
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1,

P{g(Z,U) = i} =
∞∑

k=i−1

P{Z = k}P{i ≤ U(k + 2) < i+ 1}

=
1

e

∞∑
k=i−1

1

k!

1

k + 2

=
1

e

∞∑
k=i−1

[ 1

(k + 1)!
− 1

(k + 2)!

]
= P{Z = i}.

We can thus simulate the stationary distribution of the dominating chain (Zt). It remains to
compute the time-reversal of the transition kernel of (Zt), so that we can simulate the dominating
chain into the past.

For t ≥ 0, given Z−t, we need to compute Z−t−1, and the uniform U−t that will be used to
calculate X−t. By definition of U−t, we should have

Z−t = bU−t(Z−t−1 + 2)c.

So it is easy to compute Z−t−1,

P{Z−t−1 = i|Z−t = k} =
P{Z−t = k|Z−t−1 = i}P{Z−t−1 = i}

P{Z−t = k}
.

As we know that Z−t−1 follows the Poisson distribution with parameter 1,

(1) P{Z−t−1 = i|Z−t = k} = 1i≥k−1
1

i+ 2

k!

i!
.

Thus,

P{Z−t−1 = i|Z−t = k} = 1i≥k−1(i+ 1)
k!

(i+ 2)!
= 1i≥k−1k!

( 1

(i+ 1)!
− 1

(i+ 2)!

)
.

The update random variable U−t follows:

(2) U−t =
Z−t + U∗−t
Z−t−1 + 2

with U∗−t an independent uniform variable. We can check that U−t has the desired distribu-
tion. In fact, we know by construction that conditional on Z−t−1, Z−t is uniformly distributed
on {0, . . . , Z−t−1 + 1}, so it follows immediately that given Z−t−1, U−t follows the uniform [0, 1]
distribution.

The algorithm. Note that if the dominating process reaches Z−T = 0 at step −T , then we are
assured that all chains using update f beginning at time −t′ before −T (t′ > T ) will coalesce at
time −T . This is because, for a fixed U and V , the update f(., U, V ) is built in such a way that
its image has only one point in the interval [0, 1). So the algorithm waits until Z−T = 0, and then
simulates the chain (Xt) forwards, starting at X−T = V−T , a uniform [0, 1] random variable, and
computing the transitions using uniforms U−t defined as in equation (2) and fresh uniforms V−t,
for t ≤ T .
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Note that Z−t = 0 is only a sufficient condition for coalescence, and it is possible for coalescence
to happen even if Z−t > 0. An algorithm that simulates two chains starting from V−t and Z−t+V−t
and checks for coalescence at time 0 for every t would definitely require fewer steps into the past,
but it will slightly complicate the implementation and actually slow down the execution because
of the additional computations needed for testing coalescence. However, if the objective is to
minimize the amount of randomness used in the procedure, testing for coalescence at each step
can be a good idea. In this case, our coupler f will coalesce faster than a multigamma coupler. As
an example, if Z−t = 1, given that Z−t+1 > 0, the probability of coalescence in one step is a little
more than 7%.

Here is an outline of our procedure:

Dickman distribution simulation

Generate a Poisson random variable Z0 with parameter 1. Set t=0.

While Z−t > 0 do

Let W be a uniform [0, 1], and define Z−t−1 = max{i ≥ Z−t − 1;W ≥ 1− Z−t!
(i+2)!
}.

Define and store U−t =
Z−t+U∗−t
Z−t−1+2

where U∗−t is a fresh uniform [0, 1].
t← t+ 1.

Let T = t.
Generate new independent uniform [0, 1] random variates V−T , V−T+1, . . . , V0.

Define X−T = V−T.
Compute X−t+1 = f(X−t, U−t+1, V−t+1) forwards for t = T to 1.
Return X0.

Remark. The easiest way to simulate a Poisson random variable is to generate i.i.d exponential
random variables E1, E2, . . . and return max{n;E1 + · · ·+En ≤ 1}. Other methods can be found
in Devroye (1986).

Remark. With probability e−1, Z0 = 0, in which case the method returns a uniform directly, with
0 steps into the past.

Theorem 1. The algorithm terminates with probability 1, with an expected number of steps to the
past T equal to 1 +

∫ 1

0
et−1
t
dt < 2.32. Moreover, the random variable X0 returned by the algorithm

has a Dickman distribution.

Proof. For the analysis of the running time, see the next section.
Consider the sequence of random variables defined as follows. Y0 is a uniform [0, 1], and Yt+1

is defined by Yt+1 = Wt+1(Yt + 1) with Wt+1 independent uniform [0, 1] random variables. Let us
define (X−t0t )t≥−t0 by X−t0−t0 = V−t0 and X−t+1 = f(X−t, U−t+1, V−t+1), for 1 ≤ t ≤ t0. Then, clearly

X−t0
L
= Yt for all t, so X−t0 converges to a Dickman distribution because Yt does so.

For T such that Z−T = 0, consider X−t
′

−T for t′ ≥ T , i.e., chains that start before time −T .

Because the process (Zt)t≥−t′ dominates (X−t
′

t )t≥−t′ , we have X−t
′

−T = X−T−T for all t′ ≥ T . Hence,

X−t
′

0 = X−T0 because the same randomness is used. And because T < ∞ with probability 1,
the sequence of random variables X−t0 converges almost surely to X−T0 . But as we know that
X−t0 converges weakly to the Dickman distribution, the returned random variable X−T0 follows the
Dickman distribution. �
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Analysis of running time. The measure of the running time considered is the number of steps
to the past needed to obtain coalescence. This time is the number of steps T taken by the time-
reversal of the dominating chain to reach 0. To compute E{T}, we consider Tn0, the number of
steps to go from state n to state 0. It is worth observing that the time-reversed (Zt) is downward
skip-free, i.e., downward jumps are only of unit size. Thus, we start by calculating E{Tk(k−1)}, the
expected time to go from Z = k to Z = k − 1.

Clearly,
E{Tk(k−1)} = 1 + E{Nup}E{T≥kkk },

where Nup is the number of excursions made from state k before going to state k − 1, and T≥kkk is
the length of one such excursion.

Starting at state k with k ≥ 1, equation (1) implies that time-reversed (Zt) goes to state k − 1
with probability k

k+1
. Thus,

E{Nup + 1} =
k + 1

k
.

Now we consider E{T≥kkk }. To evaluate this quantity, we consider the chain restricted to states
≥ k. The quantity we are looking for is the mean recurrence time for state k in this chain. This
time can be computed from the stationary distribution of this conditioned Markov chain. Recall
the transition kernel of the time-reversal of the dominating Markov chain is defined by

P{Z−1 = i|Z0 = j} = 1i≥j−1
1

i+ 2

j!

i!
.

Because of conditioning on i ≥ k, the transition probabilities starting from state k should be
divided by 1

k+1
. If (pi)i≥k is the stationary probability distribution, we have pi+1 = 1

i+1
pi for all

i ≥ k, as can be shown by induction. Indeed,

pk = (k + 1)× 1

k + 2
pk +

k + 1

k + 2
pk+1,

which proves

pk+1 =
1

k + 1
pk.

And for i ≥ k, by induction,

pi = (k + 1)× 1

i+ 2

k!

i!
pk +

i∑
j=k+1

1

i+ 2

j!

i!
pj +

i+ 1

i+ 2
pi+1

=
k + 1

i+ 2

k!

i!
i× · · · × (k + 1)pi +

i∑
j=k+1

1

i+ 2

j!

i!
i× · · · × (j + 1)pi +

i+ 1

i+ 2
pi+1

=
k + 1

i+ 2
pi +

i∑
j=k+1

1

i+ 2
pi +

i+ 1

i+ 2
pi+1.

Hence,

pi+1 =
1

i+ 1
pi.

Then, the fact that the probabilities sum to 1 gives
∞∑
i=k

1

(k + 1)× · · · × i
pk = 1.
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So the mean recurrence time of state k is

1

pk
= k!

∞∑
i=k

1

i!
(3)

≤
{
e− 1 if k = 1
1 +

∑∞
i=1

1
(k+1)i

k ≥ 2

≤ e− 1.

We can thus bound E{Tk(k−1)},

E{Tk(k−1)} ≤ 1 +
1

k
(e− 1) ≤ e,

and as a consequence

E{Tn0} =
n∑
k=1

E{Tk(k−1)} ≤ en.

Finally, we get the expected running time,

E{T} ≤ 1

e

∞∑
n=1

1

n!
en

= e.

Remark. Note that by applying Taylor’s formula to the exact expression of 1
pk

in equation (3), it

can be shown that

E{T} = 1 +

∫ 1

0

et − 1

t
dt < 2.32.

Comparison with other methods. Kendall and Thönnes (2004) and Fill and Huber (2009)
also give procedures to perfectly simulate the Dickman distribution using Dominated cftp. In
both methods, the dominating chain is a reflected random walk whose stationary distribution is
geometric. Kendall and Thönnes (2004) use a multishift coupler whereas Fill and Huber (2009)
use a simpler multigamma coupler. Although these methods are more general than ours in that
they work for all Vervaat perpetuities, our method is more efficient for the Dickman distribution.
In fact, the expected number of steps taken by Fill and Huber’s algorithm is proven to be at
most 17 and experiments seem to show it to be a little more than 6. No running time analysis is
provided in Kendall and Thönnes (2004). It is also worth observing that Kendall and Thönnes’
algorithm needs to check for coalescence by simulating an upper and lower chain, whereas both Fill
and Huber’s and ours can test coalescence at time −t only using values of the random variables
associated to time −t.

An implementation of our algorithm in C generated ten million samples in 5.52 seconds. On
average, the number of steps into the past was 2.32 as predicted, and on 99% of the samples it was
less than 14. Moreover, the maximum number of steps in these trials was 58. In order to compare
execution times, we also implemented Fill and Huber’s algorithm under the same circumstances.
Generating ten million samples took 11.4 seconds. The number of steps was 6.57 on average, at
least 29 for around 1% of the samples, and reached a maximum of 123 steps. The code used in
these experiments can be found at http://www.cs.mcgill.ca/~ofawzi/dickman/.

http://www.cs.mcgill.ca/~ofawzi/dickman/
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Remark. This algorithm can be easily adapted to generate Vervaat perpetuities with β ≤ 1. In
fact, as U1/β ≤ U , the same dominating process (Zt) can be used. The exact same procedure

described for the Dickman distribution can be applied by letting X−T = V
1/β
−T and replacing the

update function f by fβ(x, u, v) = u1/β(x+ 1)1u1/β(x+1)≥1 + v1/β
1u1/β(x+1)<1.
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