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SUMMARY
We presentseveral methods for creating a random printed handwriting font based upon a small
sample from a person’s own hand. The first method uses random interpolation and possibly
random extrapolation. The second method is based upon the random selection of points from
the minimal spanning tree formed by the sample. In a third method, we look at the controlled
random perturbation of Bézier control points.
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1 INTRODUCTION

Random fonts allow users to come closer to simulating true handwriting. Both PostScript
type 3 fonts andmetafont allow one to create veritable random fonts, in which each instance
of a character is rendered differently on the screen or printer. There is little need for random
fonts in ordinary texts, but we believe that there are enormous possibilities such as in
private mail, personalized advertisements, automatic form letter generators, mathematics
texts in which one wants to emulate blackboard mathematics, captions in Tintin and comic
strips in general, restaurant menus, the generation of test samples for handwriting character
recognition systems, and all applications requiring a human touch.

In most modern computer fonts, characters are described directly or indirectly by
outlines, which in turn are B-splines or Bézier curves or derivatives of such curves (see
Karow [1,2], Hersch [3] or André [4] in general, or Adobe’s Type 1 book [5] for PostScript).
For example, an ordinary Bézier curve used in the PostScript command curveto, is defined
by four two-dimensional control points, z0; z1; z2; z3, and the curve is the collection of
points z with

z = (1� t)3z0 + 3t(1� t)2z1 + 3t2(1� t)z2 + t3z3 ; 0 � t � 1

(see, e.g., Su and Liu [6] or Farin [7]). A character outline consists of a sequence of Bézier
curves smoothly joined together at the ends. One cannot just take the collection of control
points and add small random perturbations in the hope of obtaining a random character.
Very quickly, the characters’ appearance becomes unacceptable and does not reflect what
happens when humans produce handwrittencharacters. Figure 1 shows examples in Utopia-
Regular and Tekton of what happens to fonts when control points are moved. The outcome
depends heavily on the number of Bézier sections in an outline, and is in most cases
unusable. Especially the irregular stroke width becomes a problem.
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Figure 1.

One should really work with a constant pen with a deterministic (non-random) nib. In
metafont, Knuth [8] introduced the idea of a pen and a nib, and he described character
strokes in an analytic fashion. The outlines are constructed after a pen has been selected,
thus guaranteeing pleasing constant strokes. On page 185 of Knuth [8], it is shown how
one may carefully add noise to the control points so as to produce random results. Knuth’s
example is reproduced in Figure 2 for the sake of illustration.

The punk (metafont) font uses similar ideas to create random characters [9]. To produce
a fully functional random font in this way would be interesting, but it is a painstaking job,
as every character must be designed individually. Metafont may be used to create random
characters but once they are created, they remain fixed: every occurrence of a symbol
produces the same output. Finally, Knuth’s example does not attempt to imitate one’s
handwriting. Sherman [10] (p. 164) shows one how a primitive, random, type 3 font
might be coded. His interest was mainly at the software level and not the design of a
functional font. In PostScript, it is possible to disable the font cache by using setcharwidth
instead of setcachedevice and to randomize the characters before rendering. This was
first pointed out by André and Borghi [11]. It was applied to the punk font by André and
Ostromoukhov [12], and used for ransom fonts by Packard [13]. For other applications, we
refer to the Beowolf font of van Blokland and van Rossum [14,15], or André’s Scrabble
font [16]. This approach is slow, as typical characters have more than 30 control points.
Also, as shown above, raw independent random perturbations of the control points are
not recommended as they create uneven strokes. Furthermore, at the junctures of Bézier
segments, first and second order continuity are lost. Finally, as with Knuth’s example, one
arbitrarilyextrapolates beyond a given character without regard to an individual’sproneness
to produce such extrapolations in their handwriting. For a survey of random (or dynamic)
fonts, we refer to André [4] and André and Borghi [11].

Multiple master fonts interpolate between several fixed extreme fonts in a smooth
manner. Haralambous [17] proposes certain parametrizations based upon metafont. In
fact, our solution for handwriting fonts takes its cue from these ideas, but differs in that
each character in the font may have a different number of prototypeexamples. Furthermore,
we have the additional requirement that random combinations must look and behave alike.

Handwriting fonts have been available for a long time. A small list of static (non-
random) PostScript fonts with sample printouts is given in Table 1. These were created
from scratch through programs created by Luc Devroye and Sandro Mazzucato at McGill
University in 1995.
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Figure 2.

There are several software houses that make customized PostScript fonts based upon
one’s handwriting. A program that takes scanned input and produces a type 1 PostScript
font without any human intervention has been developed at our School by Sandro Mazzu-
cato [18]. Auto-tracing algorithms are described by Plass and Stone [19], Schneider [20],
Gonczarowski [21] and Itoh and Ohno [22]. A sample of a non-random handwriting font
called TropDePoils produced by Mazzucato’s program is shown in Figure 3.

Some might find it helpful to have a general filter that would take a type 1 font as input
and construct an acceptable random type 3 PostScript font as output. This could be done for
example by using ghostscript and playing with the PostScript operator pathforall, which
allows one to play back paths and obtain the control points. Unfortunately, such a filter
would have to extrapolate beyond a sample without having sufficient information regarding
the person’s real handwriting. What we propose here is a methodology for making random
fonts. In a nutshell, we consider each sample character as a vector in Euclidean space.
For a given character, we have thus a sample of n vectors independently drawn from an
unknown distribution — each person has a different distribution. The objective is to draw
further random samples (the characters to be rendered) from that unknown distribution. At
the end of the paper, a few technical details and some font samples are provided.

2 METHODOLOGY

For each character in the font encoding vector, we need a few samples from the individual’s
hand. In each character, certain key points are marked. For example, in the letter A, we
have 8 points as shown in Figure 4.

Typically, we mark the extreme points where strokes end, and the points where the

Garmugia  3.49

Minestra di farro  3.49

Acquacotta Maremmana  4.39

Zuppa di fagioli di Montalcino  3.99

Penne alla Toscana  6.49

Grandinina o orzo coi piselli  7.99

Pasta alle olive  7.49

Pezze della nonna  7.99

Pappardelle ai pepperoni  7.99

Maccheroni stirate alla Lucchese  8.49

Risotto al basilico  10.49

Buccellato di Lucca  6.49

Torta co’bischeri  6.99

Ciliege al vino rosso  7.99

Crema zabaione al vinsanto  11.99

Meringato fiorentino  8.99

Crostata di uva  7.49

Brutti ma buoni  2.99

Necci  3.99

Torta di maronni al cioccolato  8.99

Bomboloni livornesi  7.49

Zuccotto all’Alkermes  11.99

Figure 3.
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ABCDEFGHIJKLMNOPQRSTUVWXYZBinkom
ABCDEFGHIJKLMNOPQRSTUVWXYZBunsbeek
ABCDEFGHIJKLMNOPQRSTUVWXYZBost
ABCDEFGHIJKLMNOPQRSTUVWXYZGrimde
ABCDEFGHIJKLMNOPQRSTUVWXYZHoegaerden
ABCDEFGHIJKLMNOPQRSTUVWXYZHoutem
ABCDEFGHIJKLMNOPQRSTUVWXYZMeldert
ABCDEFGHIJKLMNOPQRSTUVWXYZOorbeek
ABCDEFGHIJKLMNOPQRSTUVWXYZOplinter
ABCDEFGHIJKLMNOPQRSTUVWXYZWommersom
ABCDEFGHIJKLMNOPQRSTUVWXYZWaaiberg

Table 1.

derivative is horizontal or vertical. Furthermore, on each segment, at least one intermediate
point is selected to create some curvature. For a particular character, a number of such
point sets are obtained so that we have a representative collection for that person. One
should attempt to have a set of characters that is correctly positioned and of about the same
size. However, our method is remarkably robust to crazy outliers in samples. Each point
set is considered as a vector in Rd for an appropriate dimension d, which may be different
from character to character. These will be called the n representative vectors. A random
point that will describe a random character is defined as a point uniformly distributed in
the random polyhedron with the n representative vectors as vertices. When n � d+ 1, this
polyhedron may be projected down to a simplex ofRn�1 (thus having n vertices). Random
variate generation in a simplex is well-known. It suffices for example to generate n � 1
independent uniformly distributed random variables on [0; 1], sort them, and call the sorted
sample U(1) < U(2) < � � � < U(n�1). The spacings U(1), U(2) � U(1), : : :, 1 � U(n�1) are
called S1; : : : ; Sn. If z1; : : : ; zn are the representative vectors, define the random point by

Z =
nX

i=1

Sizi :

This point has the interesting property that it is uniformly distributed in the said simplex
(see Devroye [23], Rubinstein [24], or Smith [25]). The interpretation for handwriting is
equally interesting, as Z represents a character that looks like but is different from all
representative characters. As Z is forced to fall in the convex polyhedron, the character
that is produced cannot possibly misbehave. Our experiments, in fact, show a remarkable
robustness. In Figure 5 we show four representative A’s, together with a sample of random
A’s obtained by our method.

From a randomZ, we construct a collection of connected or unconnected Bézier curves,
forcing us to write a different procedure for each character in the encoding. For example,
for the A, the first Bézier visits z1; z2 and z3, while starting off vertically and ending
horizontally. There are 9 degrees of freedom (eight Bézier coefficients and the value of t at
z2). The derivatives remove two degrees of freedom, and the point restrictions six, leaving
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Figure 4.

one degree of freedom. Among all Bézier curves, we pick one that has approximately the
smallest curvature, by performing one iteration of a second order Newton–Raphson search
for a minimum. We do the same thing for z3; z4; z5. Finally, an unconnected Bézier curve
is added for the horizontal stroke of the character, visiting z6; z7 and z8. There remain three
degrees of freedom, which are removed by insisting that the Bézier curve is quadratic in t
and that z7 is visited for t = 1=2. The way the control points are transformed into Bézier
curves is the key tool for compressing the information in the characters. For the sake of
completeness, we list the six building blocks of our characters in Figure 6, omitting trivial
symmetries.

A brief description of each piece follows. The point here is that we are sticking to rather
simple-minded atomic components that are easy to understand and control.

(a) Horizontal to vertical curve. The function draws a curve that starts out horizontally
at one endpoint, passes through a second point (at unknown t), and ends vertically at
the other endpoint. These conditions leave one degree of freedom which is resolved
by choosing the path with the least curvature of all the possible paths satisfying these
conditions. The curvature is estimated by Simpson’s rule. Optimization is performed
by one iteration of the Newton–Raphson method.

(b) Horizontal to horizontal arc. The function draws a curve which begins horizontally,
curves until it is vertical at the second point, and continues to curve until it is again
horizontal at the third point.

(c) Horizontal to horizontal slope. The function draws a curve which begins horizontally,
curves in one direction, reverses the curvature and levels out to be horizontal at the
third point. This leaves two degrees of freedom. The first is resolved by making the
curve pass through the second point, and the last is resolved by making the x values
of the second and third control points of the Bézier curve equal.

(d) Horizontal tail. The curve begins horizontally and curves to end at the second point.
The path is selected so that it is a quadratic Bézier curve, leaving one degree of
freedom. This is resolved by setting the x value of the second control point of the
Bézier to be exactly halfway between the x values of the endpoints.

(e) Horizontal to straight. The curve begins horizontally and curves to end at the second
point. The path is selected so that it is a quadratic Bézier curve that resolves the last
degree of freedom by minimizing the curvature. This curve always has the property



286 LUC DEVROYE AND MICHAEL McDOUGALL

representative A’s

random A’s

Figure 5.

that the x value of the second control point of the Bézier is 1/3 of the way from
the first endpoint to the second, giving the curve a parabolic shape. This curve turns
tightly at first and straightens out as it approaches the second endpoint.

(f) Simple curve. The function draws a curve between the first and third points so that
the path follows a quadratic Bézier and the second point is the point on the curve
where t = 0:5. This point is also the point which is furthest from the line segment
joining the endpoints. The distance from the line segment at this point is equal to 3=4
the distance from the second and third control points of the curve to the line joining
the endpoints.

When one prints unconsciously (as when filling out a bureaucratic personal data form),
very little information goes into each character. It is therefore useless to try to model the
distribution of a character in a high-dimensional space. What matters more is the tightness
of one’s stroke. The latter problem is not dealt with in this short note, but deserves some
attention.

Note that we apply the same convex combination to all components of each represen-
tative vector (vertex of the polyhedron). If we were not to do this, the characters would
appear totallychaotic. For example, we would lose robustness with respect to translations in
representative vectors. Take for example representatives z1 and z2. A convex combination
is given by z = �z1+(1��)z2 with� 2 (0; 1). If z2 is shifted by a vector � (as may happen
when the data are not perfectly aligned), then z is shifted by (1 � �)�. In other words, the
shape of z is not altered! We would not be able to deduce this, had the components of z1

and z2 been mixed by different weights. Because of this invariance, we are virtually forced
to combine vertices as we are currently doing.

3 SOME TECHNICAL DETAILS

In PostScript’s type 3 fonts, users have access to virtually all regular PostScript functions,
including the random number generator rand. Type 1 fonts are more restricted, but are
now the standard because of the possibility of describing hints. Type 3 fonts remain
nevertheless useful for special effects (see McGilton and Campione [26] for more details
on the PostScript language). In a type 3 font, we may use the stroke operator to produce
a stroked (as opposed to a filled) font, thus ensuring constant line widths. This is why
we picked the type 3 format in our limited experiment. We are aware that variable width
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(d) (e) (f)

Figure 6.

strokes are preferable in many applications — metafont is ideally suited for producing such
fonts through the choice of a pen nib and the operator penpos. For recent work on variable
width splines, see Klassen [27].

On average, each character is described by n = 4 representative vectors of Rd, where
d is on average about 16. For a font set with 200 characters, 12 000 numbers must be stored
in a dictionary in the font. This is undoubtedly the main drawback of the present method.
While the storage by itself is not exorbitant — the code occupies about 56k bytes which is
not outrageous by PostScript standards — the input process is formidable and difficult to
automate. We entered the data by hand!

One of the advantages of the convex combination method is that no parameters have to
be picked except possibly for the thickness of the lines for stroke. This is in most cases an
unbelievable luxury. Thicknesses of 0.1, 0.3, 0.8 and 1.6 points are illustrated in Figure 8
for the Tekla font.

To some extent, one would like to control the amount of randomness. This may be
achieved by replacing the uniform distribution by a non-uniform one. For example, a
Dirichlet process would be helpful. For definitions, see Wilks [28], Aitchison [29], Basu
and Tiwari [30], Devroye [23] (chapter XIV.4), or Narayanan [31]. The spacings, barring
normalization so that they sum to one, are now distributed as independent gamma (a)
random variables, where a > 0. At a = 1, we obtain the uniform distribution in the
polyhedron. As a ! 1, we obtain the distribution that concentrates all its mass at the
arithmetic center of the polyhedron (this corresponds to the least amount of randomness).
As a # 0, we more or less pick a vertex uniformly and at random, and introduce the
maximal possible variability in the outlines. Hence, a may be adjusted to achieve a given
desired effect. For efficient gamma generators, we refer to Devroye [23]. A similar effect
may be obtained if we use for the spacings independent vectors distributed as E1=a, where
E = � logU is exponentially distributed and U is uniform [0; 1]. If time is at a premium,
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Figure 7.

one might also use U 1=a for the spacings. Figure 9 shows how a triangle gets filled by
random points for various choices of a, while Figure 10 shows characters for values of a
equal to 0.1, 1 and 7.

In the input process, baselines were shown. Our program does not care whether the
characters are moved or translated in the x direction, however, making the input process
even smoother. The font has a dictionary for the data and for five main parameters: side-
bearing, shear, thickness, exponent (the a from above), and scale (which is the �
introduced below when extrapolating beyond one’s handwriting; � = 1 is the default). In
setcharwidth, we report just the extremal values of the x co-ordinates of the data (after
translation to line up their leftmost co-ordinates). The FontBBox is set to zero, as it is not
used.

Figure 11 shows one ridiculous combination of three entirely different B’s, a script B,
an art nouveau B, and a typewriter B. The example is included to illustrate the robustness
of our method, as well as the genetic contents of the random B’s.

We may also extrapolate beyond the convex hull of the representative characters. This
is achieved as follows. Let c be the center of the convex hull, obtained by averaging. Let
Z be a random combination of the vertices obtained as before. Now return c + �(Z � c),
where � � 1 is an extrapolation parameter. For � = 1, we just return S. For � > 1, there
is a positive probability of returning values outside the convex hull. In Figure 12 the first
five lines have � = 1 for Tekla, while the second group of five lines corresponds to the
large value of � = 2:5. Note that extrapolation creates characters that definitely have the
look and feel of a stranger’s hand. Some strokes will look unnatural to the person whose
handwriting the font is based on.

4 RANDOM FONT VIA MINIMUM SPANNING TREES

As soon as the number of prototypes exceeds the dimension of the space by more than one,
the method above is not guaranteed to produce points that are uniformly distributed inside
the convex hull. A different yet exciting kind of randomization may be obtained as follows.
In a preprocessing step, one first finds the minimal spanning tree of the data points (see,
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Figure 8.

e.g., Cormen, Leiserson and Rivest [32]). These trees have the desirable feature that they
form the skeleton of data clouds, and thus aid in pinning down the distribution (see Figure
13).

When a character is rendered, an edge is picked at random, and a point is generated
uniformly and at random on the edge. Such procedures produce characters that are closer to
the original data. When n � d+ 1, the edges are convex hull edges as well, and therefore,
the characters should appear crisper. Figure 14 shows a minimum spanning tree suitably
projected to the plane, with edge distances of the minimal spanning tree intact. The dark
characters are the data, and the light characters are the random interpolations. At the right,
a random sample is shown.

5 FONT SAMPLES

Figures 15 and 16 are two examples of our Tekla font, Figure 15 for running text, and Figure
16 for an Italian menu. Both are shown with character widths of 0.3 point and sidebearing
of 0.35 point. The shear components are 0 and 8 respectively. The extrapolation parameter
� is 2 in the first example and 2.5 in the second one. No on-the-fly kerning was done.

6 THE KERNEL METHOD

A random sample of size n of the same character from a person’s hand represented in Rd

as indicated above yields a cloud with a certain structure. Above, we modeled this cloud by
a family of distributions supported in the convex hull of the cloud, the uniform distribution
on the convex hull being the most prominent. What is really needed is a way of generating
a new point with the same (unknown) distribution as the data. This is dealt with in chapter
14 of Devroye [23] in a general statistical setting, and crucial connections with density
estimation are made there. In the kernel method, for example, one generates a new point by
picking a data point uniformly at random and adding a perturbation to it, say hW , where
W is a random vector of Rd with a fixed density (say, the standard normal in Rd) and
h > 0 is a given smoothing factor that needs to be adjusted in a certain way. The density
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a=.1 a=.5 a=.8 a=1 a=7

Figure 9.

of W again forces unwanted and possibly disastrous extrapolations on us, leading to ugly
unnatural characters. Figure 17 shows a fixed character represented as described above,
and shows random perturbations of this character with linearly increasing values of the
smoothing factor h, from left to right. The first few characters are usable, but for most of
the range, the noise hurts the legibility. The only possible use of the noisiest characters is
in the simulation of children’s first attempts at writing.

7 REMAINING PROBLEMS

We may get information from a handdrawn character with respect to the tension in the
curves of one’s stroke. This may then be used to add tension to the Bézier curves in the
spirit of the tension parameter in metafont. In fact, we may learn a thing or two from
the principles used in optical character recognition— see Suen, Berthod and Mori [33] or
Zurada [34]. Recent advances in character recognition based upon the skeletonization of
characters followed by neural network training have been remarkable.

On the practical side, we would like to automate the input process, which seems a
phenomenal task in its own right.

Kerning random characters must be done on the fly. Hence the need for fast ways of
kerning while characters are being produced. afm or tfm files become virtually useless
for characters whose width changes every time. In pure PostScript, we get around this by
changing the stringwidth of each character as it is generated.

Finally, random handwriting fonts in which all characters are smoothly linked create
special problems that must be overcome. We have started attempts by putting information
about the last character in the font itself, and using this to generate an extra linking stroke
that has the correct derivatives at beginning and end. Also, the position of the link is context
sensitive. This research will be reported elsewhere. A careful attempt in this direction is
given in Kokula [35].
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Figure 10.
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Figure 12.

Figure 13.

Figure 14.
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Figure 15.

Figure 16.

Figure 17.
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