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Abstract. The spanning ratio of a graph defined on n points in the Euclidean plane is the
maximum ratio, over all pairs of data points (u, v), of the minimum graph distance between u and v
divided by the Euclidean distance between u and v. A connected graph is said to be a S-spanner if
the spanning ratio does not exceed S. For example, for any S, there exists a point set whose mini-
mum spanning tree is not a S-spanner. At the other end of the spectrum, a Delaunay triangulation
is guaranteed to be a 2.42-spanner[11]. For proximity graphs between these two extremes, such as
Gabriel graphs[8], relative neighborhood graphs[16] and β-skeletons[12] with β ∈ [0, 2] some interest-
ing questions arise. We show that the spanning ratio for Gabriel graphs (which are β-skeletons with
β = 1) is Θ(

√
n) in the worst case. For all β-skeletons with β ∈ [0, 1], we prove that the spanning

ratio is at most O(nγ) where γ = (1 − log2(1 +
p

1 − β2))/2. For all β-skeletons with β ∈ [1, 2), we
prove that there exist point sets whose spanning ratio is at least

`

1

2
− o(1)

´ √
n . For relative neigh-

borhood graphs[16] (skeletons with β = 2), we show that there exist point sets where the spanning
ratio is Ω(n). For points drawn independently from the uniform distribution on the unit square, we
show that the spanning ratio of the (random) Gabriel graph and all β-skeletons with β ∈ [1, 2] tends

to ∞ in probability as
p

log n/ log log n.
Keywords and phrases. Gabriel graph, β-skeletons, spanners, proximity graphs, probabilistic

analysis, computational geometry, geometric spanners.
CR Categories: 3.74, 5.25, 5.5.

1. Introduction. Many problems in geometric network design, pattern recogni-
tion and classification, geographic variation analysis, geographic information systems,
computational geometry, computational morphology, and computer vision use the un-
derlying structure (also referred to as the skeleton or internal shape) of a set of data
points revealed by means of a proximity graph (see for example [16, 13, 7, 9]). A
proximity graph attempts to exhibit the relation between points in a point set. Two
points are joined by an edge if they are deemed close by some proximity measure. It
is the measure that determines the type of graph that results. Many different mea-
sures of proximity have been defined, giving rise to many different types of proximity
graphs. An extensive survey on the current research in proximity graphs can be found
in Jaromczyk and Toussaint [9].

We are concerned with the spanning ratio of proximity graphs. Consider n points
in R

2, and define a graph on these points, such as the Gabriel graph [8], or the relative
neighborhood graph [16]. For a pair of data points (u, v), the length of the shortest
path between u and v in the graph, where edge length is measured by Euclidean
distance, is denoted by L(u, v), while the direct Euclidean distance is D(u, v). The
spanning ratio of the graph is defined by

S
def
= max

(u,v)

L(u, v)

D(u, v)
,

where the maximum is over all
(

n
2

)

pairs of data points. Note that if the graph is
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not connected, the spanning ratio is infinite. In this paper, we will concentrate on
connected graphs.

Graphs with small spanning ratios are important in some applications (see [7]
for a survey on spanners). The history for the Delaunay triangulation is interesting.
First, Chew [2, 3] showed that in the worst case, S ≥ π/2. Subsequently, Dobkin et
al.[5] showed that the Delaunay triangulation was a ((1 +

√
5)/2)π ≈ 5.08 spanner.

Finally, Keil and Gutwin [10, 11] improved this to 2π/(3 cos(π/6) which is about 2.42.
It is conjectured that the spanning ratio of the Delaunay triangulation is π/2. The
complete graph has S = 1, but is less interesting because the number of edges is not
linear but quadratic in n. In this paper, we concentrate on the parametrized family
of proximity graphs known as β-skeletons [12] with β in the interval [0, 2]. The family
of β-graphs contains certain well-known proximity graphs such as the Gabriel graph
[8] when β = 1 and the relative neighborhood graph [16] when β = 2. As graphs
become sparser, their spanning ratios increase. For example, it is trivial to show that
there are minimal spanning trees with n vertices for which S ≥ n − 1, whereas the
Delaunay triangulation has a constant spanning ratio.

In this note, we probe the expanse between these two extremes. We show that for
any n there exists a point set, in the plane, whose Gabriel graph satisfies S ≥ c

√
n,

where c is a universal constant. We also show that for any Gabriel graph in the plane,
S ≤ c′

√
n for another constant c′. For all β-skeletons with β ∈ [0, 1], we prove that

the spanning ratio is at most O(nγ) where γ = (1 − log2(1 +
√

1 − β2))/2. For all
β-skeletons with β ∈ [1, 2), we prove that there exist point sets whose spanning ratio
is at least

(

1
2 − o(1)

)√
n . For relative neighborhood graphs, we show that there exist

point sets where the spanning ratio is Ω(n). The second part of the paper deals with
point sets drawn independently from the uniform distribution on the unit square. We
show that the spanning ratio of the (random) Gabriel graph and all β-skeletons with
β ∈ [1, 2] tends to ∞ in probability as

√

log n/ log log n.

2. Preliminaries. We begin by defining some of the graph theoretic and geo-
metric terminology used in this paper. For more details see [1] and [15].

A graph G = (V, E) consists of a finite non empty set V (G) of vertices, and a set
E(G) of unordered pairs of vertices known as edges. An edge e ∈ E(G) consisting
of vertices u and v is denoted by e = uv; u and v are called the endpoints of e and
are said to be adjacent vertices or neighbors. A path in a graph G is a finite non-null
sequence v1v2 . . . vk with vi ∈ V (G) and vivi+1 ∈ E(G) for all i. The vertices v1 and
vk are known as the endpoints of the path. A graph is connected if, for each pair of
vertices u, v ∈ V , there is a path with endpoints u and v (i.e. a path from u to v).

Intuitively speaking, a proximity graph on a finite set P ⊂ R
2 is obtained by

connecting pairs of points of P with line segments if the points are considered to be
close in some sense. Different definitions of closeness give rise to different proximity
graphs. One technique for defining a proximity graph on a set of points is to select a
geometric region defined by two points of P—for example the smallest disk containing
the two points—and then specifying that a segment is drawn between the two points if
and only if this region contains no other points from P . Such a region will be referred
to as a region of influence of the two points.

Given a set P of points in R
2, the relative neighborhood graph of P , denoted by

RNG(P ), has a segment between points u and v in P if the intersection of the open
disks of radius D(u, v) centered at u and v is empty. This region of influence is referred
to as the lune of u and v. Equivalently, u, v ∈ P are adjacent if and only if
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D(u, v) ≤ max{D(u, w), D(v, w)}, for all w ∈ P, w 6= u, v.

The Gabriel graph of P , denoted by GG(P ), has as its region of influence the
closed disk having segment uv as diameter. That is, two vertices u, v ∈ P are adjacent
if and only if

D2(u, v) < D2(u, w) + D2(v, w), for all w ∈ P, w 6= u, v.

A Delaunay triangulation of a set P of points in the plane, denoted by DT (P ), is a
triangulation of P such that for each interior face, the triangle which bounds that face
has the property that the circle circumscribing the triangle contains no other points of
the graph in its interior. A set P may admit more than one Delaunay triangulation,
but only if P contains four or more co-circular points. A list of properties of the
Delaunay triangulation can be found in [15].

We describe another graph, a minimum spanning tree, which is not defined in
terms of a region of influence. Given a set P of points in the plane, consider a
connected straight-line graph G on P , that is, a graph having as its edge set E a
collection of line segments connecting pairs of vertices of P . Define the weight of G
to be the sum of all of the edge lengths of G. Such a graph is called a minimum
spanning tree of P , denoted by MST (P ), if its weight is no greater than the weight
of any other connected straight-line graph on P . (It is easy to see that such a graph
must be a tree.) In general, a set P may have many minimum spanning trees (for
example, if P consists of the vertices of a regular polygon).

The following relationships among the different proximity graphs hold for any
finite set P of points in the plane.

Lemma 2.1 ([15]). MST (P ) ⊆ RNG(P ) ⊆ GG(P ) ⊆ DT (P )
A β-skeleton of a set P of points in the plane is a proximity graph in which the

region of influence, R(u, v, β), for two points u, v ∈ P is a function of β:
1. For β = 0, R(u, v, β) is the line segment uv.
2. For 0 < β < 1, R(u, v, β) is the intersection of the two disks of radius

D(u, v)/(2β) passing through both u and v.
3. For 1 ≤ β < ∞, R(u, v, β) is the intersection of the two disks of radius

βD(u, v)/2 centered at the points (1−β/2)u+(β/2)v and (β/2)u+(1−β/2)v.
4. For β = ∞, R(u, v, β) is the infinite strip perpendicular to the line segment

uv
The edge uv is in the β-skeleton of P if R(u, v, β)∩P \{u, v} = ∅. Notice that different
values of the parameter β give rise to different graphs. Note also that different graphs
may result for the same value of β if the regions of influence are constructed with open
rather than closed disks, however, these boundary effects do not alter our results.
When necessary, we will explicitly state whether the region of influence is open or
closed. These graphs will be referred to as open β-skeletons and closed β-skeletons,
respectively. The closed 1-skeleton is the Gabriel graph and the open 2-skeleton is
the relative neighborhood graph.

As the value of β increases, β-skeletons become sparser since each region of influ-
ence expands:

Observation 1. If β ≤ β′, then the β′-skeleton is a subset of the β-skeleton of
a point set.

β-skeletons with β > 2 may be disconnected, so we will concentrate on the interval
β ∈ [0, 2].

3



Fig. 2.1. Gabriel graph for a random point set.

3. Lower bounds. When β = 0, the β-skeleton of a point set has spanning
ratio 1. When β is in the interval (0, 1], Eppstein[6] presents an elegant fractal con-
struction that proves a non-constant lower bound on the spanning ratio. His result is
summarized in the following theorem.

Theorem 3.1 (Eppstein [6]). For any n = 5k + 1, there exists a set of n points
in the plane whose β-skeleton with β ∈ (0, 1] has spanning ratio Ω(nc), where c =
log5(5/(3 + 2 cos θ)) and θ < (2/3) sin−1 β.

Our lower bounds apply to β-skeletons with β ∈ [1, 2]. The tower construction
developed here in the proof of Theorem 3.2 is similar to the tower-like configuration
we later use in lower bounding the spanning ratio of random Gabriel graphs.

Theorem 3.2. For any n ≥ 2, there exists a set of n points in the plane whose
β-skeleton with β ∈ [1, 2] has spanning ratio

S ≥
(

1

2
− o(1)

)√
n .

Note that the closed 1-skeleton is the Gabriel graph and that all β-skeletons with
β > 1 are subgraphs of the Gabriel graph. Therefore, it suffices to prove the theorem
for the Gabriel graph. Also, the 1/2− o(1) factor can be improved to 2/3.

Proof. Let m = bn/2c. Place points pi and qi at locations (−ri, yi) and (ri, yi)
respectively (1 ≤ i ≤ m) where

ri = 1 − (i − 1)/n

yi = (i − 1)/
√

n

If n is odd place the remaining point at the same location as p1.
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(0, yi)

pi

pi+1
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√

n

Fig. 3.1. Illustration of one level in the Gabriel graph tower construction.

We claim that for each pair pi, qi, the circle with diameter piqi contains the points
pi+1 and qi+1 (1 ≤ i ≤ m − 1). Let d be the distance from the center of the circle
with diameter piqi to the point pi+1. For pi+1 to lie within this circle, d must be at
most ri. By construction,

d =
√

(ri − 1/n)2 + 1/n .

Thus we require (ri − 1/n)2 + 1/n ≤ r2
i or, equivalently, ri ≥ 1/2 + 1/(2n), which

holds for 1 ≤ i ≤ m − 1.
It follows that when i ≤ j, edge piqj does not belong to the Gabriel graph of

these points (unless i = j = m), since pi+1 lies in or on the circle with diameter piqj .
Similarly, when i > j, edge piqj is precluded by point qj+1.

The Euclidean distance between p1 and q1 is two. However, the shortest path
from p1 to q1 using Gabriel graph edges is at least 2ym, which results in a spanning
ratio of

S = ym = (bn/2c − 1)/
√

n =

(

1

2
− o(1)

)√
n .

Note that for Gabriel graphs (β = 1), Eppstein’s result (Theorem 3.1) implies a
ratio of Ω(nc) with 0.138 < c < 0.139, while Theorem 3.2 provides a much stronger
bound of Ω(

√
n).

For relative neighborhood graphs (β = 2), the lower bound is Ω(n).
Theorem 3.3. For any n ≥ 2, there exists a set of n points in the plane whose

relative neighborhood graph (open 2-skeleton) has spanning ratio Ω(n).
Proof. Refer to Figure 3.2. Let θ = 60 − ε and α = 60 + 2ε. We will fix ε

later. Since α + 2θ = π, the points a0, a1, . . . , an are colinear. Similarly, the points
b0, b1, . . . , bn are colinear. The point ai+1 blocks the edge aibi. An edge aibj for i < j
is blocked by ai+1 and an edge aibj for i > j is blocked by bi+1. Thus, the only edges
in the relative neighborhood graph of these points are aiai+1, bibi+1 and anbn. Let
Ai = ‖ai+1 − ai‖. Let Bi = ‖bi+1 − bi‖.
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Fig. 3.2. Relative neighborhood graph tower

Triangle(a0, a1, b0) and triangle(a1, b1, b0) are similar, therefore, B0 = A2
0/A. By

the same argument, A1 = A3
0/A

2, and B1 = A4
0/A

3. In general, Ai = A2i+1
0 /A2i and

Bi = A2i+2
0 /A2i+1.

We choose an ε so that A0/A > (1/2)1/(2n). Let L be the length of the path from

a0 to b0. L >
∑n−1

i=0 Ai +Bi =
∑2n−1

i=0 A0(A0/A)i. Since A0/A > (1/2)1/(2n), we have

that
∑2n−1

i=0 A0(A0/A)i > 1/2
∑2n−1

i=0 A0 = A0n. Therefore, L > A0n.

4. Upper bounds. We start with a straight-forward upper bound that applies
to all β-skeletons for β ∈ [0, 2].

Theorem 4.1. For any β ∈ [0, 2], the spanning ratio of the β-skeleton of a set
of n points is at most n − 1.

Proof. Let G be the β-skeleton of a set of n points P . Note that the minimum
spanning tree MST (P ) is contained in G. Every edge in the unique path from u
to v in MST (P ) has length at most D(u, v), otherwise MST (P ) is not minimum.
Therefore the shortest path in G from u to v has length at most (n − 1)D(u, v).

The rest of this section establishes an upper bound for β-skeletons when β ∈ [0, 1].
The β-skeleton of a point set P for β ∈ [0, 1] is a graph in which points x and y in
P are connected by an edge if and only if there is no other point v ∈ P such that
∠xvy > π − sin−1 β.

To upper bound the spanning ratio of β-skeletons, we show that there exits a
special walk SWβ(x, y) in the β-skeleton between the endpoints of any Delaunay
edge xy. We upper bound the length |SWβ(x, y)| of SWβ(x, y) as a multiple of
D(x, y). We then combine this with an upper bound on the spanning ratio of Delaunay
triangulations [10, 11] to obtain our result.

Let DT (P ) be the Delaunay triangulation of a points set P . In order to describe
the walk between the endpoints of a Delaunay edge, we define the peak of a Delaunay
edge.

Lemma 4.2. Let xy be an edge of DT (P ). For β ∈ [0, 1], either xy is an edge
of the β-skeleton of P or there exists a unique z (called the peak of xy) such that
triangle(xyz) is in DT (P ) and z lies in the β-region of xy.
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Proof. Suppose xy ∈ DT (P ) is not an edge in the β-skeleton of P . Then there
exists a point v ∈ P such that ∠xvy > π − sin−1 β. Since xy is an edge of DT (P ),
there exists a unique z on the same side of xy as v such that disc(xyz) is empty. This
implies ∠xzy ≥ ∠xvy and thus z lies in the β-region of xy. Since β ≤ 1, disc(xyz)
contains that part of the β-region of xy which lies on the other side of xy from z.
Since this circle is empty, z is unique.

We now define the walk SWβ(x, y) between the endpoints of the Delaunay edge
xy. (Note that in a walk edges may be repeated. See Bondy and Murty for details
[1].)

SWβ(x, y) =

{

xy if xy ∈ β-skeleton of P
SWβ(x, z) ∪ SWβ(z, y) otherwise (z is the peak of xy)

x

z

y

Fig. 4.1. The solid lines form the Gabriel graph of the point set with SW1 (x, y) in bold. All

edges together form the Delaunay triangulation.

Lemma 4.3. Given a set P of n points in the plane. If xy ∈ DT (P ) then the
number of edges in SWβ(x, y) is at most 6n − 12, for β ∈ [0, 1].

Proof. Since a Delaunay edge is adjacent to at most two Delaunay triangles, an
edge can occur at most twice in the walk SWβ(x, y). Since there are at most 3n − 6
edges in DT (P ) by Euler’s formula, SWβ(x, y) can consist of at most 6n − 12 edges.

Lemma 4.4. Let P be a set of n points in the plane. For any β ∈ [0, 1], for all
x, y ∈ P , if xy ∈ DT (P ) then

|SWβ(x, y)| ≤ mγD(x, y)

where γ = (1 − log2(1 +
√

1 − β2))/2 and m is the number of edges in SWβ(x, y).
Proof. 1 The proof is by induction on the number of edges m in SWβ(x, y). When

m = 1, i.e. SWβ(x, y) is simply the line segment from x to y, the lemma clearly holds.
If m > 1, then |SWβ(x, y)| = |SWβ(x, z)| + |SWβ(z, y)| for z the peak of xy.

Let k be the number of edges in SWβ(x, z). Thus, m − k is the number of edges
in SWβ(z, y). Let a = D(x, y), b = D(x, z), and c = D(y, z). Since xz and zy are

1Thanks to Ansgar Grüne and Sébastien Lorenz at the University of Bonn for pointing out a
flaw in an earlier proof.
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Delaunay edges, by induction, |SWβ(x, z)| ≤ bkγ and |SWβ(z, y)| ≤ c(m − k)γ . Thus
it suffices to prove that

bkγ + c(m − k)γ ≤ amγ .

By the law of cosines, a2 = b2 + c2 − 2bc cosA where A is the angle at the peak z.
With this substitution for a, after dividing both sides by c and letting δ = b/c, it
remains to show,

δkγ + (m − k)γ ≤ mγ ≤
√

1 + δ2 − 2δ cosA

where we may assume without loss of generality that δ ∈ [0, 1]. As a function of k the
left-hand side of the equation is maximized when k = m/(1+δ−s) where s = 1/(1−γ).
With this substitution for k, after factoring mγ , it suffices to show,

δ + δ−γs

(1 + δ−s)γ
≤
√

1 + δ2 − 2δ cosA when δ ∈ [0, 1].

We can simplify the left-hand side using the fact that s = 1/(1− γ):

δ + δ−γs

(1 + δ−s)γ
=

δ(1 + δ−s)

(1 + δ−s)γ
= δ(1 + δ−s)1−γ = (δs + 1)1−γ .

Thus, after squaring both sides of the inequality, it suffices to show,

(1 + δs)2/s ≤ 1 + δ2 − 2δ cosA when δ ∈ [0, 1].

The angle A is minimized (thus minimizing the right-hand side of the inequality)

when z lies on the boundary of the β-region. For such z, cosA = −
√

1 − β2, and it
remains to show,

(1 + δs)2/s ≤ 1 + δ2 + 2δ
√

1− β2 when δ ∈ [0, 1].

Let L(δ) be the left-hand side and R(δ) the right-hand side of this inequality. We
want to show that L(δ) ≤ R(δ) when δ ∈ [0, 1]. The maximum of L(δ) − R(δ) (for
δ ∈ [0, 1]) occurs at δ = 0 or δ = 1 or at some value δ with L′(δ) = R′(δ). At δ = 0,
L(0) = R(0) = 1. At δ = 1,

L(1) = 22/s and R(1) = 2 + 2
√

1 − β2.

Since γ = (1− log2(1+
√

1 − β2))/2, s = 2/(1+log2(1+
√

1 − β2)), and L(1) = R(1).
The derivatives of L(δ) and R(δ) are

L′(δ) = 2δs−1(1 + δs)2/s−1 and R′(δ) = 2δ + 2
√

1 − β2.

For β ∈ [0, 1], L′(0) ≤ R′(0), and for our chosen value of γ, L′(1) = R′(1). For
β ∈ [0, 1], γ lies in [0, 1/2], which implies s ∈ [1, 2]. Thus,

L′′′(δ) = 2(1 + δs)2/s−3δs−3(s − 1)(s − 2)(1 − δs) ≤ 0

and the function L′(δ) is concave. Since R′(δ) is linear and L′(1) = R′(1), there is at
most one value of δ ∈ (0, 1) where L′(δ) = R′(δ). Since L′(0) ≤ R′(0), L(δ) −R(δ) is
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a minimum at this value. Thus the maximum of L(δ)−R(δ) is 0 for γ = (1− log2(1+
√

1 − β2))/2.
Theorem 4.5. For β ∈ [0, 1], the spanning ratio of the β-skeleton of a set P of

n points in the plane is at most

4π(6n − 12)γ

3
√

3

where γ = (1 − log2(1 +
√

1 − β2))/2.
Proof. Given two arbitrary points x, y in P , let M = e1, e2, . . . , ej represent the

shortest path between x and y in DT (P ). Keil and Gutwin [10, 11] have shown that
the length of P is at most 2π/(3 cos(π/6)) times D(x, y).

For each edge ei in M , by Lemma 4.3 and Lemma 4.4, we know there exists a
path in the β-skeleton whose length is at most (6n − 12)γ times the length of ei.
Therefore, the shortest path between x and y in the β-skeleton has length at most
2π(6n − 12)γ/(3 cos(π/6)) times D(x, y). The theorem follows.

Corollary 4.6. The spanning ratio of the Gabriel graph (β = 1) of an n-point
set is at most

4π

3

√
2n − 4 .

When β lies strictly between 0 and 1, there is a gap between the upper bound
and lower bound on the spanning ratio of β-skeletons. As noted in Section 3, the
spanning ratio is at least Ω(nc) where c = log5(5/(3 + 2 cos θ)) and θ < (2/3) sin−1 β.
We have shown here that the spanning ratio is at most O(nγ) where γ = (1− log2(1+
√

1 − β2))/2. Refer to Figure 4.2 for a graph of the exponents of the upper and lower
bound. For Gabriel graphs (β = 1), the lower bound construction given in Section 3,
together with the upper bound given here, show that the spanning ratio is indeed
Θ(

√
n).

5. Random Gabriel graphs. If n points are drawn uniformly and at random
from the unit square [0, 1]2, the spanning ratio of the induced Gabriel graph grows
unbounded in probability. In particular, we have the following.

Theorem 5.1. If n points are drawn uniformly and at random from the unit
square [0, 1]2, and S is the spanning ratio of the induced Gabriel graph then

P

{

S < c

√

a log n

log log n

}

≤ 2e−2n1−12a−o(1)

for constants c and a < 1/12. Thus, for a < 1/12, with probability tending exponen-
tially quickly to one,

S ≥ c
√

a log n/ log log n .

Proof. The main idea is to show that a set of n points randomly distributed in the
unit square contains many tower-like structures of size c log n/ log log n, each of which
has spanning ratio approximately the square root of its size. We first define what a
tower-like structure is and then show that the expected number of such structures is
large.
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Fig. 4.2. Exponents of n in the upper and lower bound on the spanning ratio of β-skeletons

when β ∈ [0, 1].

A tower-like structure resembles the towers of Section 3 but the points may be
slightly perturbed. For i = 1, ..., k, let Ai and Bi be discs both of radius d/k (the
constant d will be specified later) located at (ri, yi) and (−ri, yi) respectively, where
the sequences ri and yi are given below.

ri = 1 − i − 1

2k

yi = (i − 1)

√

√

√

√

1/2− (1 +
√

2)d

k

(

1 − 1/2− (1 +
√

2)d

k

)

.

The value of d is chosen so that yi is positive (d < 1/(2 + 2
√

2)).
Let C be the smallest square enclosing the Ai and Bi within a border of width yk.

Typically, when k is large enough and the tower is taller than it is wide, C extends
from (−3yk/2 − d/k,−yk − d/k) to (3yk/2 + d/k, 2yk + d/k). See Figure 5.2 for an
example of such a square, and note that in this figure, the discs Ai and Bi would be
smaller than the dots used to represent points.

Assume that each of the Ai and Bi contain exactly one point and C contains no
other data point beyond these 2k points. We claim that among the points in C, the
only edges are those connecting A1 with A2, A2 with A3, and so forth, up to Ak−1

and Ak. Then Ak connects with Bk, Bk with Bk−1 and so forth down to B1. The
proof of this claim is rather technical and is deferred to Appendix A. Note that the
Ai’s and Bi’s are disjoint.

Let u and v be the points in A1 and B1 respectively. We have D(u, v) ≤ 2+2d/k.
Also, any path from u to v entirely in C must be equal in length to the chain, which
is longer than 2yk. If the path leaves C, then at least two edges leave C, and those
edges have length at least 2yk, taken together. Thus, L(u, v) ≥ 2yk and

S ≥ L(u, v)

D(u, v)
≥ yk

1 + d/k
≥ c

√
k

10



(0, yi+1)

(0, yi)

Ai+1

Ai

ri

ri+1 √

2Ai

Fig. 5.1. The construction of Ai and Ai+1.

for sufficiently large k where c is a constant that depends on d.

Let bC denote the scaled down set {bx : x ∈ C}.
Divide [0, 1]2 into n non-overlapping tiles of size 1/

√
n×1/

√
n. For b = 1/(4

√
kn),

bC fits within one of these tiles. Thus we may place n non-overlapping copies of bC
within the unit square. For a given data set, we call a tile tower-like if it contains
exactly 2k data points, one each for bAi and bBi, 1 ≤ i ≤ k within it. Let N be the
number of tiles that are tower-like.

Clearly, since the distribution is uniform,

EN = nP{a tile is tower-like} .

Pick one tile and partition the n data points over the following disjoint sets: the bAi’s,
the bBi’s, bC − ∪bAi ∪ bBi, and [0, 1]2 − bC. The cardinalities of these sets, taken
together, form a multinomial random vector with probabilities given by the areas of
the sets involved. For example, area (bAi) = b2πd2/k2. According to the formula for
the multinomial distribution,

P{a tile is tower-like} =
n!

(n − 2k)!

(

b2πd2

k2

)2k

(1 − 1/n)n−2k

≥ (n − 2k + 1)2k

(

πd2

16nk3

)2k

(1 − 1/n)n

≥ 1

4

(

(n − 2k + 1)πd2

16nk3

)2k

≥ 1

4

(

πd2

32k3

)2k

11



Fig. 5.2. Gabriel graph with tower-like square.

provided that n is sufficiently large and k < (n + 2)/4. We conclude that

EN ≥ n

4

(

πd2

32k3

)2k

.

If k = a logn/ log log n for a constant a < 1/6, then

EN ≥ n1−6a−o(1) → ∞ .

For each one of these tower-like squares, there is a pair of data points for which
the spanning ratio is at least

c
√

k ≥ c

√

a log n

log log n
.

Change one of the n data points. That will change the number N by at most
one. But then, by McDiarmid’s inequality [14], we have

P{|N −EN | ≥ t} ≤ 2e−2t2/n .

In particular, for fixed ε > 0,

P{|N −EN | ≥ εEN} ≤ 2e−2ε2n1−12a−o(1) → 0

when a < 1/12. This shows that N/EN → 1 in probability for such a choice of a
(and thus k), and thus that for every ε > 0,

P{N < (1 − ε)EN} → 0 .

12



β = 0 0 < β < 1 β = 1 1 < β < 2 β = 2 β > 2
Lower Bound 1 Ω(nc)[6] Ω(

√
n) Ω(

√
n) Ω(n) ∞

Upper Bound 1 O(nγ) O(
√

n) O(n) O(n) ∞

c = log5(5/(3 + 2 cos θ)) and θ < (2/3) sin−1 β.

γ = (1 − log2(1 +
√

1 − β2))/2.

Table 6.1
Summary Table of Results on the Spanning Ratio of β-skeletons

As another application, we have

P{S < c
√

a log n/ log log n} ≤ P{N = 0}
= P{N −EN ≤ −EN}
≤ 2e−2n1−12a−o(1)

→ 0 .

Note that this probability decreases exponentially quickly with n.
We have implicitly shown several other properties of random Gabriel graphs. For

example, a Gabriel graph partitions the plane into a finite number of polygonal re-
gions. The outside polygon which extends to ∞ is excluded. Let Dn be the maximum
number of vertices in these polygons. Then Dn → ∞ in probability, because Dn is
larger than the maximum size of any tower that occurs in the point set, and this was
shown to diverge in probability. From what transpired above, this is bounded from
below in probability by Ω(a log n/ log log n).

6. Conclusion. We studied the spanning ratio of β-skeletons with β ranging
from 0 to 2. This class of proximity graphs includes the Gabriel graph and the rela-
tive neighborhood graph. Table 6.1 summerizes our results. For β > 2, β-skeletons
lose connectivity; thus, their spanning ratio leaps to infinity. For points drawn in-
dependently from the uniform distribution on the unit square, we showed that the
spanning ratio of the (random) Gabriel graph (and all β-skeletons with β ∈ [1, 2])
tends to ∞ in probability as

√

log n/ log log n
Several open problems arise from this investigation. It would be interesting to

close the gap between upper and lower bounds for β-skeletons in the ranges 0 < β < 1
and 1 < β < 2. Also, for random point sets, it would be interesting to try to find a
matching upper bound for the spanning ratio.
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Appendix A. Tower-like construction.

The purpose of this section is to show that the only Gabriel edges among the
points in the tower-like construction described in Section 5 are between Ai and Ai+1,
Bi and Bi+1, and Ak and Bk for i = 1 . . . k−1. Recall that the tower-like construction
consists of 2k points, one in each of the discs Ai, Bi for i = 1 . . . k, where Ai and Bi

are discs of radius d/k centered at (yi, ri) and (yi,−ri) respectively. The definition of
the sequences ri and yi is repeated here:

ri = 1 − i − 1

2k

yi = (i − 1)

√

√

√

√

1/2− (1 +
√

2)d

k

(

1 − 1/2− (1 +
√

2)d

k

)

.

In a Gabriel graph, two points are connected by an edge if and only if the disc
whose diameter is the segment joining those points is empty. In our construction, we
do not have precise information as to the location of the points. We only know that
a point lies within a small disc (whose location we do know). Thus a basic problem
is, given two discs, what is the region that, if it contains a point, will forbid an edge
between a point in one disc and a point in the other. After we have determined this
region, we must show for any two discs in our construction between which we claim
no edge exists, that there is a third disc contained within that pair’s region.

Let A and B be two discs each of radius s, whose centers are at p = (r, 0) and
q = (−r, 0). The region Q we are interested in is the intersection of all discs whose
diameter has one endpoint a in A and the other endpoint b in B. See Figure A.1.

We will determine the upper boundary of Q (the points with positive y coordi-
nate). The lower boundary is symmetric. Consider a ray with origin (0,−r) that
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a b

A B

u

t

p q

v∗

(0,−r)

s

T

D

Q

Fig. A.1. If the region Q contains a point then, for any a ∈ A and b ∈ B, the edge ab is not in

the Gabriel graph of the point set. We insure that there is a point in the disc D ⊂ Q.

intersects the segment pq. A point v on this ray is inside Q if and only if for all points
a ∈ A and b ∈ B, ∠avb ≥ π/2. For each point v, the points a ∈ A and b ∈ B that
minimize ∠avb are the tangent points of the lines through v tangent to the A and B
respectively. (Strictly speaking, there are two tangent lines from a point to a disc; and
a and b are defined by those tangent lines which form the minimum of the resulting
four possible angles.) For v with positive y coordinate, this minimum angle is a con-
tinuous, decreasing function of the distance between v and (0,−r). Thus the upper
boundary of Q intersects the ray at a single point v∗ where mina∈A,b∈B ∠av∗b = π/2.

Let T be the circle whose diameter is the segment pq, and let t be the point (other
than (0,−r)) where our chosen ray intersects T . We claim that v∗ is the point on
the ray that is distance s

√
2 from t. To show this, consider the lines from t to p and

q. These lines are parallel to the tangent lines from v∗ to a and b respectively, where
a ∈ A and b ∈ B minimize ∠av∗b. In order to establish that v∗a is parallel to tp, drop
a line perpendicular to tp from v∗ to a point u on tp. Since ∠p, t, (0,−r) = π/4, the
triangle 4tuv∗ is a right, isoceles triangle. Its hypotenuse has length s

√
2 so its sides

have length s. Thus v∗a is consistently distance s from tp. The same argument applies
to v∗b and tq. Since ∠ptq = π/2, the claim is established. It is perhaps surprising
that the region Q does not touch A or B.

For our tower-like construction we use a disc to approximate the region Q. The
disc D centered at (0, 0) with radius r−s

√
2 is contained within Q. (Note: The point

v∗ appears to lie on the boundary of D in Figure A.1. This is misleading. The point
v∗ does not lie on the boundary of D except for v∗ with x-coordinate equal to 0.)
Thus if a point lies within D, there is no Gabriel edge between any two points a ∈ A
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and b ∈ B. The tower-like construction insures that this is the case for any pair of
discs A = Ai and B = Bi, by placing the discs Ai+1 and Bi+1 within the disc D. Also
the disc D for any pair A = Ai and B = Bj with i 6= j contains either Ai+1 if i < j
or Bi+1 if i > j. Finally, for A = Ai and B = Aj with i < j − 1, the disc D contains
Ak where i < k < j. (This holds for Bi discs by symmetry.)

It remains to show that the remaining edges in the tower-like construction do
exist. A similar argument to the one presented above establishes that the union of
the discs with diameter ab with a ∈ A and b ∈ B is a region contained in the disc D̂
of radius r + s

√
2 centered at the origin. This region is empty for each pair A = Ai

and B = Ai+1 since ri ≥ 1/2 while the distance between the centers of A and B is
O(1/

√
k).
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