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1 Introduction
Most random trees in the discrete probability literature have height either of order

p
n or of order

log n (n being the tree size); see Aldous (1991). For simplicity, we call these trees square-root
trees and log trees, respectively. Profiles (number of nodes at each level of the tree) of random
square-root trees have a rich connection to diverse structures in combinatorics and in probability
and have been extensively studied. In contrast, profiles of random log trees, arising mostly from
data structures and computer algorithms, were less addressed, and only quite recently were their
limit behaviors, drastically different from those of square-root trees, better understood; see Dr-
mota and Hwang (2005a, 2005b), Fuchs et al. (2005) and the references therein. We study in this
paper the asymptotics of width, which is defined to be the size of the most abundant level, and
its close connection to profile. Not only the results we derived are new, but also the methods of
proof are of general applicability.

Recursive trees. A prototypical log tree is the recursive tree, which has been introduced in
diverse fields due to its simple construction. We will present our methods of proof for recursive
trees and then indicate the required elements needed for other random trees.

Combinatorially, recursive trees are rooted, labeled, non-planar trees such that the labels
along any path down from any node form an increasing sequence. By random recursive trees,
we assume that all recursive trees of n nodes are equally likely. Probabilistically, they can be
constructed by successively adding nodes as follows. Start from a single root node with label
1. Then at the i -th stage, the new node with label i chooses any of the previous i � 1 nodes
uniformly at random (each with probability 1=.i � 1/) and is then attached to that node. This
construction implies that there are .n � 1/! recursive trees of size n. See Drmota and Hwang
(2005b) and Fuchs et al. (2005) for more references on the literature of recursive trees and their
uses in other fields.

Note that the term “recursive trees” is less specific and has also been used in different con-
texts for different objects. For example, they are used in recursion computation theory to repre-
sent computable set of strings with branching structure, and in compiler for recording history of
recursive procedures. They also appeared in classification trees, dynamic systems, and database
languages with different meaning.

Profile. Let Yn;k denote the number of nodes at distance k from the root in random recursive
trees of n nodes (the root being at level zero). Such a profile is very informative and closely
related to many other shape parameters, although it does not uniquely characterize the tree. It
exhibits many interesting phenomena such as .i/ bimodality of the variance, (ii) different ranges
for convergence in distribution and for convergence of all moments of the normalized profile
Yn;k=EfYn;kg, (iii) no convergence to fixed limit law at the middle levels k D log n C O.1/, and
(iv) sharp sign changes for the correlation coefficients of two level-sizes; see Drmota and Hwang
(2005b), Fuchs et al. (2005) for more information.

For simplicity, write throughout this paper Ln WD maxflog n; 1g. The expected profile
�n;k WD EfYn;kg, which gives the first picture of the general silhouette of random recursive
trees, is known to be enumerated by the signless Stirling numbers of the first kind (see Fuchs et
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al., 2005) X
k

�n;kuk
D

Y
1�j<n

�
1 C

u

j

�
D

�
n C u � 1

n � 1

�
:

From this, it follows by saddle-point method that

�n;k D
n

p
2�Ln

e��2=.2Ln/CO.j�j3=L2
n/

�
1 C O

�
1 C j�j

Ln

��
; (1)

uniformly for k D Ln C O.L
2=3
n /, where, here and throughout this paper, � WD k � Ln. The

asymptotic approximation (1) is crucial for our analysis. In particular, we have

max
k

�n;k D
n

p
2�Ln

�
1 C O.L�1

n /
�

I (2)

see Hwang (1995) for details and more precise expansions for �n;k .

Expected width. We define the width of random recursive trees to be Wn WD maxk Yn;k .

Theorem 1. The expected width satisfies

EfWng D
n

p
2�Ln

�
1 C ‚

�
L�1

n

��
: (3)

This result improves upon the error term O.L
�1=4
n log Ln/ given in Drmota and Hwang

(2005b), where the proof depends on estimates for correlations of two level-sizes and tightness
arguments for process. The approximation (3) also says, when compared with (1), that

EfWng D �n;LnCO.1/

�
1 C O.L�1

n /
�

:

In particular, by (2),

E
�

max
k

Yn;k

�
D max

k
EfYn;kg

�
1 C O

�
L�1

n

��
:

Note that the index Ok reaching the maximum of �n;k satisfies

Ok D
�
Ln � 1 C 
 C O

�
L�1

n

�˘
I

see pp. 140–141 of Hwang (1994) or Hammersley (1951). Erdős (1953) showed that Ok is unique.

An estimate for absolute central moments. We see from (3) that the expected width is asymp-
totically of the same order as the expected level-sizes at k D Ln C O.1/. We show that not only
their expected values are of the same order, but also all higher absolute central moments are
asymptotically close.

Theorem 2. For any s � 0

E fjWn � EfWngj
s
g D O

�
nsL�3s=2

n

�
: (4)
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From Fuchs et al. (2005), we have

E f.Yn;k � �n;k/m
g D O

�
j�j

mL�m
n �m

n;k

�
.k D Ln C o.Ln//: (5)

By Lyapounov’s inequality (see p. 174, Loève, 1977), we obtain, for any s � 0,

E fjYn;k � �n;k j
s
g D O

�
j�j

sL�s
n �s

n;k

�
.k D Ln C o.Ln//: (6)

In particular, it implies, by (1), that

E fjWn � EfWngj
s
g D O .E fjYn;k � �n;k j

s
g/ .s � 0/;

for k D Ln C O.1/.

Almost sure convergence. As an application of (4), we show that
Wn

EfWng
�! 1 almost surely: (7)

This result was proved in Drmota and Hwang (2005b) by martingale arguments and complex
analysis, following Chauvin et al. (2001). Our proof relies on (4) with s D 2 C " and the usual
Borel-Cantelli argument. It is conceptually simpler and also applies to random trees for which
no martingale structure is available.

Level reaching the width. Let k� denote the level such that Yn;k� D Wn. To avoid ambiguity,
we take k� to be the one closest to bLnc if there are several of them. We show that k� takes most
likely the values Ln C O.1/.

Theorem 3. For every B > 0, there exists T0 > 1 such that

P
�
jk�

� Lnj � T
�

D O
�
T �B

�
;

for T > T0.

Thus width will with very small probability lie outside the range Ln C O.1/.

Generality of the phenomena. The diverse properties we derived for the width of random
recursive trees will turn out to be the tip of an iceberg. The same types of estimates will be
shown, by extending the same methods of proof, to hold for a wide varieties of random trees:
quadtrees, grid-trees, generalized m-ary search trees, and increasing trees. While one may expect
that the same phenomena hold for general random split trees (which cover most trees we discuss
as special cases; see Devroye, 1998), the main hard parts are always the uniform estimates for
the expected profile for which a general uniform asymptotic tool is still lacking.

Approaches used. The most notable feature of our method of proof is that with the two cru-
cial estimates (1) and (5) at hand, only basic probability tools such as Markov and Chebyshev
inequalities and Borel-Cantelli Lemma are used. However, asymptotic tools for proving the two
estimates for general random trees may differ from one case to another. In most cases we con-
sidered, the estimate (1) is proved by a combination of diverse analytic tools such as differential
equations, singularity analysis (see Flajolet and Odlyzko, 1990) and saddle-point method. The
remaining analysis required for higher central moments of the profile is then mostly elementary
since this corresponds roughly to the large “toll-functions” cases for the underlying recurrences;
see Chern et al. (2002, 2005).
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Organization of the paper. For self-containedness and for paving the way for general random
trees, we give a sketch of proof for (1) and (5) in the next section. We then prove the theorems in
Section 3. Extension of the same arguments to other log trees is given in Sections 4–7.

Notation. Throughout this paper, the generic symbol " > 0 always represents a sufficiently
small constant whose value may differ from one occurrence to another. Also Ln WD maxflog n; 1g.

2 Estimates for the profile moments
We briefly sketch the main ideas leading to the estimates (1) and (5); see Fuchs et al. (2005) for
details and more precise estimates than (5).

Recurrence of Yn;k . By construction, the profile of random recursive trees satisfies the recur-
rence

Yn;k
d
D

X
1�s<n

1

s!

X
j1C���CjsDn�1

�
n � 1

j1; : : : ; js

�
.j1 � 1/! � � � .js � 1/!

.n � 1/!„ ƒ‚ …
P
� the root degree equals s and

the s subtrees have sizes j1;:::;js

�
�
Y

.1/

j1;k�1
C � � � C Y

.s/

js ;k�1

�
;

for n � 2 and k � 1 with Y1;0 D 1, where the Y
.i/

n;k
’s are independent copies of Yn;k . From this

we deduce, by conditioning on the size of the first subtree, that

Yn;k
d
D YIn;k�1 C Y �

n�In;k .n � 2I k � 1/; (8)

with Y1;0 D 1, where the Y �
n;k

’s are independent copies of Yn;k and independent of In, which is
uniformly distributed in f1; : : : ; n � 1g.

The expected profile and the expansion (1). From (8), we derive, by taking expectation and
by solving the resulting recurrence, the relationX

k

�n;kuk
D

�
n C u � 1

n � 1

�
.u 2 C/:

Then by singularity analysis (see Flajolet and Odlyzko, 1990),X
k

�n;kuk
D

nu

�.1 C u/

�
1 C O

�
juj

2n�1
��

; (9)

where the O-term holds uniformly for juj � C , for any C > 0.
The uniform approximation (1) is then obtained by Cauchy’s integral formula using (9) and

the saddle-point method; see Hwang (1995).
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A uniform estimate for �n;k . A very useful uniform estimate for �n;k is given by

�n;k D O
�
L�1=2

n r�knr
�

.0 < r D O.1//; (10)

uniformly for all 0 � k � n. This is easily obtained by Cauchy’s integral formula and (9) since

�n;k D O

�
r�knr

Z �

��

n�r.1�cos t/dt

�
;

which gives (10). Throughout this paper, r is always taken to be r D 1 C o.1/ unless otherwise
specified.

Although one can prove that �n;k D O.Lk
n=k!/ for 0 � k � n, the reason of using the

estimate (10) instead of O.Lk
n=k!/ for all k is that for general random search trees it is much

harder to derive the Poisson type estimate for all k.

Recurrence of higher central moments. Let P
.m/

n;k
D E f.Yn;k � �n;k/mg. Then P

.m/

n;k
satisfies

the recurrence
P

.m/

n;k
D

1

n � 1

X
1�j<n

�
P

.m/

j ;k�1
C P

.m/

n�j ;k

�
C Q

.m/

n;k
;

with P
.m/

n;0 D 0 for n; m � 1, where

Q
.m/

n;k
WD

X
.a;b;c/2Im

�
m

a; b; c

�
1

n � 1

X
1�j<n

P
.a/

j ;k�1
P

.b/

n�j ;k
r

c
n;k.j / .m � 2/;

with rn;k.j / WD �j ;k�1 C �n�j ;k � �n;k and

Im WD f.a; b; c/ 2 Z3
W a C b C c D m; 0 � a; b < m; 0 � c � mg:

We prove (5) in two stages. A uniform estimate for rn;k.j / for 1 � j ; k < n is first derived,
which then implies by induction a uniform bound for P

.m/

n;k
for 1 � k < n. This bound is however

not tight when � D o.
p

Ln/. Then we refine the estimate for rn;k.j / when � D O.
p

Ln/,
which then leads to (5) by another induction.

First estimate for P
.m/

n;k
. By (9), we have the integral representation

rn;k.j / D
1

2� i

I
jujDr

u�k�1nu

�.1 C u/
'.uI j=n/

�
1 C O

�
j �1

C .n � j /�1
��

du; (11)

where '.uI x/ WD uxu C .1 � x/u � 1. Since '.1I x/ D 0, we have

'.uI x/

�.1 C u/
D O .ju � 1j/ ;

uniformly for x 2 Œ0; 1�. Substituting this estimate in (11), we obtain

rn;k.j / D O

�
r�knr

Z �

��

ˇ̌̌
rei�

� 1
ˇ̌̌
n�r.1�cos �/d�

�
D O

�
.jr � 1j C L�1=2

n /L�1=2
n r�knr

�
; (12)
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uniformly for 1 � j ; k < n, where r D 1Co.1/. This bound is not tight for all k but is sufficient
for most of our purposes. In particular, since r is not specially chosen to minimize the error term,
(12) is not optimal when jr � 1j D o.L

�1=2
n /, which is the case when we choose r D k=Ln and

jk � Lnj D o.
p

Ln/.
We now prove by induction that

P
.m/

n;k
D O

��
jr � 1j

m
C L�m=2

n

�
L�m=2

n r�kmnmr
�

.m � 0/; (13)

uniformly for 1 � k < n.
Obviously, (13) holds for m D 0; 1. Assume m � 2. To estimate Q

.m/

n;k
, we split the sum into

two parts.

Q
.m/

n;k
D

X
.a;b;c/2Im

�
m

a; b; c

�
1

n � 1

0@X
j2Jm

C

X
j2J 0

m

1AP
.a/

j ;k�1
P

.b/

n�j ;k
r

c
n;k.j /;

where Jm WD fj W n=Lm
n � j � n � n=Lm

n g and J 0
m WD f1; : : : ; n � 1g n Jm.

Then by induction and (12), the terms in Q
.m/

n;k
with j 2 J 0

m are bounded above by

O

0@r�mkn�1
X

.a;b;c/2Im

0@L�.bCc/=2
n n.bCc/r

X
j<n=Lm

n

L
�a=2
j j ar

CL�.aCc/=2
n n.aCc/r

X
j<n=Lm

n

L
�b=2
j j br

1A1A
D O

�
L�3m=2

n r�mknmr
�

;

uniformly for 1 � k < n.
On the other hand, when j 2 Jm, we have Lj � Ln�j � Ln; thus by induction and the two

estimates (12) and (13) X
.a;b;c/2Im

�
m

a; b; c

�
1

n � 1

X
j2Jm

P
.a/

j ;k�1
P

.b/

n�j ;k
r

c
n;k.j /

D O
��

jr � 1j
m

C L�m=2
n

�
L�m=2

n r�kmnmr
�

;

it follows that

Q
.m/

n;k
D O

��
jr � 1j

m
C L�m=2

n

�
L�m=2

n r�kmnmr
�

; (14)

uniformly for 1 � k < n.
From Fuchs et al. (2005), we have the closed-form expression

P
.m/

n;k
D Q

.m/

n;k
C

X
1�j<n

X
0�`�k

Q
.m/

j ;k�`

j
Œu`�.u C 1/

Y
j<h<n

�
1 C

u

h

�
; (15)
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where Œu`�F.u/ denotes the coefficient of u` in the Taylor expansion of F . Substituting the
estimate (14), we obtain

P
.m/

n;k
D O

0@Q
.m/

n;k
C r�km

X
1�j<n

�
jr � 1j

m
C L

�m=2
j

�
L

�m=2
j j mr�1

�

X
0�`�k

rm`Œu`�.u C 1/
Y

j<h<n

�
1 C

u

h

�1A :

Now X
0�`�k

rm`Œu`�.u C 1/
Y

j<h<n

�
1 C

u

h

�
� .1 C rm/

Y
j<h<n

�
1 C

rm

h

�

D O

 �
n

j

�rm
!

:

Thus (13) follows.
When k � Ln, we take r D k=Ln in (13), giving

P
.m/

n;k
D O

��
j�j

m
C Lm=2

n

�
L�m

n �m
n;k

�
;

which proves (5) when
p

Ln � j�j D o.Ln/.

Proof of (5) when � D O.
p

Ln/. We now refine the above procedure and prove (5) when
� D O.

p
Ln/, which has the form

P
.m/

n;k
D O

�
j�j

mL�3m=2
n nm

�
.m � 0/: (16)

By applying the expansion

'.uI x/ D ' 0
u.1I x/.u � 1/ C O

�
ju � 1j

2
�

.x 2 Œ0; 1�/;

and the usual saddle-point method to (11), we deduce that

rn;k.j / D O
�
j�jL�3=2

n n
�

; (17)

uniformly for � D O.
p

Ln/ and 1 � j < n. Note that this estimate also follows from (1).
By the same procedure used to prove (14) and by applying (13) to terms with j 2 J 0

m, we
have

Q
.m/

n;k
D O

�
j�j

mL�3m=2
n nm

�
.m � 2/;

uniformly for � D O.
p

Ln/. This estimate and (14) gives, by (15) and a similar decomposition
of the sums involved,

P
.m/

n;k
D O

0@Q
.m/

n;k
C

X
j2Jm

X
0�`Do.Ln/

jk � ` � Lj j
mL

�3m=2
j j m�1Œu`�.u C 1/

Y
j<h<n

�
1 C

u

h

�1A
D O

�
j�j

mL�3m=2
n nm

�
:
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This proves (16).
Such a two-stage proof of (5) is completely general when we have an integral representation

for rn;k.j / of the form (11) and a closed-form similar to (15). We will propose means of handling
the cases when no closed-form solution like (15) is available.

3 Asymptotics of the moments of the width
We first prove Theorem 1; then we extend the proof for (4) and finally prove Theorem 3.

3.1 Expected width
Lower bound for the expected width. The lower bound follows easily from the inequality

EfWng � Mn;

where
Mn WD max

k
EfYn;kg D

n
p

2�Ln

�
1 C O

�
L�1

n

��
I

see (2).

An inequality for the upper bound. For the upper bound, we use the inequality

EfWng � Mn C

X
j�j�K

E
˚
.Yn;k � Mn/

C

	
C

X
j�j>K

�n;k

DW w.1/
n C w.2/

n C w.3/
n ; (18)

where K WD L
2=3
n .

The sum w
.3/
n . The last sum is easily estimated since by (10)

w.3/
n D O

0@L�1=2
n nr

0@ X
0�k�Ln�K

C

X
k�LnCK

1A r�k

1A :

Taking r D 1 � L
�1=3
n , we see that

X
0�k�Ln�K

�n;k D O

�
L�1=2

n nr r�LnCK

1 � r

�

D O

 
L�1=2

n n1�L
�1=3
n L1=3

n

�
1 � L�1=3

n

��LnCL
2=3
n

!
D O

�
nL�1=6

n e�L
1=3
n =2

�
;

and the same upper bound holds for
P

k�LnCK �n;k by taking r D 1 C L
�1=3
n .
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An estimate for the second sum w
.2/
n . We use the inequalities

E f.Yn;k � Mn/Cg � E
˚
.Yn;k � �n;k/1.Yn;k>Mn/

	
�

Ef.Yn;k � �n;k/2g

Mn � �n;k

;

for those k’s for which Mn > �n;k . By (1)

Mn � �n;k D
n

p
2�Ln

�
1 � e��2=.2Ln/CO.j�j3=L2

n/
�

.1 C o.1//

�
n

2
p

2�Ln

�
1 � e��2=.3Ln/

�
.1 C o.1//; (19)

uniformly for 1 � j�j � K. On the other hand, we also have the estimates for the variance

VfYn;kg D O
�
�2L�2

n �2
n;k

�
D O

�
�2L�3

n n2e��2=Ln

�
; (20)

uniformly for 1 � j�j � K. It follows from these estimates that

w.2/
n �

p
VfYn;bLncg C

X
1�j�j�K

VfYn;kg

Mn � �n;k

D O
�
nL�3=2

n

�
C O

 
L�5=2

n n

Z 1

1

x2e�x2=Ln

1 � e�x2=.3Ln/
dx

!
D O

�
nL�1

n

�
:

Collecting all estimates, we get a weaker error term than (3)

EfWng D
n

p
2�Ln

�
1 C O

�
L�1=2

n

��
; (21)

but we only used estimates for EfYn;kg and VfYn;kg.

Improving the error term by fourth central moments of Yn;k . We can improve the error term
in (21) by using the estimate (5) for the fourth central moment of Yn;k . Taking m D 4 in (5) and
repeating the same analysis as above

w.2/
n �

p
VfYn;bLncg C

X
1�j�j�K

E
˚
.Yn;k � �n;k/4

	
.Mn � �n;k/3

D O
�
nL�3=2

n

�
C O

 
nL�9=2

n

Z 1

1

x4e�2x2=Ln

.1 � e�x2=.3Ln//3
dx

!

D O
�
nL�3=2

n

�
C O

�
nL�2

n

Z 1

1=Ln

v3=2e�2v

.1 � e�v=3/3
dv

�
D O

�
nL�3=2

n

�
C O

�
nL�2

n

Z 1

1=Ln

v�3=2dv

�
D O

�
nL�3=2

n

�
:

This proves (3).
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3.2 Higher absolute central moments of Wn

We prove only an upper bound for s D 2, namely for the variance of Wn, other values of s

following by the same argument and Lyapounov’s inequality.

An upper bound for the variance of the width. We show, by using central moments of Yn;k

of order 6, that

VfWng D O
�
n2L�3

n

�
; (22)

which proves (4) with s D 2.
The proof extends that for EfWng. Define k0 D bLnc. We start from

E
˚
.Wn � EfWng/2

	
D E

n
.Wn � �n;k0

C �n;k0
� EfWng/2

o
� 2E

˚
.Wn � �n;k0

/2
	

C 2E
˚
.�n;k0

� EfWng/2
	

:

By (3),
E
˚
.�n;k0

� EfWng/2
	

D O
�
n2L�3

n

�
:

And, similar to the analysis for EfWng,

E
˚
.Wn � �n;k0

/2
	

� E

8<:X
j�j�0

.Yn;k0C� � �n;k0
/2
C

� 1.Yn;k0C�>�n;k0
/

9=;
� VfYn;k0

g C

X
1�j�j�K

E
n
.Yn;k0C� � �n;k0

/2
C

o
C

X
j�j�K

VfYn;k0C�g

DW v.1/
n C v.2/

n C v.3/
n :

By (20),
v.1/

n D O.n2L�3
n /:

The estimate for v
.2/
n follows mutatis mutandis from that for w

.2/
n by using (5) with m D 6.

v.2/
n �

X
1�j�j�K

E
˚
.Yn;k � �n;k/6

	
.�n;k0

� �n;k0C�/4

D O

0@n2L�7
n

X
1�j�j�K

�6e�3�2=Ln

.1 � e��2=.3Ln//4

1A
D O

�
n2L�7=2

n

Z 1

1=Ln

v�3=2dv

�
D O

�
n2L�3

n

�
:

For the last term v
.3/
n , we use again (10)

VfYn;kg � �2
n;k D O

�
L�1

n r�2kn2r
�

;

11



uniformly for 1 � k � n, where r > 0 is any bounded real number. Substituting this into v
.3/
n

gives

v.3/
n D O

0@L�1
n n2r

X
j�j�K

r�2k0�2�

1A
D O

�
L2=3

n n2e�L
1=3
n

�
;

by taking r D 1 C sign.�/L
�1=3
n .

This completes the proof of (22).

Higher central moments of Wn. The same analysis can be carried out for higher absolute
central moments using (6). Then the same proof for VfWng gives (4) by using (6) with order
.2s C 2/.

Almost sure convergence. We need first a tail bound for the width. By Markov inequality (see
p. 160, Loève, 1977; sometimes referred to as Chebyshev inequality)

P fjWn � EfWngj � "EfWngg �
EfjWn � EfWngjsg

."EfWng/s

D O
�
"�sL�s

n

�
;

for any s > 0 and " 2 .0; 1/.
From this estimate, it follows, by applying Borel-Cantelli and by taking s > 2, that

Wn
`

EfWn
`
g

�! 1 almost surely;

where n
`

WD be
p

`c, since
P

` L�s
n

`
D O

�P
` `�s=2

�
D O.1/.

Now observe that

n`C1 � n` D ‚
�
n``�1=2

�
D ‚

�
n`L�1

n
`

�
D ‚

�
E
˚
Wn

`

	
L�1=2

n
`

�
:

On the other hand, by construction, adding a new node to random recursive trees affects the value
of Wn by at most 1. Consequently,

sup
n

`
�n<n

`C1

max
�
jWn � Wn

`
j; jEfWng � E

˚
Wn

`

	
j
�

� n`C1 � n` D ‚
�
E
˚
Wn

`

	
L�1=2

n
`

�
:

So, deterministically,

sup
n

`
�n<n

`C1

ˇ̌̌̌
ˇ Wn

EfWng
�

Wn
`

E
˚
Wn

`

	 ˇ̌̌̌ˇ D O

 
E
˚
Wn

`

	
L

�1=2
n

`

E
˚
Wn

`

	
� .n

`C1
� n

`
/

!
D O

�
L�1=2

n
`

�
D O

�
`�1=4

�
:

This completes the proof of (7).
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An alternative form to (7). The same argument can be modified to show that

Wn

n=
p

2�Ln

D 1 C O
�
L�1Cı

n

�
; (23)

almost surely, for any fixed ı > 0. The proof is modified from that for (7) as follows. By (3), we
have

Wn

n=
p

2�Ln

D
Wn

EfWng

�
1 C O

�
L�1

n

��
:

Instead of n
`

WD be
p

`c, we now take n
`

WD be
p

`=.2�ı/c. Then, setting " D "n D L�1Cı
n in the

proof, we deduce that, again by Borel-Cantelli,

Wn`

EfWn`
g

D 1 C O."n`
/;

almost surely as ` ! 1 provided that "�s
n`

L�s
n`

is summable in `. This forces the choice s > 2=ı.
Next,

n`C1 � n` D ‚
�
EfWn`

g`�1=4
�

:

This proves (23).

Almost sure convergence for Yn;k . We can also obtain strong convergence by the same argu-
ment for the profiles Yn;k in the central range ŒLn � L1�"

n ; Ln C L1�"
n �, where " 2 .0; 1/. We now

prove that

sup
Ln�L1�"

n ���LnCL1�"
n

ˇ̌̌̌
Yn;�

EfYn;�g
� 1

ˇ̌̌̌
! 0; (24)

almost surely.
Proof. Set tn WD 2L1�"

n and n
`

WD be
p

`c. Using (6) and Markov’s inequality used above, it is
easy to see that

sup
Ln`

�tn`
���Ln`

Ctn`

ˇ̌̌̌
Yn`;�

EfYn`;�g
� 1

ˇ̌̌̌
! 0;

almost surely as ` ! 1. By the union bound and Borel-Cantelli, this requires that we take s

so large that L�s
n`

t1Cs
n`

is summable in `. Any choice with s > 3=" � 1 suffices for that purpose.
Furthermore, by the monotonicity of Yn;k in n for fixed k,

sup
n`�n<n`C1

sup
Ln`

�tn`
���Ln`

Ctn`

jYn;� � Yn`;�j � sup
Ln`

�tn`
���Ln`

Ctn`

jYn`C1;� � Yn`;�j;

and

sup
n`�n<n`C1

sup
Ln`

�tn`
���Ln`

Ctn`

jEfYn;�g � EfYn`;�gj � sup
Ln`

�tn`
���Ln`

Ctn`

jEfYn`C1;�g � EfYn`;�gj:

Thus,

sup
n`�n<n`C1

ˇ̌̌̌
Yn;�

EfYn;�g
�

Yn`;�

EfYn`;�g

ˇ̌̌̌
�

Yn`C1;�

EfYn`;�g
�

Yn`;�

EfYn`;�g

�
Yn`C1;�

EfYn`C1;�g
�

Yn`;�

EfYn`;�g
C

�EfYn`C1;�g

EfYn`;�g
� 1

�
Yn`C1;�

EfYn`C1;�g
:
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Putting the supremum over Ln`
� tn`

� � � Ln`
C tn`

in front of all of the latter inequalities, we
see that both terms tend to zero almost surely provided that

lim
`!1

sup
Ln`

�tn`
���Ln`

Ctn`

ˇ̌̌̌
EfYn`C1;�g

EfYn`;�g
� 1

ˇ̌̌̌
D 0:

This follows from an extension of the Taylor series estimate used in (1); indeed, the estimate (see
Hwang, 1995)

�n;k D
Lk

n

�.1 C k=Ln/k!

�
1 C O

�
L�1

n

��
.k D O.Ln//;

is sufficient for our use.
Thus we have shown that

sup
n`�n<n`C1

sup
Ln`

�tn`
���Ln`

Ctn`

ˇ̌̌̌
Yn;�

EfYn;�g
� 1

ˇ̌̌̌
! 0

almost surely. An additional argument shows that for ` large enough, ŒLn � L1�"
n ; Ln C L1�"

n � is
contained in ŒLn`

� tn`
; Ln`

C tn`
� for n` � n < n`C1, thus concluding the proof of (24).

3.3 Level reaching the width

We now prove Theorem 3. For j�j > j Ok � k0j and B > 1

P.k�
D k0 C �/ D P.Wn D Yn;k0C�/

� P.Yn;k0C� > Yn;k0
/

D P .Yn;k0C� � �n;k0C� > Yn;k0
� �n;k0

C �n;k0
� �n;k0C�/

� P
�

Yn;k0C� � �n;k0C� �
1

2
.�n;k0

� �n;k0C�/

�
C P

�
Yn;k0

� �n;k0
� �

1

2
.�n;k0

� �n;k0C�/

�
�

2BEjYn;k0C� � �n;k0C�jB

.�n;k0
� �n;k0C�/B

C
2BEjYn;k0

� �n;k0
jB

.�n;k0
� �n;k0C�/B

;

by Markov inequality. By (1), we obtain a similar estimate to (19) for �n;k0
� �n;k0C�, which

together with (20) gives

P.k�
D k0 C �/ D O

 
�BL�B

n e�B�2=.2Ln/

.1 � e��2=.3Ln//B
C

L�B
n

.1 � e��2=.3Ln//B

!
D O

�
��B

C ��2B
_ L�B

n

�
D O

�
��B

�
;

uniformly for 1 � j�j � K. It follows that there exists a T0 > 1 such that for T > T0

P.jk�
� k0j � T / D O

0@ X
T �j�j�K

��B

1AC P.jk�
� k0j � K/

D O
�
T 1�B

�
C P.jk�

� k0j � K/:

14



The tail probability P.jk� � k0j � K/ is estimated as follows. Let k1 WD b
p

Lnc.

P.jk�
� k0j � K/ � P

�
max

jk�k0j�K
Yn;k � Yn;k0

�
� P

�
max

jk�k0j�K
Yn;k � �n;k0Ck1

�
C P .Yn;k0

< �n;k0Ck1
/

� ��1
n;k0Ck1

X
jk�k0j�K

�n;k C
VfYn;k0

g

.�n;k0
� �n;k0Ck1

/2

D O
�
L1=3

n e�L
1=3
n =2

C L�2
n

�
;

which tends to zero as n ! 1, where we used again (10) to bound
P

jk�k0j�K �n;k . Since B > 1

is arbitrary, this proves Theorem 3.

Limit distribution of Wn? It is known that the centered and normalized random variables
.Yn;k � �n;k/=

p
VfYn;kg do not converge to a fixed limit law when k D Ln C O.1/ due to

periodicity; see Fuchs et al. (2005). The origin of the periodicity lies at the second-order term in
the asymptotic expansion of �n;LnCO.1/

�n;k0C` D
n

p
2�Ln

�
1 C

p1.fLng/

Ln

C O
�
L�2

n

��
.` 2 Z/;

where fxg denotes the fractional part of x and

p1.x/ D �
x2

2
C

�
3

2
� 
 C `

�
x �

`2

2
�

�
3

2
� 


�
` �


 2

2
C 
 C

�2

12
�

13

12
:

This periodic second-order term is the origin of all fluctuations of higher central moments.
The main open question is the limit distribution (if it exists) of Wn. Simulations seem to

indicate the closeness of the histogram of Wn and that of Yn;bLnc�1; see Figure 1.

0

0.02

0.04

0.06

0.08

0.1

0.12

78
43

42

80
30

81

82
18

20

84
05

58

85
92

97

87
80

36

89
67

75

91
55

13

93
42

52

95
29

91

97
17

29

99
04

68

10
09

20
7

10
27

94
6

10
46

68
4

10
65

42
3

10
84

16
2

11
02

90
0

11
21

63
9

11
40

37
8

11
59

11
7

11
77

85
5

[log n]+1

[log n]
width

[log n]-1

Figure 1: Simulated histograms for Wn and Yn;bLncC` for ` D �1; : : : ; 1, where n D 107.
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4 Width of general random log trees
We first describe roughly the estimates we need for handling the width of general random log
trees, and then discuss a few concrete examples. We start from a general framework for the
profile of random log trees.

Recurrence of profile. Assume that the profile of the random log trees in question satisfies

Yn;k
d
D

X
1�j�h

Y
.j/

In;j ;k�1
.n � 2I k � 1/; (25)

with Yn;0 D 1 for n � 1, where the Y
.j/

n;k
’s are independent copies of Yn;k and the underlying

splitting distribution satisfies
P

j In;j D n � � for some integer � � 0. Then the moments of
Yn;k satisfy the recurrence

an;k D h
X

0�j<n

�n;jaj ;k�1 C bn;k ; (26)

where h � 2,
P

j �n;j D 1 and �n;j D P.In;1 D j /. For our purpose, we can always assume
that bn;k D 0 for k < 0 and k � n.

An analytic scheme for the expected profile. The following simple framework gives sufficient
conditions we need in order to obtain asymptotics of the width of general random log trees.

Assume that the generating polynomial of the expected profile �n;k WD EfYn;kg satisfies

„n.u/ WD

X
k

�n;kuk
D g.u/nf .u/ .1 C O .n�"// ; (27)

uniformly for ju � 1j � "0, "0 > 0. Here g and f are analytic functions in ju � 1j � "0 and
satisfy g.1/ D 1 and f .1/ D 1. If

j„n.u/j D O
�
n1�"

�
; (28)

holds uniformly for fu 2 C W 1�"1 � juj � 1C"1gnfu 2 C W ju�1j � "0g, where 0 < "1 < "0,
then we have, by standard application of the saddle-point method,

�n;k D
np

2��2Ln

e��2=.2�2Ln/CO.j�j3=L2
n/
�

1 C O

�
1 C j�j

Ln

��
; (29)

uniformly for j�j � L
2=3
n , where � WD k � f 0.1/Ln and

� D
p

f 0.1/ C f 00.1/:

Note that to prove the estimate (29), we used (27) and (28) only when u D ei� , � 2 R.
However, the uniform estimates (27) and (28) in a complex neighborhood of unity also yield, by
Cauchy’s integral representation,

�n;k D O
�
L�1=2

n r�knf .r/
C r�kn1�"

�
D O

�
L�1=2

n r�knf .r/
�

; (30)

uniformly for all k D 0; : : : ; n, where r D 1 C o.1/. Although this estimate becomes too crude
for jk � f 0.1/Lnj � "Ln, it is sufficient for our purposes and very useful in bounding all error
terms involved.
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Estimates for rn;k . For higher central moments of the profile, we consider the difference

rn;k.j/ WD

X
1�`�h

�j`;k�1 � �n;k .j1 C � � � C jh D n � �/; (31)

where j D .j1; : : : ; jh/, which, by Cauchy’s integral formula and (27), satisfies

rn;k.j/ D
1

2� i

Z
jujDr

ju�1j�"

g.u/u�k�1nf .u/'.uI j=n/

 
1 C O

 X
1�`�h

1

j` C 1

!!
du

C O
�
r�kn1�"

�
;

where

'.uI j=n/ WD

X
1�`�h

u

�
j`

n

�f .u/

� 1:

Since
P

1�`�h j` D n C O.1/, we deduce, by expanding '.uI x/ at u D 1, the two estimates

rn;k.j/ D

8<: O
��

jr � 1j C L
�1=2
n

�
L

�1=2
n r�knf .r/

�
; .r D 1 C o.1//;

O
�
j�jL

�3=2
n n

�
;

(32)

where the first estimate holds uniformly for all tuples .j1; : : : ; jh/ and 1 � k < n, and the second
for all tuples .j1; : : : ; jh/ and � D O.

p
Ln/. Note that if we take r to be the solution near unity

of the equation rf 0.r/ D k=Ln D f 0.1/ C �=Ln, then r D 1 C �=.�2Ln/ C O.�2=L2
n/ and

r�knf .r/
D ne��2=.2�2Ln/CO.j�j3L�2

n /; (33)

uniformly for � D O.L
2=3
n /. This means that the first estimate in (32) is not tight when � D

o.
p

Ln/.

Asymptotics of width and estimates needed for higher central moments. If we can prove
that

E f.Yn;k � �n;k/m
g D O

�
j�j

mL�m
n �m

n;k

�
.m � 0/; (34)

uniformly for j�j D o.Ln/, then the width Wn WD maxk Yn;k satisfies the following estimates.8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

EfWng D
np

2��2Ln

�
1 C O

�
L�1

n

��
;

E fjWn � EfWngjsg D O
�
nsL

�3s=2
n

�
.s � 0/;

Wn

EfWng
�! 1 almost surely;

P .jk� � f 0.1/Lnj � T / D O
�
T �B

�
:

(35)

the last estimate holding for every B > 0 and T > T0, for some T0 > 1.
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Remarks for (35).

1. For the almost sure convergence in (35), we also need the additional property that inserting
a new node to the tree changes the width by at most a bounded quantity, which is easily
justified for almost all trees we are considering.

2. For most log trees we encounter, the O-estimate in the asymptotic approximation for
the mean width in (35) is indeed tight; for simplicity, we content ourselves with the O-
estimates.

3. From the preceding rough description, we see that the three main hard parts are (27), (28)
and (34).

Instead of formulating a general theorem, which will be heavy at this stage, we consider in
the following three major classes of log trees.

5 Random quadtrees and grid-trees
We start from quadtrees, and then indicate the estimates needed for the more general grid-trees
proposed in Devroye (1998).

Construction of random quadtrees. Given a sequence of n points independently and uni-
formly chosen from Œ0; 1�d , the random (point) quadtree associated with this random sample is
constructed by placing the first point at the root, which splits the space into 2d hyper-rectangles,
each corresponding to one of the 2d subtrees of the root. Points falling in each hyper-rectangle
are directed to the corresponding subtree and are constructed recursively. For more information
on quadtrees, see Flajolet et al. (1995), Chern et al. (2005) and the references therein.

The profile. By such a construction, the profile Yn;k satisfies (25) with h D 2d and

�n;j WD P
�
In;1 D j1; : : : ; In;2d D j2d

�
D

�
n � 1

j1; : : : ; j2d

�Z
Œ0;1�d

Y
1�`�2d

`�1D.b1;:::;bd /2

 Y
1�i�d

bi.1 � xi/ C .1 � bi/xi

!j`

dx;

where .b1; : : : ; bd/2 denotes the binary representation of `�1 (prefixed by zeros if blog2.`�1/c <

d � 1) and dx D dx1 � � � dxd .

The underlying recurrence. From the expression for �n;j, it follows that all moments of Yn;k

satisfy (26) with

�n;j D
1

n

X
j<j1�����jd�1�n

1

j1 � � � jd�1

.0 � j < n/: (36)
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In particular, the expected profile �n;k satisfies the estimates (27) and (28) with f .u/ D 2u1=d �1

and

g.u/ WD
1

�.2u1=d/d.2u1=d � 1/

Y
1�`<d

�.2u1=d.1 � e2`�i=d//

�.2 � 2u1=de2`�i=d/
I

see Chern et al. (2005). The exact form of g is less important for our purpose; the analyticity of
g for u near unity is however technically useful. Note that

f 0.1/ D
2

d
; � D

p
2

d
:

Recurrence of P
.m/

n;k
WD Ef.Yn;k � �n;k/mg. Obviously, P

.0/

n;k
D 1, P

.1/

n;k
D 0 and P

.m/

n;k
satisfies

the recurrence
P

.m/

n;k
D 2d

X
1�j<n

�n;jP
.m/

j ;k�1
C Q

.m/

n;k
.m � 2/;

where

Q
.m/

n;k
WD

X
.i0;:::;i

2d /2Im

�
m

i0; � � � ; i2d

� X
j1C���Cj

2d Dn�1

�n;jP
.i1/

j1;k�1
� � � P

.i
2d /

j
2d ;k�1

r
i0

n;k
.j/: (37)

Here rn;k.j/ is given in (31) with h D 2d and � D 1 there and

Im WD f.i0; : : : ; i2d / 2 f0; : : : ; mg
dC1

W 0 � i1; : : : ; i2d < mg:

Following the proof pattern for recursive trees, we prove, based on the estimates (32), the two
bounds

P
.m/

n;k
D

8<: O
��

jr � 1jm C L
�m=2
n

�
L

�m=2
n r�mknmf .r/

�
r D 1 C o.1/

O
�
j�jmL

�3m=2
n nm

�
;

(38)

the first being uniform for 1 � k < n and the second for � WD k � f 0.1/Ln D O.
p

Ln/. These
two estimates imply (34) by (30) and (33).

An asymptotic transfer for the double-indexed recurrence. To justify the results in (35), it
remains to prove the two estimates in (38). Note that an exact solution for (26) similar to (15)
is still possible by the Euler-transform approach used in Flajolet et al. (1995), but the resulting
expression is less manageable and the approach is less useful for other random log trees. Thus
we use an inductive argument, which is easily amended for other varieties of trees.

Lemma 1. Assume that an;k satisfies (26) with �n;j given in (36) and an;0; a1;k D O.1/. If

jbn;k j � cjk � f 0.1/Lnj
�Lˇ

n��kn˛;

for n � 1 and 1 � k � n, where � � 0, ˇ 2 R, c > 0, and the two real numbers ˛; � > 0 satisfy
� < ..˛ C 1/=2/d , then

jan;k j � C0jk � f 0.1/Lnj
�Lˇ

n��kn˛; (39)

for n � 1 and 1 � k � n, where C0 > 0 is chosen so large that C0 � c=
�
1 �

2d �

.˛C1/d � "
�

.

19



Proof. We apply induction on k and n. The boundary conditions are easily checked by taking C0

sufficiently large. We may assume that jk � f 0.1/Lnj ! 1, for otherwise we need only modify
the value of c. By induction hypothesis, we have (see Chern et al., 2005)

jan;k j � cjk � f 0.1/Lnj
�Lˇ

n��kn˛

C 2dC0�1�kn�1
X

1�j<j1�����jd�1�n

jk � 1 � f 0.1/Lj j�L
ˇ
j j ˛

j1 � � � jd�1

� cjk � f 0.1/Lnj
�Lˇ

n��kn˛

C
2dC0

.d � 1/!
�1�kn�1

X
1�j<n

jk � f 0.1/Lj j
�L

ˇ
j j ˛

�
log

n

j

�d�1

D cn˛Lˇ
n��k

C
2d

.˛ C 1/d
C0.1 C o.1//jk � f 0.1/Lnj

�Lˇ
n�1�kn˛

I

thus (39) follows by properly tuning C0 (since � < ..˛ C 1/=2/d ).

Asymptotics of P
.m/

n;k
. We prove first by induction the first bound in (38). Assume m � 2.

Consider Q
.m/

n;k
. We split the inner sum in (37) similar to the Q

.m/

n;k
of recursive trees. If

j1; : : : ; j2d � n=Lm
n , then Lj`

� Ln for ` D 1; : : : ; 2d , and we haveX
.i0;:::;i

2d /2Im

�
m

i0; : : : ; i2d

� X
n=Lm

n �j1;:::;j
2d <n

�n;jP
.i1/

j1;k�1
� � � P

.i
2d /

j
2d ;k�1

r
i0

n;k
.j/

D O
��

jr � 1j
m

C L�m=2
n

�
L�m=2

n r�mknmf .r/
�

: (40)

We now assume that one of the j`’s, say j1, is less than n=Lm
n . We may furthermore assume

that the corresponding index i1 of j1 is nonzero; for otherwise, if all i` D 0 for those j`’s with
j` � n=Lm

n , then the bound on the right-hand side of (40) obviously holds since all other j`’s
satisfy Lj`

� Ln. Terms in Q
.m/

n;k
with i1 � 1 and j1 � n=Lm

n are bounded above by

O

0@r�mk
X

.i0;:::;i
2d /2Im

n.m�i1/f .r/
X

j1�n=Lm
n

�n;j1
j

i1f .r/

1

1A D O
�
L�m

n r�mknmf .r/
�

:

This proves that

Q
.m/

n;k
D O

��
jr � 1j

m
C L�m=2

n

�
L�m=2

n r�mknmf .r/
�

:

Thus the first estimate in (38) holds by applying the O-transfer of Lemma 1.
The proof of the second estimate in (38) follows the same inductive argument, details being

omitted here.
Consequently, the width Wn of random quadtrees satisfies all approximations in (35); in par-

ticular, the expected width satisfies

EfWng D
dn

2
p

�Ln

�
1 C O

�
L�1

n

��
:
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All our results are new except when d D 1 for which quadtrees reduce to binary search trees and
the almost sure convergence in (35) was derived in Chauvin et al. (2001), and the expected width
in Drmota and Hwang (2005b) (with a weaker error term).

Random grid-trees. Grid-trees were first proposed by Devroye (1998) and represent one of the
extensions of quadtrees. Instead of placing the first element in the given sequence at the root (as
in quadtrees), we fix an integer m � 2 and place the first m � 1 elements at the root, which then
split the space into md hyper-rectangles (called grids). The remaining construction is similar to
that for quadtrees.

In this case, we have h D md and (j0 WD j ; jd WD n � m C 1)

�n;j D

X
j�j1�����jd�1�n�mC1

Y
1�`�d

�
j`�j`�1Cm�2

m�2

��
j`Cm�1

m�1

� ;

and (27) and (28) hold by applying the approach proposed in Chern et al. (2005), where f .u/

satisfies
..f .u/ C 1/ � � � .f .u/ C m � 1//d

D m!du .m � 2I d � 1/;

with f .1/ D 1. An O-transfer similar to that given in Lemma 1 can also be derived by noting
that X

1�j<n

�n;j jk � 1 � f 0.1/Lj j
�L

ˇ
j j ˛

D

X
1�j�j1�����jd�1�n�mC1

jk � 1 � f 0.1/Lj j
�L

ˇ
j j ˛

Y
1�`�d

�
j`�j`�1Cm�2

m�2

��
j`Cm�1

m�1

�
�

.m � 1/d

n

X
1�jd�1�n

1

jd�1

�
1 �

jd�1

n

�m�2 X
1�jd�2�jd�1

� � �

� � � �

X
1�j1�j2

1

j1

�
1 �

j1

j2

�m�2 X
1�j�j1

jk � f 0.1/Lj j
�L

ˇ
j j ˛

�
1 �

j

j1

�m�2

� .m � 1/d

�
�.m � 1/�.˛ C 1/

�.m C ˛/

�d

jk � f 0.1/Lnj
�Lˇ

nn˛
I

so that the same type of asymptotic transfer there holds when ˛; � > 0 satisfy the inequality

� <

�
.˛ C 1/ � � � .˛ C m � 1/

m!

�d

:

Then the approximations (35) hold for the width and we have

f 0.1/ D
1

d.Hm � 1/
; � D

s
H

.2/
m � 1

d2.Hm � 1/3
;

where Hm WD
P

1�j�m 1=j and H
.2/
m WD

P
1�j�m 1=j 2. Note that d D 1 corresponds to m-ary

search trees, and m D 2 to quadtrees. No martingale structure is known for grid-trees for general
.m; d/. Our results are new.
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6 Generalized m-ary search trees
Binary search trees, which are special cases of quadtrees and m-ary search trees, have yet another
extension; see Hennequin (1991), Chern and Hwang (2001a). Instead of placing the first m � 1

elements in the given sequence of numbers at the root (as in m-ary search trees), we choose a
random sample of m.t C 1/ � 1 elements, where m � 2 and t � 0, and sort it in increasing
order. Then use the .t C 1/-st, the 2.t C 1/-st, . . . , and the .m � 1/.t C 1/-st smallest elements
in the sample to partition the original sample into m groups, corresponding to the m subtrees of
the root. Elements falling in each subtree are constructed recursively in the same way and the
process stops as long as the subtree size is less than m.t C 1/ � 1, which can then be arranged
arbitrarily since asymptotically this will have limited effect.

In this case, the profile Yn;k satisfies (25) with h D m and

P.In;1 D j1; � � � ; In;m D jm/ D

�
j1

t

�
� � �
�

jm

t

��
n

m.tC1/�1

� :

Furthermore, (27) and (28) hold with f .u/ satisfying the equation

.f .u/ C t C 1/ � � � .f .u/ C m.t C 1/ � 1/ D
.m.t C 1//!

.t C 1/!
u;

with f .1/ D 1, where m � 2 and t � 0; see Chern and Hwang (2001a, 2001b) for the asymptotic
tools needed (based on differential equations). Straightforward computation gives

f 0.1/ D
1

Hm.tC1/ � HtC1

; � D

vuut H
.2/

m.tC1/
� H

.2/

tC1

.Hm.tC1/ � HtC1/3
:

The estimate (34) can be checked by an inductive argument similar to quadtrees using the
expression

�n;j D

�
j

t

��
n�1�j

.m�1/.tC1/�1

��
n

m.tC1/�1

� :

In particular, we can derive an O-transfer similar to Lemma 1 with the two numbers ˛; � there
satisfying

� <
.˛ C t C 1/ � � � .˛ C m.t C 1/ � 1/

.t C 2/ � � � .m.t C 1//
:

Note that m-ary search trees correspond to t D 0, and m D 2 reduces to the so-called fringe-
balanced or median-of-.2t C 1/ binary search trees; see Devroye (1998).

7 Random increasing trees
Increasing trees are rooted, labeled trees with labels along any path down from any node forming
an increasing sequence; see Bergeron et al. (1992). The exponential generating functions �.z/ WDP

n �n�1zn=n! for the number �n of increasing trees often has the form

� 0.z/ D �.�.z//; (41)
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with �.0/ D 0 and �.1/ D 1, for some function �.w/ with �.0/ D 1 and nonnegative coeffi-
cients. In this case, there are three representative varieties of increasing trees: (i) recursive trees
with �.w/ D ew; (ii) binary increasing trees with �.w/ D .1 C w/2, and (iii) plane-oriented
recursive trees (PORTs) with �.w/ D 1=.1 � w/.

We already studied the width of random recursive trees and random binary increasing trees
(identically distributed as random binary search trees). We consider first PORTs and then mention
other varieties of increasing trees (in some generality).

Random PORTs. PORTs are labeled, ordered (or plane) trees with the property that labels
along any path down from the root are increasing; see Bergeron et al. (1992), Prodinger (1995)
for more details.

The recurrence for the profile Yn;k is similar to (8) but with a very different underlying distri-
bution (see Hwang, 2005)

Yn;k
d
D YIn;k�1 C Y �

n�In;k .n � 2I k � 1/;

where the Y �
n;k

’s are independent copies of Yn;k and

�n;j D P.In D j / D
2
�

2j�2

j�1

��
2n�2j�2

n�j�1

�
j
�

2n�2

n�1

� .1 � j < n/:

We have

„n.u/ D
1

.1 C u/

�
2
p

�

�.u=2/
n.uC1/=2

C 1

�
.1 C O .n�"// ;

uniformly for juj � C , for any C > 0; see Bergeron et al. (1992), Hwang (2005), Prodinger
(1996). Thus f .u/ D .u C 1/=2, so that � D 1=

p
2. All approximations in (35) hold for the

width. Note that although the recurrence satisfied by Yn;k is not of the form (25), the technicalities
are similar to those for recursive trees; see Hwang (2005) for details.

The widths and profiles of random increasing trees for which 1=�.w/ equals a polynomial
also exhibit similar behaviors.

Polynomial varieties. We now show that the same results (35) (except the almost sure conver-
gence) also hold for polynomial varieties of increasing trees; see Bergeron et al. (1992). Briefly,
these are increasing trees whose exponential generating function �.z/ WD

P
n�1 �nzn=n! satisfies

(41) with
�.w/ WD

X
0�j�d

�jwj .d � 2/;

where �j � 0 for 0 � j � d and �0; �d > 0. In this case, it is known that

�n

n!
D

p

�. 1
d�1

/
..d � 1/�dR/�1=.d�1/ R�nn�.d�2/=.d�2/

�
1 C O

�
n�2=.d�1/

��
; (42)

where p denotes the period of �.v/, R WD
R1

0
dv=�.v/ andX

n;k

EfYn;kguk zn

n!
D
�
� 0.z/

��u
Z z

0

�
� 0.v/

�1�u dvI
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see Bergeron et al. (1992). From these relations, we deduce the two estimates (27) and (28) with

f .u/ D
d

d � 1
u �

1

d � 1
;

g.u/ D �
.1�w/=.d�1/

d
.R.d � 1//.1�dw/=.d�1/ �.1=.d � 1//

�.dw=.d � 1//

Z 1

0

�.v/�wdv:

Furthermore, the higher moments of Yn;k (centered or not) satisfy the recurrence

an;k D bn;k C

X
1�j<n

$n;jaj ;k�1;

where

$n;j WD
.n � 1/!�j

�nj !
Œzn�1�j �� 0.�.z//:

By (42), we then derive an O-transfer for an;k similar to Lemma 1 with ˛ and � there satisfying

� <
d � 1

dpd�1

�
˛ C

1

d � 1

�
I

from this the estimates (34) are then justified.

Random mobile trees. These are increasing trees whose enumerating generating function sat-
isfies (41) with �.w/ D 1 � log.1 � w/; see Bergeron et al. (1992). This example is less natural
but very interesting because nodes are distributed in a rather different way. First, the expected
profile is given by

„n.u/ D

X
k

�n;kuk
D

n!

�n

Œzn�� 0.z/u

Z z

0

� 0.v/1�udv:

Here the number �n of such trees satisfies
�n

n!
D R1�nn�2

�
1 C O

�
L�1

n

��
;

where R D
R1

0
.1 C v/�1e�vdv. By singularity analysis (see Flajolet and Odlyzko, 1990), we

deduce that

„n.u/ D g.u/nLu�1
n

�
1 C O

�
log Ln

Ln

��
;

where the O-term holds uniformly for bounded complex and

g.u/ D R�1u

Z 1

0

e�v.1 C v/�udv:

Note that this is not of the form (27) and g.1/ D 1. Thus such mobile trees are very “bushy” at
each level (the root already having about n=Ln nodes) and we have

max
k

�n;k �
np

2� log Ln

;

the mode being reached at k � log Ln. The same methods of proof we used for recursive trees
can be extended to show that

EfWng �
np

2� log Ln

;

a very different behavior from all types of random trees we have discussed.
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