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called a "generalized" distribution), or the random variable can be
written as a simple function of other random variables.

ii) The distribution itself is simple to describe, e.g. the density has
a simple analytical form. In most cases, the parameters, moments
andlor quantiles are linked by simple equations.

Case (i) is sometimes introduced artificially to facilitate random
variate generation (see for example Schmeiser (1977) for a survey). In
case (ii), the simplicity forced upon the model creates difficulties from
the random variate generation point of view. In fact, the number of
distributions of type (ii) has proliferated to the point that it is
unreasonable to expect that statistical packages and computer
libraries carry efficient procedures for all of them. Thus, there is a
need for acceptably efficient algorithms that are general enough to
be applied to an entire group of distributions.

The inversion method is of course truly universally applicable, but
its application is limited by the fact that often a density / is given
and that the distribution function F can only be obtained by
numerical integration. In this note, we will assume throughout that
the density f can be computed for a certain distribution. We will
show, mainly by example, how one can go about developing general

algorithms for groups of distributions. General groups of interest to
the average user include

A. All monotone densities on [0, co).
B. A1l unimodal densities on R with mode at m.
C. A11 monotone densities on [0, oo) with known rth moment p,.
D. All log-concave densities on R with mode at m.
E. All densities with a decreasing hazard rate (DHR).
F. All densities with an increasing hazard rate (IHR).
G. All densities with one ore more known moments, satisfying a

known Lipschitz condition.

Some of these groups can be handled by employing special pro-
perties: for group E, we can make use of a variation of the thinning
algorithm of Lewis and Shedler (1979) (see Devroye (1983)). For
groups A and B, a combination of the inversion and rejection
methods yields fast algorithms whenever the distribution function F
is easy to compute (Devroye, 1984). For group D, a general bound
for all log-concave densities in terms of m and f (m) has led to the

\\{
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development of fast universal rejection algorithms (Devroye, 1984).
In this note, we will illustrate for groups A-C and G how some well-
known facts from probability theory (such as Chebyshev's inequality)
can help in the design of generally applicable algorithms. We assume
that the reader is familiar with the inversion and acceptance/rejec-
tion methods in random variate generation (see for example some
standard texts in simulation, e.g. Bratley, Fox and Schrage (1983,
Ch. 5), Fishman (1978, Ch. 9), Kennedy and Gentle (1980, Ch. 6),
Law and Kelton (1982, Ch.7) or Rubinstein (1981)).

2 .  MONOTONE DENSITIES

Consider the following group of densities:

G,:{f tf is monotone on [0, co), bounded (by b:/(0));

! x ' f (x )dx<p" {@} ,  r>0 .

We assume that p, is explicitly known.

Pnopsnrv 2.1 For euery f eG,, we haue

/(x) < min (b, c I x' *'): g(x),

where b:f (0) and s:(r*l)p.,. The orno [3 g@)dx equals

/  t \
(  t  + ;  )(r  + 1; ' r t ' *  l t  (br , r ;1 t(r  + t \  .
\ r,/

Proof By assumption, f(x) {b. Also, p,ZI6y'f(y)dy2f(x)x'+rl
(r + 1). Let x* be the solution of b: clx'* r. Then the area under g is

bxx + c f (rx*,) : b(c lDr td + tt a 
"16 1 "1, 

t{r + r) 
fr

/  r \
: (  t  + :  l b t l t r + l ) c t t t t + t ) .

\ r,/

This property is all that is needed to write a general purpose
algorithm for G,. We could for example proceed as follows:
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(Preprocessing.) Let b <- f (0), x* <-((r + l) p,lb)lta * r) .
(Generation.) Repeat Generate U,V independent uniform

[0,1] random variates.
If U <(rl(r+l)) then X+-U(rl(r+l))x*

(X is uniform on [0, x*])
else X <- x* f(U 1r + I) - rlt t'

( ( r+1)U-r  is  again uni -
form on [0,1],
and thus X has densitv
proportional to lfx'*1
on [x*, co))'

Until r/g(X)=f (X).
(Note that S(X):b, )(3x+;
g(X )  :  ( r  + 1)  U, l  X '  *  t ,  X > 

"* . )
Exit with X.

In the Repeat loop, X can also be obtained as Urx*lU!/', where

fJ r,(J z are independent uniform [0, 1] random variates.
The expected numb'er of executions of the Repeat loop is

[ts@)A*, which is given in Property 2.1. We will write this number

a s l

A,8,, where A, : | + 1, 3, : ((r * l)b' 1t)rt{ ' 
+ tt.

The factor B, is scale invariant and small for most densities that are

of interest to the general user. In particular, we have:

Pnoppnrv 2.2

A .  i n f  B , : 1 .
f . G ,

B.  sup  B , :2 lV -12 ) r t a+ t t<2 .
f  e G - .

f  concaue on i ts  support .  . t l
C.  sup B, : ( f ( r+2))1/ t '+r t -= as r - -+oo.

f . e . ,  e

J log-concaue.

Proof Statement A follows from the fact that if we force b to be

1, then p, is minimized by taking the uniform density / on [0,1].
Under the same restriction on b, we maximize Lq among all densities

f that are concave on their support by taking f(*):l-(xl2),
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01x12. Thus, for this f

2  /  ' \  /  1  |  \  |

u, : j . t ' ( t  - i  )Av :z ' " ( '  .  - '  -  l : 2 ' - ' - - -= l=_ :
o  \  2 ) ' "  

-  
\ t + l  r + 2 )  

-  
V + l l ( r + 2 ) '

Statement B follows directly.
Finally, when / is log-concave on its support, i.e. logf is concave

on [0,co)n{x: / (x)>0} ,  and /  is  monotone down, then bX is
stochastically smaller than an exponential random variate Y (this
follows from a trivial geometric argument based upon the log-
concavity of f). In particular, E(b' X'):b' p,3 E(Y") :f(r+ 1). State-
ment C now follows without further work.

A short discussion of Property 2.2 is in order here. First, we note
that Je> l+Olr) for all f eG,.Thus, the algorithm cannot possibly
be efficient for r near 0, at least not uniformly over all f in G,. For
quite a few densities, A,B, is sufficiently close to l for the algorithm
to be useful. When / is concave on its support, then the upper
bound for A,B, obtained by using Property 228 varies from 4lJ3:
2 .3094 . . . ( t :  1 )  t o  3 l41 t t :  1 .88988  . . . ( r : 2 )  t o  8 / (3 .S1 r4 ;  : 1 .7833 . . .

(r : 3) to s l(2.6u \ -- r.7 47 0 . . . (, : a) b r2l(5.7 1 ra) : r.7 3s2. . . (r : 5) to
7lQ.81tt1:1.73366...(r:6) to l6lQ.errsl:1.7367 ...(r:7) and
monotonically back up to 2 as rfco. Thus, the upper bound is
minimal for r:6: our algorithm is guaranteed to perform at its best
when the sixth moment is known. Unfortunately, very few densities
are concave on their support. In contrast, the class of log-concave
densities that are monotone on [0, oo) includes the halfnormal,
gamma, Weibull, generalized inverse gaussian, exponential power,
logistic and hyperbolic secant densities (see Devroye, 1984). From
the proof of Property 2.2C we see that the worst density in this class
is the exponential density, and that it is possible that A,B, is large
when r is large. The upper bound for A,B, now varies from 2.2rt2
--2.82 . .  .  ( r :  1)  to  (312) '6t t3 :2.72s6 .  .  . ( r :2)  to  ( !13) 'Z4rr+
:2.9511...(r:3) and monotonically up to oo as rf oo. Here the
optimal value is r:2. We note that the average time of our
algorithm is uniformly bounded over all log-concave densities for
any value of r. If p" is not known, we can replace it by the larger
quantity f(r+l)lb' in the algorithm while keeping the upper bound
for A,8,. For r:2, the algorithm comes very close in performance to
the algorithm of Devroye (1984) that was specially designed for log-
concave densities only.

From this discussion, we gather that the value r:2 is optimal or
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nearly optimal for most monotone densities of general interest. The
1/ statement in the algorithm can of course be improved for such
special cases. Thus, in

If U <? then X<-! (Jx* else Y.-x* I

we can replace the else part by else Xr-x*fmax(3(I *2,W) where W
is another uniform [0,1] random variate, thereby avoiding the
costly square root. Such streamlining is normally not possible for
non-integer values of r.

We could also use functionals of / instead of moments to get
bounds, as in the obvious inequality f (x)<(6f")tt"lx7td, valid for all
monotone / on [0, co), and all a>0.

3 .  DENSITIES SATISFYING A L IPSCHITZ CONDITION

We say that f is Lipschitz (C) (and write f e Lip(C)) when

sup l f  ( " ) -  f  (y ) l<c l r -Y l .
x , y

The constant C, or an upper bound for it, is known, if we know for

exarnple an upper bound for sup, lf'(*)|.

Pnoppnrv 3.1 For euery f eLip(C), we haue

f (*)<

where F is the distribution function corresponding to f.

Proof By a geometrical argument, we see that the triangle with

base [x,x*(ylC)] and f (x):y, f (x+(ylC)):0 is the function / (not

necessarily density function) yielding the largest value of y at x while
not violating the Lipschitz condition. But the area of the triangle
must be at most l-F(x). Thus, since the area is y2lQC), we have

y=r,ECtt-f tA. Property 3.1 now follows by symmetry.

Remark If we merely satisfy the Lipschitz condition on (0, m)
(and thus, may have a discontinuity at 0), it is still true that

f (*)=r,EcG-rfi l , x>0.

Example 3.1 (Conuex densities on [0,oo)) Because C</'(0), the
bound becomes

I

I

2C min (F(x), 1 - F(x)) :s(x),
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f (x) = \/ 2f ' (0)( 1 - F(x)).

Because convex densities on [0, co) are necessarily monotone, we can

employ inequalities for 1-F(x) to obtain a useful upper bound for

random variate generation. We have for example,

r_ .F(x)=(_:  t )  ,  ar  x , r>o' ' - \ r + l  x ) '

(Narumi's inequality, see Savage (1961) for a discussion and Andreev
(1981) for a proof), valid for all monotone f on [0, oo). The

difference with Chebyshev's inequality is the factor (rl(r-l1)). Thus,

combining inequalities gives the bound

97

f (x) < c(x): -i,' (f tol, (# +)" J2f,(0) ).

This form is similar to the form of g for monotone densities
(Property 2.1). Thus, if we know f (0), f 

'(0) and p,, we can produce a

simple rejection algorithm for this class of densities. It should be

noted that for g to be integrable, we must have r>2.

Example 3.2 (Densities with known moment genetating function)
The moment generating function for a random variable X is defined

by M(t):E(e'x), reR (see Patel, Kapadia and Owen (1976) for

several examples). By Jensen's inequality 1-F(x){M(t)e-t ', t>0,
we obtain

u-2ct- ' t ' t1qg' , ,  xzo,

TC.,tAtu4-t1, x<0.

This inequality is valid for all r>0 for which M(l) and M(-t) are
finite. To minimize the upper bound, we could attempt to find the
optimal I for each x. This would require the knowledge of M(t) in an
analytically manageable form of course, an assumption which we are
not willing to make.

Let us consider an important special case: / is symmetric about 0.

/ rx)Sgtx l : {
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Then the bound becomes

? , , ,  .  ,  /  
/ t  /  t  \ \

f (x )<s@l :J32cMOlP ' l7exp(  - ; l : c l  I  ) ,  t>0 .
\ +  \  z  / /

The function in parentheses is a Laplace density function with
parameter tl2. The algorithm suggested in this section thus becomes
very simple:

Repeat Generate E,U,independent exponential and uniform

[0, 1] random variates. Set E<-)P,17.

Until

Exit with X<-SE where S is a random

The expected number of iterations is the area under g, te.

J3rCI,/IOF. Thus, the best value for r is the value that minimizes
M\)l*. We would like to point out that the smaller M(r) and the
smaller C, the faster the algorithm. In other words, speed is linked to
small tails (small M(r)) and smoothness (small C).

Example 3.3 (The generalized gaussian family) The generalized
gaussian family of distributions contains all distributions for which
for some s20,M(r) <exp(sztzl2), all t. (Chow, 1966). The mean of all
these distributions exists and is zero. One important property of this
family is that both 1 - F' (x) and F( - x) do not exceed exp (- x2 l(2s2)),
x>0 (Chow,1966\. Thus, we have

f (x) < s@) :.J 2c,.,,tr; (# "-0, 
- *, tefl).

The function in parentheses is a normal 1O,srfZ1 density. Our
algorithm now reads:

Repeat Generate N, E, independent normal and exponential

random variates. Set X.-Nsrr,4.

Unt i l  -  N '12-  E<loe( f lX) l  ! /2C).
Exit with X.

sign.
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Example 3.4 (Densities with known moments) Examples 3.1-3.3
assume quite a bit of knowledge about the distribution besides C. In

the majority of the cases, if we know one quantity, it is a moment,

say tt,:E(lxl"). Assume that we do not know that / is unimodal,
for if we do, we can refer to the method of Section 2. Chebysheu's
inequality 1 - F(x) 3 tt,ll*|" , r > 0, leads to the fundamental inequality

,f (x) < g(x) : u/ 2C min (t, I 1+ll*l' t'),

which is only useful to us for r>2 (otherwise g is not integrable).
For random variate generation, we need only a small modification of

the algorithm of Section 2 because the form of g is similar to that

discussed there. The integral of g over R is easily computed:

99
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I
Note that rl(r-2) decreases
nondecreasing as rfoo (the

r\x)<s$):#9*(-ry.),

Is:'/tc]- uit'.

monotonically to 1 and that plt' is
last fact follows directlv from Jensen's

inequality). Thus, to obtain the best value for r, we need a careful
compromise.

Example 3.5 (Log-concaue densities) If we only know that / is
log-concave with a mode at 0 and support on [0, co), then we can
use the inequality of Example 3.4. Indeed, we do know that

f (O)' p,S f(r * 1). In fact, we know much more: 1 - F(x) S exp ( - x/(0)):
thus,

x > 0 .

The algorithm can be written as follows:

Repeat Generate EyEz, independent exponential random
variates.

Set X<-E''(2lf g).

Until - Ez- E,.<log(f (X)l rEl
Exit with X.

The expected number of loops is u-5C17101.
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