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Summory. We consider the problem of choosing between two density estirnetes, a, non-

para,metric estimate with ihe the standard propedies of nonpa,ra,metric esiimates (uni_

velsal consistency, robust,ness, but not extremely good r&t'e of convergence) and s, special

estimaie designed to perform rvell on a given set' T of densities. The special estimate can

often be thought of as e psrametric esiimate. The selectioD we pr'opose is based upon the

-Lr distance between both estimates. Among other things, we show how oqg should pro-

ceed io insure that the selecied estimate mat'ches the special esiima,te's rs,te on ?, and

that it maiches the nonparametric estimete's ra,te ofY ?.

-4MS 1980 subiect clo,ssi,Jicatiofld: 62 G 05, 62 II 99, 62 G 20.

Key worils: Density estimation, kernel estima,te, rrunima,xJ theory, consistency, non_

p&rametric eslimelion, normal density, a,sympiotic optim&lity, model selection.

1. Problem statement

There is a strong domand for density estima,tes that adapt to the situation a,t

hand: they should be of a simple parametric na,ture if the data fit a given para-

metric model, and yet they should be flexible enough to handle any density if

the parametric model or models fail. In t'he former case, they should be accura,te.

In the Latter case, the estimates should behave like solid nonparamtric estimates,

i.e. they should be consistent and robust (but possibly less accurate).

The data a,re used to decide between two or more types of estimates. We are

fa,ced with a particular model selection problem in which the modols are extrem-

e1y heterogeneous: in one case, a small "target" class of densities, 7, is envisa,ged

(typically, this class can be described by virtue of a finite number of parameters

such as the class of all gamma densities with unknown shape and scale parameters),

and in the other case, a huge ocean of densities; t)'pically the complement of ?,

is considered. The small ta,rget class, or classes, call be regarded as small islands

in this big ocean of densities.
In this note, we st'udy a rather primit'ive met'hod of selecting one of several

density €stimates. It is based upon a nonpara,metric estimate g, which has the
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ctosired consistency and robustness properties. Roughly speaking, when g, is
close (in the tr1 sense) to one of the estimates olr one of the islands, we select
that island and its corresponding estimate. If g, is far awa,v from all is.lands. the
nonpara,metric estimate is used. Put alother wa.v, a halo or sphere of jnfluence
is put around all estirnates. one for each target class. If an falls outside all halos.
it is selected. Otherwise, one o{ the estimates on one of the islands is nicked ac
cording to some mle. The sizes of the halos can differ from target clasi t,, tatget
ciass.

The atlvaltage of this scheme is that it is computationallv sirngrle (no lumerical
optimization is required), arrrl that its properties are easy to deril-e in vel glob-
aI settings. 1\'e rviil see belorv that learly all the results are valid rvithout lestlic-
tions on densities. due iu lart to our choice of metric. Otlter universal metrics.
such as the Hellinger netrics, could of course be used with equal ease.

The idea of picking a close better-looking estimate is certainlv not ne.,q. Covrn
has advocated this zrs earlv as 1979, and BARRoN (1985) has relined Cor.nn's
work. In the method of sievee (GnarLNlnn, 1981i GEMAN a,nd H\rANG, 1982),
one picks a densit\. from a glorving class of densities so as to nlaximize the like-
lihood prodrrct. The difference here is that we alreadv have certain estirnate$,
aud that we are rnereiv asked to choose betrreen them.

One is ternpted to emplo-r the miiritnum likelihood method f{rr sur,h a rclec-
tion, possibly.w-ith cros,s-yalidation or basetl upon a sample splitting scheme_
See e.g. Scuus,rln and Yexor.nrz (1985) or Olntr,- and SPTEGELMAN (198?).
Unfortunatelv, the likelihood Foducts are ver-v setsitive to areas of small or
zero detrsitr. antl the seDsitjr.itv is enhanced b"v- the fact that we are w-orking
wjth products of densitr- estimate$. not just products oi delsities. As rye rvill
see belorv, the 1,1 distance irrtroduces just the right amount of robustness to the
selection procedure.

Let us continue our sholt historical tour, For marry J,aralnetric targ€t classes,
there exist excellent tests for decidi[g whether the density of the data is in the
target class, see e.g. the receut book bv D'Acosrri.ro and Srsrunxs (1986). Lllnn
rejection o{ the pararnetric l;ypothesis, otre would then use a, nonparametric
estimate. 'lVhile 

such an apprrrach could be useful for certain srnall classes. jt
is not' ao easr. to appl1. with the kincl of generaliiv we are looliilg for. !'or example,
hory rqould ole proceed if the target class consisted of all log-colcave dersjties
with mode at zero and rnorlal r.alue equal. to ole? tr'urthermrrre, the sarne esti-
nat6 g?, is used both for decision mal<ing aud estim&tjng. The atlded homoge-
ueity can onl"v be helpful.

IIERAN (1977, 1981) has studied the propelties of estiDrates that are projec
tions ol nonpatametric estim&tes onto target classes ?. (A projectirtn of a density
onto ? is any denrrity in ? that is closest to the given densitt among all densities
in ?.) These estimates inherit the robustness of the nonparametric estintate,
when robustness is considerecl il] the sense clescribed il IJrc(xL (1926) and y,a.-

TRr\coS (1985). BERAN'S approach differs from ouLs jn tlvo respects: he is not
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intereeted in the performance of the density estimate outside ? (except possibly

in a small neishborhood of ? wheu he studies robustness); and he is not con-

cemed with the selection pmblem betweel two givon densitv estimates' Note

however that we could study the selection ru]e rvhich decideg between a non-

parametric estimate grz ard its projection onto 7. This often introduces nume-

rical problem for the practitioner. H-ov'ever, it might lead to a useful way of

selecting arl estimate. The general theorems belorv are also valid for this case but

no  worked example  fo t  these pro jec t i ( )n  es t r rna tes  i t  g i re r r  here .

The basic technical tool needed to provide a sirnple analysis is related to the

variation of J,,: [19,, 
- f] around its nean. E("r") : E (/ig" -ll) for all l. As shown

in DEVROYE (1988), J,/; IJ,,-E(J',)\ is stochasticallv bounded from above bv a

random variable v'hich does not depend upor f, t. or the smoot'hing factor, when

g,1 is the ordinary kenlel estimate (RosrNrr-mt. 1956; PAa,zrN, 1962; Cacour,-

Los, 1966). Thus the oscillation of g, in the ocean of densities is controlled in a

uniform mamrer; 92 is virtuallv anchored. It lives in an -L1 she1l centered at f

with radius bounded by c E(J,), roughll'- speaking. The sheil's thickness is about'

lll;.Ihe shell is so narlov- that for iltuitive purposes, lve can think of / O, -l

as being equal toE(llg,"-l)\. lVith theaidof this tool, and a few ot'her results.

we will be able to show that jn manv cases, the expected -tr dist'ance between

the solocted estimate fn and density f tends to zero at the trte of the target class

estimate if I is indeecl in ?', and at the rate of the nonparametric estimate other-

rvise.
The present method is not jntended to be used for deciding between two or

rnor€ nonparametric estimates without specificat'ion of a target class for one of

them. It is also not suitable for choosing the smoothing factor in an automatic

fashion. Nel'ertheless, r'e v'il1 be able to present a, flavor of the usefulness' by

illustrating the technique on a couple of simple examples.

tr'inally. we r)ote that the methods presented here are certainly not limited to

the rl space. To define balls and distances anong densities, we ootrld have used

other metrics, such a,s -tp metrics, llEIIrNcaB' metrics. or a Kut Lsecr-Lnrnlnn

based metric. DnvRoYE (1987) explains what the adver,ntages are of the tr1 ap-

proach. Perh&ps the main teason jn the Present context js that for all sets (eYents)

l "  r  1 , .
e, 

I J f ',- .l tl ;U J t-t,:, which is an absolute numbet between zero and one

l A 4
(Scannn6, 1947). This universal interpretatior of the distance is extremely use-

ful in the definition of the radii of the halos; e.g. a radius larger tha'n 2 is non-

sensical, ancl for "practical" sample sizes, radii smaller thali 0 0005 may be

equally unrealistic. Actual1y, in the absence of all a priori informatiou, orre could

often set the radii about equal to the errors orre is expected to accept; e'g it is

known that for kernel estimates with positive kernel, errors of 0 01 to 0 03 are

close to best possible when ??' = 10,000 (Dnvnovn and Gviinrr, 1985)
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2. Dcfinitions

Let &, ..., & be iid randonr vectors with common unknown density I in J
Let g"lte a nonparametric estinrate, consistent forall I (i.e. E(llC"_fli -Ot"r,
f). tr'or example, g, couid be a kernel estimate

K1'  ( r -X i \  ,

rvhere h>0 is a function of the data, {br which

h *O, nha ** in probability as ?? +@ ,

and K is a kernel, i.e. !tf :t (pARzEN, 1962; RosENBLArr, t9b6).
Let ? be a target c1ass, for r;vhich we have a good density estima,te tn at ]hanl

We will assume throughout ltrat tnCT. The goodness of this estimate js of coun
conditional on I being a member of ?. The purpose is to choose between g,r an
i". To do this, we require an explicitly known number q,, and define the hak
based estimate as follows:

,  _ l t "  i t  I  t , .  s , ' -q ,
l n : \

{gn olnerwlse

tr'or selection between more than two classes, one can choose between severi
estima,tes in case of overlapping halos. Itor example, this could be done by selec1
ing the l" with the sma,llest halo.

It sholld be noted that the eva,luation of the Lr distance between f, and g
requires a numerical integration routine. We assume throuqhout that this distano
can be evaluated with infinite precision. It should be noted here tha,t for specifi
forms of io and go (e.g. when both are kernel estimates with polynomial klrnel
of compact support) the integral can be rewritten as a finite easy,to_evaluat
sum wi rh  O{z)  te rms.

The choice of qr is crucia,l to the analysis. We realize tha,t it is not sufficier.rt tr
give asymptotics for 4". Useful techniques require explicit formulas, valid fo:
all z. As a first general guiding principle, one should take !1,, slightly larger thar

fr,1r; 1s,t e (l ls"-f l) ,
l (11

where the term "slightly,, refers to the variability in Jlg"_fl and /lrn_ll uni.
fbrmly over l( ?. Note tha,t q, should tend to zero for our method to be efficient.
Since q, is greater than the minimax error for ?,

inf sup E ( lls,-f l) ,
cn J€'.r

the method is only applicable when ? is not too massive. This excludes manv
classes, such as the class of all densities with support on [0, 1], bounded by i,
or the class of all unimodal infinitely many times continuouslv differentiable
densities, or the class of all normal scale mixtures, or the class of all clensities

s"@:: t
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within ,1 (or Htr,lrncnn) distance e from a central density lo (see Dnvnovn

( 1 9 8 3 , 1 9 8 7 ) , B r R c r d ( 1 9 8 5 , 1 9 S 6 , 1 9 8 ? ) ) . L u c k i i y , n e a r l y a l l p a r a n e t r i c c l a s s e s
of interest to practising statisticians are included, as well as most -t1 totally bound-

ed classes 1V-o.nnecos, 1985) Examples of such classes include the class of all

monotoneclensi t ieson[0,1]boundedbyagivenconstantc, thecla 'ssofa l lcon-
cave densities with mode at the origin, or the class of ali densities on [0' 1] with

s - 1 a,bsolut'ely continuous derivatives, for which l(u) satisfies the following Lip-

schitz condition :

lf tt)(n) - l?,(il:=c ln -y d,

where a€(0, 1] and C>0. For other examples, see BnrrAGNor'Ln aud Husnn

( 1 9 7 9 ) .

3. The main theofems

Lemma 1. The basio inequalities. Ld l" be

shold q^=- R"(T).
A. Then

the hal'o-based, estimate wi,th thre-

8up tE (/ l l ,- l l)- E ult"-f l \ ]
f ( T'=0+ 

f ls, l)  inf {sup P ( l  / lg, - l l -  E lJls"- lD|=u)
'  

u , r .O=u,0=a,u+t  =q tu Rnl ' I )  l (T

+ su? P (/Pz-ll>1,)) .

The same inequali'ty is true without the supsrema ouer T '

B. In add,iti,on, t', tSr,i2f, Jlc 
-ll!- Lr$, n,

E (lV,-f l \=E (JW"-fl ' t+tt+ Jlt" l lP (l ls"-l =h(l '  r l*q") .

C . Ii,nall,g , lor al,l f , we kaoe

E (ll l"-tl\=r (J c"-f1)+q^ '
Proof. Part A is obtained by the triangle inequality: fix any l(?, a'nd

nonnegative u, a with %+a=qn-En(T\.Therr

E ( I )1"- fl) =E (l t"-fl) + I + I ls^D P U s"-t"r= q"\
=E (J l t^- l l \+(r+ I ls" l )  P Uls*- l l=n"(T)+u)

+(+ I lc^ l )  P ( lV"- l l=u)
=E Ult"-l l)+(1 + IIT"D P tl ls^-t -r Ub^-fl=u)

+G+ J lsn)  P  ( l l tn - f l>a \  '

Part B can be shown as follows:

E (lV^- t1\=E (. l lc*-l l  I tu^ u1.q^)+e (Jlt*-l) I1pn,*1.0,)

=E (l ls"-l l)+ (r+ I l t , l) P (l lc"*kl--q,)
=E ( I ls^- f l) + (t + I P^l) P U ls"- t l  = L,(l '  n - q")'
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Part C is trivially true, since ,,, is only picked when it is within distance 4n of

l^; hence [lt"-g"l=c". t
Observe that inequality B for l( ? is not uniform, as nontrivial uniform bounds

orr€r the complement of a small class ? do not exist. Inequality A, in ctintrast,
is uniform over T.

The proof of Lemma 1 also provides us with bounds on the probabilities of
error, i.e. the probability of deciding l€? when l(? and vico versa. While these
probabilities are important in a hlpothesis testirrg situation ("tost whether | (7"),

they are of secondary importance in density estimation probloms ("try at all
costs to make llf"-fl "u 

small as possible, given the information at hanil").
Dach of the inequalities in Lemma t has its particular use fot us. Inequality

A ca,n be used to show that tho halo-based eBtimate inherits the minimax pro-
perties fiom gn in many cases. Inequality B describes the behavior of the halo-

based estimate when l( ?, and provides us with eharp bounds for the probability
of (erroneously) picking t,, over g,. Inequality C is rather naive but universally
applicable. ft can be used to derive tho c"onsistency of fr. Each of thoso inequali-

Lies is now illu.qtrated, starting with inequaU[y C.

Theoren 1. Consistency. If gni,s consistent qr I $.e.E(llsn-ll)*0 as n**), an'i| '
q,-0, then f" i's consdstent at f.

Theorem 1 implies that if the kemel estimate gn is used, with smoothing para-

meter/r*0, nftd *- s,s ?xt-, a'].ad, %L-O,lnis consistent for aIIf (DnvRoYE, 1983)

Ifowevor, carelesslv pfiting q^:llllfi (for example) can have a detrimental effect

on the rate of conyergence when l€ ?. Ilence the need for a deoper study regard-
ing the ra,te with which we should iet q, tend tn zaro.In first instance, this can

be dono via the concept of asymptotic optimalitv introducod below.
We say that l, is asymptotically optimal for a class G of densities f containing

lI (i.e. T!G), when for a[ | 4f , | €G,

,E (V*-fl\-E (J s"-fl\ ,
and for aI1 l€ ?,

E (Jf"- f l ) -E ( l l t " - tD

In many cases, we will not only establish the asymptotic optimality of l"' but

aleo provide inequalities about how close the expressions in the definition are

to each other.

Thoorem 2. Asymptotic optimality. f, i"s asgmptotdcatrtry oltti'matr for the class ol

all densities, when go is the kernel' estdrnate u)ith iletermini'sti'c k, and each of these

conditions i,s satisfied, :
(i) the aomplement of T is on open set;

(ii) Rn(r\ =qtu-o;
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i-f {2 exp (-nu2!(32.['lrll) +p \Jlt"-tl-'"\)
(nr) 

o,r,o=*,0=#'l i, =qn-R21T) 
(

o (E (,I"P"-ll)) for alt f ET'

inf E (J ls" -ll) = I

,oro'*o"u,t'?iru1. secondlv' P { ls*- ll=u) =e- 'i"t f,-.?t} e >0 and all n largo

ff;t (;il;;"' rses)' tui'dit 'eain for all / and all fr>O

p (l I ls,-t l-e (JVo-tl) l-u\=2a 3'r 1"1

This, together with part e of L"--" 1' and (iv)' shows that E(llt"-tD-

- 
5i{lfi; ?J; t € ?. Bv inequalitv A or Lemma 1' and the ract that I ts -t : ! txt'

ii suffices to show that

(iv) ]1r,1 ds uniforml'g bound'ed' in n'

Ths conilitions ol Thoorem 2' We do not explicitly require that lz-0 and

,D;l:.;;;;;;, for (ii) to t'ota' it i" necessarv that these contlitions are met'

"l'f"r"i 
i.t 

""t"fy 
all iernole -K' tnu u*""ptiot's being kernols whose Founun

tmnsform ie one in an op"" r1"i-gibo"h*d'of the origin (Dlvnolr' 198?)' Con-

dition (ii) in effect t"Il" ou th#f 
"to't 

be f"g"' especially since we require lz

#ftl?il;;i;. l'o' data-based l" as we will-see furtrrer 11 
in some examples'

oonalition (ii) is much t"t" 
""'t"rcii*' 

since l' can adapt itself more easily to the

"Tii"it"*-i""Jrt*. 
As it'stands' 1ii1 stutes that ? can only contain densitieg

i--l*i,"t small noighborbood of a fixed density'

Conditions (i) and (iv) aro usually trivially satisfied' X'31.exarndo' (iv) alwaye

holds when t,, is a bona tau J"""iiy' The iechnical- contlition (iii) goYems how

much bigger we can take q* ttrat R*(Tl' The difforenco c&n be split up into

%+?, at will. Tlowevor, to botter undersLnd what is going on' ws can assume that

11:s:(qo- Ro(T))/2. It is known that for most small claeses T ' E Ilt'-tl=-cl\ n

(but thrs i8 by no means a universal rule!)' In such cases' the %-part of the con-

dition holds when ? tends to zero slower than 1/16' Thie condition in fact ensures

that the kernel ostlmato ," ,u*ioury shble. The z'-part of (iii) is satisfio'l if

;if r;;:;;=;tt/it, " 
condition that is oftoneasvtocheck' rhis condition

too insures that the "oscillat-il;; clr /f'. 
-ff are negliglblo rolative to the cmcial

dif{erence q"- R"(Tl. I

Proof of Theorem 2' Wo recall throo properties o{ the kernel estimate with

dotermidstic ft: h4' First'

363
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for aIl l<I. The first term on the left-hand-side, for fixeil a, does not exceed

2 exp (-nu2l(32 lzlKl)) for all n ^nd' %. I
Let us finally iurn to the problem of preserving minimax optimality' AsErme

that an estimate I' is minimax-optinal for a, given targot class T, i'e' there

exists a constanl, C such that

sup E ulr"-ll)=c i"r ",'p E (lv"-ll) .
l<T ln l€' t

For l(T, fa is often inconsistent or poor. It usually is not as reliable 8's the uni-

versal estimate gn. If we apply our halo-based selection mle, t'hen we would liko

to inherit the minirnax optimality, at the very least' With littlo work we are

able to take a minimax-optima,I elt'irrrat'e tn (for 7), possibly non-consistent,, out-

side ?, and obta,in anothsr minimax-optimal estimate f4, which is guaranteed

to converge for all l. AII that is needed is a simple nonparametric estimate witl

good uniformly bounded mez,n etror over ? (not necessarily minimax-optimal

for ?!), and with uniformly bounded variation of the error about its mean'

Th€orom 3. Preserving minimaxity. Assune that q)= Rn(T) ds such tkat

in f  {sup P ( l  I  ls" - f l  -E ( f  lg" - l l ) l>w)
u.uiO<u,OsD,utx<qn- Rn$l  ' f  

i

+sup P (/lt,-ll>u)]:o (s.93 E (lV,-A\)
f tT f<T

ds wnilormlg bouniJ,ed' in n. Il t, is tniniqnar optinual lor T' then so

sup E (/ l l"- l l )=(r +o(1)) sl !  E (, f  1,"- l l )  .
!€T 

'  
l<tr

Proof. The proof is immediate from part A of Lemma 1' I

Note t'hat the uniformity of the variation of the Zr error fqr gr is essential lf

minimax optimality is our only concern, then we could t'ake qr:* (which would

imply that l^=tn). rJnfotbnately, for reasons of consistency (Theorem 1) and

asymptotic optimality (Theorem 2), it is necessery to t'ake q,!*0' It is perhaps

nelpful to verify when the conditions of Theorem 3 a're satisfied' This is the (

if both g, and. to al:e kernel estimates with deteiministic smoothing factors r

ann, tkdt I ls*l
is f^:

absolutely integrable kernels. To see this, use an inequality used in the proof

Theorem 2 a,nd the fact that

#oE(l lc"- f l )=
(Drvnovr, 1986). The halo-based estimate c8,n thus be used to make a

estima,te f, more usoful (i'e., robust, universally consistont); and we won't ha

to give up any of the nice prope*ies of toonT' One might for exa'mple cr

a minimax-optimal monotone estimate f, of a rnonotono density on [0, 1] (

by ilefinition, can't possibly be consistent for non-monotone l)' Such estima

were obta,ined recently by BrRcS (1987).

1

528*
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4. Dxample 1: Supe4lorlornaneo lor a single density

It is well-known that in ordinary estimation problems for location or scale' one

can modify existing estimates so that they become extremely good when the un-

known parameter iakos one particula'r value' The modification usually involves

"uplr"iig 
the original estimate by the particular value if the difference between

th'em ls 
-s-a[e" 

than somo threshold (which in tum tends to zero w1th zr at some

*rri-rua rate). This can be done too in density estimation using tho Zr talo

ai""oa""a in this paper' Considor as our target class the class ? consisting of one

density, l*. Then, since fofma,lly ,',=f*, we have

,  , l l *  i f  I l l * -9 " ] -q"
/o-lgo otherwise

I{ere g, is for example the kernel €stim&te with 1( and l' picked for satisfactory

ove"ail pe.fo.manco (assume that -K is absolutely integrable and that k*o and'

nhd **)^. Note that asymptotic optimality cannot be hoped_for here since ,tu com-

mits zel crror on fs, and a fixed positivs error elsewhere' Tfowever' we ha've the

following:

Theorem 4, If q^ *0, tken ln i's aonsi'stent lor al'l' f '

I l | +f* and' qq,'0, then

E (!l l"-fl=E (lls^-fl) +o("-""\

lor some constant c;-o. Henae, EUll,-ll)*E (l)s"-fl) for all f +f+'

Finally, i'f f :f*. and q,>-E ([tg n- f*'t\: R*(T) '
n(qrr-nn|ar\1

E ( ll,- t*l\ = 2 (1 +/lrl) e----fii'@-'

Proof. The firBt statement is an immediate corollary of Theorem 1' fhe se-

cond statement follows from part B of Lemma 1, the exponential inequality of

Dtvnovr (1983) usett in tho proof of Theorem 2, and the fact thak E (!lgtu-ll)>

>Ill528n for all f , k, K and' n (Dnvnovn, 1986)' The third-sta'tement is imme-

diato from part A of Lemma 1, tho fact that t*=l* ar'd ?-{l*}' and an in-

equality of DnvnoYD (1988). I'Thu 
io*p"o-i""s ahead ofus are clear from Theorem 4' When f =f*' we would

Iike to make q& asLatge as possible, preferably infinite (soolastpart of the Theo-

rem). On thJ other iancl, when t+l*, fi3 second st&tement o{ the Theorsm

shows that a small qn is calleal for. It E(l1g*-l*l) is known (which;eems pleu-

sible, since we know l*), thon taking 4, eqtal to this value pl"' "'l6l'tl,'tt"gt'1"

insures tbat when /=l+,
c. -2 t lKl

E  ( l l f  i l - t + l \ = :  n

We cdn control tho rate with which E (/lla-l*l) tencts to zoro by adjusting 4*'
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li3-" "t 
the l,ay down to (bul, not inciuding) c n, a,re achievable, thus outper_rormilag gn on this particular densitv in a draira,tic aJi"".--- 

'

On the other hand. the threshotd sugg""t.d .;;".;;; 
"_rif ""."gn 

so as lot toupset the performance when l+/*. Intlied, by prrt C;i;;;, ,.

E ( l i l"- lD =E (l ts, - tt + t I I ls, - |. t + | 
32 I')K)!Y!

This inequality is sometimes satisfactory for mediurn_sjzed ?2. Note the presenceof the term involving f* on theright_hancl 
"ia". 

fr, 
""rri.r"t, 

inr" ,"r* is missing
l:^11" .:ln:"::r':linequatity or3he_orem -- d;,;;#vantage or the tatterrnequatity is that the exronentially decreasing term i" prri-if rriaa"n fr.m viewdue to the ,,big oh,, forirat.

Tor small ta,rget classes, ,n".:lt" ,n,ni, rlu-l changes is the rate o1 converg_ence of t'n when f (7. For target 
-classes 

luiih irrfirrit"Iy-_rf alrr",rr"", it is rarelv
T.::*l, 

t achieve. the exponential power rates of Theorem 4. I{oweyer, it jsusually true that the probability of not picking tfru tr.g; 
"i.r" 

estlmate ]rhenlqT, or of not picking the norrpa,ramernc estimate when l(?,, tends to zero ata,n exponential power ra,te ftrr sr
ed on a modest exarnpre in ,rr" 

'#irtll"t"#]ate choice of q'' This wjll be illustrat-

5. A case study: The norlnal alensity

Assume in this section that ? is the class of normal densities on the real lile. Letus takc a few paragraphs to di:cus: and a,nalyze 
""rrr*i 

a",r"", estim&tes. KoL_MocoRov, .'d later Blsu (1964), have shorvn tfrot fn, tL" ,ro.,iral farnily withunknowr mean p ancl v'riance oz, the follorving den;;;";,; u.biasecl rstimatea t  a l l  r :

"/:t\ 
1,,4'  ' |  

/ .  I  r - iL ( f ) :_ - ]  "
- i / -2 \  t '  i , _ r - - , ,  ( ,  -n ) : l
'  

\  ' ' )  t ' t "  t ' a  '  /
Hcre / ald ri are lhe startdr,rcl sanrpie based estimates o1.p alcl o. l.r,r rjtherexa,nples anrl more theoretical backglounrl on 

"rlitl,"",f 
*tiir*ron, see Lulrnl-srr aud S.crozu\rxov (1969), \yrnrz (1r?5), G;;.;;; and ftnrz (toz6)urnd snrnur,r and et'nsnrnanRv (1971), and the references-founcr there. Artrther

trossible (but, not unbiased) estjrnare rs

,r(,0)=- 
I 

- e- -t-

|  2no

rvhere d aud l? arrl as &bore. It can be shorvn that for both estir:uirrrf,q, slrp
E(lit"-!t\:O (Ul,??). The seconcl estinate itself is a'reurber of f. ,, t"rtrro" ttli,iqreatly facilitates the ensuing analysis. Further,"."", ,; ;; 

";; 
been estahllisherl
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to date tha,t the unbiased estimate dominates the second estimate in the expect-
ed ,1 sense. X'or this re&son, .we will consider &s our. parametrjc estima,t; the
second normal estimate.

In our examples we need a suitable density for the global selection process.
Prime candidates include the kernel estimate with data-based smoothinE factor
and nonnegative kernel ii, or the kernel estimate with data-based smoothins
factor and flattop kemel 1l (DEvEoyE, 1987; a fla,ttop kemel is a, symmetric
function, jnt€grating to one, whose X'ounrnn transform is consta,nt in an open
neighborhood of the origin). There are many excellent schemes for choosing D
as a function of the data, but to limit the ana,lysis somervhat we will merely be
concemed with an old-fashioned but common sense scale-invariant estimate,
discussed e.g. in Dnnnuvws (1977): here ff js a, s;nnmetric unimodal density on
the rea,l line, and D is defined by

I

n =c ' l l  "  d

where d2 is the sample-based varrance,
t n

a, : :  t  (x t -p )z ,
' "  l=1

and
1 n

tu:: E x'.
'" t:l

The constant c is adapted to the densitv f we &re estimating. ft depends upon the
sha,pe of I only. A priori information about the shape of I should be used in the
choice of c. Interestingly, jts value is rather insensitive with respect to l. The value
1.2019409 ... for the normal density can be employed without too much loss for
many bell-shaped curves. It should be stressed that by picking i{ r.ionnegative,
we are limiting ourselves when f is very smooth. Ontheother hand, for oscilla-
tory densities (such as densities with cliscontinuities), picking D-z-1l5 ig sub-
optimal, as a largel value is called for. Also, it is generally recommended to avoid
ilverages when computing sor,le factors such as d. Instea,tl, one should use robust
quantile-basecl estjma,tes. The technical reader rvill have no trouble adaptins
the results that follorv to his particular situation.

Theoren 5. The normal class,
-\. Let t' be a, density f or which, &n-1i5 -O tLnd 6n4/5 -* i,tt probabi,li,ty as tL -- (it

suffices, for eram.ple, that f has t'inite seconcl motnent). If ,1" *0, then fni,s con-
sistent.

B. Let Gbe,the clnss ol all, rlensi,ti,es I lor.which E06 - oi):o(n-215) \this class i,tt-
cl,utles T ond all, d,cnsities lor whi,ch. /1r]ito*")/t /{r) rlx-* for some e>-0). fi
qn- n^1f7 = c*'rlk,g nJn lor some constcant c,N:-20 \i,t su,ffices lor erumple to
requi,re that qn?Cn-zti +c* llog,rl, ,.hrr" C, c anrl K ere us in Lem,ntu, b),
a,nd, q"-0, then f " 

i,s asgm.ptoti,callg optti,nal, on, G.
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C. t" i,s minimar-o1tti'ma,l, lor T. So is f" when 4"- R"(T\-c+ 'fi.og nln lor some
aonstqnt c* -2O.

D. When qn>- RnQ) + 0; + lil l loe nln lor constants a,b,then, lor f €T,

EtJ  1 , , - f t \ ' t t l , r ,  - l  )13 ,  32+s ,  f t

prouid,ed tlnt n>-6, and, thctt I (s l i , +l2\', i l"-s ="/t logJln=4 0E_2\ .

The proof of Theorem 5 is given in the appendix. Basically, Theorem 5 is

obtained by a stnr,ightforward application ofthe previous theorems, but is com-

plicated by the fact that gr, is not a, kernel estimate with determinist'ic /r' (for

which we have useful universal inequalities: see the proof of Theorem 2), but a

kernel estinate \;qith d&ta,-dependent D. However, since the data-dependence

is more realistic than determinism, the study in its present lbrm carries more

weight.
A typical choice for q, would be Cn 2t5 (where C is defined in Lemma 5 below)

pius the lllog nln term defined in parts B or D of Theorem 5. One could also

take (C+€) z 2r" for some constant e>0. Note that the inequality of part D can

be used for moderate and er.en small values of rz. It seems un\vise to ta,ke q,

larger thal these suggestions (from B and D), since that would decrease the per-

formance when l(? (reca11 that qn car be considered as a halo, and equivalently

as the size of a discretization grid in the spa,ce of all densities)-

6. Appenrlix: The proof of Theorem 6

6.1. Behorior ol tn

X'irst we need a simple upper bound for the ,L1 error committed wilh t". Let f o,6
denote a normal density with mean a and standard deviation b. (Thus, /,-l;,;.)

Since the ,1 error is invaliant under linear tra,nsformations of the axis, rve can

and do  assume.  q  i l  hou t  loss  o f  genera l i t y .  I  ha t  p  -0 .  o -  l .

Lemma 2.

Proof .

I l f  , ,,- lo,rl= 2log (max 1t, rtUl +(t +l() Vl

=2 (max (b, t tut - I +(r +E) .i .

l l l ' r- lo,r l  = J l l ' ,u f"t  +l l f  ,r- lo.1l
:  I  l lop-f o, ' l+ !  l l " t- lo.t l
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Ior  b>1,
br 1 (!-r\a"lo o:lot+ J 
:. fo,u yu. I

I

by taking the derivative of I with resp€ct to b. Thus,

^  . ! ,  t - s
f tto.o-to.,l= [ f i t"."l*-t I a"a'

"  " f  
w l , ' f  I

2 t -  t - z  I  r r  2
= |  (11" , "  l * - t l a " ;  :dw=2 lw-1du :2 togb=2 (b -L \ .

t "  \ "  t _  |  r *  i

A similar argument is valid for b<1, so that wo obtpin ths first bound of the

lomma, By a similar lino of reasoning, for a-0,

! tt ;,,- f o.,t = ! li o - ̂  t ",,u,dr= ! [ l*-al t",t&du
0

^(,, VT ".+)=('*[) "
Combining aII this proves Lemma 2, I

It ig knovn that /2 is normal with mean 0 and vari,anco [ln, and' lhat' 32 i8 7ln

times b chi-squars raldom variable with ra-1 degrees of freedom. This can bs

uged to bound the ,1 error. In I/emma 3 below, we albo establish th&t the e8timate

t, is minima,x-optirnal for ?.

Lenma 3. Let T be tke class ol atrl nonnal ilensities on tke real' limb. Tke norrnal

estixnate t,' sari,sfdes the fo\wi'ng inequaldty, lor afl' o<w=f 8'2:

sup P{/lr,"-ll>?r\ =3 e idt$ .
ler

Ad,il,itional,l,g, there euists a ltoski,ae aonstant u>0 e'ufrk thnt

f =i,,t E (f lh-l l)=Bup EUlt*-1-l=+,
1ln t€r te i  

- r  ' l t  -6

uherc B:o'tlz+1E|||zh+zh, and, lor the up?ter bounil, il ds ossumed, that
m>6, Xdnall'g, lor aome posdtdae constant B>Q,

;tT.Br $t--fl)=ft.
Proof. For the first inequality, it is cloa,r that wb cai. aisumo that =4111;.

X'urthermore, ths distribution ot Ilt" .fl is scalo (and thus a-) irivariant, so we

can and clo assqrno that a:1. .Lei .l[ be i hormal (0, 1) random variable, incl let

G be gamma (n- 1112. Thet

P (f l t*-f l-w\=P (z na* 13, r7a1=|)1e {1r + 'yr1,yp1-!l l t+n -'  
\  z t  \

. Now; rlofining 0=tl(z (l+'lrht)), and using 0 >114 arrd u=4[n, wahave
24 .tstiluic. 20 (1980) 3



r

3?0

- 2 -q'L,a2t,

I I  =zp (N >0,1nu\=-u 
-r , . -  

e "-  '  -

=1fL6""""'
Also.

! r \ 1 1 \
r =p 

\d 
- 1, " i  4)+ 

p (d >, + ut q aP 
\&, 

- T:; ir)  + P (62 >- |  + ulz\

/  a  \  -  l ^  n  n u \
:P  (G=rr , - -J  +P 

\o-z+ t  )
!  n - f  n u - z  u \  - / ^ .  n - l  r w  L 2 \

=P(c=  ,  
-  

4 j2 "  )+Y lo=  ,  -  n  J
l n  l .  n u - z  1 r  +  L  - l r  n u + 2  t : r .  n u + 2 t - l

=e-i-T L@u\d:fJ +e-, 2 L z't-z J \ '- 2"-2 '

ln- l \a2 u L -^ 2n 2

="- ffi*12*"t' +e- r6t^'*' ' ' "-rt tzn-""1

u  1  I  ^ 2

=e 412-ut' EtZ-wl' 8 
+e 

16 
" 

y'8

1" 
*u",", . '  iu* f, * u,*,r,

by some tail inequalities for the gamma distribution, and the fact that '

u='tfd_ z=t. Simplif ication of these bounds yields l,he bound

/ t / t , , - * \  a - t  u2 t t2  < .Je-  naz*z

\ / ;  
+  ' - r * ,  

"

Also, assuming again that f is normal (0, 1), we have

E (J1t,-11=2:E(max ( ' i ,  1/ ' i ) -1)" : t+t t  '

Now. 11: t-*llT. Furthermore,
o'lo J rnl

1:z E (max (8,{-*)- ')="r(ff - ').*,r( -11

=z e (ff - t).+ z e (fi - t).= z e(.,+* - ;).
+,E(#-E(ul)*"*1),

=,, (2SP) *+2; + z r (# -, (#)).
r  " . '  / l \

=' /vor  (G)+ ' ;+n yv" '  ( ; ) ,

lT,u

where we used the CeocrIv-scswenz inequality. We know tha't for a

random vsria,ble G with para,meter a, Vor (G) : c ancl Vor (1/G): (a - 1)-z (a-
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Tbus, we have for z = 6,

I=A+2-+ 2 l \ -  6  E
l2n n 11" _s 1* _t1 1li4

where .4:6 lz+lUt.
The rninimax lowor bound can be

tic methode (see e.g. DE\.T,oyE, tg87).
straight-forwardexercise. I

6.2. The scsle_inysria,nt kernel sgfimote

Lel g,be the kernel estimate wifh the data_based /r given above, and lei gr0 bo,tho kemel estimate based upon the eame data and i, iut with i roplaced by
L .

h o = c n  ' o ,

where o:o(l) is a scale factor for I which is oqual to ths standard deviation if itexibtd. It is assumed'that ri is close to o in some probabilisti" 
"""";. 

T;;"i;;;;
of go lo goo is dealt with in the following lemmai

Lemma 4,

A. We haae

"  
I  t A

J  19 " -  soo l=z  (1 -m in  ( : ,

obtained by standard information-theore-
AIso, the lower bound o\ E (llt,_fl) is a,

i))!oo, ut
B. Let T be the class ol all normal d,end,ti,es on tke rca,l,l,ine, Ior allu=Jf g_Z:

sup P (/(o, 6\ =u\ <2s-"""t32 .
J€T

For atrl n=6,

e;tp E (/(o, Al=6 F-IFE .
rci 1EE

C.. E(/(o, d)):6qn-zrt1 when .f 1o1rro+")/s 1@ldx=:* t'or some e>-o.
D.

!8, - ll = [ tt,o- ll+ 2/@, q .
( l lc"-f l) =E (ltc,o- l l)+z E(z@, al ,

qnd,

I ls*-l l-E (lts"-l l l
=llc^-fl-E (llc"o-lt)+z/(o, 6)+z E(a@, q) .

Proof. Statement A follows from tho unimodality of J(, joinfly with

I  lc"-s* l=[  w;-K" l=z (r  - . i ,  (9,  : ) )
(Dnvnorr and Gyd,nrr, tg8E, pp. 186-)sz). 

\o dl I

24*
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Stat€mont B is immedia,te from the proof of Lemma S and the fact that1*min(n, l lu) =max (r, lb)-t for all r=0. Stat;",.;; can be proved byemploying an inequarity due to vou Bran and EssEEN (196b) (see arso NAcArvand Prrrr,rs (1922) and Mawsrer.rcrus (19g2)) Ibr sums of iid zero mean randomvat:iables Zt. ..., 2,,:

l l r  4  \  - t t l '  t t  , u ,  I  I  -t(1,t,{ z' l) ' - t ' { , l i , i  t , l )  , ' r , ,  ' , , ,",0, (p(tt .zt).
With Zt:X?-o2, the upper bound is o (n 2/5y for 7t-5l3. This f.ields the con<li_tion tha,t Efl'f,rle")<-. A smar addit.ionul a,.groru'nt i" 

"""a",r 
b bound lri_ol

ln trms 
of the zi's and asymptotically negligible terms. statement D follov,sby the triangle inequalitv. t

{i.9. Thc oentered kertrel estimlrte gz0

Having studied the closeness nl gy t, gno, it is necessary to see how /zq behavesin general. Since it is a kenel estimate v-ith cleterministic D, a,ll the inequalitiesmentioned e.g. in the proof of Theorern 2 rema,in ,*Ua. ai*o, since l, _0 andnh*-, itr is consistent for alr I for which the estimato is wett_aefinea, i.e.t'rthos€ densities with finite variarrce_

lemma 5.
Let I be the nonnal (o, 1) ilensi,ty, and, let ,q,ro be a kernel esti,m(rte wi,tk nonnegatiueti#y;.'"r::;"'K ui'th support in [_ 1, 1], antt ui'th aettermrntuttc ,*oithi,,s

t tlts^- flt=Jl :nz I nzr{ + I I I{2 f(8n[/a +2t'( 2n)-rta)
-t---
l n n

Witk B.trlxtnvt's lcernel, K(r) : 3
T tl - a2)+, the esti,mqte becomes

E 1J 1s,o,7t)=l[Lnz
Whcn

1

, ' 5

r 1

n - ,  i  l r r l . , , i ' '  1-  _1. , , - , . r__ l .2or e4oc . . .[  1 2 8  J
2 B

I he u pper bound becomes C n- R 7 pn- i, *nrr"

l'! r,',r'' n * r orr,,-'' n

l"k

r 1 1

" 
^:[;r]' 

f #l t. []jt (,.)i [,# ] 
#,

"1[]]' ,e"l;f"#f".

.



! lrtxw=lfE, tJ lt-nl6n .
Next, note tn,t ltoprtr, I lt:t , l i , a,a J )1,,):4sup ll, l:4 eup lnl l l(r)l:

I E
= | 

-. oombining all this gives us our first estimate. The second e.timate is ob-
tained aller replacing J rzK by 1 15, a.t\d J K2Lr-y gl5. The optimization of the two
m&rt terms v/ith respect to lu, js trivial. I

6,4. The prool of Theorem 5

The,orem 1 implies the mnsistency of f,, whenever g.n is consistent. .By a general
theorem of Dnl'noyn antl Gyiinrr for data basetl /2, g," is consrstent when b*O
and nhd -- jn proba,bility as ?t*- (Drynovu and Cvijrnr, 19sb, p. 148). This
proves statement A.

For statement B, we have to extend Theorem 2 (which only appiies when D
d_oes not depencl upon the data). Consider first l{ ?, and note that Z1( t, lI)o:ZA__0.Now apply part B of Lemma t, wherc it is clear tha t I )t,l : 1 for all z. Let z be so
la,rge that 4r =d. Then

E ( I lf " 
* f D = t ( I ]c " 

- | l) + z P U Is,,o - | ) - 6) + 2 ? U ls n - s nol :- 6) .

31 ll" ":-: 
olr, rhe rjght_hand_side, the first one is tr,t jeasr E /js__li) ^i,r.r"

r.1119,-g,ol), rvhich is at least (0.86+o(i)) n-2/5 _ o(n-2/51 by an asymptotjc in,
equa,lity of Dr:vnoyn and pnxnon (1984) valid fo. sy-*"ti" I(=0 and deter_
ministic li,, and part C of Lemma 4. The second term is O(e-o,) tbr some c>0(see proof of Theorem 2). The third term does not exceed E'(Jlg^-;";6):
: o : r " t l  ( p a r t C o f  L € m m a  4 ) .  T h u s .  E t l  l ,  _ l , l _ Z ( l l g ^ _ t D .

Consider next l(7. Here we apply part A of Lemrira i, aiier onserving that
Jlg"l:l for all z, and that Rn(T) =Cn'2/5 + Dn 3/i+ Bll;-, f.. r=i t-r'nr"

373
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Proof. By a uniform eetimate for the bias given on p. 122 of Dlvnoys
GYdBFT (r 985),

-  t . 2  |  , r K  l l l " l
J t l - l *K t i : '

Also (see last line of p. 124 of same reference) :

J l@| K2(*-y1ay= sup
z i tz -2 )=h

Thus,

E(!ls,s-l*K1l)=5P
The cnnvolution integral in the numerator can further be bounded as follows, if'\r'e wrjte 1(2 inst€ad ol (Kz)n:

I rz t  I  Kz1r .  ! t t , tu=- l l .9 t  I  K '  w l .  t t-  
U  ( , " , -  h )  [  K2  v l : -h '
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Lemma 5 and part.B of Lemma 4). It should be stressed that C a,nd D are ihe
constants defined in Lomma, S if kif 6n-u1 with c=1.2019409... as suggested in
that Lemma. Otherwise, the values of C and D are slightly different. Note fur_
ther that, li tt[p"-tll is asymptotically sandwiched between two positivo con-
stants a<p (see Lemma 3). lt suffices to establish that we can find sequences
u:u(n)>-o and o:o(z)>0 such that ,au =o*,lf log rJn,

and

P (1, t ,  |  =-4:o(L\ .
\ t ,  I

The latter probability does not exceed 2exp (-nzlgt\ (Lemma 3). This tends to
zero at the required ra,to if we take ,:'106+")l"g&k for some e=0..The for-
mer probability is dealt with by a three-way decomposition as in the last pa,rt
of part D of Lemma 4. The probability does not exceed

^ l  r ,  ,  a \
r  

[ ] J  
r g " o - l l -  E  t J  S , o - l ) = - 4 )

I  
" , \+P ( ab. at  =?l +p l r  rc.  at  - ! l

\  4 /  \  6 t
nu2

= re ioiSd * g"- rox:z 
10

provided that n > 6, u = 4 ( 8 - 2), ana a $ li + l 2 81 1'tl n - s < u (apply Dli novn
(1988) (see also Theorem 2) and part B of Lemma 4). All of this is o(t//z) when

":l Q1f+ 
"\ 

lorylh for some e>0. Thus, asymptotic optimality follows for
l€T if q" is at least equal to.Ro(T) plus c* /log rrl,r where c*=/16+lzla:zo.
It suffices, for exa,mple, that gr is a,t least equal to Cf/5 a a', l;;;1;. This con_
cludes the proof of part B. Part C was also essentially proved when we obta,ined
part B. Finally, the inequality in part D is obtained without work from the proof
of part B. I
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