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A random variate with a given non-uniform distribu-

tion can often by generated in one assignment state-

ment if a uniform source and some simple functions

are available. We review such one-line methods for

most of the key distributions.

1 A MODEL OF COMPUTATION

Random variate generators that are conceptually sim-

ple and quick to program become invariably popular,

even if they are not as efficient as some more compli-

cated methods. We explore and survey the simplest

end of the spectrum—the generators that can be im-

plemented in one line of code. We assume through-

out that an unlimited source of i.i.d. uniform [0,1]

random variates (J1, U2, . . . is available. When dis-

cussing one-liners, we must distinguish between two

situations: in the ordinary case, each request of a

uniform variate is fulfilled by another number from

this sequence. In the extended case, we may index

our requests by U1 , Uz, and so forth, so that repeti-

tions of the same uniform variate within the code are

possible. This will be called an extended one-liner.

The standard operators +, –, *, / are available,

as are mod, round, 1.], sign, [.1, 1.1, sin, COS, exp,

log, tan, atan. Many functions may be derived from

these using only a constant number of combinations.

For example, the indicator function lZ>O is simply
l.>= = 2 sign(z – a) - 1, and I.>.>b = (Sign(z – a) –

sign(z – b))/2. Furthermore, max is included as

max(a, b) = a + (b – a)l~>a .

Alternatively,

a+b a–b
max(a, b) = ~ + y .

Some may include more complicated functions such

as 1?or ~, but these will not be required for the dis-

cussion below.

One may think of a one-liner as an expression

tree in which the leaves are uniform [0, 1] random

variables or constants, and the internal nodes are the

operators or functions in the accepted class of oper-

ators, which we shall call 7. In a simpkl one-liner,

each leaf has a different uniform random variate as-

sociated with it. In an extended one-liner, repeti-

tions may occur. We may put thk differently. Each

expression may be represented as a directed acyclic

graph (or “dag” ), in which the leaf nodes contain con-

stants or U~‘s, but each U~ occurs only once. If multi-

ple Ui nodes are disallowed, Extended one-liners are

implementable by dags, while simple one-liners are

implementable by trees. We should point out here

that some smart compilers may transform expressiona

witli repetitions into dags before machine translation.

The well-known Box-Muller formula for normal

random variates,

x = /–2 log U1 cos(27ru2) ,

is thus a simple one-liner. However, the equivalent

form

X = exp((l/2) log(–2 logUl)) (COS2(TU2) – sin2(TU2))

is an extended one-liner. The figure below depicts

the expression trees for both forms of the ,Box-Muller
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formula.

When we have a family of distributions with pa-

rameter(s) 6, then it is of interest to have expression

trees that have a fixed structure, independent of 0.

The value 0 appears at best in one or more leaves.

For example, if a gamma (k) random variable is gen-

erated in one line by summing k independent expo-

nential random variates, then the structure itself of

the expression tree changes with k, and indeed, its

size grows proportionally with k. For a family of dis-

tributions, we define a jlxed one-liner as one whose

expression tree has a given structure, whose internal

nodes have fixed operators, and whose leaves have

constants, the value 0, or uniform random variates.

The operator “take the i-th component of a vector

(such as 0)” is in the set of accepted operators.

With the previous set-up, if the family of oper-

ators and functions has k members (which is fixed of

course), and if each member is unary or binary say,

then the number of possible trees on n internal nodes

does not exceed

This limits the numbers of families we may construct

using the basic operations. Still, by making n even

moderately large, the possibHities are virtually un-

limited. We will take a little tour of the popular dis-

tributions and exhibit a number of (mostly known)

one-liners. Notable exceptions are the gamma and

Poisson distributions.

2 NOTATION

We give different symbols for different random vari-

ables. For example, U ia uniform [0, 1], N is stan-

dard normal (with density e-”212//%), A is arc-

sine (with density l/(r<=) on [–1, l]), ~a,b is

beta (a, b) (with density x=-l (1 – z)b–l/ll(a, b) on

[0, 1] where a, b > O), G. is gamma (a) (with den-

sity Za–le-z /1’(a) on [0, co), where a > O), E is ex-

ponential (with density e–z , z > O), L is Laplace

(with density e-lzl/2), C is Cauchy (with density
I/(n-(l + X2))), Ta is Student t(a) (with density

l/(13 (a/2, l/2)@l + z2/a)*) ,

where a > O).

Some densities are best defined in terms of their

characteristic functions q. A partial list follows below

(note that K(Q) = a – 21@>l): S’a,O is symmetric

stable with q(t) = e–ltlu, 0< CY52, Sa,fl is stable

(cr, @ with @) = e-l’lae-’(” ,o<a <2,

a # 1, /3 c [–1, 1], S1,6 is stable (1,/3) with p(t) =
e–{t\(~/2+@sign(t) lwl~i), –-1 < @ ~ 1, Sa,l is positive

—

extreme stable with p(t) = e–l~l”e–i(” ,0<

a <1, G= is gamma (a) with ~(t) = l/(l–zt)a, a >0,

L is LapIace with q(t) = 1/(1 + t2), A4. is Mittag-

Leffler with q(t) = 1/(1 + (–it)”), a E (O, 1]. Pa,b is

Pillai with p(t) = 1/(1 + (–zt)a)b, a g (O, 1], b >0.

La is Linnik with p(t) = 1/(1+ Itla), a c (O,2].

3 THE INVERSION METHOD

The inversion method is based upon the property that

Fi”v(U) has distribution function F if U is uniformly

dktributed on [0, 1]. It leads to one-liners only if F

is explicitly invertible in terms of functions that are

in 3. In the table below, a, b and c are positive

constants that serve as parameters.

In this manner, we note that E ~ – log U as

F(z) = 1 – e-’, Bl,a ~ U1/a, as F9z) = z“ (O <

% < 1), ~.,1 ~ 1 – U1/”, A ~ COS(?TU), as $’(z) =

1 – arccos(z)/T, and C ~ tan(mU) as F(z) = 1/2+

arctan(z)/r.

Other notable examples include the logistic
(F(z) = 1/(1 + e-z)) which can be obtained as

‘– log(U/(1 – U)). (U-l/a – 1)1/’ yields a Burr XII

random variate (I?(z) = –l/(zC + 1)” (x > O)), and
(u-Va – 1)-W yields a Burr III random variate

(I’(z) = l/(z-c + 1)” (Z> O)). A F&het or Weibull

random variate with F’(z) = 1 – e-’” (Z > O) may

be obtained as loglJ”(l/U). For the Gumbel d~tribu-

tion (F(z) = e-a’-” ), we suggest - log((log(l/U)/a)).

A Pareto or Pearson XI (F(z) = a/&+l (Z z 1)) may

be obtained by U-~/a. A tail of the Rayleigh distribu-

tion has dktribution function F’(z) = 1 – e% (z ~

a > O), so that random variates may be obtained

as ~~. The hyperbolic secant distribution

function is F(z) = 1 – (2/7r) arctan(e-””t2). Random

variates may be obtained as (2/7r) log tan (7rU/2).
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OR MORE

Mmtures of the form X = Y with probability p and

X = Z with probability 1 – p are easily taken caxe of

in one-liners by setting

x = Yl~<p + ZIU>P = Y + (z – Y)LY>P

where U is uniform [0, 1] and independent of (Y, Z).

However, countably infinite mixtures are not easy to

transform into one-liners.

Special distributional properties often lead to el-

egant one-liners. The triangular density provides a

textbook example:

THE TRIANGULAR DENSITY. Assume that we wish

to obtain a one-liner for the triangular density with

support on [a, b] and mode at m. This could be

achieved in a number of ways, but two possibilities

are
X=m+(a+ Ul(b–a)–m)fi,

and

X = m+ (a+ Ul(&a) –m)max(U2, U3) .

Here all the Ui’s are i.i.d. uniform [0,1] random vari-

ables.

which is the Rayleigh density (so that R = /-

has density $ when U is uniform (0, 1]), them the den-. .
sity of RA is

We

the

J
co &/2e-y=/2

-x=/2

o T ‘Y=ke “

thus rediscover the Box-Muller method given in

introduction:

N ~ ~=cos(27rU2) .

EXAMPLE 2: THE SYMMETRIC BETA DISTRIBUTION.

In the above context, define

f(r) =2cr(1 -7-’)’-1 , 0 <‘r< 1,

where c >0 is a parameter. The distributicm function

is F(r) = 1 — (1 — r2 )C, so that, by the inversion

method, R is distributed as ~= ‘when U is

uniform [0, 1]. The density of RA is supported on

[–1, 1] and is given by

h(x) =

——

.—

5 THE POLAR METHOD

.—

In the standard polar method, one generates a ran-

dom pair (X, Y) as (Rcos@, Rsin Cl), where R and

@ are (random) polar coordinates. Typically, El is

uniformly distributed on [0, 2m], and R has a given

d~tribution that is easy to sample from. Often, R

is independent of @. In the context of one-liners, we

thus have

X = Rcos(27rU)

where U is uniform [0, 1]. Another way of writing this
is X = RA, where A is a random variable on [–1, 1]

with the arcsine density (note: our arcsine densi~ is

in fact a linear transformation of the standard arc-

sine density 2/ (~ ~-), O < z < 1). A simple

exercise in analysis shows that if R and A are inde-

pendent, and R has density j on [0, 00), then X = RA

has density

EXAMPLE 1: THE NORMAL DENSITY. If

~(r) = re-r2/2 , r >0,

/

- 2C(1 – @ – y’)’–l
dg

o T

2C(1 – Zz)c–liz

/
X jl - u’)c-ldu

T

2C(1 – Zz)c-liz ~ 22C- 1r2(c)

7r r(2c)

r(2c+ 1)(1 – ~2y1/2

2w7qc + 1/2) ‘

in which we recognize a shifted version of the sym-

metric beta density. In the last step, we used a prop

erty due to Binet (property 23 on page 261 of Whlt-

taker and Watson, 1927). The last densi&y is that of

zBc+l/2,c+1/2 – 1. Thus, our one-liner for symmetric

betas with parameter a > 1/2 is based on

B
c 1+ &Fcos(2?ru2)

a,a =
-+

2

Thk is Ulrich’s formula (Utilch, 1984). For a = 1/2,

note Bllz,li’ ~ (1 + cos(27rU2))/2 = COS2(7rUZ). Just
as for the normal distribution, equivalent represent-

ations are easy to construct. We note here that

the density h plays a central role in non~parametric

estimation theory. The case c = 3/2 leads to the

Epanechnikov or Bartlett density. The case c = 5/2

is usually referred to as the quartic kernel. Note that

Ulrich’s formula is not valid for a < 1/2. A fixed one-

Iiner for the entire symmetric beta family is given in

the next section.
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EXAMPLE 3: THE HALF-BETA DISTRIBUTION. The

half-beta density is the density of B112,.. If X has

density h fkom the previous section, then on [0, 1],

Y = X2 has density

r(2c + I)(I – Y)c-1/2 = r(c + 1)( I – y)c-l/z

2wqC + 1/2)~ r(l/2)r(C + 1/2)~’

whkh is the density of B112,C+1j2. Thus, for a > 1/2,

“’2ag(1-u,&)c0s2(2Tu2)
EXAMPLE 4: THE T DISTRIBUTION. If B is beta

(a, a), then

This method yields an extended fixed one-liner for the

t distribution. Another fixed one-liner is developed in

the next section.

6 THE POLAR METHOD AND NORMAL
SCALE MIXTURES

Assume that X is a normal scale mixture random

variable, i.e., X can be written as YN, where N is

standard normal, and Y is an arbitrary positive ran-

dom variable, independent of N. If N1, N2 are two

independent normals independent of Y, then

(x,, X’) =f (YN,, YN2) ~ (z,, z’) x (Y@) ,

where E is exponential, and (21,22) is uniform on

the unit circle and independent of E and Y. Thk

says that (Xl, X2) has a radially symmetric distribu-

tion with random radius distributed as Y@. Gen-

erating Xl based upon this formula might be called

a polar method for X. In some cases, the distribu-

tion of Y@ is very simple. For example, if Y ~

~a~, then simultaneously

v Ga/2

The last relationship in fact describes the genesis of
the t-distribution. The quantity under the square
root in the first equation has a beta II (or F’) distri-

bution. Routine calculations show that

Y&~ ~a(U-2/a – 1) .

One could thus generate T. in one line using two in-

dependent uniform [0, 1] random variates U1 and Uz

since

T. ~ ~=cos(2.u2) .

This method for t-variates was pointed out by Bai-

ley (1994). Thk could also have been obtained by

the method of the previous section, but the method

above requires less integration work. We do not make

claims that this is the fastest method for generating

t variates. There is another interesting observation

here: the t density is a mixture of bimodal densities

with infinite peaks (arcsine densities)!

ANOTHER ONE-LINER FOR SYMMETRIC BETAS. Best

(1978) has proved that

Thus, if S denotes a random sign (S = IV<112 for

V uniform [0,1]), the following distributional Identity

yields a one-liner for all symmetric beta distributions:

‘“’”’:+2*

Thk (new) method is applicable for all values of a—

Ulrich’s formula required a > 1/2.

ANOTHER ONE-LINER FOR HALFBETAS. As (2Ba,a –

1)2 ~ B112., the previous paragraph suggests yet

another one-liner for halfbetas:

Thus, if S denotes a random sign (S= IV5112 for V

uniform [0, 1]), the following distributional identity

yields a one-liier for all halfbeta distributions:

This (new) method is applicable for all values of a,

7 DISTRIBUTIONS DEFINED AS
ONE-LINERS

Systems of distributions such as Pearson’s usually
have simple analytic formats. Yet, random variate

generation may cause problems. The Pearson IV fam-
ily, for example, requires quite a bit of work (see De-

vroye, 1986, p. 480). In modeling, it may be useful

to define a distribution by speci&ing first a one-liner

(so that generation is easy), and then worrying about

the choice of the parameters and the fine-tuning of
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the model. There are literally hundreds of such at-

tempts. Tukey (1960) defined a symmetric family by

where A E Et is a parameter and U is uniform [0, 1].

This was later generalized by Ramberg and Schmeiser

(1974) by using different A’s for the exponents.

Omitting location and scale parameters, the

Schmeiser-Deutch family (Schmeiser and Deutch,

1977) is the family of distributions of the random vari-

ables

x=
{

–(A–U)’, if USA

(U- A)~, if U>A,

where A and p are shape parameters.

In hydrology, one uses the Wakeby distribution

(Johnson and Kotz, 1988, VO1.9, p.513) because it is a

versatile five-parameter distribution, gives occasion-

ally outliers, and is easy to simulate. A random vari-

ate is obtained as

X=a+:(l-(l -u) ’)-gl-(l-u)”) ,

where U is uniform [0, 1], bt ~ O, b+ b’ ~ O, and either

c+c’>Oorc+b’=c’ =0.

Burr (1942) (see Tadikamalla, 1980), Johnson

(1949) and many others since then have invented their

own families of distributions based on this convenient

principle. Tadikamalla (1980) reviews many systems.

For example, in the TadikamaIla-Johnson system

Tadlkamalla and Johnson (1990), we begin with a

logistic random variate

Z= log+,

and define three random variables:

YL = ~ + Je(z-Y)j6 ,

YB = & + A/ (1+ e-(z-~)fb) ,

Yu = & + Asinh((Z – -y)/@ .

Just as with the Johnson family, the family covers the

entire skewness-kurtosis plane. And the one-liners are

fixed as well for the family.

8 REPRESENTATION THEOREMS

Sometimes densities, distribution functions or charac-

teristic functions can be written w integrals, which,

upon closer inspection, reveal some method for gen-

erating random variates. Two examples follow that

lead to useful one-liners.

with parameter a c [1, 2]:

where

()
a— 1

g(u) = ~ sin g
u

-U>o.
2 1 +2cos(y)u” +U2””

Thus, a Linnik random variate can be generated as

SE/W where S is a random sign, E is exponentially

distributed, and W has density g. Using the trans-

formation, v = u“, it is easy to establish that W is

distributed as

(
~a I/a

C’sin~-cos -j-) ,

where C is a Cauchy random variable restricted to

C > l/tan~. Equivalently, C is distributed as

tan( ~ (1 – aU)), where U is uniformly distributed on
[0, 1]. In summary, we have

L. ~
SE

(sin ~ tan($(l - aU)) - cos ~’~ “

Not in partcular that if E is exponential, S is a ran-

dom sign, L is Laplace, C is Cauchy, and Nl, Nz are

i.i.d. normal random variates, then

THE STABLE LAWS. Ibragimov and Chernin (1952)

and Zolotarev (1966, 1986) derived various useful rep

resentations for the stable laws. As an example, de-

fine K(a) = a – 21.,1, and let Ga,b be the distribu-

tion function for S.)b. Set O = bK(a)/u. Note that

forx>O, b>O,

The values for x < 0 are obtained by noting that

Ga,b(x) + Ga,–b(–z) ~ 1. The values for b <0 are

obtained by noting that Sa,b ~ ‘S.,-b. The func-

tions U are defined as follows:

Ul(z, b) =
T(1 + bz) e?j(.+l/b) tan(%) ;

2COS(y)

U.(z, e) = ‘in(-) * ‘“4*-)()Cos (y) Cos (y) “

A NEW ONE-LINER FOR LINNIK’S DISTRIBUTION.
Kawata (1972, pp. 396–397) derives the following rep

resentation for the density j of the Linnik distribution
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All &,b’s are supported on the real line except S., I

for a <1 (which is supported on the positive halfline)

and S.,– 1 for a < 1 (which is supported on the neg-

ative halfline). Another representation is that the

distribution of S~~$–l) for a c 1 is given by

where

A(z) = ()sin((l – a)z) sin(a.z) *

sin(az) sin z

In the integrals, we recognize exponential power mix-

tures, which lead to a variety of one-liners. Kanter

(1975) used the last representation to suggest that

For a < 1, this would suffice for all values of b E

[-1,1] as

‘a’&(Q)l’as”l+(v)l’asa-l
(Zolotarev, 1986, p. 61). Defining 9 as above and

B.(z) = ‘in(-) cos(”((a-~)z+”e)) ‘

Cos
(

X((a—l)z+ae
2 9 (

Cos (y)
)

Chambers, Mallows and Stuck (1976) (see also Zolota-

rev, 1986) suggest the extended one-liner

valid for all a # 1 and b e [–1, 1]. For a = 1, they

obtain

s~,b ~ BI(U – 1/2) – :log E,

where

Bl(,z) = : log ()l+bz

()
+(l+bz) tan ~ .

Cos (y)

9 SCALE MIXTURES

We say that X is a scale mixture if X = YZ can
be decomposed as the product of two independent
random variables Y and Z. Such mixtures are wn-

venient ways of trying to discover one-liners. Famous

scale mixtures occur when Y is uniform [0, 1]. In that

case, the distribution of X is unimodal with a peak

at the origin, and the mixture is called a Khlnchine

mixture. One should try replacing Y with all random

variables for which one-liners are already known. The

following are prime candidates: Y = U“, Y is normal,

Y is exponential, and Y is Cauchy. At this junction,

it is impossible to be exhaustive. We will rather limit

ourselves to a few nice examples.

KHINCHINE MIXTURES. The density of X = UI U2

(with Ul, U2 i.i.d. uniform [0, 1]) is – log(x) on [0, 1].

NORMAL SCALE MIXTURES. Let N be standard nor-

mal, and let X be a positive random variable with

two-sided La-place transform L(s) = Ee–’x. Then

Y = N@@ has characteristic function L(tz). This

is easily see by noting that

Eeity = Ee itN~

= Ee-t’x (condition on X)

= L(t2) .

Three main examples come to mind:

A.

B.

c.

If X is exponential (thus, L(s) = 1/(1 + s)),

then N~ is Laplace, as it has characteristic

function 1/(1 + t2).

Assume that O < a <1 and set X = S.,l. From

Zo-lo-ta-rev (1986, p. 112), we know that for the

positive stable distribution, L(s) = e–s” if s ~

O. Therefore, N~m has characteristic func-

tion e+tp. That is,

N~~ ~ S2a,o. Symmetric stables can be

built up from positive stables and normals. For

the latter distributions, one-liners were exhib-

ited aerlier in the paper.

If we take in the previous example a = 1, then

we note that N d~ has characteristic func-

tion
~–2t2 log Itl

7

where we used the fact that the two-sided La-

place transform of S1,1 ia e–s logs for s >0 (Zo-

lo-ta-rev, 1986, p. 112).

CAUCHY SCALE MIXTURES. Let C be standard Cauchy

and let X be a positive random variable with two-

sided La-place transform L(s). Then Y = CX has

characteristic function L(ltl). ThE ia easily see by
noting that

Ee;’y = EeiexN

= Ee-l’ix (condition on X)

= L(ltl) .

Three examples follow

A. Since G@has two-sided La-place transform L(s)=

1/(1 + s)=, valid for $2(s) 20, CGa has charac-

teristic function 1/(1 + [tl)a.
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B. Assume that O < a <1. Arguing as in the pre-

vious subsection, we note that S’a,lC ~ Sa,o.

Thus, symmetric stables can also be obtained

from Cauchy variables and positive extreme sta-

bles.

C. Finally, S1,1(3’ has characteristic function
e–ltl log [tie

SYMMETRIC STABLE MIXTURES. Scale mixtures with

stable distributions are best studied via characteristic

functions. In particular, if X has density f, then the .

characteristic function of XcSa,o is

p(t) = Ee*txcsn,O = Ee-ltxcl” =
J

~(z)e-{d%lc~ dz .

This is particularly helpful if ~(z) has a factor e-l~lb.

For example, if ~(z) = e-zb/I’(l + l/b) , z >0, then,

with c = b/a,

/

m e–z’(l+[tl”)
if(t) =

~ r(l + lp)’% = (1+ l:l~)w’”

This is a generalized form of Linnik’s distribution

(Linnik (1962), Laha (1961), Lukacs (1970), pp. 96-

97), which is obtained for b = 1 (and thus c = l/a).

The one-liner suggested by

is due to Devroye (1990). If La,b denotes a generalized

Linnik random variable, other consequences of the

relationship given above include:

L ~ NINz + N3N4 .

The last statement involves four independent stan-

dard normals, and follows from the previous state-

ment.

It is equally simple to verify that if {aj} is a

sequence of numbers horn (O, 2], ~j >0, and S~j,0 is

a sequence of independent symmetric stable random

variables with the given parameters, then

z~=l s~, (yj@l/aj h~ characteristic function

POSITIVE EXTREME STABLE MIXTURES: THE MITTAG-
LEFFLER DISTRIBUTION. The one-liner

x = S.,~G;/a

yields a random variable X with characteristic func-

tion

This distribution was studied by Pillai (1990). A re-

lated distribution was studied by Klebancw, Maniya

and Melamed (1984). For b = 1, we obtain the

Mittag-Leffler distribution with parameter a. Note

that the stable (a, 1) random variate mentioned here

has characteristic function

exp(–tae–ixa/2) (t > ())
~(t)= { exp(-(-~)aeima/2)(t< ()) .

Using Kanter’s one-liner for S.,l, we see that if E, E*

are i.i.d. exponential random variables and U is uni-

formly distributed on [0, 1], then
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