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Nonparametric Density Estimates with Improved
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Summary. We consider the problem of choosing between two density estimates, a non-
parametric estimate with the the standard properties of nonparametric estimates (uni-
versal consistency, robustness, but not extremely good rate of convergence) and a special
estimate designed to perform well on a given set T of densities. The special estimate can
often be thought of as a parametric estimate. The selection we propose is based upon the
L distance between both estimates. Among other things, we show how one should pro-
ceed to insure that the selected estimate matches the special estimate’s rate on T, and
that it matches the nonparametric estimate’s rate off T
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1. Problem statement

There is a strong demand for density estimates that adapt to the situation at
hand : they should be of a simple parametric nature if the data fit a given para-
metric model, and yet they should be flexible enough to handle any density if
the parametric model or models fail. In the former case, they should be accurate.
In the latter case, the estimates should behave like solid nonparamtric estimates,
i.e. they should be consistent and robust (but possibly less accurate).

The data are used to decide between two or more types of estimates. We are
faced with a particular model selection problem in which the models are extrem-
ely heterogeneous: in one case, a small “target” class of densities, T', is envisaged
(typically, this class can be described by virtue of a finite number of parameters
such as the class of all gzamma densities with unknown shape and scale parameters),
and in the other case, a huge ocean of densities, typically the complement of T,
is considered. The small target class, or classes, can be regarded as small islands
in this big ocean of densities.

In this note, we study a rather primitive method of selecting one of several
density estimates. Tt is based upon a nonparametric estimate g, which has the
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desired consistency and robustness properties. Roughly speaking, when g, is
close (in the L, sense) to one of the estimates on one of the islands, we select
that island and its corresponding estimate. If g, is far away from all islands, the
nonparametric estimate is used. Put another way, a halo or sphere of influence
is put around all estimates, one for each target class. If g, falls outside all halos,
it is selected. Otherwise, one of the estimates on one of the islands is picked ac-
cording to some rule. The sizes of the halos can differ from target class to target
class.

The advantage of this scheme is that it is computationally simple (no numerical
optimization is required), and that its properties are easy to derive in very glob-
al settings. We will see below that nearly all the results are valid without restric-
tions on densities, due in part to our choice of metric. Other universal metrics,
such as the Hellinger metrics, could of course be used with equal ease.

The idea of picking a close better-looking estimate is certainly not new. Cover
has advocated this as early as 1972, and BARrRoN (1985) has refined Cover’s
work. In the method of sieves (GRENANDER, 1981; GEMAN and Hwane, 1982),
one picks a density from a growing class of densities so as to maximize the like-
lihood product. The difference here is that we already have certain estimates,
and that we are merely asked to choose between them.

Onme is tempted to employ the maximum likelihood method for such a selec-
tion, possibly with cross-validation or based upon a sample splitting scheme.
See e.g. SCHUSTER and Yaxowrmrz (1985) or OLKIN and SPIEGELMAN (1987).
Unfortunately, the likelihood products are very sensitive to areas of small or
zero density, and the sensitivity is enhanced by the fact that we are working
with products of density estimates, not just products of densities. As we will
see below, the L, distance introduces just the right amount of robustness to the
selection procedure.

Let us continue our short historical tour. For many parametric target classes,
there exist excellent tests for deciding whether the density of the data is in the
target class, see e.g. the recent book by D’AgosTiNo and STEPHENS (1986). Upon
rejection of the parametric hypothesis, one would then use a nonparametric
estimate. While such an approach could be useful for certain small classes, it
is not 80 easy to apply with the kind of generality we are looking for. For example,
how would one proceed if the target class consisted of all log-concave densities
with mode at zero and modal value equal to one? Furthermore, the same esti-
mate g, is used both for decision making and estimating. The added homoge-
neity can only be helpful.

BerAN (1977, 1981) has studied the properties of estimates that are projec-
tions of nonparametric estimates onto target classes T. (A projection of a density
onto T'is any density in T that is closest to the given density among all densities
in T'.) These estimates inherit the robustness of the nonparametric estimate,
when robustness is considered in the sense described in BICkEL (1976) and YA-
TRACOS (1985). BERAN'S approach differs from ours in two respects: he is not
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interested in the performance of the density estimate outside T’ (except possibly
in a small neighborhood of T when he studies robustness); and he is not con-
cerned with the selection problem between two given density estimates. Note
however that we could study the selection rule which decides between a non-
parametric estimate g, and its projection onto T'. This often introduces nume-
rical problem for the practitioner. However, it might lead to a useful way of
selecting an estimate. The general theorems below are also valid for this case but
no worked example for these projection estimates is given here.

The basic technical tool needed to provide a simple analysis is related to the
variation of J, = f |gn —f| around its mean, E(J,) = f {[lgn—71|) for all f. As shown
in DEvroYE (1988), ]/n |Jw—E(Sn)| is stochastlcallv bounded from above by a
random variable which does not depend upon f, # or the smoothing factor, when
gn is the ordinary kernel estimate (ROSENBLATT, 1956; PARZEN, 1962; CacouL-
ros, 1966). Thus the oscillation of g, in the ocean of densities is controlled in a
uniform manner; g, is virtually anchored. It lives in an Iy shell centered at f
with radius bounded by ¢ E(J,,), roughly speaking. The shell’s thickness is about
1/Vn. The shell is so narrow that for intuitive purposes, we can think of f |gn—f|
as being equal to E ( [|g.—f)|. With the aid of this tool, and a few other results,
we will be able to show that in many cases, the expected L; distance between
the selected estimate f, and density f tends to zero at the rate of the target class
estimate if f is indeed in T, and at the rate of the nonparametric estimate other-
wise.

The present method is not intended to be used for deciding between two or
more nonparametric estimates without specification of a target class for one of
them. It is also not suitable for choosing the smoothing factor in an automatic
fashion. Nevertheless, we will be able to present a flavor of the usefulness, by
illustrating the technique on a couple of simple examples. '

Finally, we note that the methods presented here are certainly not limited to
the L, space. To define balls and distances among densities, we could have used
other metrics, such as L, metrics, HELLINGER metrics, or a KULLBACK-LEIBLER
based metric. DEVROYE (1987) explains what the advantages are of the L ap-
proach. Perha,ps the main reason in the present context is that for all sets (events)

f fn— f f{ﬁ J If —fal, which is an absolute number between zero and one

(SOB:EFFE 1947) This universal interpretation of the distance is extremely use-
ful in the definition of the radii of the halos; e.g. a radius larger than 2 is non-
sensical, and for “‘practical” sample sizes, radii smaller than 0.0005 may be
equally unrealistic. Actually, in the absence of all a priori information, one could
often set the radii about equal to the errors one is expected to accept; e.g. it is
known that for kernel estimates with positive kernel, errors of 0.01 to 0.03 are
close to best possible when »=10,000 (DEVROYE and GYORFT, 1985).
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2, Definitions

Let X;, ..., X, be iid random vectors with common unknown density f in I
Let g» be a nonparametric estimate, consistent forall f (i.e. E (fjgn-f]) —0 for|
7). For example, ¢, could be a kernel estimate

1 il
gn(®) =— 2 K, (z—X;),
L =]
where /=0 is a function of the data for which

h—0, nh?—e in probability as n -

]

and K is a kernel, i.e. [K=1 (PARZEN, 1962; ROSENBLATT, 1956).

Let T be a target class, for which we have a good density estimate ¢, at han
We will assume throughout that ¢,¢ T. The goodness of this estimate is of coun
conditional on f being a member of T. The purpose is to choose between g, an
ta. To do this, we require an explicitly known number ¢,, and define the hal
based estimate as follows:

f _{tn if thn*Q'n[{gn
" lgn otherwise p

For selection between more than two classes, one can choose between sever
estimates in case of overlapping halos. For example, this could be done by seledf
ing the ¢, with the smallest halo.

1t should be noted that the evaluation of the L; distance between f, and q
requires a numerical integration routine. We assume throughout that this distanc
can be evaluated with infinite precision. It should be noted here that for specifi
forms of t, and g, (e.g. when both are kernel estimates with polynomial kernel
of compact support) the integral can be rewritten as a finite easy-to-evaluat
sum with O(n) terms.

The choice of g, is crucial to the analysis. We realize that it is not sufficient t
give asymptotics for ¢,. Useful techniques require explicit formulas, valid fo
all n. As a first general guiding principle, one should take ¢, slightly larger tha

Ra(T) Zsup E (flgu—11) ,
fer

where the term ‘“‘slightly” refers to the variability in f |gn—f| and f [t —f| uni.
formly over f¢ T. Note that ¢» should tend to zero for our method to be efficient.
Since g, is greater than the minimax error for 7,

inf sup E (f|gn—f|) ,
9p JET

the method is only applicable when T is not too massive. This excludes many
classes, such as the class of all densities with support on [0, 1], bounded by 2,
or the class of all unimodal infinitely many times continuously differentiable
densities, or the class of all normal scale mixtures, or the class of all densities
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within L; (or HELriNGER) distance & from a central density fo (see DEVROYE
(1983, 1987), BireH (1985, 1986, 1987)). Luckily, nearly all parametric classes
of interest to practising statisticians areincluded, as well as most I totally bound-
ed classes (YATRACOS, 1985). Examples of such classes include the class of all
monotone densities on [0, 1] bounded by a given constant ¢, the class of all con-
cave densities with mode at the origin, or the class of all densities on [0, 1] with
s—1 absolutely continuous derivatives, for which f(® satisfies the following Lip-
schitz condition :
) (x) —f | =C |z -yl

where «c(0, 1] and C'=0. For other examples, see BRETAGNOLLE and HUBER
(1979).

3. The main theorems

Lemma 1. The basie inequalities. Let f, be the halo-based estimate with thre-
shold qn= Bu(T). ;
A. Then

sup [E (f1fo—f)=E (Jlta—fD]

fer

=(1+ [lgal) inf {sup P (| [1gn—F1—E (flgn—1))l =)

w0 0=,0=0,u+v=qy—Ry(T) fET

+sup P (f|tn~f|>v)}.

feT
The same inequality is true without the suprema over T.

B. In addition, for f¢ T, inf [lg—f=La(f, T),
gerT

E (flfa—f)=E ([lgn—1D+ 1+ [Ital) P (flgn—fI =La(f, T) = ¢n) -
C. Finally, for all f, we have

E (fifn*f'\)éE (f|gn—ﬂ)+% .
Proof. Part A is obtained by the triangle inequality: fix any feT, and any
nonnegative u, v with u+v =qn— Ex(T). Then
E (flfa—1)=E ([lta—fD)+ 1+ [lgal) P ([lgn—tnl =qu)
=E ([lta—f) + (1 + [lgul) P ([lgn—11= Ru(T)+u)
+(1+ [1gal) P ([ |tn—11=0)
=E ([ita—1)+ (14 [Ignl) P ([lgn—11—E (Jlgn—f1=2)
+(1+ [lgal) P ([1tn—fl=0) -
Part B can be shown as follows:
E([1fa—f)=E ([lgn—1 Ljig,—t=a,) +E (Sitn =11 Lfig,-tni<an)

=E (flga—f)+ 1+ [1tal) P ([lgn—tn|=gn)
=E ([lgn—11)+ 1+ [1tal) P ([lgn—FI=Ta(f, T)—gn) -
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Part C is trivially true, since ¢, is only picked when it is within distance g, of .
fn; hence [|fa—gu|=qn. W

‘Observe that inequality B for f¢ T is not uniform, as nontrivial uniform bounds
over the complement of a small class T do not exist. Inequality A, in contrast,
is uniform over T'.

The proof of Lemma 1 also provides us with bounds on the probabilities of
error, i.e. the probability of deciding f€ T when f¢T and vice versa. While these
probabilities are important in a hypothesis testing situation (“test whether fe T"),
they are of secondary importance in density estimation problems (“try at all
costs to make [[f,—f| as small as possible, given the information at hand”).

Each of the inequalities in Lemma 1 has its particular use for us. Inequality
A can be used to show that the halo-based estimate inherits the minimax pro-
perties from g, in many cases. Inequality B describes the behavior of the halo-
based estimate when f¢ T, and provides us with sharp bounds for the probability
of (erroneously) picking t, over g,. Inequality C is rather naive but universally
applicable. Tt can be used to derive the consistency of f,. Each of these inequali-
ties is now illustrated, starting with inequality C.

Theorem 1. Consistency. If g, is consistent at f (i.e. E([|gn—f|) 0 as n —o), and
gn —0, then f, is consistent af f.

Theorem 1 implies that if the kernel estimate g, is used, with smoothing para-
meter b —0, nh? ~c as n —<, and g, -0, f, is consistent for all f (DEVROYE, 1983).
However, carelessly putting ¢,=1/ Vn (for example) can have a detrimental effect
on the rate of convergence when feT. Hence the need for a deeper study regard-
ing the rate with which we should let ¢, tend to zero. In first instance, this can
be done via the concept of asymptotic optimality introduced below.

We say that f, is asymptotically optimal for a class G of densities f containing
T (i.e. TS G), when for all f¢T, feG,

E(flfa=fD~E ([lga—1D),
and for all feT,

E([Ifa=f)~E ([lta—11) -

In many cases, we will not only establish the asymptotic optimality of f., but
also provide inequalities about how close the expressions in the definition are
to each other.

Theorem 2. Asymptotic optimality. f, is asymplotically optimal for the class of
all densities, when gy is the kernel estimate with deterministic h, and each of these
conditions is satisfied :

(i) the complement of T is an open set;
(11) Rﬁ(T) =qn —-0;
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(1i1) inf {2 exp («?11&2/(32_[‘3{K{))+P (ﬂtnfﬂ =)}

w,0:0=u,050,u+v=0,— By (T)
—o (E ([ita—f) forall feT.
(iv) f | is uniformly bounded in n.

The conditions of Theorem 2. We do not explicitly require that & —0 and
nhi —oo. However, for (ii) to hold, it is necessary that these conditions are met,
at least for nearly all kernels K, the exceptions being kernels whose FOURIER
transform is one in an open neighborhood of the origin (DeveovE, 1987). Con-
dition (ii) in effect tells us that T can’t be large, especially since we require £
to be deterministic. For data-based h, as we will see further on in some examples,
condition (ii) is much less restrictive, since h can adapt itself more easily to the
underlying densities. As it stands, (i) states that T’ can only contain densities
from a certain small neighborhood of a fixed density.

Conditions (i) and (iv) are usually trivially satisfied. For example, (iv) always
holds when t, is a bona fide density. The technical condition (iii) governs how
much bigger we can take g than R,(T). The difference can be split up into
w+v at will. However, to better understand what is going on, we can assume that
w=v=gn— Ba(T))/2. 1ti5 known that for most small classes T, E f [tn—fl=cl Vn
(but this is by no means a universal rule!). In such cases, the u-part of the con-
dition holds when u tends to zero slower than 1/ i-f'n. This condition in fact ensures
that the kernel estimate is relatively stable. The v-part of (iii) is satisfied if
P (f|tn—ﬂ>@:):o(1/l/'n). a condition that is often easy to check. This condition
too insures that the “oscillations’ of f |tn—f| are negligible relative to the crucial
difference gn— R,T). m

Proof of Theorem 2. We recall three properties of the kernel estimate with
deterministic h =hy. First,

inf E(f lgn—fD =

LhE 528n

(DEVROYE, 1986). Secondly, P (flg,;—ﬂ =g =% for all £=0 and all n large
enough (DEVROYE, 1983). Thirdly, again for all f and all =0,
nu?
P Uf[gn—ﬂfE (f‘;%t“ﬂ”"“) =
(DEVROYE, 1988).
Consider first f¢T. Since the complement of T' is open, we have Ly(f, T)=0.
This, together with part B of Lemma 1, and (iv), shows that E(f Ifn—11)~

~E([lga—1D).
Consider next f€ T. By inequality A of Lemma 1, and the fact that f lgn| = f |K],

g it guffices to show that

inf ®( flgn—f—E(flgn—1D =) +P (fita—F1=2)}

w,v:0=4,0 =y, utv=q0n—Bp(T)
=o (E (f1ta—1D)
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for all f¢T. The first term on the left-hand-side, for fixed w, does not exceed
2 exp (—nu2/(32 [*|K|)) foralln and ». m L |

Let us finally turn to the problem of preserving minimax optimality. Assume
that an estimate f, is minimax-optimal for a given target class T, i.e. there
exists a constant C' such that i

sup E (flta—/1)=C inf sup E (flfa—1)) - T N
fET fn FET

For f¢T, t, is often inconsistent or poor. It usually is not as reliable as the uni-
versal estimate ¢,. If we apply our halo-based selection rule, then we would like
to inherit the minimax optimality, at the very least. With little work we are
able to take a minimax-optimal estimate t, (for T), possibly non-consistent,, out-
side T, and obtain another minimax-optimal estimate f,, which is guaranteed
to converge for all f. All that is needed is a simple nonparametric estimate with
good uniformly bounded mean error over T (not necessarily minimax-optimal
for T), and with uniformly bounded variation of the error about its mean.

Theorem 3. Preserving minimaxity. Assume that qn= Ru(T) is such that
.u,v:oéu,0§1;l,£+v§qn—R”(T) {?:g P (l f [g”_ﬂ —E (flg”'_f]) |>u)

+sup P ([|ta—Ffl=v)} =0 (sup E ([|ta—11))
Jer feT \

and that f lga| is uniformly bounded in n I f tn is minimax optimal for T, then so
Bilnas o

sup E ([lfa—11)=(1+0(1)) sup E ([lta—/)) -

fer fer

Proof. The proof is immediate from part A of Lemma 1. =

Note that the uniformity of the variation of the L, error for gy is essential. If§
minimax optimality is our only concern, then we could take ¢, =< (which would
imply that f,=t,). Unfortunately, for reasons of consistency (Theorem 1) and
asymptotic optimality (Theorem 2), it is necessary to take g, ~0. It is perhaps
helpful to verify when the conditions of Theorem 3 are satisfied. This is the case
if both g, and ¢, are kernel estimates with deterministic smoothing factors and
absolutely integrable kernels. To see this, use an inequality used in the proof of
Theorem 2 and the fact that

: ) 1
ffilfrc E([lga—Fl)= =T

(DEVROYE, 1986). The halo-based estimate can thus be used to make a give
estimate t, more useful (i.e., robust, universally consistent); and we won’t have
to give up any of the nice properties of ¢, on T'. One might for example conside
a minimax-optimal monotone estimate ¢, of a monotone density on [0, 1] (which
by definition, can’t possibly be consistent for non-monotone f). Such estimate
were obtained recently by Brea (1987).
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4. Example 1: Superperformance for a single density

Tt is well. known that in ordinary estimation problems for location or scale, one
can modify existing estimates so that they become extremely good when the un-
known parameter takes one particular value. The modification usually involves
replacing the original estimate by the particular value if the difference between
them is smaller than some threshold (which in turn tends to zero with n at some
controlled rate). This can be done too in density estimation using the Ly halo
discussed in this paper. Consider as our target class the class T consisting of one
density, f*. Then, since formally t,=f*, we have

fn—{q‘ it f‘f*_gn1<q;n.

gn oOtherwise

Here gy is for example the kernel estimate with K and h picked for satisfactory
overall performance (assume that K is absolutely integrable and that A0 and
nhi ). Note that asymptotic optimality cannot be hoped for here since {, com-
mits zero error on f*, and a fixed positive error elsewhere. However, we have the
following :

Theorem 4. If g, —0, then fy is consistent for all f.
If f=* and gn —0, then

E ([Ifa—fI=E (flgn—1)+0(e=")

for some constant ¢ =>=0. Hence, E(f]fn#fl)-»E (f|gﬂ—f|) for all f==f*.
Finally, if f=f*, and qn=E ([|gn—F*) = Ba(T) ,
W(¢y—En (T))*

E(f[fa—f*)=2(1+[IK)e S/H

Proof. The first statement is an immediate corollary of Theorem 1. The se-
cond statement follows from part B of Lemma 1, the exponential inequality of
DrvroYE (1983) used in the proof of Theorem 2, and the fact that E ( f lgn—1fl) =
21/]/% for all f, k, K and n (DEVROYE, 1986). The third statement is imme-
diate from part A of Lemma 1, the fact that t,=f* and T={f*}, and an in-
equality of DEVROYE (1988). ®

The compromises ahead of us are clear from Theorem 4. When f=f*, we would
like to make g, as large as possible, preferably infinite (see last part of the Theo-
rem). On the other hand, when f=/*, the second statement of the Theorem
shows that a small ¢, is called for. If E( f |gn—f*]) is known (which seems plau-
sible, since we know f*), then taking g, equal to this value plus V32 f 2| K| log n/n
insures that when f=f%,

E([ifa—f*N=

We can control the rate with which E( f |fn—F*]) tends to zero by adjusting ga.

2+2[|K|

T
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Rates all the way down to (but not including) e¢-cn gpe achievable, thus outper-
forming g, on this particular density in a dramatic fashion.

On the other hand, the threshold suggested above is small enough so as not to
upset the performance when f=+*. Indeed, by part C of Lemma 1,

E (flfn“f‘)"‘::E (fig:b—ﬂ)-f*E (f||gu_f*”+]/32j2l_}i\£g_n [

This inequality is sometimes satisfactory for medium-sized n. Note the presence
of the term involving f* on the right-hand-side. In contrast, this term is migsing
in the exponential inequality of Theorem 4. The only disadvantage of the latter
inequality is that the exponentially decreasing term is partially hidden from view
due to the “big oh” format.

For small target classes, the only thing that changes is the rate of converg-
ence of f, when f¢T. For target classes with infinitely many densities, it is rarely
possible to achieve the exponential power rates of Theorem 4. However, it is
usually true that the probability of not picking the target class estimate when
feT, or of not picking the nonparametric estimate when f¢ T, tends to zero at
an exponential power rate for some appropriate choice of ¢,. This will be illustrat-
ed on a modest, example in the next section.

b. A case study: The normal density

Assume in this section that T is the class of normal densities on the real line. Let
us take a few paragraphs to discuss and analyze normal density estimates. Kor-
MOGOROV, and later Basy (1964), have shown that for the normal family with
unknown mean g and variance 62, the following density is an unbiased estimate

at all z:
il
T
)

fgl=—n = 1 ( 1 —(—11 (.7'~,.1}.)?)+ .

fn—=2\ — n—1) 62
e

Here 4o and ¢ are the standard sample-based estimates of # and . For other
examples and more theoretical background on unbiased estimation. see LumMuL-
SKIT and SAPOZHNIROV (1969), WErTz (1975), GUrTiaNy and WErTz (1976)
and SEHEULT and QUESENBERRY (1971), and the references found there. Another
possible (but not unbiased) estimate is

n—4
2

_(a—p)?
bn(2)=—e 2
V2nc

where ¢ and 4 are as above. It can be shown that for both estimates, sup
7eT

E( f tn—f)=0 (1/} E}, The second estimate itself is a member of T, a feature that
greatly facilitates the ensuing analysis. Furthermore, it has not heen established
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to date that the unbiased estimate dominates the second estimate in the expect-
ed L; sense. For this reason, we will consider as our parametric estimate the
second normal estimate.

In our examples we need a suitable density for the global selection process.
Prime candidates include the kernel estimate with data-based smoothing factor
and nonnegative kernel K, or the kernel estimate with data-based smoothing
factor and flattop kernel K (DEVROYE, 1987; a flattop kernel is a symmetric
function, integrating to one, whose Fourier transform is constant in an open
neighborhood of the origin). There are many excellent schemes for choosing A
as a funetion of the data, but to limit the analysis somewhat we will merely be
concerned with an old-fashioned but common sense scale-invariant estimate,
discussed e.g. in DEREUVELS (1977): here K is a symmetric unimodal density on
the real line, and £ is defined by

[

5 A

h=cn °6&

where ¢2 is the sample-based variance,

1 n
A ST
2 n (M=),
and
1 n
f=e 3 Xy

@

Il
u

The constant ¢ is adapted to the density f we are estimating. It depends upon the
shape of f only. A priori information about the shape of f should be used in the
choice of ¢. Interestingly, its value is rather insensitive with respect to f. The value
1.2019409 ... for the normal density can be employed without too much loss for
many bell-shaped curves. It should be stressed that by picking K nonnegative,
we are limiting ourselves when f is very smooth. Onthe other hand, for oscilla-
tory densities (such as densities with discontinuities), picking k=15 is sub-
optimal, as a larger value is called for. Also, it is generally recommended to avoid
averages when computing scale factors such as 4. Instead, one should use robust
quantile-based estimates. The technical reader will have no trouble adapting
the results that follow to his particular situation.

- Theorem 5. The normal class.

A. Let fbe a density for which 6n "> —+0 and 6n*® —co in probability as n e (it
suffices, for example, that f has finite second moment). If q, 0, then f, is con-
sistent.

B. Let G be the class of all densities f for which E (|6 —o|) =o(n™?'%) (this class in-
cludes T and all densities for which [1x|*9 f(x) dv<oo for some e=0). If

qn— Bu(T)=c*Vlog n/n for some constant ¢*=20 (it suffices for example to
require that qn=Cn"2°+c* | log n/n where C, ¢ and K are as in Lemma ol
and ¢n —0, then f, is asymptotically optimal on G.
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C. iy is minimax-optimal for T. So is f, when qn— Rp(T)=c* }«’log n/n for some
constant c* =20.
D. When qu= Ra(T)+ (Va+1b) Vlog n/n for constants a, b, then, for [T,
a b

E (flfa—f)=E ([lta—f))+3n Z450 522
provided that n=6, and that 8 (6 1.5 + Vﬁ) /]“':73—5 15 oD ('l’fgg o

The proof of Theorem 5 is given in the appendix. Basically, Theorem 5 is
obtained by a straightforward application of the previous theorems, but is com-
plicated by the fact that g, is not a kernel estimate with deterministic A (for
which we have useful universal inequalities: see the proof of Theorem 2), but a
kernel estimate with data-dependent h. However, since the data-dependence
is more realistic than determinism, the study in its present form carries more
weight.

A typical choice for g, would be Cn25 (where C is defined in Lemma 5 below)
plus the 'l""log n/n term defined in parts B or D of Theorem 5. One could also
take (C'+¢) n 2/° for some constant ¢>0. Note that the inequality of part D can
be used for moderate and even small values of n. It seems unwise to take g,
larger than these suggestions (from B and D), since that would decrease the per-
formance when f¢ T (recall that ¢, can be considered as a halo, and equivalently
as the size of a discretization grid in the space of all densities).

6. Appendix: The proof of Theorem 5
6.1. Behayior of £,

First we need a simple upper bound for the L; error committed with f,. Let f, ;
denote a normal density with mean @ and standard deviation b. (Thus, t,=f;5.)
Since the I, error is invariant under linear transformations of the axis, we can
and do assume, without loss of génerality, that p=0, o=1.

Lemma 2.
R
[Vfas—Toal =2log (max (b, 16)) +(1+)/2 ) 1
fa
=2 (max (b, 1/b) — 1)+(1 +l’ ;) laj .
Proof.

[Ifap—foal = [ Ifap—Fail+ [ |faa—Foal
:f|f0-5_f0.1i+f |fa,1—fo,1] -
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For b=1,
b
1 22
fo b=f0,1+f; fo,u (;—2—1) du
i

by taking the derivative of f with respect to b. Thus,

b
f lfu.b—fo.ll‘éff j—L fo,u
1

j (ffﬂ.u

A similar argument is valid for <1, so that we obtain the first bound of the
Lemma. By a similar line of reasoning, for a=0,

a
[lfaa—forl=[ [ (@—a) fuidu
]
- 1 D /Z f = /2_—
—mm(z, ] » o+ 7 )= 1-{—1 = e
Combining all this proves Lemma 2. W
It is known that i is normal with mean 0 and variance 1/n, and that 62 is i/n
times a chi-square random variable with n—1 degrees of freedom. This can be

used to bound the L, error. In Lemma 3 below, we also establish that the estimate
t, is minimax-optimal for 7'

dudax

T
——1
u2

i\

72
e

b
1
dx) ;duéQlfu“ldu=2 logb=2 (b—-1).

[+
dz= [ [ |o—a| fuadedu
0

Lemma 3. Let T be the class of all normal densities on the real line. The normal
estimate t, satisfies the follc(wing inequality, for all 0<u= Ys—2:

sup Po [ [ta—f| =u) =3 & "3,
feT
Additionally, there exists a positive constant o=0 such that

o B

— =inf E(|ta—F)=sup E (| tn—f)| =—,

e (flta =1 =sup B (flta =P =-—
where'B:6ﬁ+V"ﬁ+ ]«""'2/_::+ 2/m, and for the upper bound, it is assumed that
n=6. Finally, for some positive constant =0,

inf sup E (f[fa—fl) ==
fn JET Jn

Proof. For the first inequality, it is clear that we can assume that fu,>=-4/1/£.
Furthermore, the distribution of f |tn—f| is scale (and thus ¢-) invariant, so we
can and do assume that o=1. Let N be a normal (0, 1) random variable, and let
G be gamma (n—1)/2. Then

P ([|tn—f|=u)=P (2 max (6, 1/a)>i‘2i)+P ((1+‘V§/_n)1m %)énu.

Now, defining 6=1/(2 (1 +1"Tn)), and using 6 =1/4 and u§4/]ﬁa, we have
24 statistics 20 (1989) 3
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2 s
e n u26%/2

II=2P(N=0 lnu)

= VE a3t
J

2ﬂm w

Also,

1

,. e 1
{TJ@E)*P(””"”“”:P ("“‘m)*” =1+uj2)

(
:P(G<21u) (G:- +M)

_p (G<-n,~1fnu—2 )+P (G>n-—1+nu+2)

2 4 +2u 4
ln 1 nuU—2—u =1 nu+2 nU+2y 1
—e "2 [(2+ ) (n— 1)] § 2 L2n— 2] ( 271—2)
(n—1yu? % (nu ) 2n—2
T T eEmr . 18 TSN Ty Gntnn)
=¢ 1G@+w) (2+u) +e 16 (n—1) (2n+nu)
nu? s u : 1 o AL ()2 2
= WTW? AEtw? B, o 16 n V3
—nu2/32 + 1—+
=e 36 8+ —nu?/82

by some tail inequalities for the gamma distribution, and the fact that
w=)8—2=1. Simplification of these bounds yields the bound

9 5
(l/E 2] +_{L) —nu/32 ’3(:‘,7””‘""32
T 36 '

Also, assuming again that f is normal (0, 1), we have

E (f|ta—fl) =2 E (max (6, 1/6)—1)=T+1I .

9
Now, [1= —+ — . Furthermore,

T Vln b4

2G /26
li— 2E(max (V V%) ) (],?_1) +2E(Vﬁﬁj)+
¥ ein
25(3‘1,1) +2E(1~1) ng(———“ Bl —1—)
n st 26 L n n 4+
n 3
+2E(2G (2G)+m)+
o2 G-EQ) 2 n n
2E(—n )++;+2E(@—E(ﬁ))4
AL fe—— ] / 1
E;VVGI’ (G)+;+?’b‘|’f Var (a) 5

where we used the CaucHY-ScHWARZ inequality. We know that for a gammi
random variable G with parameter o, Var () =« and Var (1/G)=(a— 1)-2 (e—2)2

W\

lIA

LIA
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Thus, we have for n=6,

4 2 293 672 A
IT=—1—4 V + V———— r
(n—3) }/n—ﬁ Jn—5

T If12_n W n—b
where 4 =6 ]/5—1— VE:;
The minimax lower bound can be obtained by standard information-theore-

tic methods (see e.g. DEVROYE, 1987). Also, the lower bound on E (fltn—f]) is a
straight-forward exercise. m

6.2. The scale-invariant kernel estimate

Let g, be the kernel estimate with the data-based % given above, and let gno be
the kernel estimate based upon the same data and h, but with % replaced by

_1
ho=cn ° o,

where o =0¢(f) is a scale factor for f which is equal to the standard deviation if it
exists. It is assumed that ¢ is close to ¢ in some probabilistic sense. The closeness
of ga t0 gyo is dealt with in the following lemma.

Lemma 4,
A. We have
o A
e T
B. Let T be the class of all normal densities on the real line. For all u‘éVggQ:
sup P (A(o, ) =>u) =2 W82
fer
For all n=6,

sup E (A(a, 8))=—12 4123
FeT Jn—56

C. E(A(s, 6))=0(n"?%) when [958 f)dg < oo for some &= 0.
)

S1gn—11= [ lgno—f1+24(s, &) ,

E (flga—)=E (flgno—f1)+2 E(A(o, 6)) ,
and

f’gn*ﬂ—E (ffgn‘fl)
= [1gn0—11~E (fIguo— 1) + 24(c, 6)+2 E(4(a, 8)) .

Proof. Statement A follows from the unimodality of K, jointly with
a
f |9%— Gnol §f = J=2 (I —min (; ; —g))
(DeVROYE and GYORFI, 1985, Pp. 186—187).

24%
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Statement B is immediate from the proot of Lemma 3 and the fact that
 —min(z, 1/x) =max (z, 1/2)—1 for all x>0. Statement C can be proved by
employing an inequality due to vox Bawg and ESSEEN (1965) (see also NaGARV
and PINELIS (1977) and MANSTAVICITS (1982)) for sums of iid zero mean random
variables Z;, ..., 7,
1
=

1 1 1 n
(5 Sal)=e (|t 5=

With Z;= X7 — 02, the upper bound is o (n™3) for p=>5/3. This vields the condi-
tion that E(]X;22) <co. A small additional argument is needed to bound |¢—g]
in terms of the Z,’s and asymptotically negligible terms. Statement D follows
by the triangle inequality. m

1

v i_71
)zw E(Z:%) (pelt, 2]) .

6.3. The centered kernel estimate Yno

Having studied the closeness of gn tO guo, it is necessary to see how gno behaves
in general. Since it is a kernel estimate with deterministic 4, all the inequalities
mentioned e.g. in the proof of Theorem 2 remain valid. Also, since h -0 and
nh—oo, it i3 consistent for all [ for which the estimate is well-defined, i.e. for
those densities with finite variance.

Lemma 5.

Let f be the normal (0, 1) density, and let guo be a kernel estimate with nonnegative
symmetric kernel K with support in [=1, 1], and with deterministic smoothing
factor h. Then

2/ /[ K2 [(87)1/4 1L 2h( 257)-1/4
= (f!gﬂﬁ—f“ }El/;szﬁz-[(‘l-un—)r—_;ﬂl—]
1
3
With BARTLEYT'S kernel K(-’L’)=Z (1 —22), the estimate becomes

i
V2 (w1 - 2021
(2}

Y

Pl
E(f lgno~1) =) 5o 24

When
: _
1 = 1
—= 225732 10 A 3 L b
h=n 5[%8[—] :C)l_l'd:1.2019409 a2
2 8
the wpper bound becomes Cn -+ Dn 5 where
1 1 1 1
- = D 1 ooy
sl 2 Plezsne]s [37F,. 5[ 128 12
02[25::@] [ 128 ] +[§J e [225::3@2] ;
1 : 1

L :
INERE -5 [2257302]20
sl L 4

D_[5] 2(2n) [ el ] .
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Proof. By a uniform estimate for the bias given on p. 122 of DEVROYE and
Gyorrr (1985),

S =f*K| =

Also (see last line of p. 124 of same reference) :

12 [ 2K |||
—

R
E (flgno—1*Knl) =LV 2E
]/ﬂ,h’
The convolution integral in 'the numerator can further be bounded as follows, if
we write K2 instead of (K2):

ff(y} K2(z—y)dy= sup [(z) f K2 (x—y)dy=

z:lz—z|=h

{f(O} [ K2 lz| =h
f(lxl=n) [ K2 |o| =R’
Thus,

[ V&=V ] K2 (f Yf—2h Vf0)).

Next, note that f(O)':y%, [ V}‘_:(Sn)‘i, and f [f""| =4 sup |f'|=4 sup 2] |flz)] =

/ 8 . 2 g : . : ;
=]f — . Combining all this gives us our first estimate. The second estimate is ob-
e

tained after replacing f 2K by 1/5, and f K2 by 3/5. The optimization of the two
main terms with respect to 4 is trivial. m

6.4. The proof of Theorem 5

Theorem 1 implies the consistency of f, whenever g, is consistent. By a general
theorem of Duvrove and Gyorrr for data based h, gn is consistent when A —0
and nké—ece in probability as n oo (DEVROYE and Gyorrr, 1985, p. 148). This
proves statement A.

For statement B, we have to extend Theorem 2 (which only applies when %

A
does not depend upon the data). Consider first f¢ T, and note that Li(f, TY=26=0.
Now apply part B of Lemma 1, where it is clear that [ Ita] =1 for all n. Let n be so
large that g, <4§. Then

ESUfa=1D=E (flgn—1)+2 P (figao—11>0)+2 P (flgn—guo| =9) .

Of the terms on the right-hand-side, the first one is at least E f lgno—f|) minus
E (f|gn—gno|), which is at least (0.86+0(1)) n > —o(n™%) by an asymptotic in-
equality of DeEvRove and PENrROD (1984) valid for symmetric K =0 and deter-
ministic A, and part C of Lemma 4. The second term is O(e—¢n) for some ¢=0
(see proof of Theorem 2). The third term does not exceed E( f 190 — gnol/6) =
=0(n"*®) (part C of Lemma 4). Thus, E (flfe—=1)~E (flga—11) -

Consider next f¢T. Here we apply part A of Lemma 1, after observing that
[lgal=1 for all n, and that Bo(T)=Cn®+ D3+ B/Yn—5 for n=6 (apply
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Lemma 5 and part B of Lemma 4). It should be stressed that ¢ and D) are the
constants defined in Lemma 5 if & if 6n™"° with ¢=1.2019409 ... as suggested in
that Lemma. Otherwise, the values of C' and D are slightly dlffelent Note fur-

ther that Jn Eif f tn—fl|) is asymptotically sandwiched between two positive con-
stants «<f (see Lemma 3). 1t suffices to establish that we can find sequences

w=1u(n) >0 and v=v(n) >0 such that y+v=c* Vlog nin,

P(1flgn—=f1=E (flgn—FD)=u)=0 (Vl—~)

and

P ([lta—11=v) =0 (~VL) .

The latter probability does not exceed 2 exp (—nv?/32) (Lemma 3). This tends to

zero at the required rate if we take v=1J(16 +¢) log n/n for some &¢=0.- The for-
mer probability is dealt with by a three-way decomposition as in the last part
of part D of Lemma 4. The probability does not exceed

P (fige=11=E (lgso-f1=L)
+2 (4o, )=5) +P (€ 400101~ )

nu’ nu?
=9g 16x32 4+3e 16532
provided that n=6, u=4 (Vg— 2), and 8 (6 ]/§+ V?/?.)/Vn —5=u (apply DEvRoYE
(1988) (see also Theorem 2) and part B of Lemma 4). All of this is o(1/ V;) when
w=7(256+¢) log n/n for some ¢=0. Thus, asymptotic optimality follows for
fET if gn is at least equal to R,(T) plus ¢* Jlog n/n where c*=116+1 256 =20.
It suffices, for example, that g, is at least equal to 0¥+ ¢* Jlog n/n. This con-
cludes the proof of part B. Part C was also essentially proved when we obtained

part B. Finally, the inequality in part D is obtained without work from the proof
of part B. W
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