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Introduction

Tries are efficient data structures that were initially developed and analyzed by Fredkin (1960)

and Knuth (1973). The tries considered here are constructed from n independent strings X1, . . . , Xn,

each drawn from
∏∞
i=1 Ωi, where Ωi, the i-th alphabet, is a countable set. By appropriate mapping, we

can and do assume that for all i, Ωi = Z . In practice, the alphabets are often {0, 1}, but that won’t

even be necessary for the results in this paper. Each string Xi = (Xi1, Xi2, . . .) defines an infinite path

in a tree: from the root, we take the Xi1-st child, then its Xi2-st child, and so forth. The collection of

nodes and edges visited by the union of the n paths is the infinite trie. If the Xi’s are different, then each

infinite path ends with a suffix path that is traversed by that string only. If this suffix path for Xi starts

at node u, then we may trim it by cutting away everything below node u. This node becomes the leaf

representring Xi. If this process is repeated for each Xi, we obtain a finite tree with n leaves, called the

trie. patricia is a space efficient improvement of the classical trie discovered by Morrison (1968) and

first studied by Knuth (1973). It is simply obtained by removing from the trie all internal nodes with

one child. Thus, it necessarily has n leaves. Each non-leaf (or internal) node has two or more children.

The left figure shows an infinite binary trie. In the middle, the suffixes are

trimmed away to obtain a six string trie, the “finite trie”. Removing the

one-child nodes yields the patricia tree on the right.

The purpose of this short note is to draw attention to a few specialized concentration inequalities

that may be used to obtain powerful universal results for random tries and random patricia trees with

almost no work. The heights and the profiles of these trees are taken as prototype examples to make that

point. For example, we will show that patricia trees have a remarkable universal property, namely that

Hn
E{Hn}

→ 1

in probability as n → ∞, regardless of the string distribution, where Hn denotes the height of the

patricia tree. We will not be concerned with the computation of E{Hn}, as this depends very heavily on

the string distribution. The modern concentration inequalities are mainly due to Talagrand (1988, 1989,

1990, 1991a-b, 1993a-b, 1994, 1995, 1996a-b) and Ledoux (1996a-b), as surveyed by McDiarmid (1998).

An interesting inequality by Boucheron, Lugosi and Massart (2000), extended below in Lemma 1, will be
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helpful in the development of the results.

Boucheron-Lugosi-Massart inequality

The following inequalities will be fundamental for the remainder of the paper. Lemma 1 is an

almost trivial extension of a similar inequality due to Boucheron, Lugosi and Massart (2000). Its proof

is based on logarithmic Sobolev inequalities developed in part by Ledoux (1996a).

Lemma 1. Let Ω = Zn. Let f ≥ 0 be a function on Ω, let c ≥ 0 be a constant, and let g be a real-valued

function on Zn−1 satisfying the following properties for every x = (x1, . . . , xn) ∈ Ω:

0 ≤ f(x)− g(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1 , 1 ≤ i ≤ n ;

n∑

i=1

(f(x)− g(x1, . . . , xi−1, xi+1, . . . , xn)) ≤ f(x) + c .

Then for any X = (X1, . . . , Xn) with independent components Xi ∈ Z , and all t ≥ 0,

P{f(X) ≥ E{f(X)}+ t} ≤ exp

(
− t2

2E{f(X) + c}+ 2t/3

)

and

P{f(X) ≤ E{f(X)} − t} ≤ exp

(
− t2

2E{f(X) + c}

)
.

Proof. In the proof of Theorem 6 of Boucheron, Lugosi and Massart (1999), note that in (16), it suffices

to replace v by v + c.

The most outstanding application area for these inequalities are Talagrand’s configuration func-

tions. However, as we need to define g on a space of dimension one less than n, it is best to reformulate

things in terms of “properties”. Assume that we have a property P defined over the union of all finite prod-

ucts Zk. Thus, if i1 < · · · < ik, we have an indicator function that decides whether (xi1 , . . . , xik ) ∈ Zk
satisfies property P . We assume that P is hereditary in the sense that if (xi1 , . . . , xik ) satisfies P ,

then so does any subsequence (xj1 , . . . , xj`) where {j1, . . . , j`} ⊆ {i1, . . . , ik}, with the jm’s increasing.

The configuration function fn(xi1 , . . . , xin) gives the size of the largest subsequence of xi1 , . . . , xin sat-

isfying P . Any subsequence of maximal length satisfying property P is called a witness. In Lemma

1, we can set f(x1, . . . , xn) = fn(x1, . . . , xn) and g(x1, . . . , xn−1) = fn−1(x1, . . . , xn−1). Clearly, the

first condition of Lemma 1 is satisfied, as adding a point to a sequence can only increase the value

of the configuration function (so, f ≥ g), but by not more than one. To verify the second condi-

tion, let {xi1 , . . . , xik} ⊆ {x1, . . . , xn} be a witness of the fact that f(x1, . . . , xn) = k. For i ≤ n and

xi 6∈ {xi1 , . . . , xik}, we have f(x1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xn), and thus, the difference be-

tween f and g in the second condition can only be one if xi ∈ {xi1 , . . . , xik}. Therefore, the sum in that

condition is at most k = f(x1, . . . , xn).

Properties P include being monotonically increasing, being in convex position, and belonging to

a given set S.
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Height of a patricia tree

Given are n independent infinite strings X1, . . . , Xn (if they are not infinite, pad them by some

designated character, repeated infinitely often), each drawn from a distribution on Z . The height of the

patricia tree is denoted by Hn. If (deterministic) strings x1, . . . , xk induce a patricia tree of height

k−1, then the patricia tree can have only one configuration, namely, it consists of a chain of length k−1

from the root on down, with every node of this chain receiving one leaf, except the furthest node, which

receives two leaves. We say that such a collection of strings has the patricia property. This property is

clearly hereditary, and Hn + 1 is thus a configuration function.

Six strings with the patricia property. Each (black) leaf repre-

sents a contracted infinite string. The height is five.

We have

P{Hn ≥ E{Hn}+ t} ≤ exp

(
− t2

2E{Hn}+ 2t/3

)
, t ≥ 0 ,

and

P{Hn ≤ E{Hn} − t} ≤ exp

(
− t2

2E{Hn}

)
, t ≥ 0 .

We stress that the individual strings may have any distribution. The symbols themselves need not be

independent or identically distributed. And the strings need not be identically distributed. All patricia

trees, without exception, are stable and well-behaved:

Theorem 1. For any patricia tree constructed by using n independent strings, if limn→∞ E{Hn} =∞,

then
Hn

E{Hn}
→ 1

in probability as n→∞, and
Hn − E{Hn}√

E{Hn}
= O(1)

in probability in this sense: for fixed t > 0,

P

{∣∣∣∣∣
Hn − E{Hn}√

E{Hn}

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 + o(1)

)
.

The last inequality remains valid whenever 0 < t = o(E{Hn}).
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the condition on E{Hn}. In patricia trees of bounded degree, it is clear that E{Hn} → ∞. In

unbounded degree trees, this is also true provided that the strings are identically distributed and the

probability of two identical strings is zero. However, without the identical distribution constraint, patri-

cia trees may have Hn = 1 for all n: just let the i-th string be (i, 0, 0, 0, . . .).

bibliographic remarks: string models. In the uniform trie model, the bits in the string X1

are i.i.d. Bernoulli random variables with success probability p = 0.5. In a non-uniform trie model,

the symbols in the string X1 are i.i.d. Z-valued random variables, with P{symbol = j} = pj . In the

density model, X1 consists of the bits in the binary expansion of a [0, 1]-valued random variable X

(Devroye, 1982, 1984). In the Markov model, the symbols themselves form a Markov chain with a

given fixed transition matrix over Z × Z , and with a fixed distribution for the first symbol (Régnier

(1988), Szpankowski (1988), Jacquet and Szpankowski (1991) and Pittel (1985)). More exotic models

were studied by Clément, Flajolet and Vallée (1999), who considered strings of partial quotients in the

continued fractions expansion of certain random variables (this creates a peculiarly dependent sequence).

Theorem 1 above applies to all models described above.

bibliographic remarks: height of patricia trees. All parameters of a patricia tree such as

Hn improve over those of the associated trie: for the uniform trie model, Pittel (1985) has shown that

Hn/ log2 n → 1 almost surely, which constitutes a 50% improvement over the trie. For other properties,

see Knuth (1973), Flajolet and Sedgewick (1986), Kirschenhofer and Prodinger (1986) and Szpankowski

(1990, 1991). Pittel and Rubin (1990), Pittel (1991) and Devroye (1992) showed that

Hn − log2 n√
2 log2 n

→ 1 almost surely.

More refined results for general multi-branching patricia trees and tries are given by Szpankowski and

Knessl (2000). For the non-uniform trie model, we have E{Hn} ∼ c logn, where c = 2/ log2(1/
∑
j p

2
j ).

Depth along a given path in a patricia tree

Consider a string x that defines an infinite path in a trie. We define the depth of the path x,

denoted by Dn(x) in the patricia tree as the depth (distance to the root) of the leaf that corresponds

to x in the patricia tree for X1, . . . , Xn, x. We say that strings x1, . . . , xk have the x-property if the

prefixes x ∩ x1, . . . , x ∩ xk are strictly nested. That is, there is a reordering x′1, . . . , x
′
k of the strings

such that the common prefix of x′1 and x is strictly contained in that of x′2 and x, and so forth. In that

case, the distance of the leaf of x from the root of the patricia tree for x1, . . . , xk, x is precisely k. The

function Dn(x) = f(x1, . . . , xn) that describes the length of the longest subset of x1, . . . , xn with the

x-property is clearly a configuration function, to which Lemma 1 may be applied. Thus, we conclude as

in the previous section:

Theorem 2. For any patricia tree constructed by using n independent strings, if x is a string such that

limn→∞ E{Dn(x)} =∞, then
Dn(x)

E{Dn(x)} → 1

in probability as n→∞, and
Dn(x) − E{Dn(x)}√

E{Dn(x)}
= O(1)
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in probability in this sense: for fixed t > 0,

P

{∣∣∣∣∣
Dn(x) − E{Dn(x)}√

E{Dn(x)}

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 + o(1)

)
.

Size of a patricia tree

Let Sn be the number of internal nodes, and let Tn = Sn + n be the total number of nodes

in a patricia tree for n strings. Note that for binary patricia trees, Sn = n − 1, so only non-binary

trees have random sizes. Adding a string increases Tn by one and Sn by one or zero. Thus, if the

strings are independent (but not necessarily identically distributed), by the bounded difference inequality

(McDiarmid, 1989),

P{|Sn − E{Sn}| ≥ t} = P{|Tn − E{Tn}| ≥ t} ≤ 2 exp

(
− t

2

2n

)
.

The fanout and string distributions do not figure in the bound. We immediately have

Tn
E{Tn}

→ 1

almost surely (as Tn ≥ n), and
Sn

E{Sn}
→ 1

in probability whenever E{Sn}/
√
n→∞ (which is satisfied, for example, if the strings consist of indepen-

dent identically distributed symbols, or when the tree is of bounded fan-out). Even though these results

do not require Lemma 1, they appear to be new.

Balls in urns and hashing

Consider a very general urn model in which we have n balls thrown independently into a countable

number of urns, where the i-th urn has probability pi of receiving a ball. Let N1, N2, . . . be the numbers

of balls in the urns. Quantities of interest in certain applications include Mn = maxiNi, the maximum

number of balls, and On =
∑
i 1Ni>0, the number of occupied urns. If we throw one less ball, then

Mn and On both decrease by at most one. Thus, uniformly over all urn probabilities, by the bounded

difference inequality (Azuma, 1967; McDiarmid, 1989), we have

P{|On − E{On}| ≥ t} ≤ 2e−t
2/2n .

Also,

P{|Mn − E{Mn}| ≥ t} ≤ 2e−t
2/2n .

These results are sometimes unsatisfactory, as t needs to be at least Ω(
√
n) for the inequalities to kick in.

Note however that both On and Mn may be cast in the format of Lemma 1, with Mn being the configu-

ration function for the hereditary property “belonging to the same urn”, and On being the configuration

function for the hereditary property “belonging to different urns”. Thus, by Lemma 1,

P{On ≥ E{On}+ t} ≤ exp

(
− t2

2E{On}+ 2t/3

)
, t ≥ 0 ,
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and

P{On ≤ E{On} − t} ≤ exp

(
− t2

2E{On}

)
, t ≥ 0 .

Also, for fixed t > 0, if E{On} → ∞,

P

{∣∣∣∣∣
On − E{On}√

E{On}

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 + o(1)

)
.

And precisely the same inequalities hold when On is replaced by Mn throughout. Note that these

inequalities are strong enough to imply the following:

On
E{On}

→ 1

in probability whenever E{On} → ∞, and the result is true over a triangular array of urns (in which the

pi’s are allowed to change with n). Also, we have

Mn

E{Mn}
→ 1

in probability whenever E{Mn} → ∞.

In data structures, these results are relevant for hashing with chaining with equal or unequal

probabilities. The maximal chain length satisfies the law of large numbers regardless of how the table

size changes with n. For Mn, if the number of urns equals the number of balls, then Mn ∼ logn/ log logn

if each urn has equal probability of receiving a ball. The inequalities at the top of the section would not

allow one to obtain a law of large numbers. However, Lemma 1, as shown above, suffices to obtain it.

See Gonnet (1981), Devroye (1985), or Knuth (1973) for more on the maximum chain length.

Profile of a trie

Consider an infinite trie constructed based on n infinite strings with symbols drawn from an

arbitrary alphabet. At level m, or distance m from the root, we count the number Nm of nodes that are

visited by at least one string. Clearly, Nm is a random monotone function in m, increasing from N0 = 1

to (usually) n. Let Qm be the number of nodes at level m that are visited by at least two strings. We note

that Qm is the number of internal trie nodes at level m in the finite trie. Also, Lm
def
= Nm−Nm−1 is the

number of leaves at level m in the finite trie. The number of nodes at level m is thus Qm+(Nm−Nm−1).

As a function of m, this is a random sequence usually called the profile. We note that Lemma 1 is

applicable to the quantities Qm and Nm. This then yields very simple inequalities and proofs for the

behavior of these quantities.

We note here the analogy with urns. Consider the m-prefixes of the strings X1, . . . , Xn. Each

m-prefix takes values in Ωm, where Ω is the symbol alphabet. The probability of each element of Ωm

is thus fixed once and for all. Each of the n strings is associated with such an element, very much the

way we drop balls in urns (elements of Ωm) of unequal probability. Clearly, Nm counts the number of

occupied urns. If f(X1, . . . , Xn) = Nm, and gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) is similarly defined for n− 1

strings, then 0 ≤ f − gi ≤ 1, and
∑
i(f − gi) ≤ f , so the conditions of Lemma 1 are satisfied. We thus

have

P{Nm ≥ E{Nm}+ t} ≤ exp

(
− t2

2E{Nm}+ 2t/3

)
, t ≥ 0 ,
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and

P{Nm ≤ E{Nm} − t} ≤ exp

(
− t2

2E{Nm}

)
, t ≥ 0 .

This leads to laws for the profile of the infinite trie. The profile of any trie is close to E{Nm} for a wide

range of levels m. This, again, is true regardless of the distribution of X1, and regardless of the fanout

of the trie.

Consider the number of leaves Lm at level m. Because Nm−1 ≤ Nm,

P{Lm ≥ E{Lm}+ 2t} ≤ P{Nm ≥ E{Nm}+ t}+ P{Nm−1 ≤ E{Nm−1} − t}

≤ 2 exp

(
− t2

2E{Nm}+ 2t/3

)

≤ 2 exp

(
− t2

2n+ 2t/3

)
.

Similarly,

P{Lm ≤ E{Lm} − 2t} ≤ P{Nm ≤ E{Nm} − t}+ P{Nm−1 ≥ E{Nm−1}+ t}

≤ 2 exp

(
− t2

2E{Nm}+ 2t/3

)

≤ 2 exp

(
− t2

2n+ 2t/3

)
.

These are indeed universal inequalities. Without further work, we have

Lm
E{Lm}

→ 1

in probability for all m = m(n) when E{Lm}/
√
n→∞.

For Qm, we argue as we did for the urns. As Qm is the number of urns that receive at least two

strings, we have Qm = Nm −Om, where Om is the number of urns receiving precisely one string. Again,

with the obvious choices for f = Om and gi, we note 0 ≤ f − gi ≤ 1, and
∑
i(f − gi) ≤ f . Thus, Lemma

1 is applicable to both Nm and Om. Therefore, for t > 0,

P{Qm − E{Qm} ≥ t} ≤ P{Nm − E{Nm} ≥ t/2}+ P{Om − E{Om} ≤ −t/2}

and this may be bounded by applying Lemma 1 twice. However, the bounds are unsatisfactory as E{Nm}
and E{Om} are both large and near n for m large enough, and thus much larger than E{Qm}. We might

thus as well use the bounded difference method directly on Qm, after noting that adding one string can

increase Qm by at most one. Thus, directly,

P{|Qm − E{Qm}| ≥ t} ≤ 2 exp

(
− t

2

2n

)
.

With Qm = f put in the framework of Lemma 1, we note that 0 ≤ f − gi ≤ 1,
∑
i(f − gi) ≤ 2f (note the

“2”). The 2f causes some problems that require a considerable extension of Lemma 1, which will not be

done here. Nevertheless, if m is such that E{Qm} → ∞, then Qm/E{Qm} → 1 in probability.
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The height of a trie from its profile

With the notation of the previous section, if Hn denotes the height of a random trie for n

independent but otherwise arbitrary strings, then [Hn < m] = [Nm ≥ n]. Thus, we have without further

work,

P{Hn < m} = P{Nm ≥ n}
= P{Nm ≥ E{Nm}+ (n− E{Nm})}

≤ exp

(
− (n− E{Nm})2

2E{Nm}+ 2(n− E{Nm})/3

)

≤ exp

(
− (n− E{Nm})2

2n

)
.

This is a remarkable inequality, because the right-hand-side depends solely on E{Nm}. It is also valid

even if the strings have different distributions! In particular, it implies that if (n − E{Nm})/
√
n → ∞,

then P{Hn < m} → 0. The first moment of Nm suffices to conclude this!

bibliographic remark: height of random tries. The asymptotic behavior of tries under the

uniform trie model is well-known. For example, it is known that

Hn/ log2 n→ 2 almost surely .

The limit law of Hn was obtained in Devroye (1984), and laws of the iterated logarithm for the difference

Hn−2 log2 n can be found in Devroye (1990). The height for other models was studied by Régnier (1981),

Mendelson (1982), Flajolet and Steyaert (1982), Flajolet (1983), Devroye (1984), Pittel (1985, 1986), and

Szpankowski (1988,1989). For the depth of a node, see e.g., Pittel (1986), Jacquet and Régnier (1986),

Flajolet and Sedgewick (1986), Kirschenhofer and Prodinger (1986), and Szpankowski (1988).

References

D. Aldous and P. Shields, “A diffusion limit for a class of randomly-growing binary trees,” Probabil-

ity Theory and Related Fields, vol. 79, pp. 509–542, 1988.

K. Azuma, “Weighted sums of certain dependent random variables,” Tohoku Mathematical Jour-

nal, vol. 37, pp. 357–367, 1967.

S. Boucheron, G. Lugosi, and P. Massart, “A sharp concentration inequality with applications in ran-

dom combinatorics and learning,” Random Structures and Algorithms, vol. 16, pp. 277–292, 2000.

J. Clément, P. Flajolet, and B. Vallée, “Dynamical sources in information theory: a general analy-

sis of trie structures,” Algorithmica, vol. 29, pp. 307–369, 2001.

L. Devroye, “A probabilistic analysis of the height of tries and of the complexity of triesort,” Acta Infor-

matica, vol. 21, pp. 229–237, 1984.

L. Devroye, “The expected length of the longest probe sequence when the distribution is not uni-

form,” Journal of Algorithms, vol. 6, pp. 1–9, 1985.

L. Devroye, “A note on the probabilistic analysis of patricia trees,” Random Structures and Algo-

rithms, vol. 3, pp. 203–214, 1992.

9



L. Devroye, “A study of trie-like structures under the density model,” Annals of Applied Probabil-

ity, vol. 2, pp. 402–434, 1992.

P. Flajolet and J. M. Steyaert, “A branching process arising in dynamic hashing, trie searching and poly-

nomial factorization,” in: Lecture Notes in Computer Science, vol. 140, pp. 239–251, Springer-Verlag,

New York, 1982.

P. Flajolet, “On the performance evaluation of extendible hashing and trie search,” Acta Informat-

ica, vol. 20, pp. 345–369, 1983.

P. Flajolet and R. Sedgewick, “Digital search trees revisited,” Siam Journal on Computing, vol. 15,

pp. 748–767, 1986.

E. H. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, pp. 490–500, 1960.

G. H. Gonnet, “Expected length of the longest probe sequence in hash code searching,” Jour-

nal of the ACM, vol. 28, pp. 289–304, 1981.

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the Ameri-

can Statistical Association, vol. 58, pp. 13–30, 1963.
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