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SYNOPTIC ABSTRACT

This paper presents a series method for the computer genera-—

tion of a random variable X with density f when f = lim fn
ety

= lim g, and fn and g, are given sequences of functions satis-
>

fying fn o 1 i.gn; f is never evaluated. This method can be

used when f is given as an infinite series. Three complete

examples are given, and a computer program is included for the

generation of random variates from the Kolmogorov-Smirnov dis-

tribution.

1. INTRODUCTION

Consider the problem of computer generation of ' a random var-

iable X with density f, where f is a (complicated) function

which can be approximated from above and below by simpler func-—

tions fn and gn . In particular, assume that:

(i) there exist sequences of functions fn and 8, such
that
fn S i % B s foriallin (1)
where
(ii) fn =e T Bser f as n>>
and

(iii) there exists an integrable nonnegative function h

such that
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L=t (2)
Here h is proportional to a density which is easy to sample from,

and fn and g, are sequences of functions which are easy to eval-

uate. (Note that g, is not necessarily positive, and that fn

need not be integrable.) The following rejection-type algorithm

cap be used to generate X.

Algorithm SO (The Series Method) .

0.1 Generate X with density ch (c is a constant), generate
an independent uniform (0,1) random variate U, set n = 0
and T = Uh(X).

0.2 n=ntl. IfT*= fn (X), exit with X.

0R3F LENT> e (X), go to 0.1.

04 GoltolOL2L

1f f can be written as an alternating series

f(x) = h(x) (l—al(x)+az(x)—a3(x)+...) (3)

(where an is a sequence of functions satisfying
an(x) VO o i, (&)
and h is a nonnegative integrable function) then X can be gener—

ated by:
Algorithm S1 (The Alternating Series Method) .

1.1 Generate X with density ch (c is a constant), gener-—
ate an independent uniform (0,1) random variate 1013

set n = 0 and T = 0.

1]

122 Win = Rl
1.3 n = mHl=3 T
14 C oo RN 2

T+an(X). If U 2 T, exit with X.

T—an(X). LE US< I sggo Eo 1o

It is clear that S1 is a special case of SO because f £ h

and k< 3 o k+1 5
L - -—
il by (-D7a; () = 16 <l jzl (-1)%a, () 5 k o

SO and S1 can be considered as generalizations of the accep-

tance/rejection method with squeezing, with the special feature

that f or f/h need never be computed. SO requires the evaluation
of h, however. For recent detailed descriptions of the accept-—
ance/rejection method, see vaduva (1977), Tadikamalla (1978), or
Tadikamalla and Johnson (1981) . For the squeeze method, see

Schmeiser and Lal (1980) .

Different speciadl cases are often encountered in practice.

For example, if

£(x) = h(x) exp(—al(x) + az(x)...)
where h = 0 is integrable, and an(x) ¢ 0 for all x , then X can-

e

be generated by
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Algorithm S2 (The Exponential Series Method).

2.1 Generate X with density ch (¢ is a constant), generate
an independent exponential random variate E , set n = 0
and T = 0.

2.2 n=n+tl , T =T + an(X). If E'2"F", exitiwith X.

2.8 n=n+l,T=T—an(X).‘IfE<T,gotoZ.l.
2L S GolEo 2 2

Some examples are given in Sections 3 and 4, and the

average time taken by algorithm S1 is analyzed in Section 2.

Experimental timings are included and show that for some distri-
butions where f contains trigonometric and/or exponential/logar-
ithmic functions some savings can be obtained via our methods
unless random variates for the distribution in question can be
obtained in a very simple fast way by other means (e.g., as for
the exponential distribution). An example is included for which
the series method seems the only feasible method of random var-

iate generation (i.e., the Kolmogorov-Smirnov distribution).

2. ANALYSIS OF ALGORITHM S1.

Let X be a random variate generated by algorithm S1, and let
Ni be the number of times step l.i in the algorithm was executéd,
1 <i < 4. We will show that when a

(4) and al(x) < ¥ i

0= 1, and a and h satisfy

() p(N2< ot )=t ) and

(11) E(NZ) =i£l i h(x) (aZi—Z(x) - aZi(x))dx.

Since Ni < N, for all i , it is clear that the properties of N2

2
are essential for the study of the time taken by S1. Note that
(i) is necessary in order for S1 to halt with’probability one.

It is possible however that E(Nz) o G

Proof.

(i) is true in view of (4) and steps 1.2 and 1.3 of Sl.
For (ii), let (X,U) be a pair of random variates generated in
step 1.1. Define event A by "(X,U) will be accepted; i.e.,
Uh(X) < £(X)". Now :
o - = =
P(N2—1,A) /rh(x)(aZi_z(x) aZi_l(x))dx 1
and \
P(N,=1|D)=[[h(x) (a,, ;) - aZi(x))dx]/[/h(x)dx—l] =q

where A denotes the complement of A . Since on the average

./h(x)dx pairs (X,U) are needed, we have

E(N)) =] ip; + [ h(x)dx-1] Bt
1 i
from which (ii) follows.



3. THE EXPONENTTAL AND RAAB-GREEN DISTRIBUTIONS.

The exponential distribution. It is known that for all odd

k-1 e L
(-1)33‘—, , x > 0.

o~
~
!
fur
N~
[=
1\
(0]
!
»
v
I 1R

j=0 j=0

For the generation of exponential random variates, we can use SO

with a well-chosen function h . We choose h from the family of

densities

n
na
t ]
(x+a)n+l

X >0 S pie disdinteger

where a > 0 is a parameter. Note that this is the density of

a(u - 1)

=R 1]

when U is a uniform (0,1) random variable. It is also the den-

sity of a max—l(Ul,..},Un) - 1) when U .,Un are independent

10
and identically distributed uniform (0,1) random variables. Since
e (x+a)n+1 is maximal when (n+l) = x+a , i.e. x =n+ 1 - a ,

we see that

- n
o X o _Y na

(x+a)n+l
n+l s
where y = (Eil) fij%;——‘ Now, e a ™ is minimal when a = n .
mt+l n n+l

Th > h i = (n+l)~.- € = l l

us, choosing a = n, v 5) en+l a1+ n) = 1 as
n > o . In particular, for n = 1,2,3 we obtain % ®.1.471518 ,
(3/2) (4/3)4
g =51 1.241592 ——E——-—-E 1.162679. Since the rejection

rate decreases with n , but the time needed to obtain a random
variate with density l/(l+x/n)n+l (as n(max_l(Ul Un) - 1))
increases with n , we expect that the best perfoéééé;e is ob-

tained for some small n (the value n = 2 will be suggested

below). The algorithm version for the exponential distribution

with mean 1 is:

0.1.E. Generate n = 2 independent uniform (0,1) random vari-

ates Ul,...,Un . Let U = max(Ul,,--,Un) S\ E U1 =0,
interchange U2 and Ul ) Set X = n(1/U - 1) ,

Ul n+l n n+ln+l 1
T = y(—E—QUn -1=y U1 U - 1 where y = Gj;ﬂ ° =

[Note: Ul/U is uniform (0,1) and independent of U ;

+1
+ o
™ i 1/ (1 + %) % e PO o o Eor O T

Set j =0, P =1. :
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002 : Bt R =8 KISt ase X e AT = AT P R IR ROR Sex it with

X .
0.3.E4. i = i1 e P = PR/ T = I=P Tf T >.0 , go to
0.1 E.

0.4.E.**Go *tor 0.2 .EX

Several remarks here will illustrate some dangers of the

series method.

Remark 1. The computation of E(N,) is usually not possible by
z

analytical means. However, much can still be said about this

*
4

is the number of visits of step 4 before an exit (step 2) or a

*
average. Clearly, E(Nl) =y . Also, E(NA) =y E(NA) where N

return to step 1 (see step 3). For the proof of this, let N4(r)
(N4(a)) be the number of visits of step 4 given ultimate rejec-

tion (ultimate acceptance). Then,

E(NA) = (E(Nl) - l)E(NA(r) + E(Nh(a))

(1-1/y) EW,(r)) (L/Y)E(N,(a)) 3
- o+ =y E(N))
But 1/y lé; 4
* 7 1 2-)!
P(N, > i) < /_._1._._ Cmin( 1, XD gy
4 5
e I
n n
(e} ©
. Dl iy
= /__x e ok 1 dx
(24): c (l+x/n)n+l
0 2i+1
_ < 1
(2i+1)! cyn
a+9
2341
2i+1 2i+1+n
for any ¢ > 0 . If we take c = (—zr—o & - > then the

upper bound becomes asymptotic to

1L ne, n ne,n
= —— ==k a) . - A6
(21)™2 w21 « 2%

as i+ o

@
* *
by use of Stirling's formula. Thus, E(NA) = z P(N4 > i) < @ for
1

*
n>2. Forn=1, with some work, one can show that E(N4) = ®

(step 1 has to be replaced by: generate Ul U, independent
’

2

2
= JtagePie=) y U2 Ul

whiere i =ih/e X ML .E > W0%aap0r toid0ki B, l.Set =208 P = 1.) .

uniform (0,1) random variates; set X = 1/U -1

This is due to the fact that the tail of the dominating function
l/(x+l)2 is too heavy, and that the series approximation of s

is too slow in the tail.

Remark 2. If one uses the given algorithm with n = 2 , one will

run into overflow problems in steps 2 and 3 since X is too large

with too high a probability. To guard against this, step 1 could

be extended as follows:
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if X > a (a threshold): exit with X when T+l < exp(-X),
and go to 0.1.E. otherwise .

The average time (in microseconds) varies from 30.7 (a=0) down to
26.2 (a=1) and monotonically back up to 30.1 (o=5). The case
a=0 corresponds to a complete bypass of steps 2, 3, 4 in the
algorithm, and the case o - *® corresponds to no bypass. The
average time (in microseconds) for the random variate generator
-log(U) where U is uniform (0,1) is much lower: 17.8 . (All
timings here and below were done on an AMDAHL V7 computer using
10000 observations and FORTRAN coding. The uniform random vari-
ate generator was taken from the Super-Duper random number pack-
age (see Dudewicz and Ralley (1981) for the code, and Marsaglia,

Ananthanarayanan and Paul (1973) for additional explanation).

Remark 3. A similar experiment to that described in Remark 2

was carried out by the author for the normal distribution: the

tails were taken care of by rejection from the Rayleigh density

—x2/2

X e properly truncated, and the main body was treated using
the series method, with rejection from the uniform density. The
average computer time was mdiway between the average time for the
polar method and the average times for the algorithms of Kinderman
and Ramage (1976) and Marsaglia and Bray (1964). The space re-
quirements were also about midway between those of the polar
method and the Kinderman-Ramage, Marsaglia-Bray algorithms. This
situates the method in an area of the time/space map (figure B of
Kinderman and Ramage (1976)) practically by itself. No method

known to us is both shorter and faster.

The Raab-Green distribution. Consider the density

Bl s STBSES o
2m
2 4
= l-(1 et Sy ST yrastnes kA
™ 2. 20508 Gl i

Thus, f can be put into form (3) with h(x) = = WSS T, and
2n

X
an(x) . 2.(2n) !

3 =

It is easy to check that an(x) v+ 0asn~+ o,

since

an+1(x) 2 Tr2
<l

s x =10 N
a G | (2wt (2otD) =137 ¢

Density f was suggested by Raab and Green (1961) as an approxima-

tion for the normal density. Algorithm S1 is, for the Raab-Green

density:

1.1RG. Generate two independent uniform (0,1) random variates

Uand V. Set X = n(2V-1), n=0, T =0, P = %

1.2RG. n=ntl , P = PXZ/[(Zn) (2n=-1) 1, 'T,=T+P " _If ‘U = T,

exit with X .
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1.38G. n=nt+l , P = PX2/[(2n) (2n-1) hlene=sT=P&) ¥I£ U <.T ,
go to 1.1RG.
1.4RG. Go to 1.2RG.

It is easy to see that E(Nl) = 2 . However, we may apply the

following alias principle (Walker (1977); see also Kronmal and

Peterson (1979)) or band rejection method (Payne 61977)):
generate (X,U) uniformly in [-E, + ng[O,l]. TE ;—s f(X) , exit

with X , and otherwise, exit with 7 sign X - X . X will have
density f because (for 0 < x < g—) we have %—— f(x) = f(m-x).

Thus, algorithm S1 can, for the Raab-Green demnsity, be improved

to:

1.1RGA. Generate two independent uniform (0,1) random variates

U and V . Setx=%(2v_1), n=0,T=O,P=%

T,

v

1.2RGA. n=ntl , P = PXZ/[(Zn) (2n-1)], T=T+P . If U
exit with X ‘o

1.3RGA. n = o+l , P = PX>/[(2n) (20=10)1], e SSEp—PISE BELE < ST
exit with w sign X - X .

1.4RGA. Go to 1.2RGA.

Then we will have N1 = 1 (no rejections), and furthermore
gi2 i g 4
P(N.>1) = 2 L G R
2 48 3840 i "
0

In other words, not only is no cosine evaluation necessary with
this algorithm, but step 4 is reached only about 2.54% of the
time.

The last algorithm RGA takes 18.6 us per random variate on
the average. If steps 2-4 are replaced by the direct method "If
20 <1 + cos X , exit with X . Otherwise, exit with = sign X-X",
then it takes 20.9 us per random variate on the average. Thus in
this example it is desirable to use the series method rather than

the direct method.

4. THE KOLMOGOROV-SMIRNOV DISTRIBUTION.

The Kolmogorov-Smirnov distribution function

® 2.2
F(x) = CT e S R (6)

n=-wo

appears as the limit distribution of the Kolmogorov-Smirnov test
statistic (Kolmogorov (1933), Smirnov (1939), Feller (1948)). No

simple procedure for inverting F is known, hence the inversion

method is likely to be slow. The density f corresponding to F is

© 212
Flxy =8 z (_l)n+l n2x e—2n X
n=1

DX>O’ (7)

which is of form (3) when
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= 2
h(x) = 8xe & SR a0

ane)n=! (k13 d e'zxz[(“"l)z'lj it D (8)
n

It is known (for the equivalence of (7) and (9) see Whittaker
and Watson (1963) or Byrd and Friedman (1964)) that F and f can

also be written as

) 2. 2 2
Figa)ns Vin z a,~(2n-1) 7" /8x , x>0, (9)
n=1
UL )y (2n—_1ﬁ]i 1, WOTE L (10)
Ex) = x e K 5 » x>0
n=1 4x

This also follows the format of (3), but now with

53 2 2
B s Vor & =T/ (8x )

4 (11)
2 2 2 2
é%—-e Sl aln s s son 2l o on odd o x > 07
™
a (x) = o 20 2 2
3 (n+l)2 e L (otl) -1iw/8x sy.n. =21 ; n even , x > 0 ,

Lemma 1. The terms an(x) in (8) are monotone + for x > v1/3 .

The terms an(x) in (11) are monotone ¥ for x < 7m/2 .

Proof. For (8), we have log(a (x)/a_(x)) = =2 log(l+n_l) +
2(2n+1)x2 > -2n—'l + 2(2n+l)x2 ;_EZ + 6:2 >0 . For (11), when n
is even, we have an(x)/an+1(x) Z §n+l§2n2/4xz > 22/4x2 > 1 . Also,
log(an_l(x)/an(x)) = —%og(§n+l) 1°/4x7) + nn”/2x" ='ny -2 log(ntl)
-log(y/2) (where y = w°/2x"). The last expression is increasing
in y for y=2 and all n22 . Thus it is not smaller than 2n-2

log(n+l) 2 0 . This concludes the proof of Lemma 1.

The monotonicity condition (4) necessary to apply algorithm
S1 is satisfied for (8) on (¥1/3,% ) and for (11) on (0,m/2)

The algorithm that we propose to generate a random variate X from

The Kolmogorov-Smirnov f is a combination of S1 and the mixture

method:

Algorithm S1M.
1.0M. (Preparation.) Let c be a constant in (V1/3, /2)

(c = 0.75 is suggested), and let p = F(c).

1.1IM. Generate a uniform (0,1) random variate U . If U > p ,
go,to 1.2M.
Otherwise, exit with a random variate X from density

fl(x) ="f(x)/p , 0'<'m 2¢

To generate X , use S1 with (10) and (11).
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1.2M. Exit with a random variate X from density

fz(x) = f(x)/(1-p) , c <x,

where X is generated by the alternating series method

S1 applied to (7) and (8).

For details of the application of S1 to densities fl and f2

we make use of the following lemmas.

Lemma 2. If G is a random variable with the truncated gamma(%)
- ]
density cl/~§_ e 7 ,y2c = n2/8c2 , then X = m/v8G has

density

i3 2 2
cz - 4 =T /8x -l (12)

(Here ¢y and c, are normalization constants).

2 2
Proof. The Jacobian of the transformation y = n /8x" is

clJ§—e ST s e,

2 2 .
4ﬂ/(8y)3/2 If X has density (12), then G = n /8X" has density

Lemma 3. If E is an exponential random variable, then X =
—

\/c2+E/2 has density

—2x2
c3 X e 5 X B C oy @13

where c3 is a normalization constant.

Proof. The distribution function of (13) is 1 - exp(-2(x2—c2)),
SRl

That''of' EVis - —Fexp(—x)"s, x = 0",

We propose the following algorithms for the generation of

random variates from f1 and f2 , respectively. The constant c is

picked as in SIM and e' = n2/8c2 .

(fl) 1. 1A. Generate two independent exponential random vari-
ates EO and El . Set E0 = EC/(l—(Zc')_l) a El =
2E1 é G = c'+EO :

I e 2 EO > c'El(G+c') Seo o oMD"

1c. If G/c' -1 - log(G/c") > El s go to 1A

1D.x=n//_§6,T=o,z=(zc)'l,P=e'G,n=1
Q=1.

Generate a uniform (0,1) random variate U .
26 B =CDEZQR L IR U > T, exaE wilthi X .

nz—l 2
nt2 , Q=P § T =TT CIE USRS oo te 1.

3 0

4. Go to 2.
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(f,) 1. Generate an exponential random variate E and an inde-

pendent uniform (0,1) random variate U . Set X =

\/c2+E/2 s Lee 0¥ me 1T 25 exp(-ZXZ)
2

2, n=ntl , T = T+nZZn i o JLf U 2T exdtowiEh X o

2 n2—l
3. n=ntl , T =T=n 2 ¢ L IEU = golita s

4. Go to 2.

The steps in both algorithms are numbered as in S1. In step

1 of the algorithm for f a random variate X is generated that

l’
has density h (11) restricted to (0,c) . The algorithm uses re-
jection (step 1C) with squeezing (step 1B) (for details, see
Dagpunar (1978) and Devroye (1980)). The computation of Z in

step 1 of the f, algorithm requires exponentiation. This may be

2
avoided some of the time by accepting X in step 1 "quickly" when
U>4 exp(—6c2) . Similarly, we may accept X in step 1D of the

f1 algorithm when U 2 4(:2/112 , before Z or P are computed. In

Table 1 values are given for these quick acceptance probabilities
and for p = F(c) as a function of ¢ . Both probabilities are

close to 0.80 when ¢ = 0.75 . A complete FORTRAN program with

discussion is given at the end of this section.

TABLE 1. Values for Quick Acceptance Probabilities
and p = F(c) as Functions of c.

—6c2 ) Average Time per
c 1-be 1-b4ec™/m p=F(c) Variate (us*)
0.60 0.54 0,85 07136 39
0.65 0.68 0.83 0.208 36
0.70 079 0.80 0.289 34
0575 0.86 7 0.373 34
0.80 0.914 0.74 0.456 36
0.85 0.948 03 741: 0.535 38
0.90 0.969 0.67 0.607 41
.95 0.982 0.63 0.673 44
1.00 09901 0.59 0.730 48
1205 0.9946 055 0.780 53

* 1 pys = 1 microsecond = 10—6 seconds.
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Related limit distributions. The empiric distribution func-

tion Fn(x) for a sample X

1,...,Xn of independentnidentically dis-
tributed random variables is defined by Fn(x) =i§1 n—l[XiSX]
where I is the indicator function. If X, has distribution

1
function F(x) , then the following statistics have been proposed

for goodness-of-fit tests by various authors:

/ n sup F(x) - Fn(x)

X

+ T -
Kt Vo szp Fn(x) = Bz} o R =

(the asymmetrical Kolmogorov-Smirnov statistics);

Kn = max(K: X K;) (the Kolmogorov-Smirnov statistic) ;
vV = K+ + K (Kuiper's statistic) ;
n n n .
Wﬁ =n /.(Fn(x) - F(x))zdF(x) (von Mises' statistic) ;
2 2
vy = nf @0 -F@ - G0 - FE)ER) ) R

(Watson's statistic) ;
2
, L OFG)

L= o (f0) dF(x) (the Anderson-Darling statistic).

For surveys of the properties and applications of these and other
statistics, see Darling (1955), Barton and Mallows (1965), Sahler
(1958), and Shapiro (1980). All the statistics mentioned here
have limit distributions. The limit random variables will be
denoted by K:, K;, K_» ete.. In Table 2, the characteristic
functions of these limit distributions are given. 1In all but

one case they can be written as a countable product of character-
istic functions of gamma random variables. Therefore the follow-
ing conclusions about the generation of random variates from
these distributions follow:

@) ZKI2 and ZK;2 are exponentially distributed. For ex-

ponential random variate generation algorithms, see
Maclaren, Marsaglia and Bray (1964), Sibuya (1961),
Marsaglia (1961) and Ahrens and Dieter (1972).

(2) V_ 1is distributed as Km(l) + Kw(Z) , the sum of the
two independent random variables distributed as K .

(3) U is distributed as Km/nz'

(4) The sum of two independent Wi random variables
(wi(1)+wi (2)) is distributed as Koo/ﬂ2 , but no simple
function of K_ that would give a random variable distri-

2
buted as Woo is known to us.

Note that the explicit form of the limit distribution of V

is relatively simple (see Kuiper (1960), but Ai and Wi have com-

plicated limit distributions (see Anderson and Darling ((1952)).
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TABLE 2.

Characteristic

Functions of Some

Limit Distributions for Tests of Fit.

Random Characteristic Relevant
Variable Function References
K A |
2 I (1-it/237) Kolmogorov (1933), Smirnov
j=1 (1939), Feller (1948)
2 2 x -1 ;
K+ 'S (1-it/2) Smirnov (1939), Feller (1948)
i 2 S )
Vs I (1-it/23%) Kuiper (1960)
=1
wi ; (1—21t/n2'2)-l/2 Smirnov (1937), Anderson and
j=1 J Darling (1952)
2 ® L
e T (1-te/27232) " atson (EOU5T106%
J=i
2 = w12
A nm(1-it/3(3+1)) Anderson and Darling (1952)
j=1

REAL FUNCTION SMIR(L)

¢

(6]

C THIS SUBPROGRAM PRODUCES VARIATES FROM THE KOLMOGOROV-SMIRNOV

C LIMIT DISTRIBUTTON FUNCTION.

(6

C SOURCE: LUC DEVROYE "THE SERIES METHOD FOR RANDOM VARIATE

(¢ GENERATION AND ITS APPLICATION TO THE KOLMOGOROV-

C SMIRNOV DISTRIBUTION!) AMERICAN JOURNAL OF MATHEMATICAL

C AND MANAGEMENT SCIENCES.

C AT EACH CALL, THE ARGUMENT CAN BE GIVEN THE VALUE 0 AS IN

C THE STATEMENT X = SMIR (0).

C THE PROGRAM USES THE SUBPROGRAMS UNI AND REXP FOR THE GENERA-

C TION OF UNIFORM (0,1) AND EXPONENTIAL RANDOM VARIATES.

C THESE SUBPROGRAMS ARE PART OF THE SUPER-DUPER RANDOM NUMBER

C GENERATOR PACKAGE OF MCGILL UNIVERSITY.

c

C THE CONSTANTS IN THE PROGRAM DEPEND UPON C. ALL THE VALUES IN

C THE PROGRAM ARE FOR C=0.75. FOR OTHER VALUES OF C IN THE

C RANGE SQRT (1./3.)XC <3.14159265/2. RECALCULATE THEM AS
FOLLOWS :

€ P= VALUE OF KOLMOGOROV-SMIRNOV DISTRIBUTION FUNCTION

G ATIE

@ P1=1./P

(0] P2=1./(1.-P)

(e CSQRE=C*C

C P28C=PIE**2/(8*C*C), PIE=3.14159265

c PINV=1./P28C

(6 ALPHA=4 . *EXP(~6.*C*C)

(6 BETA=4*C*C/PIE**2

@ B=1./(1.-4*C*C/PIE**2)

DATA C,P,P1,P2,CSQRE,P28C,PINV,ALPHA,BETA,B/0.75,0.3728330,
+ 2.682166,1.594471,0.5625,2.193245.0.4559454,0.1368725,
+ 0.2279727,1.295291/
1 DEC=UNI (0) -
IF(DEC.LT.P)GOTO59
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€3 A5

GENERATE VARIATE FROM TAIL OF RAYLEIGH DENSITY

V=(DEC-P) *P2

GOTO021

V=UNI(0)
SMIR=CSQRE+0. 5*REXP (0)
SMIRSQ=SMIR+SMIR

CONSECUTIVE ACCEPTANCE/REJECTION STEPS

IF (V.LT.ALPHA)GOTO04
SMIR=SQRT (SMIR)

RETURN

IF (SMIRSQ.GT.174.) GOTO3
T=EXP (-SMIRSQ)

K=1

NUM=0

SUM=0

NUM=NUM+K+K+1

K=K+1

(IF (NUM*SMIRSQ.GT.174.)GOTO3
SUM=SUM+ (NUM+1) *#T**NUM
IF(V.GE.SUM)GOTO03
NUM=NUM+K+K+1

K=K+1

IF (NUM*#SMIRSQ.GT.174)GOT03
SUM=SUM= (NUM+1 ) *T**NUM
IF(V.LT.SUM)GOTO02

GOTO5

GENERATE VARIATE DISTRIBUTED AS INVERSE OF SQUARE ROOT OF TAIL
OF CHI-SQUARE DENISTY WITH 3 DEGREES OF FREEDOM

V=DEC*P1
GOTO7

V=UNI (0)

E=REXP (0)B

E1=E1+E1l

Y=P28C+E

IF (EXE.LE.E1*P28C* (Y+P28C) ) GOTO8
IF (PINV*Y-1.-ALOG(PINV*Y) .GT.E1)GOT06
SMIR=1.1107206/SQRT (Y)

2=0.5/Y

SUM=1.-Z

CONSECUTIVE ACCEPTANCE/REJECTION STEPS

IF(V.LT.SUM)RETURN
K=3

KSQRE=8
IF(Y.GT.21.7)RETURN
T=EXP (-Y)
TU=T**KSQRE
SUM=SUM+(KSQRE+1) *TU
IF (V.GT.SUM)GOTO06
SUM=SUM-Z *TU
IF(V.LE.SUM)RETURN
K=K+2

KSQRE=K*K-1

IF (Y*KSQRE.GT.174.)RETURN
GOT09

END
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Subprogram SMIR requires a uniform random variate generator
(UNI), and an exponential random variate generator (REXP). Both
UNI and REXP are part of the SUPER-DUPER random number generator
package developed by Marsaglia, Anantharayanan and Paul (1973)
at McGill University. The IBM Assembler code can be found in
Dudewicz and Ralley (1981). It can also be obtained directly
from McGill University. The average time required per variate
changes with the parameter c¢ (see Table 1), and on McGill Uni-
versity's AMDAHL V7 computer, c = 0.75 seems to be the best
choice. The sequence of random variates produced by SMIR was
also submitted to a Kolmogorov-Smirnov goodness-of-fit test for
sample size 5000 ( the p-values obtained were 0.12, 0.24
and 0.37)- To compare the speed of SMIR (34 us/variate on the
average) with that of other algorithms, note that the state—
ment X = -ALOG(UNI(0)) takes on the average 10.5 us, and that
the fastest FORTRAN coded gamma generators (see Tadikamalla and
Johnson((1981)) take about 21 microseconds per variate for large

values of the shape parameter.
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