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of obtaining good discrimination rules. The base classifiers used for

averaging are simple and randomized, often based on random sam-

ples from the data. He left a few questions unanswered regarding the

consistency of such rules. In this paper, we give a number of theo-

rems that establish the universal consistency of averaging rules. We

also show that some popular classifiers, including one suggested by

Breiman, are not universally consistent.

1 Introduction

Ensemble methods, popular in machine learning, are learning algorithms that
construct a set of many individual classifiers (called base learners) and com-
bine them to classify new data points by taking a weighted or unweighted
vote of their predictions. It is now well-known that ensembles are often much
more accurate than the individual classifiers that make them up. The success
of ensemble algorithms on many benchmark data sets has raised consider-
able interest in understanding why such methods succeed and identifying
circumstances in which they can be expected to produce good results. These
methods differ in the way the base learner is fit and combined. For exam-
ple, bagging (Breiman [2]) proceeds by generating bootstrap samples from
the original data set, constructing a classifier from each bootstrap sample,
and voting to combine. In boosting (Freund and Shapire [13]) and arcing
algorithms (Breiman [3]) the successive classifiers are constructed by giving
increased weight to those points that have been frequently misclassified, and
the classifiers are combined using weighted voting. On the other hand, ran-
dom split selection (Dietterich [11]) grows trees on the original data set. For
a fixed number S, at each node, S best splits (in terms of minimizing de-
viance) are found and the actual split is randomly and uniformly selected
from them. For a comprehensive review of ensemble methods, we refer the
reader to Dietterich [12] and the references therein.

Breiman [5] provides a general framework for tree ensembles called “ran-
dom forests”. Each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees. Thus, a random
forest is a classifier that consists of many decision trees and outputs the class
that is the mode of the classes output by individual trees. Algorithms for
inducing a random forest were first developed by Breiman and Cutler, and
“Random Forests” is their trademark. The web page
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http://www.stat.berkeley.edu/users/breiman/RandomForests

provides a collection of downloadable technical reports, and gives an overview
of random forests as well as comments on the features of the method.

Random forests have been shown to give excellent performance on a num-
ber of practical problems. They work fast, generally exhibit a substantial
performance improvement over single tree classifiers such as cart, and yield
generalization error rates that compare favorably to the best statistical and
machine learning methods. In fact, random forests are among the most ac-
curate general-purpose classifiers available (see for example Breiman [5]).

Different random forests differ in how randomness is introduced in the tree
building process, ranging from extreme random splitting strategies (Breiman
[4], Cutler and Zhao [7]) to more involved data-dependent strategies (Amit
and Geman [1], Breiman [5], Dietterich [11]). As a matter of fact, the sta-
tistical mechanism of random forests is not yet fully understood and is still
under active investigation. Unlike single trees, where consistency is proved
letting the number of observations in each terminal node become large (De-
vroye, Györfi, and Lugosi [10, Chapter 20]), random forests are generally
built to have a small number of cases in each terminal node. Although the
mechanism of random forest algorithms appears simple, it is difficult to ana-
lyze and remains largely unknown. Some attempts to investigate the driving
force behind consistency of random forests are by Breiman [4, 6] and Lin and
Jeon [14], who establish a connection between random forests and adaptive
nearest neighbor methods. Meinshausen [15] proved consistency of certain
random forests in the context of so-called quantile regression.

In this paper we offer consistency theorems for various versions of random
forests and other randomized ensemble classifiers. In Section 2 we introduce
a general framework for studying classifiers based on averaging randomized
base classifiers. We prove a simple but useful proposition showing that aver-
aged classifiers are consistent whenever the base classifiers are.

In Section 3 we prove consistency of two simple random forest classifiers,
the purely random forest (suggested by Breiman as a starting point for study)
and the scale-invariant random forest classifiers.

In Section 4 it is shown that averaging may convert inconsistent rules into
consistent ones.

In Section 5 we briefly investigate consistency of bagging rules. We show
that, in general, bagging preserves consistency of the base rule and it may
even create consistent rules from inconsistent ones. In particular, we show
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that if the bootstrap samples are sufficiently small, the bagged version of the
1-nearest neighbor classifier is consistent.

Finally, in Section 6 we consider random forest classifiers based on ran-
domized, greedily grown tree classifiers. We argue that some greedy random
forest classifiers, including Breiman’s random forest classifier, are inconsis-
tent and suggest a consistent greedy random forest classifier.

2 Voting and averaged classifiers

Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs of random variables such that
X (the so-called feature vector) takes its values in R

d while Y (the label) is
a binary {0, 1}-valued random variable. The joint distribution of (X, Y ) is
determined by the marginal distribution µ of X (i.e., P{X ∈ A} = µ(A) for
all Borel sets A ⊂ R

d) and the a posteriori probability η : R
d → [0, 1] defined

by
η(x) = P{Y = 1|X = x} .

The collection (X1, Y1), . . . , (Xn, Yn) is called the training data, and is de-
noted by Dn. A classifier gn is a binary-valued function of X and Dn whose
probability of error is defined by

L(gn) = P(X,Y ){gn(X, Dn) 6= Y }

where P(X,Y ) denotes probability with respect to the pair (X, Y ) (i.e., con-
ditional probability, given Dn). For brevity, we write gn(X) = gn(X, Dn).
It is well-known (see for example [10]) that the classifier that minimizes the
probability of error, the so-called Bayes classifier is g∗(x) =

�
{η(x)≥1/2}. The

risk of g∗ is called the Bayes risk: L∗ = L(g∗).
A sequence {gn} of classifiers is consistent for a certain distribution of

(X, Y ) if L(gn) → L∗ in probability.
In this paper we investigate classifiers that calculate their decisions by

taking a majority vote over randomized classifiers. A randomized classifier
may use a random variable Z to calculate its decision. More precisely, let Z
be some measurable space and let Z take its values in Z. A randomized clas-
sifier is an arbitrary function of the form gn(X, Z, Dn), which we abbreviate
by gn(X, Z). The probability of error of gn becomes

L(gn) = P(X,Y ),Z{gn(X, Z, Dn) 6= Y } = P{gn(X, Z, Dn) 6= Y |Dn} .
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The definition of consistency remains the same by augmenting the probability
space appropriately to include the randomization.

Given any randomized classifier, one may calculate the classifier for vari-
ous draws of the randomizing variable Z. It is then a natural idea to define
an averaged classifier by taking a majority vote among the obtained ran-
dom classifiers. Assume that Z1, . . . , Zm are identically distributed draws of
the randomizing variable, having the same distribution as Z. Throughout
the paper, we assume that Z1, . . . , Zm are independent, conditionally on X,
Y , and Dn. Letting Zm = (Z1, . . . , Zm), one may define the corresponding
voting classifier by

g(m)
n (x, Zm, Dn) =

{
1 if 1

m

∑m
j=1 gn(x, Zj, Dn) ≥ 1

2
,

0 otherwise.

By the strong law of large numbers, for any fixed x and Dn for which
PZ{gn(x, Z, Dn) = 1} 6= 1/2, we have almost surely limm→∞ g

(m)
n (x, Zm, Dn) =

gn(x, Dn), where gn(x, Dn) = gn(x) =
�
{EZgn(x,Z)≥1/2} is a (non-randomized)

classifier that we call the averaged classifier. (Here PZ and EZ denote prob-
ability and expectation with respect to the randomizing variable Z, i.e.,
conditionally on X, Y , and Dn.)

gn may be interpreted as an idealized version of the classifier g
(m)
n that

draws many independent copies of the randomizing variable Z and takes a
majority vote over the resulting classifiers.

Our first result states that consistency of a randomized classifier is pre-
served by averaging.

Proposition 2.1 Assume that the sequence {gn} of randomized classifiers
is consistent for a certain distribution of (X, Y ). Then the voting classifier

g
(m)
n (for any value of m) and the averaged classifier gn are also consistent.

proof. Consistency of {gn} is equivalent to saying that EL(gn) = P{gn(X, Z) 6=
Y } → L∗. In fact, since P{gn(X, Z) 6= Y |X = x} ≥ P{g∗(X) 6= Y |X = x}
for all x ∈ R

d, consistency of {gn} means that for µ-almost all x,

P{gn(X, Z) 6= Y |X = x} → P{g∗(X) 6= Y |X = x} = min(η(x), 1 − η(x)) .

Without loss of generality, assume that η(x) > 1/2. (In the case of η(x) = 1/2
any classifier has a conditional probability of error 1/2 and there is nothing

5



to prove.) Then P{gn(X, Z) 6= Y |X = x} = (2η(x) − 1)P{gn(x, Z) = 0} +
1 − η(x), and by consistency we have P{gn(x, Z) = 0} → 0.

To prove consistency of the voting classifier g
(m)
n , it suffices to show that

P{g(m)
n (x, Zm) = 0} → 0 for µ-almost all x for which η(x) > 1/2. However,

P{g(m)
n (x, Zm) = 0} = P

{

(1/m)

m∑

j=1

�
{gn(x,Zj)=0} > 1/2

}

≤ 2E

[

(1/m)

m∑

j=1

�
{gn(x,Zj)=0}

]

(by Markov’s inequality)

= 2P{gn(x, Z) = 0} → 0 .

Consistency of the averaged classifier is proved by a similar argument.
�

3 Random forests

Random forests, introduced by Breiman, are averaged classifiers in the sense
defined in Section 2.

Formally, a random forest with m trees is a classifier consisting of a
collection of randomized base tree classifiers gn(x, Z1), . . . , gn(x, Zm) where
Z1, . . . , Zm are identically distributed random vectors, independent condi-
tionally on X, Y , and Dn.

The randomizing variable is typically used to determine how the succes-
sive cuts are performed when building the tree such as selection of the node
and the coordinate to split, as well as the position of the split. The random
forest classifier takes a majority vote among the random tree classifiers. If
m is large, the random forest classifier is well approximated by the aver-
aged classifier gn(x) =

�
{EZgn(x,Z)≥1/2}. For brevity, we state most results of

this paper for the averaged classifier only, though by Proposition 2.1 various
results remain true for the voting classifier g

(m)
n as well.

In this section we analyze a simple random forest already considered by
Breiman [4], which we call the purely random forest.

The random tree classifier gn(x, Z) is constructed as follows. Assume, for
simplicity, that µ is supported on [0, 1]d. All nodes of the tree are associated

6



with rectangular cells such that at each step of the construction of the tree,
the collection of cells associated with the leaves of the tree (i.e., external
nodes) forms a partition of [0, 1]d. The root of the random tree is [0, 1]d

itself. At each step of the construction of the tree, a leaf is chosen uniformly at
random. The split variable J is then selected uniformly at random from the d
candidates x(1), . . . , x(d). Finally, the selected cell is split along the randomly
chosen variable at a random location, chosen according to a uniform random
variable on the length of the chosen side of the selected cell. The procedure is
repeated k times where k ≥ 1 is a deterministic parameter, fixed beforehand
by the user, and possibly depending on n.

The randomized classifier gn(x, Z) takes a majority vote among all Yi for
which the corresponding feature vector Xi falls in the same cell of the random
partition as x. (For concreteness, break ties in favor of the label 1.)

The purely random forest classifier is a radically simplified version of
random forest classifiers used in practice. The main simplification lies in the
fact that recursive cell splits do not depend on the labels Y1, . . . , Yn. The next
theorem mainly serves as an illustration of how the consistency problem of
random forest classifiers may be attacked. More involved versions of random
forest classifiers are discussed in subsequent sections.

Theorem 3.1 Assume that the distribution of X is supported on [0, 1]d.
Then the purely random forest classifier gn is consistent whenever k → ∞
and k/n → 0 as k → ∞.

proof. By Proposition 2.1 it suffices to prove consistency of the randomized
base tree classifier gn. To this end, we recall a general consistency theorem for
partitioning classifiers proved in Devroye, Györfi, and Lugosi [10, Theorem
6.1]. According to this theorem, gn is consistent if both diam(An(X, Z)) → 0
in probability and Nn(X, Z) → ∞ in probability, where An(x, Z) is the
rectangular cell of the random partition containing x and

Nn(x, Z) =

n∑

i=1

�
{Xi∈An(x,Z)}

is the number of data points falling in the same cell as x.
First we show that Nn(X, Z) → ∞ in probability. Consider the random

tree partition defined by Z. Observe that the partition has k +1 rectangular
cells, say A1, . . . , Ak+1. Let N1, . . . , Nk+1 denote the number of points of

7



X, X1, . . . , Xn falling in these k+1 cells. Let S = {X, X1, . . . , Xn} denote the
set of positions of these n+1 points. Since these points are independent and
identically distributed, fixing the set S (but not the order of the points) and
Z, the conditional probability that X falls in the i-th cell equals Ni/(n + 1).
Thus, for every fixed t > 0,

P{Nn(X, Z) < t} = E [P{Nn(X, Z) < t|S, Z}]

= E

[
∑

i:Ni<t

Ni

n + 1

]

≤ (t − 1)
k + 1

n + 1

which converges to zero by our assumption on k.
It remains to show that diam(An(X, Z)) → 0 in probability. To this aim,

let Vn = Vn(x, Z) be the size of the first dimension of the rectangle containing
x. Let Tn = Tn(x, Z) be the number of times that the box containing x is
split when we construct the random tree partition.

Let Kn be binomial (Tn, 1/d), representing the number of times the box
containing x is split along the first coordinate.

Clearly, it suffices to show that Vn(x, Z) → 0 in probability for µ-almost
all x, so it is enough to show that for all x, E[Vn(x, Z)] → 0. Observe that if
U1, U2, . . . are independent uniform [0, 1], then

E[Vn(x, Z)] ≤ E

[
E

[
Kn∏

i=1

max(Ui, 1 − Ui)

∣∣∣∣∣Kn

]]

= E

[
E [max(U1, 1 − U1)]

Kn

]

= E
[
(3/4)Kn

]

= E

[(
1 − 1

d
+

3

4d

)Tn

]

= E

[(
1 − 1

4d

)Tn

]
.

Thus, it suffices to show that Tn → ∞ in probability. To this end, note that
the partition tree is statistically related to a random binary search tree with
k + 1 external nodes (and thus k internal nodes). Such a tree is obtained as
follows. Initially, the root is the sole external node, and there are no internal
nodes. Select an external node uniformly at random, make it an internal
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node and give it two children, both external. Repeat until we have precisely
k internal nodes and k + 1 external nodes. The resulting tree is the random
binary search tree on k internal nodes (see Devroye [8] and Mahmoud [16] for
more equivalent constructions of random binary search trees). It is known
that all levels up to ` = b0.37 log kc are full with probability tending to
one as k → ∞ (Devroye [9]). The last full level Fn is called the fill-up level.
Clearly, the partition tree has this property. Therefore, we know that all final
cells have been cut at least ` times and therefore Tn ≥ ` with probability
converging to 1. This concludes the proof of Theorem 3.1. �

Remark. We observe that the largest first dimension among external nodes
does not tend to zero in probability except for d = 1. For d ≥ 2, it tends to a
limit random variable that is not atomic at zero (this can be shown using the
theory of branching processes). Thus the proof above could not have used
the uniform smallness of all cells. Despite the fact that the random partition
contains some cells of huge diameter of non-shrinking size, the rule based on
it is consistent. �

Next we consider a scale-invariant version of the purely random forest
classifier. In this variant the root cell is the entire feature space and the
random tree is grown up to k cuts. The leaf cell to cut and the direction J in
which the cell is cut are chosen uniformly at random, exactly as in the purely
random forest classifier. The only difference is that the position of the cut is
now chosen in a data-based manner: if the cell to be cut contains N of the
data points X, X1, . . . , Xn, then a random index I is chosen uniformly from
the set {0, 1, . . . , N} and the cell is cut so that, when ordered by their J-th
components, the points with the I smallest values fall in one of the subcells
and the rest in the other. To avoid ties, we assume that the distribution of X
has non-atomic marginals. In this case the random tree is well-defined with
probability one. Just like before, the associated classifier takes a majority
vote over the labels of the data points falling in the same cell as X. The scale-

invariant random forest classifier is defined as the corresponding averaged
classifier.

Theorem 3.2 Assume that the distribution of X has non-atomic marginals
in R

d. Then the scale-invariant random forest classifier gn is consistent
whenever k → ∞ and k/n → 0 as k → ∞.
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proof. Once again, we may use Proposition 2.1 and [10, Theorem 6.1] to
prove consistency of the randomized base tree classifier gn. The proof of the
fact that Nn(X, Z) → ∞ in probability is the same as in Theorem 3.1.

To show that diam(An(X, Z)) → 0 in probability, we begin by noting
that, just as in the case of the purely random forest classifier, the partition
tree is equivalent to a binary search tree, and therefore with probability
converging to one, all final cells have been cut at least ` = b0.37 log kc times.

Since the classification rule is scale-invariant, we may assume, without
loss of generality, that the distribution of X is concentrated on the unit cube
[0, 1]d.

Let ni denote the cardinality of the i-th cell in the partition, 1 ≤ i ≤ k+1,
where the cardinality of a cell C is |C ∩ {X, X1, . . . , Xn}|. Thus,

∑k+1
i=1 ni =

n + 1. Let Vi be the first dimension of the i-th cell. Let V (X) be the first
dimension of the cell that contains X. Clearly, given the ni’s, V (X) = Vi

with probability ni/(n + 1). We need to show that E[V (X)] → 0. But we
have

E[V (X)] = E

[∑k+1
i=1 niVi

n + 1

]
.

So, it suffices to show that E[
∑

i niVi] = o(n).
It is worthy of mention that the random split of a box can be imagined

as follows. Given that we split along the s-th coordinate axis, and that a
box has m points, then we select one of the m + 1 spacings defined by these
m points uniformly at random, still for that s-th coordinate. We cut that
spacing properly but are free to do so anywhere. We can cut in proportions
λ, 1 − λ with λ ∈ (0, 1), and the value of λ may vary from cut to cut and
even be data-dependent. In fact, then, each internal and external node of our
partition tree has associated with it two important quantities, a cardinality,
and its first dimension. If we keep using i to index cells, then we can use ni

and Vi for the i-th cell, even if it is an internal cell.
Let A be the collection of external nodes in the subtree of the i-th cell.

Then trivially, ∑

j∈A

njVj ≤ niVi ≤ n.

Thus, if E is the collection of all external nodes of a partition tree, ` is at
most the minimum path distance from any cell in E to the root, and L is the
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collection of all nodes at distance ` from the root, then, by the last inequality,

∑

i∈E

niVi ≤
∑

i∈L

niVi.

Thus, using the notion of fill-up level Fn of the binary search tree, and setting
` = b0.37 log kc, we have

E

[
∑

i∈E

niVi

]
≤ nP{Fn > `} + E

[
∑

i∈L

niVi

]
.

We have seen that the first term is o(n). We argue that the second term is
not more than n(1−1/(8d))`, which is o(n) since k → ∞. That will conclude
the proof.

It suffices now to argue recursively and fix one cell of cardinality n and
first dimension V . Let C be the collection of its children. We will show that

E

[
∑

i∈C

niVi

]
≤
(

1 − 1

8d

)
nV.

Repeating this recursively ` times shows that

E

[
∑

i∈L

niVi

]
≤ n

(
1 − 1

8d

)`

because V = 1 at the root.
Fix that cell of cardinality n, and assume without loss of generality that

V = 1. Let the spacings along the first coordinate be a1, . . . , an+1, their sum
being one. With probability 1−1/d, there the first axis is not cut, and thus,∑

i∈C niVi = n. With probability 1/d, the first axis is cut in two parts. We
will show that conditional on the event that the first direction is cut,

E

[
∑

i

niVi

]
≤ 7n

8
.

Unconditionally, we have

E

[
∑

i

niVi

]

≤
(

1 − 1

d

)
n +

1

d
· 7n

8
=

(
1 − 1

8d

)
n ,
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as required. So, let us prove the conditional result.
Using δj to denote numbers drawn from (0, 1), possibly random, we have

E

[
∑

i

niVi

]

=
1

n + 1
E

[ n+1∑

j=1

[(j − 1)(a1 + · · · + aj−1 + ajδj)

+(n + 1 − j)(aj(1 − δj) + aj+1 + · · ·+ an+1)
]]

=
1

n + 1
E

[
n+1∑

k=1

ak

(
∑

k<j≤n+1

(j − 1)

+
∑

1≤j<k

(n + 1 − j) + δk(k − 1) + (1 − δk)(n + 1 − k)

)]

≤ 1

n + 1

(
n+1∑

k=1

ak

(
n(n + 1) − k(k − 1)

2

−(n − k + 1)(n − k + 2)

2
+ max(k − 1, n + 1 − k)

))

=
1

n + 1

(
n+1∑

k=1

ak

(
n(n + 1)

2
+ (k − 1)(n + 1 − k) + max(k − 1, n + 1 − k)

))

≤ 1

n + 1

((
n(n + 1)

2
+
(n

2

)2

+ n

) n+1∑

k=1

ak

)

= n

(
3n/4 + (3/2)

n + 1

)

≤ 7n

8
if n > 4.

�

Our definition of the scale-invariant random forest classifier permits cells
to be cut such that one of the created cells becomes empty. One may easily
prevent this by artificially forcing a minimum number of points in each cell.
This may be done by restricting the random position of each cut so that
both created subcells contain at least, say, m points. By a minor modifica-
tion of the proof above it is easy to see that as long as m is bounded by a
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constant, the resulting random forest classifier remains consistent under the
same conditions as in Theorem 3.2.

4 Creating consistent rules by randomization

Proposition 2.1 shows that if a randomized classifier is consistent, then the
corresponding averaged classifier remains consistent. The converse is not
true. There exist inconsistent randomized classifiers such that their averaged
version becomes consistent. Indeed, Breiman’s [5] original random forest
classifier builds tree classifiers by successive randomized cuts until the cell of
the point X to be classified contains only one data point, and classifies X
as the label of this data point. Breiman’s random forest classifier is just the
averaged version of such randomized tree classifiers. The randomized base
classifier gn(x, Z) is obviously not consistent for all distributions.

This does not imply that the averaged random forest classifier is not
consistent. In fact, in this section we will see that averaging may “boost”
inconsistent base classifiers into consistent ones. We point out in Section
6 that there are distributions of (X, Y ) for which Breiman’s random forest
classifier is not consistent. The counterexample shown in Proposition 6.1
is such that the distribution of X doesn’t have a density. It is possible,
however, that Breiman’s random forest classifier is consistent whenever the
distribution of X has a density. Breiman’s rule is difficult to analyze as each
cut of the random tree is determined by a complicated function of the entire
data set Dn (i.e., both feature vectors and labels). However, in Section 6
below we provide arguments suggesting that Breiman’s random forest is not
consistent when a density exists. Instead of Breiman’s rule, next we analyze a
stylized version by showing that inconsistent randomized rules that take the
label of only one neighbor into account can be made consistent by averaging.

For simplicity, we consider the case d = 1, though the whole argument
extends, in a straightforward way, to the multivariate case. To avoid com-
plications introduced by ties, assume that X has a non-atomic distribution.
Define a randomized nearest neighbor rule as follows: for a fixed x ∈ R, let
X(1)(x), X(2)(x), . . . , X(n)(x) be the ordering of the data points X1, . . . , Xn

according to increasing distances from x. Let U1, . . . , Un be i.i.d. random
variables, uniformly distributed over [0, 1]. The vector of these random vari-
ables constitutes the randomization Z of the classifier. We define gn(x, Z) to
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be equal to the label Y(i)(x) of the data point X(i)(x) for which

max(i, mUi) ≤ max(j, mUj) for all j = 1, . . . , n

where m ≤ n is a parameter of the rule. We call X(i)(x) the perturbed near-
est neighbor of x. Note that X(1)(x) is the (unperturbed) nearest neighbor
of x. To obtain the perturbed version, we artificially add a random uniform
coordinate and select a data point with the randomized rule defined above.
Since ties occur with probability zero, the perturbed nearest neighbor clas-
sifier is well defined almost surely. It is clearly not, in general, a consistent
classifier.

Call the corresponding averaged classifier gn(x) =
�
{EZgn(x,Z)≥1/2} the

averaged perturbed nearest neighbor classifier.
In the proof of the consistency result below, we use Stone’s [17] gen-

eral consistency theorem for locally weighted average classifiers, see also [10,
Theorem 6.3]. Stone’s theorem concerns classifiers that take the form

gn(x) =
�

{
Pn

i=1 YiWni(x)≥
Pn

i=1(1−Yi)Wni(x)}

where the weights Wni(x) = Wni(x, X1, . . . , Xn) are non-negative and sum to
one. According to Stone’s theorem, consistency holds if the following three
conditions are satisfied:

(i)

lim
n→∞

E

[
max
1≤i≤n

Wni(X)

]
= 0.

(ii) For all a > 0,

lim
n→∞

E

[
n∑

i=1

Wni(X)
�
{‖Xi−X‖>a}

]
= 0.

(iii) There is a constant c such that, for every non-negative measurable
function f satisfying Ef(X) < ∞,

E

[
n∑

i=1

Wni(X)f(Xi)

]

≤ cEf(X).

Theorem 4.1 The averaged perturbed nearest neighbor classifier gn is con-
sistent whenever the parameter m is such that m → ∞ and m/n → 0.
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proof. If we define

Wni(x) = PZ{Xi is the perturbed nearest neighbor of x}

then it is clear that the averaged perturbed nearest neighbor classifier is a
locally weighted average classifier and Stone’s theorem may be applied. It is
convenient to introduce the notation

pni(x) = PZ{X(i)(x) is the perturbed nearest neighbor of x}

and write Wni(x) =
∑n

j=1

�
{Xi=X(j)(x)}pnj(x).

To check the conditions of Stone’s theorem, first note that

pni(x) = P{mUi ≤ i ≤ min
j<i

mUj} + P{i < mUi ≤ min
j≤n

max(j, mUj)}

=
�
{i≤m}

i

m

(
1 − i

m

)i−1

+ P{i < mUi ≤ min
j≤n

max(j, mUj)} .

Now we are prepared to check the conditions of Stone’s theorem. To
prove that (i) holds, note that by monotonicity of pni(x) in i, it suffices to
show that pn1(x) → 0.

But clearly, for m ≥ 2,

pn1(x) ≤ 1

m
+ P

{
U1 ≤ min

j≤m
max

(
j

m
, Uj

)}

=
1

m
+ E

[
m∏

j=2

P

{
U1 ≤ max

(
j

m
, Uj

)
|U1

}]

=
1

m
+ E

[
m∏

j=2

[
1 − �

{U1>j/m}U1

]
]

≤ 1

m
+ E

[
(1 − U1)

mU1−2�
{bmU1c≥3}

]
+ P {bmU1c < 3}

which converges to zero by monotone convergence as m → ∞.
(ii) follows by the condition m/n → 0 since

∑n
i=1 Wni(X)

�
{‖Xi−X‖>a} = 0

whenever the distance of m-th nearest neighbor of X to X is at most a. But
this happens eventually, almost surely, see [10, Lemma 5.1].

Finally, to check (iii), we use again the monotonicity of pni(x) in i. We
may write pni(x) = ai + ai+1 + · · · + an for some non-negative numbers
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aj , 1 ≤ j ≤ n, depending upon m and n but not x. Observe that
∑n

j=1 jaj =∑n
i=1 pni(x) = 1. But then

E

[
n∑

i=1

Wni(X)f(Xi)

]

= E

[
n∑

i=1

pni(X)f(X(i))

]

= E

[
n∑

i=1

n∑

j=i

ajf(X(i))

]

= E

[
n∑

j=1

aj

j∑

i=1

f(X(i))

]

=

n∑

j=1

ajE

[
j∑

i=1

f(X(i))

]

≤ c
n∑

j=1

ajjEf(X)

(by Stone’s [17] lemma, see [10, Lemma 5.3], where c is a constant)

= cEf(X)
n∑

j=1

ajj = cEf(X)

as desired. �

5 Bagging

One of the first and simplest ways of randomizing and averaging classifiers
in order to improve their performance is bagging, suggested by Breiman
[2]. In bagging, randomization is achieved by generating many bootstrap
samples from the original data set. Breiman suggests selecting n train-
ing pairs (Xi, Yi) at random, with replacement from the bag of all train-
ing pairs {(X1, Y1), . . . , (Xn, Yn)}. Denoting the random selection process by
Z, this way one obtains new training data Dn(Z) with possible repetitions
and given a classifier gn(X, Dn), one can calculate the randomized classifier
gn(X, Z, Dn) = gn(X, Dn(Z)). Breiman suggests repeating this procedure
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for many independent draws of the bootstrap sample, say m of them, and
calculating the voting classifier g

(m)
n (X, Zm, Dn) as defined in Section 2.

In this section we consider a generalized version of bagging predictors in
which the size of the bootstrap samples is not necessary the same as that
the original sample. Also, to avoid complications and ambiguities due to
replicated data points, we exclude repetitions in the bootstrapped data. This
is assumed for convenience but sampling with replacement can be treated by
minor modifications of the arguments below.

To describe the model we consider, introduce a parameter qn ∈ [0, 1]. In
the bootstrap sample Dn(Z) each data pair (Xi, Yi) is present with proba-
bility qn, independently of each other. Thus, the size of the bootstrapped
data is a binomial random variable N with parameters n and qn. Given a
sequence of (non-randomized) classifiers {gn}, we may thus define the ran-
domized classifier

gn(X, Z, Dn) = gN(X, Dn(Z)) ,

that is, the classifier is defined based on the randomly re-sampled data. By
drawing m independent bootstrap samples Dn(Z1), . . . , Dn(Zm) (with sizes

N1, . . . , Nm), we may define the bagging classifier g
(m)
n (X, Zm, Dn) as the

voting classifier based on gN1(X, Dn(Z1)), . . . , gNm
(X, Dn(Zm)) as in Section

2. For the theoretical analysis it is more convenient to consider the averaged
classifier gn(x, Dn) =

�
{EZgN (x,Dn(Z))≥1/2} which is the limiting classifier one

obtains as the number m of the bootstrap replicates grows to infinity.
The following result establishes consistency of bagging classifiers under

the assumption that the original classifier is consistent. It suffices that the
expected size of the bootstrap sample goes to infinity. The result is an
immediate consequence of Proposition 2.1. Note that the choice of m does
not matter in Theorem 5.1. It can be one, constant, or a function of n.

Theorem 5.1 Let {gn} be a sequence of classifiers that is consistent for the

distribution of (X, Y ). Consider the bagging classifiers g
(m)
n (x, Zm, Dn) and

gn(x, Dn) defined above, using parameter qn. If nqn → ∞ as n → ∞ then
both classifiers are consistent.

If a classifier is insensitive to duplicates in the data, Breiman’s original
suggestion is roughly equivalent to taking qn ≈ 1 − 1/e.

However, it may be advantageous to choose much smaller values of qn. In
fact, small values of qn may turn inconsistent classifiers into consistent ones
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via the bagging procedure. We illustrate this phenomenon on the simple
example of the 1-nearest neighbor rule.

Recall that the 1-nearest neighbor rule sets gn(x, Dn) = Y(1)(x) where
Y(1)(x) is the label of the feature vector X(1)(x) whose Euclidean distance
to x is minimal among all X1, . . . , Xn. Ties are broken in favor of smallest
indices. It is well-known that gn is consistent only if either L∗ = 0 or L∗ =
1/2, otherwise its asymptotic probability of error is strictly greater than L∗.
However, by bagging one may turn the 1-nearest neighbor classifier into a
consistent one, provided that the size of the bootstrap sample is sufficiently
small. The next result characterizes consistency of the bagging version of the
1-nearest neighbor classifier in terms of the parameter qn.

Theorem 5.2 The bagging averaged 1-nearest neighbor classifier gn(x, Dn)
is consistent for all distributions of (X, Y ) if and only if qn → 0 and nqn →
∞.

proof. It is obvious that both qn → 0 and nqn → ∞ are necessary for
consistency for all distributions.

Assume now that qn → 0 and nqn → ∞. The key observation is that
gn(x, Dn) is a locally weighted average classifier for which Stone’s consistency
theorem, recalled in Section 4, applies.

Recall that for a fixed x ∈ R, X(1)(x), X(2)(x), . . . , X(n)(x) denotes the
ordering of the data points X1, . . . , Xn according to increasing distances from
x. (Points with equal distances to x are ordered according to their indices.)
Observe that gn may be written as

gn(x, Dn) =
�
{Pn

i=1 YiWni(x)≥Pn
i=1(1−Yi)Wni(x)}

where Wni(x) =
∑n

j=1

�
{Xi=X(j)(x)}pnj(x) and pni(x) = (1−qn)i−1qn is defined

as the probability (with respect to the random selection Z of the bootstrap
sample) that X(i)(x) is the nearest neighbor of x in the sample Dn(Z). It
suffices to prove that the weights Wni(X) satisfy the three conditions of
Stone’s theorem.

Condition (i) obviously holds because max1≤i≤n Wni(X) = pn1(X) =
qn → 0.

To check condition (ii), define kn =
⌈√

n/qn

⌉
. Since nqn → ∞ implies

that kn/n → 0, it follows from [10, Lemma 5.1] that eventually, almost surely,
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‖X − X(kn)(X)‖ ≤ a and therefore

n∑

i=1

Wni(X)
�
{‖Xi−X‖>a} ≤

n∑

i=kn+1

pni(X)

=
n∑

i=kn+1

qn(1 − qn)i−1

≤ (1 − qn)kn

≤ (1 − qn)
√

n/qn

≤ e−
√

nqn

where we used 1 − qn ≤ e−qn. Therefore,
∑n

i=1 Wni(X)
�
{‖Xi−X‖>a} → 0

almost surely and Stone’s second condition is satisfied by dominated conver-
gence.

Finally, condition (iii) follows from the fact that pni(x) is monotone de-
creasing in i, after using an argument as in the proof of Theorem 4.1. �

6 Random forests based on greedily grown

trees

In this section we study random forest classifiers that are based on random-
ized tree classifiers that are constructed in a greedy manner, by recursively
splitting cells to minimize an empirical error criterion. Such greedy forests
were introduced by Breiman [5, 6] and have shown excellent performance in
many applications. One of his most popular classifiers is an averaging clas-
sifier, gn, based on a randomized tree classifier gn(x, Z) defined as follows.
The algorithm has a parameter 1 ≤ v < d which is a positive integer. The
feature space R

d is partitioned recursively to form a tree partition. The root
of the random tree is R

d. At each step of the construction of the tree, a leaf
is chosen uniformly at random. v variables are selected uniformly at random
from the d candidates x(1), . . . , x(d). A split is selected along one of these v
variables to minimize the number of misclassified training points if a majority
vote is used in each cell. The procedure is repeated until every cell contains
exactly one training point Xi. (This is always possible if the distribution of
X has non-atomic marginals.)
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In some versions of Breiman’s algorithm, a bootstrap subsample of the
training data is selected before the construction of each tree to increase the
effect of randomization.

As observed by Lin and Jeon [14], Breiman’s classifier is a weighted lay-

ered nearest neighbor classifier, that is, a classifier that takes a (weighted)
majority vote among the layered nearest neighbors of the observation x. Xi

is called a layered nearest neighbor of x if the rectangle defined by x and Xi

as their opposing vertices does not contain any other data point Xj (j 6= i).
This property of Breiman’s random forest classifier is a simple consequence of
the fact that each tree is grown until every cell contains just one data point.
Unfortunately, this simple property prevents the random tree classifier from
being consistent for all distributions:

Proposition 6.1 There exists a distribution of (X, Y ) such that X has non-
atomic marginals for which Breiman’s random forest classifier is not consis-
tent.

proof. The proof works for any weighted layered nearest neighbor classifier.
Let the distribution of X be uniform on the segment {x = (x(1), . . . , x(d)) :
x(1) = · · · = x(d), x(1) ∈ [0, 1]} and let the distribution of Y be such that
L∗ 6= {0, 1/2}. Then with probability one, X has only two layered nearest
neighbors and the classification rule is not consistent. (Note that Problem
11.6 in [10] erroneously asks the reader to prove consistency of the (un-
weighted) layered nearest neighbor rule for any distribution with non-atomic
marginals. As the example in this proof shows, the statement of the exercise
is incorrect. Consistency of the layered nearest neighbor rule is true however,
if the distribution of X has a density.) �

One may also wonder whether Breiman’s random forest classifier is con-
sistent if instead of growing the tree down to cells with a single data point,
one uses a different stopping rule, for example if one fixes the total number
of cuts at k and let k grow slowly as in the examples of Section 3. The next
two-dimensional example provides an indication that this is not necessarily
the case. Consider the joint distribution of (X, Y ) sketched in Figure 1. X
has a uniform distribution on [0, 1] × [0, 1] ∪ [1, 2] × [1, 2] ∪ [2, 3] × [2, 3]. Y
is a function of X, that is η(x) ∈ {0, 1} and L∗ = 0. The lower left square
[0, 1]× [0, 1] is divided into countably infinitely many vertical stripes in which
the stripes with η(x) = 0 and η(x) = 1 alternate. The upper right square
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Figure 1: An example of a distribution for which greedy random forests are
inconsistent. The distribution of X is uniform on the union of the three
large squares. White areas represent the set where η(x) = 0 and on the grey
regions η(x) = 1.

[2, 3] × [2, 3] is divided similarly into horizontal stripes. The middle rectan-
gle [1, 2] × [1, 2] is a 2 × 2 checkerboard. Consider Breiman’s random forest
classifier with v = 1 (the only possible choice when d = 2).

For simplicity, consider the case when, instead of minimizing the empirical
error, each tree is grown by minimizing the true probability of error at each
split in each random tree. Then it is easy to see that no matter what the
sequence of random selection of split directions is and no matter for how long
each tree is grown, no tree will ever cut the middle rectangle and therefore
the probability of error of the corresponding random forest classifier is at
least 1/6.

It is not so clear what happens in this example if the successive cuts
are made by minimizing the empirical error. Whether the middle square is
ever cut will depend on the precise form of the stopping rule and the exact
parameters of the distribution. The example is here to illustrate that con-
sistency of greedily grown random forests is a delicate issue. Note however
that if Breiman’s original algorithm is used in this example (i.e., when all
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cells with more than one data point in it are split) then one obtains a consis-
tent classification rule. If, on the other hand, horizontal or vertical cuts are
selected to minimize the probability of error, and k → ∞ in such a way that
k = O(n1/2−ε) for some ε > 0, then, as errors on the middle square are never
more than about O(1/

√
n) (by the limit law for the Kolmogorov-Smirnov

statistic), we see that thin strips of probability mass more than 1/
√

n are
preferentially cut. By choosing the probability weights of the strips, one
can easily see that we can construct more than 2k such strips. Thus, when
k = O(n1/2−ε), no consistency is possible on that example.

We note here that many versions of random forest classifiers build on
random tree classifiers based on bootstrap subsampling. This is the case
of Breiman’s principal random forest classifier. Breiman suggests to take
a random sample of size n drawn with replacement from the original data.
While this may result in an improved behavior in some practical instances, it
is easy to see that such a subsampling procedure does not vary the consistency
property of any of the classifiers studied in this paper. For example, non-
consistency of Breiman’s random forest classifier with bootstrap resampling
for the distribution considered in the proof of Proposition 6.1 follows from the
fact that the two layered nearest neighbors on both sides are included in the
bootstrap sample with a probability bounded away from zero and therefore
the weight of these two points is too large, making consistency impossible.

In order to remedy the inconsistency of greedily grown tree classifiers, De-
vroye, Györfi, and Lugosi [10, Section 20.14] introduce a greedy tree classifier
which, instead of cutting every cell along just one direction, cuts out a whole
hyper-rectangle from a cell in a way to optimize the empirical error. The
disadvantage of this method is that in each step, d parameters need to be
optimized jointly and this may be computationally prohibitive if d is not very
small. (The computational complexity of the method is O(nd).) However,
we may use the methodology of random forests to define a computationally
feasible consistent greedily grown random forest classifier.

In order to define the consistent greedy random forest, we first recall the
tree classifier of Devroye, Györfi, and Lugosi [10, Section 20.14].

The space is partitioned into rectangles as shown in Figure 2.
A hyper-rectangle defines a split in a natural way. A partition is denoted

by P, and a decision on a set A ∈ P is by majority vote. We write gP for
such a rule:

gP(x) =
�
{

P

i:Xi∈A(x) Yi>
P

i:Xi∈A(x)(1−Yi)}
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Figure 2: A tree based on partitioning the plane into rectangles. The right
subtree of each internal node belongs to the inside of a rectangle, and the
left subtree belongs to the complement of the same rectangle (ic denotes the
complement of i). Rectangles are not allowed to overlap.

where A(x) denotes the cell of the partition containing x. Given a partition
P, a legal hyper-rectangle T is one for which T ∩ A = ∅ or T ⊆ A for all
sets A ∈ P. If we refine P by adding a legal rectangle T somewhere, then
we obtain the partition T . The decision gT agrees with gP except on the set
A ∈ P that contains T .

Introduce the convenient notation

νj(A) = P{X ∈ A, Y = j}, j ∈ {0, 1},

νj,n(A) =
1

n

n∑

i=1

I{Xi∈A,Yi=j}, j ∈ {0, 1}.

The empirical error of gP is

L̂n(P)
def
=
∑

R∈P
L̂n(R),

where

L̂n(R) =
1

n

n∑

i=1

I{Xi∈R,gP (Xi)6=Yi} = min(ν0,n(R), ν1,n(R)).

We may similarly define L̂n(T ). Given a partition P, the greedy classifier

selects that legal rectangle T for which L̂n(T ) is minimal (with any appro-
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priate policy for breaking ties). Let R be the set of P containing T . Then
the greedy classifier picks that T for which

L̂n(T ) + L̂n(R − T ) − L̂n(R)

is minimal. Starting with the trivial partition P0 = {R
d}, we repeat the

previous step k times, leading thus to k+1 regions. The sequence of partitions
is denoted by P0,P1, . . . ,Pk.

Devroye, Györfi, and Lugosi [10, Theorem 20.9] establish consistency of
this classifier. More precisely, it is shown that if X has non-atomic marginals,

then the greedy classifier with k → ∞ and k = o
(√

n/ log n
)

is consistent.

Based on the greedy tree classifier, we may define a random forest clas-
sifier by considering its bagging version. More precisely, let qn ∈ [0, 1] be a
parameter and let Z = Z(Dn) denote a random subsample of size binomial
(n, qn) of the training data (i.e., each pair (Xi, Yi) is selected at random,
without replacement, from Dn, with probability qn) and let gn(x, Z) be the
greedy tree classifier (as defined above) based on the training data Z(Dn).
Define the corresponding averaged classifier gn. We call gn the greedy ran-

dom forest classifier. Note that gn is just the bagging version of the greedy
tree classifier and therefore Theorem 5.1 applies:

Theorem 6.1 The greedy random forest classifier is consistent whenever X

has non-atomic marginals in R
d, nqn → ∞, k → ∞ and k = o

(√
nqn/ log(nqn)

)

as n → ∞.

proof. This follows from Theorem 5.1 and the fact that the greedy tree
classifier is consistent (see Theorem 20.9 of [10]). �

Observe that the computational complexity of building the randomized
tree classifier gn(x, Z) is O((nqn)

d). Thus, the complexity of computing the

voting classifier g
(m)
n is m(nqn)d. If qn � 1, this may be a significant speed-up

compared to the complexity O(nd) of computing a single tree classifier using
the full sample. Repeated subsampling and averaging may make up for the
effect of decreased sample size.
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