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Long and short paths in uniform random
recursive dags

Luc Devroye and Svante Janson

Abstract. In a uniform random recursive k-dag, there is a root, 0, and each node in turn,

from 1 to n, chooses k uniform random parents from among the nodes of smaller index. If Sn is

the shortest path distance from node n to the root, then we determine the constant σ such that

Sn/ logn→σ in probability as n→∞. We also show that max1≤i≤n Si/ logn→σ in probability.

1. Introduction

A uniform random k-dag is an infinite directed graph defined as follows. For
each of the integers 1, 2, ..., we pick a random set of k parents with replacement
uniformly from among the smaller non-negative integers. This defines an infinite
directed acyclic graph (or, dag) with one root (0), and can be viewed as a (too)
simplistic model of the web, a random recursive circuit (Diaz, Sperna, Spirakis,
Toran and Tsukiji [12], and Tsukiji and Xhafa [40]), and a generalization of the
urrt (uniform random recursive tree), which is obtained for k=1. (See also the
further references in Section 4 to related models.) All the asymptotic results in the
paper remain valid when parents are selected without replacement.

The uniform random k-dag restricted to vertices 0, 1, ..., n, is denoted by Uk,n
or simply Un. Indeed, we will take k=2 in the main part of the paper, and point
out the obvious modifications needed when k>2 as we proceed. The infinite dag is
denoted by U∞.

From a given node n, let Pn be the collection of paths from node n to the
origin. The length of a path p∈Pn is L(p). One can consider various path lengths:

Sn = min
p∈Pn

L(p) , R−n =L(P−n ) , Rn =L(Pn) , R+
n =L(P+

n ) , Ln = max
p∈Pn

L(p),
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where S, R and L are mnemonics for shortest, random, and longest, and P−n , Pn
and P+

n are the paths in Pn, where we follow the parent with the smallest index,
the first parent and the parent with the largest index, respectively. We can regard
R−n and R+

n as greedy approximations of Sn and Ln respectively. Note that, at least
in a stochastic sense,

Sn≤R−n ≤Rn≤R+
n ≤Ln.

The length of the longest path is relevant for the time to compute the value of
node n in a random recursive circuit, when nodes know their value only when all
parents know their value. However, there are situations in which node values are
determined as soon as one parent or a subset of parents know their value—they are
called self-time circuits by Codenotti, Gemmell and Simon [6]. For the one-parent
case, this leads naturally to the study of Sn. In networks, in general, shortest paths
have been of interest almost since they were conceived (Prim [31], Dijkstra [13]). A
recent study by physicists (D’Souza et al [16]) predicts, without proof, our Theorem
2 for k=2.

It is of interest to study the extreme behavior, as measured by

max
1≤`≤n

S` , max
1≤`≤n

R−` , max
1≤`≤n

R` , max
1≤`≤n

R+
` , max

1≤`≤n
L`.

If we replace max by min in these definitions, we obtain the constant 1, and it is
therefore more meaningful to ask for the exteme minimal behavior as defined by

min
n/2≤`≤n

S` , min
n/2≤`≤n

R−` , min
n/2≤`≤n

R` , min
n/2≤`≤n

R+
` , min

n/2≤`≤n
L`.

So, in all, there are fifteen parameters that could be studied.
We take this opportunity to introduce the label process, which will be referred

to throughout the paper. The label of each parent of n is distributed as bnUc, with
U uniform [0, 1]. An `-th generation ancestor has a label distributed like

b...bbnU1cU2c...U`c ∈ [nU1U2...U`−`, nU1U2...U`] ,

where the Ui’s are i.i.d. uniform [0, 1] random variables.

The parameter Rn. It is clear that Rn is just the distance from node n in a urrt

to its root. In particular, Rn and its minimal and maximal versions do not depend
upon k. We dispense immediately with Rn and its extensions because of well-known
results on the urrt obtained via the study of renewal processes (Devroye [11]) and
the equivalence between Rn and the number of records in an i.i.d. sequence of
continuous random variables (see, e.g., Rényi [33], Pyke [32], Glick [20] or Devroye
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[9]). Only the minimal parameter for Rn requires a gentle intervention. We know
that

Rn
log n

−→ 1 in probability,

for example. Furthermore,

Rn−log n√
log n

L−→N

where N is a standard normal random variable, and L→ denotes convergence in
distribution. Furthermore, an explicit tail bound on Rn will be needed further
on in the paper. The maximal value of R`, 1≤`≤n, follows immediately from
the theory of extremes of branching random walks (Devroye [8], Pittel [30]). We
summarize:

Theorem 1.1. We have

Rn
log n

−→ 1 in probability,

max1≤`≤nR`
log n

−→ e in probability,

and

lim
n→∞

P
{

min
n/2≤`≤n

R`≤ 2
}

= 1.

Finally, for t≥log n integer,

P{Rn>t}≤ exp (t−log n−t log(t/ log n)) .

Proof. An outline of proof is needed for the third part and the explicit bound
in part four. Let us count the number of nodes with index in [1, n/2] that connect
directly to the root. This number is

Z =
n/2∑
`=1

ξ1/`,
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where ξp is Bernoulli (p). Let A be the event that no node of index in (n/2, n]
connects to a node counted in Z. This probability is smaller than

E

{(
1−Z

n

)n/2}
≤E

{
e−Z/2

}

=
n/2∏
`=1

(
1−1/`+1/(

√
e`)
)

≤ exp

− n/2∑
`=1

1−1/
√
e

`


≤ (dn/2e)−(1−1/

√
e)
.

If the complement of A holds, then clearly, minn/2≤`≤nR`≤2, and thus, we have
shown the third part of Theorem 1.1. Turning to part four, note that Rn≤min{t:
nU1...Ut<1}, and thus that, for any λ>0,

P{Rn>t}≤P{nU1...Ut≥ 1}≤E
{

(nU1...Ut)λ
}

=nλ(λ+1)−t.

Hence,
P{Rn>t}≤ inf

λ>0
nλ(λ+1)−t = exp (t−log n−t log(t/ log n)) .

Conjecture 1.2. For all fifteen parameters, generically denoted by Xn, there
exist finite constants x=x(k)≥0 such that

Xn

log n
−→x in probability. (1)

Notation. The limits in the conjecture are denoted by σ, ρ−, ρ, ρ+ and λ for Sn,
R−n , Rn, R+

n and Ln, respectively. For the minimal and maximal versions of these
parameters, we will use the subscripts min and max, respectively, as in ρ+

min and
σmax , for example.

Let us briefly survey what is known and provide conjectures in the other cases.

The parameter Ln. Tsukiji and Xhafa [40] showed that λmax =ke.
Since there are (at most) kt paths of length t in Pn, P{Ln>t}≤ktP{Rn>t}, and

the Chernoff large deviation bound in Theorem 1.1 implies that P{Ln>x log n}→0
if x>1 and kxex−1−x log x<1; hence λ is at most the largest solution x of(

ke

x

)x
e−1 = 1, (2)
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and thus λ<λmax . We believe that λ is indeed given by (2) based on arguments
not unlike the proof of Theorem 1.3 below. We have no guess at this point about
the value of λmin .

The parameter R+
n . In the label process, the parent’s index is approximately dis-

tributed as nmax(U1, ..., Uk), where the Ui’s are i.i.d. uniform [0, 1] random vari-
ables. If U , as elsewhere in this paper, is uniform [0, 1], then the parent’s index is
thus roughly like nU1/k. By renewal theory, this implies that

R+
n

log n
−→ k

def= ρ+ in probability.

(The standard argument is briefly that the index after ` generations is roughly
nW1...W`, where W1,W2, ... are i.i.d. and distributed as U1/k. Hence, R+

n is roughly
the smallest ` such that

∑`
1(− logWi)=log n, and thus R+

n / log n→1/E(− logW1)=
k/E(− logU)=k in probability.)

Chernoff’s large deviation bound show that ρ+
max is at most the unique solution

x of (3) that is above k: (
ke

x

)x
e1−k = 1. (3)

We believe that the solution of (3) yields ρ+
max . Applying Chernoff to the other tail

shows that ρ+
min is at least the other solution of (3), as (3) has two solutions, one

below k and one above k. Furthermore, we believe that this solutions of (3) yields
ρ+

min .
For k=2, the parameter R+

n is intimately linked to the random binary search
tree, which can be grown incrementally by a well-known process described as fol-
lows: given an n-node random binary search tree, sample one of its n+1 external
nodes uniformly at random, replace it by node n+1, and continue. The parent of
that node is either its neighbor (in the total ordering) to the left or its neighbor
to the right, and in fact, it is the neighbor added last to the tree. But the labels
(times of insertion) of the neighbors are uniformly drawn without replacement from
{1, ..., n}, and are thus roughly distributed as nU , so that the parent of n+1 is
roughly distributed as n

√
U , because the maximum of two i.i.d. uniform [0, 1] ran-

dom variables is distributed as
√
U . While this observation is valid for a single n, it

is not true that we can choose parents independently, because in a random binary
search tree , a node can be parent at most twice. However, there is a kinship that
allows one to conclude that the behavior should almost be the same. With this in
mind, max1≤`≤nR

+
` is roughly the height of the random binary search tree, R+

n

is roughly the depth (distance to the root) of the node of label n (the n-th node
inserted), and minn/2≤`≤nR+

` is very roughly the shortest distance from leaf to
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root, or fill-up level. These quantities behave in probability as described above, as
shown by Devroye [7], [8], and this explains the values ρ+

max =4.31107..., ρ+=2 and
ρ+

min =0.3733....

The parameter R−n . Arguing as above, the parent’s index is approximately dis-
tributed as nmin(U1, ..., Uk). By a property of the uniform (or exponential) distri-
bution, using a sequence of i.i.d. exponential random variables E1, E2, ..., we have
this distributional identity:

nmin(U1, ..., Uk) L=nU1U
1/2
2 ...U

1/k
k

L= exp

log n−
k∑
j=1

Ej
j

 .

Renewal theory easily gives the law of large numbers and central limit theorem for
R−n . For example,

R−n
log n

−→ 1
Hk

def= ρ− in probability,

where Hk=
∑k
j=1(1/j) is the k-th harmonic number. Using large deviation bounds

similar to the ones used below in showing part of Theorem 1.3, one gets that

lim
n→∞

P
{

max
1≤`≤n

R−` ≥ (x+ε) log n
}

= 0

for all ε>0, where x is the solution greater than 1/Hk of

1+f(x) =x

k∑
j=1

log (1+f(x)/j) ,

and f(x)>0 is implicitly defined by

k∑
j=1

1
j+f(x)

=
1
x
, x> 1/Hk.

These equations follow from the obvious Chernoff bound. We conjecture that ρ−max

equals this upper bound, but a rigorous proof that ρ−max is indeed as described
above is not given in this paper.
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xmin x xmax

σ 0 0.3733... 0.3733...
ρ− 0 0.6666... (=2/3) 1.6737...
ρ 0 1 2.7182... (=e)
ρ+ 0.3733... 2 4.3110...
λ ? 4.3110... 5.4365... (=2e)

Table 1. Proved and conjectured constants (1) for k=2

The parameter Sn. The most important parameter for computer scientists and
combinatorialists is the one in which graph distances are defined by shortest paths,
and this leads to the study of Sn. That was the original motivation of the paper,
and we will settle first order asymptotics in this paper. Theorem 1.1 implies, for
example, that with probability tending to one,

min
n/2≤`≤n

S`≤ 2.

So we turn to σ and σmax :

Theorem 1.3. Assume k≥2. Then σ=σmax , where σ is given by the solution
x∈(0, 1) of

ϕ(x) def=
(
ke

x

)x
e−1 = 1. (4)

[Note that ϕ is indeed an increasing function on (0, 1).]

Observe that Theorem 1.3 does not extend to k=1, because in that case, Sn≡
Rn≡Ln, and similarly for the maximal versions of these parameters, in view of
the equivalence with the urrt. Thus, Sn/ log n→1 and max1≤`≤n S`/ log n→e in
probability.

Table 1 is a table of constants in Conjecture 1.2 for k=2. The constants
involving σ (top row) are obtained in this paper, while those involving ρ (third row)
are covered by Theorem 1.1. The constants ρ− and ρ+ follow from ordinary renewal
theory. The zeroes in the table follow from Theorem 1.1. Finally, λmax is due to
Tsukiji and Xhafa [40]. There are thus four conjectured constants, which happen
to be one-sided bounds (ρ−max , ρ+

min , ρ+
max , λ), and one unknown constant, λmin .

Table 2 is a table of σ, ρ− and ρ−max for different numbers of parents k.

2. The shortest path length Sn

We will establish Theorem 1.3 in two parts. First we show that for all ε>0,

lim
n→∞

P{Sn≤ (1−ε)σ log n}= 0, (5)
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k σ ρ− ρ−max

2 0.3733... 0.6666... 1.6737...
3 0.3040... 0.5454... 1.3025...
4 0.2708... 0.48 1.1060...
5 0.2503... 0.4379... 0.9818...
6 0.2361... 0.4081... 0.8951...
7 0.2254... 0.3856... 0.8305...
8 0.2170... 0.3679... 0.7800...
9 0.2102... 0.3534... 0.7393...
10 0.2045... 0.3414... 0.7057...
11 0.1996... 0.3311... 0.6773...
12 0.1954... 0.3222... 0.6531...
13 0.1916... 0.3144... 0.6318...
14 0.1883... 0.3075... 0.6132...
15 0.1854... 0.3013... 0.5966...
16 0.1827... 0.2957... 0.5816...
17 0.1802... 0.2907... 0.5683...
18 0.1780... 0.2861... 0.5560...
19 0.1760... 0.2818... 0.5448...
20 0.1740... 0.2779... 0.5346...
21 0.1723... 0.2743... 0.5251...
22 0.1706... 0.2709... 0.5164...
23 0.1691... 0.2677... 0.5083...
24 0.1676... 0.2648... 0.5007...
25 0.1663... 0.2620... 0.4936...
26 0.1650... 0.2594... 0.4868...
27 0.1638... 0.2569... 0.4805...
28 0.1626... 0.2546... 0.4747...
29 0.1615... 0.2524... 0.4690...
30 0.1604... 0.2503... 0.4638...
35 0.1559... 0.2411... 0.4409...
40 0.1521... 0.2337... 0.4225...
45 0.1490... 0.2275... 0.4074...
50 0.1463... 0.2222... 0.3946...

Table 2. Constants for different k

and then that

lim
n→∞

P
{

max
1≤`≤n

S`≥ (1+ε)σ log n
}

= 0. (6)

We only consider the case k=2 since the case k>2 follows quite easily.

Lemma 2.1. Let Ga be gamma(a), with a≥1. Then

P{Ga≥x}
xa−1e−x

Γ(a)

≤ 1
1− a−1

x

, x>a−1,

and
P{Ga≤x}
xa−1e−x

Γ(a)

≤ 1
a−1
x −1

, x<a−1.
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Proof. The gamma density is f(y)=ya−1e−y/Γ(a). It is log-concave for a≥1,
and thus, a first-term Taylor series bound yields the inequality

f(y)≤ f(x)e(y−x)(log f)′(x) = f(x)e(y−x)((a−1)/x−1).

Integrating the upper bound out over [x,∞) or (−∞, x] then immediately yields
the results.

From node n, we can consider the index of the first of the 2` `-th level ancestors,
which is distributed as

b...bbnU1cU2c...U`c≥nU1U2...U`−`
L=n exp(−G`)−`,

where L= denotes equality in distribution, and G` is gamma(`). If these indices are
I1, ..., I2` , then we have

P{Sn≤ `}= P
{

min
1≤i≤2`

Ii = 0
}

≤ 2`P{I1 = 0}
≤ 2`P{n exp(−G`)−`≤ 0}
= 2`P{G`≥ log(n/`)}

≤ 2`(log(n/`))`−1e− log(n/`)

Γ(`)
(

1− `−1
log(n/`)

) (if log(n/`)≥`−1)

≤ `3/2(2 log(n))`e− log(n)

(`/e)`
(

1− `−1
log(n/`)

) .

Set `=bt log nc for t∈(0, 1), and note that the upper bound is

Θ
(

log3/2(n)
)
×(ϕ(t))logn,

where ϕ(t)=(2e/t)t/e is as in (4). We have ϕ(σ)=1 for σ=0.3733..., and thus
ϕ(t)<1 for 0<t<σ. Thus, we have shown (5): for all ε>0,

P{Sn≤ (σ−ε) log n}= o(1).

Although we will not need it directly, we will also deal with the upper bound
on Sn. This can be done in a number of ways, but the shortest route is perhaps via
the great-grandparent strategy that jumps ` generations at a time, where ` now is
a large but fixed integer. We denote this by `-ggp. We associate with each node n
two independent uniform [0, 1] integers U and V and let the parent labels be bnUc
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and bnV c. Let An be the event that any of the 2` ancestors of node n coincide. It
is clear that P{An}→0 as n→∞. As an ancestor label is described by

b...bbnU1cU2c...U`c≤nU1U2...U`
L=n exp(−G`),

we define
Z` = min

p∈P

∏
e∈p

Ue

where P is the collection of all paths of length ` above node n, and each p∈P consists
of edges e that each have an independent uniform random variable associated with
it. If ε>0 and n is greater than some nε, then the `-ggp gives with probability
greater than 1−ε a node with label less than Z`n [failure would imply that An
holds]. Define

Z
(ε)
` =

{
Z`, Z`>b;

1, Z`≤b,

where b is chosen such that P{Z`≤b}=ε. As long as the label stays above nε, one
can dominate the labels in the `-ggp by multiplying n with successive independent
copies of Z(ε)

` . Let Tn be the number of steps until the label in `-ggp reaches nε or
less. Renewal theory shows that with probability tending to one,

Tn≤
(1+ε) log n

E
{
− log

(
Z

(ε)
`

)} .
Because the `-ggp takes ` steps at a time, and because a node with label nε is not
further than nε away from the origin, we see that with probability tending to one,

Sn≤nε+
`(1+ε) log n

E
{
− log

(
Z

(ε)
`

)}
≤ `(1+2ε) log n

E
{
− log

(
Z

(ε)
`

)} .
Uniform integrability implies that

lim
ε↓0

E
{
− log

(
Z

(ε)
`

)}
= E {− log (Z`)} .

Therefore, for any (new, fresh) ε>0 and `≥1, with probability going to one,

Sn≤
`(1+ε) log n

E {− log (Z`)}
.
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Observe that
− log (Z`)

`

L=
1
`

max
p∈P

∑
e∈p

Eu,

where the Eu are i.i.d. exponential random variables. From the theory of branching
random walks, it is easy to verify (see, e.g., Biggins [3], or Devroye [7], [8]) that, as
`→∞,

1
`

max
p∈P

∑
e∈p

Eu−→
1
σ

in probability. Thus,

lim inf
`→∞

−E {log (Z`)}
`

≥ 1
σ
,

and thus, by choosing ` large enough, we see that with probability tending to one,

Sn≤ (1+2ε)σ log n.

This concludes the proof of the first part of Theorem 1.3.
The next section requires an explicit rate of convergence. To this end, still

restricting ourselves to k=2 only, let Z(ε)
`,1 , Z

(ε)
`,2 , ... be i.i.d. copies of Z(ε)

` , and note
that,

Tn≤min
{
t :nZ(ε)

`,1 ...Z
(ε)
`,t < 1

}
= min

{
t : log

(
1/Z(ε)

`,1

)
+...+log

(
1/Z(ε)

`,t

)
> log n

}
.

Set µ=E
{

log
(

1/Z(ε)
`

)}
. Then, assuming δ∗∈(0, 1/2) and δ∈(δ∗, 2δ∗) such that

m=(1/µ+δ) log n is integer-valued,

P{Tn>m}≤P
{

log
(

1/Z(ε)
`,1

)
+...+log

(
1/Z(ε)

`,m

)
< log n

}
= P

{
log
(

1/Z(ε)
`,1

)
+...+log

(
1/Z(ε)

`,m

)
−mµ<−δµ log n

}
.

Let p>2 be a fixed number. Rosenthal’s inequality (Rosenthal [34], Fuk and
Nagaev [18], see also Petrov [29]) states that there is a constant Cp with the following
property. If {Xn, n≥1} is a sequence of centered and independent random variables,
and if Yn=X1+...+Xn, and if E{|Xn|p}<∞ for all n, then

E{|Yn|p}≤Cp

 n∑
j=1

E{|Xj |p}+(V{Yn})p/2
 .
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For i.i.d. random variables with X1=X, we have

E{|Yn|p}≤Cp
(
nE{|X|p}+np/2

(
E{X2}

)p/2)≤ 2Cp max(n, np/2)E{|X|p}.

Applied to our situation with p=4, using Markov’s inequality, we have

P{Tn>m}≤ (δµ log n)−4E
{(

log
(

1/Z(ε)
`,1

)
+...+log

(
1/Z(ε)

`,m

)
−m

)4
}

≤ 2C4(δµ log n)−4m2E
{∣∣∣log

(
1/Z(ε)

`

)
−µ
∣∣∣4}

≤C(log n)−2δ∗−4,

where C depends upon ε and ` only. The remainder of the argument involving an
appropriate choice of ` remains valid, and we can conclude that for any ε>0,

P{Sn> (σ+ε) log n}=O
(
1/ log2 n

)
, (7)

with room to spare.

3. The maximal shortest path length

The purpose of this section is to show (6). We let σ be as in the first part of
the proof, and let ε>0 be arbitrary. Fix n large enough. From (7),

E {|{j :n/2≤ j≤n, Sj > (σ+ε) log n}|}=O

(
n

log2 n

)
,

and thus P{A(n)}=O
(

1
log2 n

)
, where

A(n) def=
[∣∣∣{j :n/2≤ j≤n, Sj > (σ+ε) log n}|> n

4

}]
.

If we take an incremental view of the process of adding edges, then a node with index
in [n, 2n] selects a parent of depth ≤(σ+ε) log n and index ≥n/2 with probability
≥1/8 if A(n) fails to hold. It is this observation that will allow us to uniformly
bound all depths by something close to (σ+ε) log n.

Consider the indices in dyadic groups, {2r−1+1, ..., 2r}, r≥1. We recall from a
comparison with the urrt, that Sn≤Rn and thus that max1≤j≤n Sj≤max1≤j≤nRj ,
and that (see Theorem 1.1)

P
{

max
1≤j≤n

Rj > 2e log n
}
≤n−2e log(2)<n−3.
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Thus, for γ>0 small enough,

P
{

max
1≤j≤bnγc

Sj > (σ+ε) log n
}

=O(n−3γ) = o(1).

It remains to show that

P
{

max
nγ≤j≤n

Sj > (σ+ε) log n
}

= o(1).

Consider the event
B(r) =

⋃
r′≤s≤r

A(2s),

where r′ is the largest integer such that 2r
′
<nγ . Clearly, P{B(r)}=O(1/r′)=

O(1/ log n). On the complement, (B(r))c, intersected with
[
max1≤j≤bnγc Sj≤(σ+ε) log(n)

]
,

we look at the process started at a node m≤n and assume that its index m is in{
2r+1, ..., 2r+1

}
. That process is looked at as a binary tree of consecutive parents,

and will be cut off at height h=b10 log log nc. There may be duplicate parents (in
which case the tree degenerates to a dag), so we need to be a bit careful. If any
parent in the tree is selected with index ≤2r

′
<nγ , then Sm≤(σ+ε) log n+h, and

thus, we can assume that in this “tree” any node j selects its parent uniformly
in the range (2r

′
, j). At any stage, by our assumption, the probability of picking

a parent i having Si≤(σ+ε) log n is at least 1/8 (and this is why we needed the
dyadic trick, so that we can make this statement regardless of the choice of i within
the range (2r

′
, n]). We claim that this “tree” has at least 2h−1 leaves or reaches

[1, 2r
′
] with overwhelming probability. To see this, note that a node j in it picks

a node already selected with probability not exceeding 2h/j. But the index j is
stochastically larger than

Xh
def= b...bbmU1cU2c...Uhc

by our remarks about the labeling process. The probability that there are in fact at
least two such unwanted parent selections (but none of them less than nγ) in that
“tree” is not more than

22h+2×E2

{
2h

Xh
1[Xh≥nγ ]

}
≤ 24h+2×E2

{
1
Xh

1[Xh≥nγ ]

}
(8)

We have

E
{
X−1
h 1[Xh≥nγ ]

}
=
∫ ∞

0

P{X−1
h 1[Xh≥nγ ]>t} dt

=
∫ 1/nγ

0

P{Xh< 1/t} dt
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≤
∫ 1/nγ

0

P{mU1...Uh<h+1/t} dt

=
∫ 1/nγ

0

P{log
m

h+1/t
<Gh} dt

=
∫ 1/nγ

0

∫ ∞
log+

m
h+1/t

yh−1e−y

Γ(h)
dy dt

=
∫ ∞

0

yh−1e−y

Γ(h)
min

(
n−γ ,

1
(me−y−h)+

)
dy

≤
∫ log(m/2h)

0

2yh−1

Γ(h)m
dy+n−γ

∫ ∞
log(m/2h)

yh−1e−y

Γ(h)
dy

≤ 2(log(n))h

mh!
+
n−γ(log(n))h−14h

Γ(h)m
(for n large enough, by Lemma 2.1)

=O
(
no(1)/m

)
=O

(
m−1+o(1)

)
.

Thus, our probability (8) is not larger than O
(
m−2+o(1)

)
. If there is only one

unwanted parent selection and we avoid indices below nγ , and considering that the
first parent selection at the root node is always good, we see that at least half
of the 2h potential leaves are in fact realized. Each of these leaves makes two
independent parent selections. The probability that all these leaves avoid parents j
with Sj<(σ+ε) log n is at most (7/8)2h−1

=o(n−2). If there is a connection, however,
to such a parent of low depth, then the root has shortest path length at most h+1
more than (σ+ε) log n. Hence, if Em is the event [Sm>(σ+ε) log n+h+1], then

P
{
Em∩((B(r))c∩

[
max

1≤j≤bnγc
Sj ≤ (σ+ε) log n

]}
=O

(
m−2+o(1)

)
.

Thus

P
{

max
nγ≤j≤n

Sj > (σ+ε) log n+h+1
}

= P
{
∪nm≥nγEm

}
≤P

{
max

1≤j≤bnγc
Sj > (σ+ε) log n

}
+P{B(r)}+

n∑
m≥nγ

m−2+o(1)

=O(n−3γ)+O(1/r′)+n−γ+o(1)

=O(1/ log n).

This concludes the proof of Theorem 1.3.
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4. Bibliographic remarks and possible extensions

The study of the urrt goes back as far as Na and Rapoport [28] and Meir and
Moon [27]. Single nonuniform parent selections have been considered as early as
1987 by Szymański. Szymański [37] showed that if a parent is selected with proba-
bility proportional to its degree, then with high probability there is a node of degree
Ω(
√
n). This is nothing but the preferential attachment model of Barabasi and Al-

bert (see Albert, Barabasi and Jeong [2], or Albert and Barabasi [1]), which for a
single parent is a special case of the linear recursive trees or port (plane-oriented
recursive tree). For this model, the parameter Rn was studied by Mahmoud [24],
and the height by Pittel [30] and Biggins and Grey [4], and in a rather general set-
ting by Broutin and Devroye [5]: the height is in probability (1.7956...+o(1)) log n.
The profile (number of nodes at each depth level) was studied by Hwang [21], [22]
and Sulzbach [36].

One can ask the questions studied in the present paper for these more general
models.

Various aspects of urrt’s besides the depth and height have been studied
by many researchers. These include the degrees of the nodes, the profile, sizes of
certain subtrees of certain nodes, the number of leaves, and so forth. Surveys and
references can be found in the book by Mahmoud [25] or the paper by Devroye
[10]. Specific early papers include Timofeev [39], Gastwirth [19], Dondajewski and
Szymański [14], Mahmoud [23], Mahmoud and Smythe [26], Smythe and Mahmoud
[35], Szymański [38], and the most recent contributions include Fuchs, Hwang and
Neininger [17], and Drmota, Janson and Neininger [15]. One may wonder how the
profiles behave for uniform random k-dags.
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