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Abstract. We consider random patricia trees constructed from n i.i.d. sequences of independent

equiprobable bits. We study the height Hn (the maximal distance between the root and a leaf), and

the minimal fill-up level Fn (the minimum distance between the root and a leaf). We give probabilistic

proofs of
Hn − log2 n√
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→ 1 almost surely

and
Fn − log2 n
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Introduction.

Tries are efficient data structures that were initially developed and analyzed by Fredkin (1960)

and Knuth (1973). The tries considered here are constructed from n independent infinite binary strings

X1, . . . , Xn. Each string defines an infinite path in a binary tree: a 0 forces a move to the left, and a 1

forces a move to the right. For storage purposes, n nodes are identified, one per path, which will represent

the n infinite strings; we say that Xi is stored at node i. The tree is now pruned so that it has just n

leaves at the n representative nodes. Observe that no representative node is allowed to be an ancestor of

any other representative node. The trie is the minimal tree of the type defined above. This implies that

every internal (non-leaf) node has at least two leaves in its collection of descendants.

In the uniform trie model, the bits in the string X1 are i.i.d. Bernoulli random variables

with success probability p = 0.5. For other models, we refer to Devroye (1982, 1984), Régnier (1988),

Szpankowski (1988) and Pittel (1985).

The number of steps required to locate a leaf is equal to the length of the path linking Xi and

the root. We call this distance the depth Dni of node i in a trie of size n. When we want to give

guarantees to a potential user about the time required for a look-up, then we should really refer to the

height Hn
def
= maxiDni. Another quantity of interest to the user is the lower bound on time required to

access an element in the sructure, i.e. Fn
def
= miniDni.

The asymptotic behavior of tries under the uniform trie model is well-known. The height is

studied by Régnier (1981), Mendelson (1982), Flajolet and Steyaert (1982), Flajolet (1983), Devroye

(1984), Pittel (1985, 1986), and Szpankowski (1988,1989). For the depth of a node, see e.g. Pittel (1986),

Jacquet and Régnier (1986), Flajolet and Sedgewick (1986), Kirschenhofer and Prodinger (1986), and

Szpankowski (1988). For example, it is known that

Hn/ log2 n→ 2 almost surely .

The limit law of Hn was obtained in Devroye (1984), and laws of the iterated logarithm for the difference

Hn − 2 log2 n can be found in Devroye (1990).

patricia is a space efficient improvement of the classical trie discovered by Morrison (1968) and

first studied by Knuth (1973). It is simply obtained by removing from the trie all internal nodes with

one child. Thus, it necessarily has n leaves and n− 1 internal nodes. The trie from which it is deduced

is called the associated trie. All parameters of patricia such as Hn and Fn improve over those for

of the associated trie: Pittel (1985) has shown that Hn/ log2 n → 1 almost surely, which constitutes a

50% improvement over the trie. For other properties, see Knuth (1973), Flajolet and Sedgewick (1986),

Kirschenhofer and Prodinger (1986), Szpankowski (1988), and Kirschenhofer, Prodinger and Szpankowski

(1989). Recently, Pittel and Rubin (1990) and Pittel (1991) showed that

Hn − log2 n√
2 log2 n

→ 1 almost surely.

This result was obtained by a profound combinatorial analysis based on generating functions. Aldous and

Shields (1988) showed that the same property holds true for the digital search tree, another modification

of the trie with properties typically similar to those of patricia trees. Interestingly, their proof was

purely probability theoretical. This led us to believe that the asymptotic behavior of Hn and Fn should

be obtainable for patricia trees by purely probabilistic methods as well. The main results can be

formulated as follows.
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Theorem 1. In a sequence of patricia trees constructed from an i.i.d. sequence X1, X2, . . ., we have

Hn − log2 n√
2 log2 n

→ 1 almost surely.

Theorem 2. In a sequence of patricia trees constructed from an i.i.d. sequence X1, X2, . . ., we have

Fn − log2 n

log2 log n
→ −1 almost surely.

The point of this paper is that both results can be obtained by standard probabilistic methods,

such as Poissonization, exponential inequalities, and various embeddings.

Trees and cell occupancies.

It helps to think in terms of an infinite binary tree in which each Xi carves out an infinite path,

left edges corresponding to zeros, and right edges to ones. The length of the longest common prefix of two

infinite strings x and y is denoted by l(x, y). The collection of all infinite paths y for which l(x, y) = k

is denoted by L(x, k). It is clear that for a given x, the sets L(x, k), k ≥ 0, are disjoint. The point

of this is that the depth of X1 in the patricia tree can be characterized in terms of the occupancies

of the sets L(X1, k). For later reference, |L(x, k)| is the number of Xj ’s, 1 ≤ j ≤ n, that belong to

L(x, k). Thus,
∑
k |L(x, k)| ≤ n, with equality occurring if and only if x is not one of the Xi’s. Also,

O(x, k)
def
= I|L(x,k)|>0. Note, in particular, that |.| is not the ordinary cardinality operator.

All Dni’s are identically distributed. From elementary considerations, we have

Dn1 =
∞∑

k=0

IO(X1,k) . (1)

Without work, we conclude

EDn1 =
∞∑

k=0

P{|L(X1, k)| > 0}

=
∞∑

k=0

(
1− Pn−1{X2 /∈ L(X1, k)|X1}

)

=
∞∑

k=0

(
1− (1− 1/2k+1)n−1

)

because for any x, P{X1 ∈ L(x, k)} = 1/2k+1. This suffices to establish that EDn1 = log2 n+O(1). It is

equally easy to prove that VDn1 = O(1).

For the study of Hn, we need rather exact information regarding the upper tail of the distribution

of Dn1. The following basic inequality is helpful in this respect.

Proposition 1. For a ≥ 1 and n ≥ 2, we have

P{Dn1 ≥ log2 n+
√
a log2 n} ≤ e9/2(n− 1)−a/2 .
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Proof. Take t = log2(n − 1) +
√
a log2(n− 1). From (1) and Chernoff’s bounding method (Chernoff,

1952) we see that for λ > 0,

P{Dn1 ≥ t|X1} ≤ e−λtE{
∞∏

k=0

e
λIO(X1,k) |X1}

≤ e−λt
∞∏

k=0

E{eλIO(X1,k) |X1}

by a property of the multinomial distribution. Indeed, givenX1, |L(X1, 0)|, |L(X1, 1)|, . . . is multinomially

distributed. It is known (see e.g. Esary, Proschan and Walkup, 1967, or Joag-Dev and Proschan, 1983)

that for a multinomial random vector Y1, Y2, ...,

E
∏

i

fi(Yi) ≤
∏

i

Efi(Yi) ,

where the fi’s are increasing positive functions. Taking the expectation with respect to X1 yields the

following bound:

P{Dn1 ≥ t} ≤ e−λt
∞∏

k=0

(
1 + (eλ − 1)(1− (1− 2−(k+1))n−1)

)

≤ e−λt
∞∏

k=0

(
1 + (eλ − 1) min

(
1,
n− 1

2k+1

))
. (2)

The product will be split into three parts,

j−1∏

k=0

×
m−1∏

k=j

×
∞∏

k=m

,

where we define

j = dlog2(n− 1)e
m = b(λ+ log(n− 1))/ log 2c
λ = t log 2− log(n− 1) .

Note that for a ≥ 1 and n ≥ 2, we have 0 ≤ j ≤ m. We obtain the following:

j−1∏

k=0

(
1 + (eλ − 1)

)
≤ eλj ,

m−1∏

k=j

(
1 + (eλ − 1)

n− 1

2k+1

)
≤
m−1∏

k=j

eλ
n− 1

2k+1

(
1 + 2k+1/((n− 1)eλ)

)

≤
(

(n− 1)eλ
)m−j

2−m(m+1)/2+j(j+1)/2 exp



m−1∑

k=j

2k+1/((n− 1)eλ)




≤ 2t(m−j)−m
2/2+j2/2−(m−j)/2 exp

(
2m+1/((n− 1)eλ)

)

≤ 2t(m−j)−m
2/2+j2/2−(m−j)/2e2 ,
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∞∏

k=m

(
1 + (eλ − 1)

n− 1

2k+1

)
≤
∞∏

k=m

(
1 + eλ

n− 1

2k+1

)

≤ exp

( ∞∑

k=m

(n− 1)eλ/2k+1

)

= exp
(

(n− 1)eλ/2m
)

≤ e2 .

Combining all this shows that

P{Dn1 ≥ t} ≤ exp (4 + λ(j − t)) 2t(m−j)−m
2/2+j2/2−(m−j)/2

≤ exp (4− (j − t) log(n− 1)) 2t(m−t)−m
2/2+j2/2

≤ e42(t−j) log2(n−1)−t2/2+j2/2

≤ e42−(1/2) log2
2(n−1)+1/2+t log2(n−1)−t2/2

= e9/22−(a/2) log2(n−1) ,

which was to be shown.

The fill-up level of patricia trees.

Proposition 2. For all a > 1,

P{Fn < log2 n− a log2 logn i.o. } = 0 .

Proof. Define k = blog2 n− a log2 lognc. If miniDni < k, then one of the 2k possible prefix strings of

length k does not occur among X1, . . . , Xn. Thus, by symmetry,

P{ min
1≤i≤n

Dni < k} ≤ 2kP{no Xi starts with k zeroes}

= 2k(1− 1/2k)n

≤ 2ke−n/2
k

≤ exp (logn− (log n)a − a log logn)

→ 0 .

The upper bound is also summable in n for all a > 1, so Proposition 2 follows by the Borel-Cantelli

lemma.

Hoeffding (1963) has developed useful exponential inequalities for tail probabilities of sums of

independent random variables. The generalization of these inequalities to martingales (Hoeffding, 1963,

Azuma, 1967) has led to interesting applications in combinatorics and the theory of random graphs (for

a survey, see McDiarmid, 1989). The following extension of Hoeffding’s inequality is useful for random
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variables that are complicated functions of independent random variables, and that are relatively robust

to individual changes in the values of the random variables.

Lemma 1. (McDiarmid, 1989) Let X1, . . . , Xn be independent random variables taking values in a set

A, and assume that f : An → R satisfies

sup
x1,...,xn

x′1,...,x
′
n∈A

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n .

Then

P {|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ t} ≤ 2e−2t2
/∑n

i=1 c
2
i .

Proposition 3. For all a < 1,

P{Fn > log2 n− a log2 logn i.o. } = 0 .

Proof. Define k = dlog2 n− a log2 logne. We note that Dni is smaller than the corresponding value in

the associated trie. Thus, we need only prove Proposition 3 for the ordinary trie. For the remainder of

this proof, Dni thus denotes a depth in the associated trie. Fix an integer m < n, and for 1 ≤ i ≤ m

define D∗ni as the depth of node Xi in the trie formed by Xi and Xm+1, . . . , Xn. If l(Xi, Xj) ≤ k for all

1 ≤ j ≤ m, then Dni > k if and only if D∗ni > k. Let J be the collection of all indices i ≤ m such that

its prefix of length k has not occurred among X1, . . . , Xi−1. Observe that

P{ min
1≤i≤n

Dni > k} ≤ P{ min
1≤i≤n

D∗ni > k}

≤ P{ min
1≤i≤m

D∗ni > k}

≤ P{min
i∈J

D∗ni > k} .

We condition on X1, . . . , Xm, and let |J | be the cardinality of J . Let Ai be the event

max
m+1≤j≤n

l(Xi, Xj) ≥ k .

Using the association inequality for the multinomial distribution used earlier, we have

P{min
i∈J

D∗ni > k|X1, . . . , Xm} ≤ P{∩i∈JAi|X1, . . . , Xm}

≤
∏

i∈J
P{Ai|Xi}

=
∏

i∈J

(
1− Pn−m{l(X1, X2) < k}

)

=
∏

i∈J

(
1− (1− 1/2k)n−m

)

≤ exp
(
−|J |(1− 1/2k)n−m

)
.
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Collecting all this shows that

P{Fn > k} ≤ E
{

exp(−|J |(1− 1/2k)n−m)
}
.

Note that |J | is a function governed by Lemma 1, provided that we replace n by m and ci by 1. We have

P{||J | − E|J || > t} ≤ 2 exp(−2t2/m) ,

and, in particular,

P{|J | < E|J |/2} ≤ 2 exp(−E2|J |/2m) .

Observe that

E|J | = 2k
(

1− (1− 1/2k)m
)
≥ 2k

(
1− (1−m/2k +m2/22k+1)

)
= m

(
1−m/2k+1

)
.

Thus,

P{Fn > k} ≤ 2 exp(−E2|J |/2m) + exp(−(1/2)E|J |(1− 1/2k)n−m) . (3)

We take m = dn/ logne. Since 2k ≥ n/(logn)a, we note that m/2k → 0. The exponent in the first term

of (3) is

−E2|J |/2m ∼ −m/2 .
The exponent in the second term of (3) is

−(1/2)E|J |(1− 1/2k)n−m ≤ −m(1/2 + o(1))e−(n−m)/(2k−1)

∼ −(m/2)e−n/2
k

≤ −(1/2) exp(logm− (logn)a)

= −m1+o(1) .

We have

P{Fn > k} ≤ exp(−(n/ logn)1+o(1)) .

The upper bound is summable in n, so that Proposition 3 follows by the Borel-Cantelli lemma.

Propositions 2 and 3 together imply

Fn − log2 n

log2 logn
→ −1 almost surely.

The height of patricia trees.

In the associated trie, it is very likely that there exists a leaf at distance at least k = blog2 n +√
(2− ε) log2 nc from the root with the property that the first k nodes on its path from the root all have

two children, and are thus not deleted when the patricia tree is constructed. This argument leads to

a lower bound for Hn (proposition 5 below). An upper bound can be obtained trivially from the large

deviation result for Dn1 given in proposition 1. See proposition 4 below.
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Proposition 4. For all a > 2,

P{Hn ≥ log2 n+
√
a log2 n i.o. } = 0 .

Proof. Define t(n) = log2 n+
√
a log2 n. From Proposition 1,

P{Hn ≥ t(n)} ≤ nP{Dn1 ≥ t(n)} ≤ e9/2n(n− 1)−a/2 = O(n(2−a)/2) . (4)

Next, with ni = 2i, the monotonicity of Hn and of t(n) imply that we need only show that Hni+1 > t(ni)

finitely often almost surely. For i large enough, we have t(ni+1) < t(ni)+2. Thus, the Proposition follows

by the Borel-Cantelli lemma if for all a > 0,

∞∑

i=1

P{Hni ≥ t(ni)} <∞ .

This is immediate from (4).

Proposition 5. For all a < 2,

P{Hn ≤ log2 n+
√
a log2 n i.o. } = 0 .

Proof. Assume without loss of generality that a > 4/3. Define the following quantities:

k = blog2 n− 2 log2 lognc;
m = dna−1e;
l = b

√
(3a− 4) log2 nc .

The integer m is used to split the data into two parts. We will show that

∞∑

n=1

P{Hn ≤ k + l} <∞ .

The proposition then follows by the Borel-Cantelli lemma. Indeed, for fixed ε > 0, by choosing a close

enough to 2, we can make k+ l bigger than log2 n+
√

(2− ε) log2 n. The proof is greatly simplified if we

use an embedding argument. Let X1, X2, . . . be an i.i.d. sequence of infinite strings, defining an infinite

sequence of patricia trees and associated tries. It is easy to see that Dni is an increasing function of n

for fixed i. Thus, Hn is also increasing in n. Hence, if we let N be a Poisson ((n−m)/2) random variable

independent of the sequence of Xi’s, we note that

P{Hn ≤ k + l} ≤ P{Hm+N ≤ k + l , N ≤ n−m}+ P{N > n−m}
≤ P{Hm+N ≤ k + l}+ P{N > n−m}
≤ P{Hm+N ≤ k + l}+ (

√
e/2)n−m .

The inequality for the Poisson tail follows from Chernoff’s bound: for t > 0,

P{N > n−m} ≤ E{et(N−n+m)} = e((n−m)/2)(et−1)−t(n−m) = (
√
e/2)n−m ,
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where we took t = log 2. Clearly, we need only show that

∞∑

n=1

P{Hm+N ≤ k + l} <∞ .

Let J be the subset of {1, . . . ,m} such that i ∈ J if and only if l(Xi, Xj) < k for all j < i. Thus,

{Xi, i ∈ J} is a collection of strings with different prefixes of length k. Let us define the event G (for

“good”) by

G
def
= [|J | ≥ E|J |/2] .

From the proof of Proposition 3, we see that E|J | ≥ m(1−m/2k+1) ∼ m, and that

P{Gc} ≤ 2 exp(−E2|J |/2m) ≤ 2 exp(−(1/2 + o(1))m) ,

which is summable in n. This reduces our problem to that of proving

∞∑

n=1

P{Hm+N ≤ k + l , G} <∞ . (5)

Let us call L(x, d) the set of all strings y with l(x, y) = d, and let |L(x, d)| denote the cardinality

of that set, when intersected with {Xm+1, . . . , Xm+N} . We have the following inclusion of events:

[Hm+N ≤k + l] ∩G

⊆ G ∩
{
∩i∈J ∪k+l

d=0 [|L(Xi, d)| = 0]
}

⊆
{
∪mi=1 ∪kd=0 [|L(Xi, d)| = 0]

}
∪
{
G ∩

{
∩i∈J ∪k+l

d=k+1 [|L(Xi, d)| = 0]
}}

.

The two events on the right-hand side are dealt with separately. First of all,

P
{
∪mi=1 ∪kd=0 [|L(Xi, d)| = 0]

}
≤ m(k + 1)P{|L(X1, k)| = 0}

= m(k + 1) exp

(
−n−m

2
2−(k+1)

)

≤ n(log2 n+ 1) exp
(
−(1−m/n)(logn)2

)
,

which is summable in n, as required. We can use the fundamental property of the Poisson distribution,
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and the fact that the sets L(Xi, d) for d ≥ k + 1 and i ∈ J are disjoint. This yields

P
{
G ∩

{
∩i∈J ∪k+l

d=k+1[|L(Xi, d)| = 0]
} ∣∣∣ X1, . . . , Xm

}

= IG
∏

i∈J
P
{
∪k+l
d=k+1[|L(Xi, d)| = 0]

∣∣∣ Xi
}

= IG
∏

i∈J

(
1− P

{
∩k+l
d=k+1[|L(Xi, d)| > 0]

∣∣∣ Xi
})

≤ IG exp


−

∑

i∈J

k+l∏

d=k+1

P{|L(Xi, d)| > 0|Xi}



= IG exp


−|J |

k+l∏

d=k+1

(
1− exp(−n−m

2
/2d+1)

)


≤ exp


−(E|J |/2)

k+l∏

d=k+1

(1− exp(−(n−m)/2d))


 .

Because the upper bound does not depend upon X1, . . . , Xm, it remains valid if we take expectations to

rid ourselves of the conditioning. Property (5) follows if we can show that this upper bound is summable

in n. Call M minus the logarithm of the upper bound. Using 1− e−u ≥ min(1, u)/2, valid for u > 0, we

have

M ≥ m2−l
(

1

2
+ o(1)

) k+l∏

d=k+1

min(1, (n−m)/2d)

∼ m2−(l+1)−kl
l∏

d=1

min(2k, (n−m)/2d)

= m2−(l+1)−kl
l∏

d=1

((n−m)/2d)×
∏

1≤d≤l;k+d<log2(n−m)

(2k+d/(n−m))

≥ m2−(l+1)−kl(n−m)l/2l(l+1)/2 ×
(

2k+1/(n−m)
)log2(n−m)−k

≥ m2−(l+1)−l log2 n+l log2 logn−l(l+1)/2+l log2(n−m) × (logn)2k−2 log2(n−m)

= exp
(
o(log n) + logm− l logn− l2 log(2)/2

+l log(n−m) + (2k − 2 log2(n−m)) log logn)

≥ exp (o(logn) + (a− 1) logn− (3a− 4) log(n)/2

+l log(1−m/n)− 2(2 log2 logn+ log2(1−m/n)) log logn)

= exp (o(logn) + (1− a/2) logn) .

Thus, ∑

n

e−M =
∑

n

en
1−a/2+o(1)

<∞ .

11



Propositions 4 and 5 together imply

Hn − log2 n√
2 log2 n

→ 1 almost surely.
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