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§1. Introduction.

The purpose of this note is to prove a simple result for a random Delaunay triangulation Dn
on n points, X1, . . . , Xn, that are independently and uniformly distributed on a convex set C of R2.

Throughout the paper, all convex sets are assumed to be compact and of strictly positive volume. The

stabbing number Sn of Dn is the maximal number of Delaunay edges cut by any line. We show the

following:

Theorem 1. The stabbing number Sn of Dn is Θ(
√
n) in the following senses:

(i) ESn = Θ(
√
n) ;

(ii) There exist constants c′ > c > 0 such that P{Sn > c′
√
n} → 0 and P{Sn < c

√
n} → 0.

In Theorem 1* below, an explicit tail inequality is derived which shows that it is rather unlikely

that Sn is much larger than t
√
n for a constant t depending upon the shape of C only. Okabe, Boots and

Sugihara (1992) describe many of the properties of Delaunay triangulations needed in the proofs below.

(see also Bourachaki and George, 1997). We consider a host of problems that directly or indirectly

involve a Delaunay triangulation, and whose analysis requires the asymptotic behavior of Sn. Consider

for example point location for a query point X . In 1978, Green and Sibson proposed rectilinear search,

based on ideas of Lawson (1977). Here one draws a data point at random, and walks in the Delaunay

triangulation to X to determine the triangle for X . The expected time is O(
√
n) (Devroye, Lemaire

and Moreau, 2004). In this paper, we show that the expected time is O(
√
n) even if the query point

X is chosen in the worst possible manner after having looked at the data. The bound on the stabbing

number allows one to develop simple yet efficient algorithms to solve several other problems such as range

queries, shortest-path queries, and nearest neighbor queries. We outline a number of these implications

of Theorem 1 in Section 5.
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A point set with its Delaunay triangulation. No circle circumscribing

any triangle has any data point in its interior.

§2. Border points

We will obtain all our results based on the notion of a border point. Let C be a convex set and

let X1, . . . , Xn be n points in C. Define the distance Di from Xi to the complement Cc of C:

Di = inf
x6∈C
‖Xi − x‖ .

Define the circle Bi centered at Xi of radius Ri = Di
√

3/2, and partition Bi into 24 cones of equal angle

π/12, with the j-th cone covering all angles in [((j − 1)/24)2π, (j/24)2π). Let Ni,j be the cardinality of

the j-th cone of Bi, i.e., the number of Xk’s with k 6= i that belong to that cone. We call Xi a border

point if minj Ni,j = 0.
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C

(Di,0)

(Ri,0)

Xi

circle Bi centered at Xi

The convex region C is shaded. A point Xi is a border point if one of the 24 cones

centered at it, of radius Ri = Di
√

3/2, contains no other data point. Here Di is the

distance from Xi to the complement of C.

Lemma 1. Let x1, . . . , xn be points in the plane. If (xi, xj) is a Delaunay edge, then one of two halfcircles

supported by (xi, xj) must be empty.
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Proof. There exists xk such that the circle through xi, xj , xk is empty. This circle necessarily contains

one of the two halfcircles.

xi

xj

If (xi, xj) is a Delaunay edge, then one of two halfcircles

supported by (xi, xj) must be empty.

Several properties of border points are useful here. The first one shows why we are interested.

Lemma 2. Consider the Delaunay triangulation D for X1, . . . , Xn, Y1, . . . , Ym, where Y1, . . . , Ym are

arbitrary points in Cc. If Xi is not a border point for C, then there is no Delaunay edge from Xi to some

Yj . Thus, all Delaunay edges from Xi to some Yj must emanate from border points Xi.

Proof. For brevity, set Xi = 0, Di = r, Bi = B. Partition B into 24 equal cones of angle π/12

each. Assume that Ni,j > 0 for all j. Let (Xi, Yk) be a Delaunay edge. Let Z be the point on (Xi, Yk)

at distance r from Xi (so that Z ∈ C). Since (Xi, Yk) is a Delaunay edge, one of the two halfcircles

supported by (Xi, Yk) must be empty. Thus, one of the halfcircles supported by (Xi, Z) must be empty

as well. Fix such a halfcircle H . We claim that H must necessarily contain one of the 24 cones, and thus

one of the 24 cones must be empty. Therefore, we obtain a contradiction, and (Xi, Yk) cannot possibly

have been a Delaunay edge. Assume without loss of generality that H is supported by ((0, 0), (r, 0)), and

faces towards the positive y-axis. Let C be the cone containing (r
√

3/2, 0). Let C ′ be the next cone in

counterclockwise order. To show that C ′ ⊆ H , it suffices to show that its topmost vertex is in H . This

vertex has coordinates r(
√

3/2)(cosα, sinα), where π/12 ≤ α ≤ π/6. This square of the distance from

this vertex to the center of H , (r/2, 0), is

r2
(

(3/4) sin2 α+ (3/4) cos2 α+ 1/4− (
√

3/2) cosα
)

= r2
(

1− (
√

3/2) cosα
)

≤ r2
(

1− (
√

3/2) cos(π/6)
)

= r2 (1− 3/4)

= (r/2)2 .

This concludes the proof of Lemma 2.
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The way Lemma 2 will be used is as follows. Consider data X1, . . . , Xn on a convex set C. Let L

be an infinite line, and let N be the number of Delaunay edge intersections with L. Clearly, L partitions

C into two convex sets A and B. Let NA and NB be the border points for the data, restricted to A

and B respectively. It is clear from Lemma 1 that any intersections with L can only be between border

points. But the part of the Delaunay triangulation restricted to these points is a planar graph, and thus,

the number of edges in this graph is at most three times the number of vertices. Thus,

N ≤ 3(NA +NB) .

By virtue of this, we need only study NA, the number of border points in a given convex set. To study

NA, we will use specialized versions of the Azuma-Hoeffding method of bounded differences (Azuma,

1967; Hoeffding, 1963; McDiarmid, 1989).

Lemma 3. Let Mn be the maximum distance from a border point to Cc. Then, if v is the volume of C,

and c > 0,

P
{
Mn ≥

√
32vc logn/πn

}
≤ 24en1−c .

Proof. Introduce u =
√

32vc logn/πn. If Mn ≥ u then for some i ≤ n with Di ≥ u and some cone of

radius u
√

3/2 centered at Xi, no other data point falls in this cone. As the probability of this cone is

πu2/32v, where v is the volume of C, we see that

P{Mn ≥ u} ≤ 24n
(

1− πu2/32v
)n−1

≤ 24ne e−nπu
2/32v ≤ 24en1−c .

Lemma 4. Let X1, . . . , Xn be i.i.d. and uniformly distributed in a convex set C, and let Yn(X1, . . . , Xn)

be the number of border points. Define γ = 4p/
√
v, where v is the volume of C, and p is the length of

the perimeter of C. Then

E{Yn} ≤ γ
√
n .

Proof. Clearly, E{Yn} is n times the probability that X1 is a border point. The latter probability is

the probability that one of the 24 cones of the circle of radius D1
√

3/2 is empty, where D1 is the distance

from X1 to Cc. For n = 0, the inequality is clearly true. For n = 1, it is true because Yn ≤ 1 and

γ ≥ 8
√
π. For n ≥ 2,

E{Yn} = nE
{

(1− πD2
1/32v)n−1

}

≤ nE
{

exp
(
−(n− 1)πD2

1/32v
)}

= n

∫ 1

0
P
{

exp
(
−(n− 1)πD2

1/32v
)
> t
}
dt

= n

∫ ∞

0
P
{

(n− 1)πD2
1/32v < u

}
e−u du

= n

∫ ∞

0
P

{
D1 <

√
32vu

(n− 1)π

}
e−u du
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≤ n
∫ ∞

0

p

v

√
32vu

(n− 1)π
e−u du

=
pn
√
π

2v

√
32v

(n− 1)π

=

√
8p2n2

(n− 1)v

≤
√

16p2n

v

= (4p/
√
v)
√
n

= γ
√
n .

Lemma 5. Let C0 be a convex set contained in the convex set C, and let X1, . . . , Xn be uniformly

distributed in C. Let Zn = Zn(X1, . . . , Xn) denote the number of border points in C0. Then

E{Zn} ≤ γ
√
n ,

where the constant γ > 0 is as in Lemma 4.

Proof. Let N be the number of Xi’s falling in C0. Let v0, v be the volumes of C0 and C, and let p0

and p be the perimeters of C0 and C. Then by Lemma 4 and Jensen’s inequality,

E{Zn} = E{E{Zn|N}}
≤ E{(4p0/

√
v0)
√
N}

≤ (4p0/
√
v0)
√

E{N}
= (4p0/

√
v0)
√
nv0/v

= (4p0/
√
v)
√
n

≤ (4p/
√
v)
√
n .

Lemma 6. Let X1, . . . , Xn be uniformly distributed on a convex set C of perimeter p and volume v > 0.

Define γ = 4p/
√
v and

W = Yn(X1, . . . , Xn)− Yn−m(Xm+1, . . . , Xn)

for 1 ≤ m ≤ n/2. If c > 1, c′ > 0, n > e, and

ξ = 512c logn
(
γm
√

16c logn/πn+ c′ logn
)
,

then we have

P{|W | ≥ ξ} ≤ 3 + 24e 2c

nα

where α = min(c− 1, c′/3, 128cc′/3).





Proof. Define δ =
√

32vc logn/π(n−m), where c > 0. Define t = 2pmδ/v + c′ logn for c′ > 0. Set

ρ = 4tπδ2/v. Let Cδ be the collection of all points that are within distance δ of the exterior Cc. Then

define the events

A = [all border points for X1, . . . , Xn and Xm+1, . . . , Xn are in Cδ ] ;

B =

[
m∑

i=1

1[Xi∈Cδ ] ≤ t
]

;

D =

[
m∑

i=1

1[Xi∈C2δ ] ≤ 2t

]
;

E =




n∑

j=m+1

1[
Xj∈∪1≤i≤m:Xi∈C2δ

B(Xi,δ)
] ≤ 2ρn


 .

We claim that if A, B, and E hold, then

|W | ≤ max(2ρn, t) ≤ ξ .
To see this, observe that by removing X1, . . . , Xm from the data, the number of border points may

decrease. This can happen only for Xi’s with i ≤ m that are border points for X1, . . . , Xn. But under

event A, the decrease is not more than the number of points of X1, . . . , Xm that are in Cδ , which under

event B cannot be more than t. The number of border points may increase. This can only happen if Xj ,

j > m, is not a border point for the full data set but becomes one for Xm+1, . . . , Xn. Under event A,

each such Xj must be in Cδ . So, Dj ≤ δ. But then some Xi, i ≤ m, must be within Dj
√

3/2 < δ of Xj

(otherwise its removal would have no effect on the status of Xj), and thus Xi has to be within distance 2δ

from Cc: Xi in C2δ . Let B(Xi, δ) be the ball of radius δ about Xi. The increase in the number of border

points is thus bounded by the number of Xj ’s, j > m, that fall in ∪i≤mB(Xi, δ), with the union restricted

to those Xi’s in C2δ . By event E, this number does not exceed 2ρn. Thus, A ∩ B ∩ E ⊆ [|W | ≤ ξ].

Therefore,

P{|W | ≥ ξ} ≤ P{(A ∩ B ∩ E)c}
≤ P{Ac}+ P{Bc}+ P{Dc}+ P{D ∩Ec} .

Clearly, with Bn as in Lemma 3,

P{Ac} ≤ P{Bn > δ}+ P{Bn−m > δ} ≤ 48e(n−m)1−c

by a double application of Lemma 3. Next, note that the number of Xi’s, i ≤ m in Cδ is not more in

distribution than a binomial (m, pδ/v) random variable V . Thus, by Lemma A,

P{Bc} ≤ P{V ≥ 2pmδ/v + c′ logn}
≤ min

(
e−pmδ/3v , e−(c′ log n/(pmδ/v))2pmδ/3v

)

= min
(
e−pmδ/3v , e−c

′2v log2 n/3pmδ
)
.

Similarly, replacing δ by 2δ and c′ by 2c′ throughout,

P{Dc} ≤ min
(
e−2pmδ/3v , e−2c′2v log2 n/3pmδ

)
.





Finally, conditioning on X1, . . . , Xm such that D holds,
∑n
j=m+1 1[

Xj∈∪1≤i≤m:Xi∈C2δ
B(Xi,δ)

] is stochas-

tically smaller than a binomial (n, ρ) random variable V ′. Therefore,

P{DEc} ≤ P{V ′ ≥ 2ρn} ≤ e−ρn/3 .
Plugging this back into our inequalities, we see that

P{|W | ≥ ξ} ≤ 48e(n−m)1−c + 2 min
(
e−pmδ/3v , e−c

′2v log2 n/3pmδ
)

+ e−ρn/3 .

The first term is not more than 24e 2c/nc−1. The middle term has two exponents. Regardless of the value

of pmδ/v, one exponent must be smaller than −c′ logn/3, so that the middle term in the bound is not more

than 2/nc
′/3. Finally, bound the last term by observing that ρ ≥ 4c′ logn × πδ2/v = 128cc′ log2 n/n ≥

128cc′ logn/n. Thus, the third term does not exceed 1/n128cc′/3.

Finally, we turn to the main tail bound for Yn, derived by means of Lemmas 4, 6 and D.

Lemma 7. Let γ = 4p/
√
v be as in Lemma 6. Then, there exists a universal integer n0 such that for

n ≥ n0,

P{Yn ≥ 4(γ
√
n+ 129024 log2 n)} ≤ 8358 + 33416 log5 n

n6
.

Proof. Assume throughout n ≥ 231. If 16p/
√
v >
√
n, the probability is clearly zero, as Yn ≤ n. So,

we assume p/
√
v ≤ √n/16. Note that in any case, p/

√
v ≥ 2

√
π > 3 because for fixed volume v, p is

minimized for the circle. Define k = blog5 nc, and note that 0.9999 log5 n ≤ k ≤ log5 n < n/2. Define

m = bn/kc and n′ = mk. Note that n/2 ≤ n− k ≤ n′ ≤ n, and that n′/(n′ −m) = k/(k − 1) < 1.0001.

Define

W = Yn(X1, . . . , Xn)− Yn′(X1, . . . , Xn′)

and

Z = Yn′(X1, . . . , Xn′).

We have

Yn(X1, . . . , Xn) ≤ (W + Z.

Partition the dataX1, . . . , Xn′ into k vectorsZ1, . . . , Zk, where Z1 = (X1, . . . , Xm), Z2 = (Xm+1, . . . , X2m)

and so forth. With a slight abuse of notation, we use Yn′(X1, . . . , Xn′) and Yk(Z1, . . . , Zk) according to

whichever is more convenient. With this notation, we have Z ≡ Yk. Clearly, Yk ≥ 0 and Yk is permutation

invariant. So to apply Lemma D we need to bound the tail probabilities for

W ′ = Yk(Z1, . . . , Zk)− Yk−1(Z2, . . . , Zk) .

We have, for ξ, θ > 0,

P
{
Yn ≥ 4(γ

√
n+ θ log2 n)

}

≤ P
{
W ≥ γ√n+ θ log2 n

}
+ P

{
Z ≥ 3

(
γ
√
n+ θ log2 n

)}

≤ P
{
W ≥ γ√n+ θ log2 n

}
+ 4kP

{
|W ′| ≥ ψ/2 + θ log2(n)/2

}
+ 4 exp

(
− γ2n

2k(ψ + θ log2 n)2

)





where we used Lemmas 4 and D. We choose

ψ = 60534γ
√
n log−7/2 n

and

θ = 2× 64512 = 129024

and bound each of the terms in the upper bound individually.

the term involving W . We apply Lemma 6 to W and show the following:

P
{
W ≥ γ√n+ θ log2 n

}
≤ 8354

n6 .

First, we replace m in the definition of ξ in Lemma 6 by n− n′, set c = 7, c′ = 18 there, and define

ζ = 512c logn
(
γk
√

16c logn/πn+ c′ logn
)

= 64512 log2 n+ 2048γ(logn)3/2k
√

7/πn .

By the bound of Lemma 6, if n is so large that

2048(logn)3/2k
√

7/πn <
√
n ,

then

P
{
W ≥ γ√n+ 64512 log2 n

}
≤ P{W ≥ ζ} ≤ 3 + 24e 2c

nα
≤ 8354

n6

since α = min(c− 1, c′/3, 128cc′/3) = 6.

the term involving W ′. We apply Lemma 6 to W ′ and show the following:

P
{
|W ′| ≥ ψ/2 + θ log2(n)/2

}
≤ 8354

n6
.

First we choose ξ as in Lemma 6 (which should be applied with m as in the present context, but with n

replaced by n′). Picking c = 7, c′ = 18, we have

ξ = 512c logn′
(
γm
√

16c logn′/πn′ + c′ logn′
)

≤ 512cc′ log2 n+ 2048c logn γ
√

14n logn/πk2

≤ 64512 log2 n+ 30267γ
√
n log−7/2 n .

Recalling θ/2 = 64512 and ψ = 60534γ
√
n log−7/2 n, we conclude from Lemma 6 the following:

P
{
|W ′| ≥ ψ/2 + θ log2(n)/2

}
≤ P{|W ′| ≥ ξ} ≤ 8354

n6 .

the exponential term. The last term in the upper bound is

4 exp

(
− γ2n

2k(ψ + θ log2 n)2

)

≤ 4 exp

(
− γ2n

4k(ψ2 + θ2 log4 n)

)

≤ 4 exp

(
− γ2n

4 log5 n(605342γ2n log−7 n+ 1290242 log4 n)

)

≤ 4 exp

(
− 1

4(605342 log−2 n+ 1290242 log9 n/γ2n)

)
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≤ 4 exp

(
− 1

4(605342 log−2 n+ 1290242 log9 n/64πn)

)

≤ 4 exp

(
− log2 n

5× 605342

)

≤ 4

n6

provided that n is so large that 4 × 1290242 log9 n/64πn < 605342 log−2 n, which is the case here, and

that logn > 30× 605342.

We let n0 ≥ 231 be so large that for all n ≥ n0, n/(logn)3/2 ≥ 2048
√

7/π and logn > 30×605342.

Collecting bounds, we thus have for n ≥ n0,

P
{
Yn ≥ 4(γ

√
n+ θ log2 n)

}
≤ 4 + (1 + 4k)8354

n6
≤ 8358 + 33416 log5 n

n6
.

Lemma 7 provides a useful tail bound for the number of border points in any convex region that

has n uniformly distributed points in it. However, we need more, as we will consider all regions that are

obtained by intersecting C with a linear halfspace H . Note in particular that the care we took in the

previous lemmas with respect to the dependence of various inequalities on the perimeter and volume of

C finally pays off. Without it, we would not have been able to handle the boundary effect correctly. Also

note the dependence of the final result, once again, on the shape parameter γ. Indeed, the bound below

cannot be made uniform over all convex sets: just consider a rectangle C of length n and height 1.

Lemma 8. Let X1, . . . , Xn be i.i.d. and uniformly distributed in a convex region C with perimeter p and

volume v > 0. Set γ = 4p/
√
v. Let H denote the class of all closed halfspaces, and let YH denote the

number of border points of the subsample that belongs to C ∩H . Let n0 be as in Lemma 7, and define

θ = 129024,

u = max
(
n0,
√

32 (γ
√
n+ θ log2 n)

)
,

and

n ≥ max
(
n0, 8γ

2, 8e16θ2
)
.

Then:

sup
H∈H

P{YH ≥ u} ≤ 2e−u/6 +
8358 + 33416 log5 n

u6
.

Proof. First we note that n ≥
√

8γ
√
n, n ≥

√
8θ log2 n (the latter follows from the inequality log z ≤

e4z1/4 for z > 0), and n ≥
√

32 (γ
√
n+ θ log2 n), so that n ≥ u for all n as in the statement of Lemma 8.

We introduce NH , the number of data points in H ∩ C, which is a binomial (n, vH/v) random variable,

where vH denotes the volume of H ∩ C, and pH denotes its perimeter. We set γH = 4pH/
√
vH . Our

inequality uses the following inclusion of events, after noting that YH ≤ NH :

[YH ≥ u] ⊆ [vH/v ≤ u/2n,NH ≥ u] ∪
[
vH/v ≥ u/2n,NH ≥ u, YH ≥ 16(pH/

√
vH )

√
NH

]

∪
[
vH/v ≥ u/2n,NH ≥ u, u ≤ 16(pH/

√
vH )

√
NH

]
.

We consider each event separately. By Lemma A, as u ≤ n,

P {vH/v ≤ u/2n,NH ≥ u} ≤ P{binomial (n, u/2n) ≥ u} ≤ e−u/6 .
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By Lemma 7, if u ≥ n0, and vH/v ≥ u/2n,

P
{
NH ≥ u, YH ≥ 16(pH/

√
vH )

√
NH

}
≤ E

{
1[NH≥u]

8358 + 33416 log5NH
N6
H

}

≤ 8358 + 33416 log5 n

u6
.

Finally, by Lemma A again, if vH/v ≥ u/2n,

P
{
NH ≥ u, u ≤ 16(pH/

√
vH )

√
NH

}
≤ P

{
binomial(n, vH/v) ≥ u2vH/256p2

H

}

≤ P
{

binomial(n, vH/v) ≥ 2p2vHn/vp
2
H

}

≤ P {binomial(n, vH/v) ≥ 2vHn/v}
≤ e−nvH/3v

≤ e−u/6 .
This concludes the proof of Lemma 8.

We note that the last inequality is uniform over all C and all H , so the tail of the random variable

YH/γ behaves in a universal manner. It is precisely this universality that will allow us to derive a number

of nice results.

We used a concentration result for YH in the proof of Lemma 8. However, we did not present the

best possible bounds as that would have made the paper too long. It suffices to say that the variation of

YH about its mean (which is Θ(
√
n)) is close to Θ(n1/4).

§3. The stabbing number.

In this section, we prove our main result.

Theorem 1*. Let Sn be the stabbing number for the Delaunay triangulation of n points that are

independent and uniformly distributed on an arbitrary convex set C with perimeter p and volume v.

Define γ = 4p/
√
v. Let n0 be as in Lemma 7, and define θ = 129024,

u = max
(
n0,
√

32 (γ
√
n+ 6θ log2 n)

)
,

and

n ≥ max
(
n0, 8γ

2, 8e16θ2
)
.

Then:

P
{
Sn ≥ 0.1875γ2 + 3.18γ

√
logn+ 6u

}
≤ 2 + 1.3 10−7 log5 n

n
.

Proof. Partition the perimeter of C into n pieces of length p/n each, where length is measured along the

perimeter. Call the endpoints of these pieces x1, . . . , xn, in counterclockwise order. Let Li,j be the line

segment joining xi and xj , and let Si,j be the number of Delaunay edges encountered by Li,j . Take an

infinite line L, and let x, y be the points where L enters C and where it leaves C respectively. Locate the

two neighbors xi, xi+1 of x along the perimeter, and similarly, find the two neighbors xj , xj+1 for y. Let

H be the halfspace supported by Li+1,j that contains the arc from xi+1 to xj in counterclockwise order,
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and let H ′ be the halfspace supported by Lj+1,i that contains the arc from xj+1 to xi in counterclockwise

order. Assume for now that i 6= j and i+ 1 6= j and j+ 1 6= i. We claim that any Delaunay edge reaching

L either emanates from a border point in C ∩H or a border point in C ∩H ′ or a point in C −H −H ′.
Using the notation NC−H−H′ to denote the number of data points in C−H−H ′ and YH for the number

of border points of C ∩H , we see that the number of Delaunay edges reaching L cannot exceed

3(NC−H−H′ + YH + YH′) .

If xi+1 = xj , then a similar argument yields a bound

3(NC−H′ + YH′) .

If i = j, we obtain the bound

3(NC−H′′ + YH′′) ,

where H ′′ is the halfspace supported by (xi, xi+1) that contains the arc (xi+1, xi) (in counterclockwise

order). Note that all sets C − H ′, C − H,C − H ′′, C − H − H ′ have probability not exceeding p2/2nv

because they can be fit into a rectangle of base p/2 and height not exceeding p/n. There are at most n2

such sets, which we might as well number A1, . . . , An2 . Similarly, we may label all possible halfspaces

H1, . . . , Hn2 . Let Sn be the stabbing number. Observe that

Sn ≤ 6 sup
1≤i≤n2

YHi + 3 sup
1≤i≤n2

NAi .

By Lemmas A and 8, if n ≥ n0,

P
{
Sn ≥ (3p2/2v)

(
1 +

√
18v logn/p2

)
+ 6u

}

≤
n2∑

i=1

P
{
NAi ≥ (p2/2v)

(
1 +

√
18v logn/p2

)}
+

n2∑

i=1

P{YHi ≥ u}

≤ n2P
{

binomial(n, p2/2nv) ≥ (p2/2v)

(
1 +

√
18v logn/p2

)}
+ n2 sup

H
P{YH ≥ u}

≤ n2 exp (−3 logn) + 2n2e−u/6 +
(8358 + 33416 log5 n)n2

u6

≤ 1

n
+ 2n2e−

√
32 θ log2 n +

(8358 + 33416 log5 n)n2

323γ6n3

≤ 2

n
+

8358 + 33416 log5 n

323 86π3n

≤ 2 + 1.3 10−7 log5 n

n
.

Replace p/
√
v by γ/4 and conclude.

In the notation of Theorem 1*, we obtain trivially a bound for E{Sn}, as Sn ≤ 3n, valid for all

n ≥ n0:

E{Sn} ≤ 3nP
{
Sn ≥ 0.1875γ2 + 3.18γ

√
logn+ 6u

}
+ 0.1875γ2 + 3.18γ

√
logn+ 6u

≤ 6 + 3.9 10−7 log5 n+ 0.1875γ2 + 3.18γ
√

log n+ 6
√

32γ
√
n+ 36

√
32 θ log2 n

= O
(
γ2 + γ

√
n
)
.
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§4. Applications

In this section, the different applications and consequences of Theorem 1 and 1* are explored. We

assume a Delaunay triangulation of the data X1, . . . , Xn that are independent and uniformly distributed

in a convex set C. We also assume that the Delaunay triangulation is stored in a standard graph structure

such as a doubly-connected edge list, a winged-edge structure or a quad-edge structure (Guibas and Stolfi,

1985). All of these structures support such operations as reporting the d edges, vertices and triangles

incident to a given vertex in O(d) time or reporting the two triangles incident on one edge in constant

time.

Planar Point Location. Planar point location, in our case, refers to the problem of determining

which triangle in a Delaunay triangulation contains a given query point. Three criteria are usually

measured when addressing the problem of planar point location: pre-processing time, storage space of

the data structure and query time. Although there exist many optimal solutions in the literature, most

of the solutions are complex and require intricate secondary structures to support fast query times (see

Snoeyink (1997) for a survey). We will show that in a Delaunay triangulation Dn for data X1, . . . , Xn

stored in the standard manner, a very simple algorithm performs quite well.

Given a query point X , the goal is to determine the triangle to which X belongs (if any). This can

be achieved by the following simple method suggested by Lawson (1977) and Green and Sibson (1978):

take a random point from the Xi’s, and follow the triangles intersecting the segment [Xi, X ] in order until

the triangle containing the query point X is reached. Finding the first triangle out of Xi costs O(Di)

where Di is the degree of Xi. Each subsequent step across triangles costs O(1), therefore, the total search

cost is bounded by a constant times the degree of Xi plus the number of triangles crossed. The number of

triangles intersected by the line segment [Xi, X ] is bounded by the stabbing number of the line through

the two points. Thus, by Theorem 1, this quantity is O(
√
n).

Let Di denote the degree of Xi in the Delaunay graph, and set D∗n = max1≤i≤nDi. Assume that

the Xi’s are i.i.d. and uniformly distributed in a convex set C. Bern, Eppstein and Yao (1991) showed

that for all points that are at least ε > 0 away from the exterior Cc, the expected maximal degree is

Θ(logn/ log logn). The maximal degree is greatly influenced by the border effect. In fact, for sufficiently

rotund C, E{D∗n} = Θ(logn), the maximum occurring roughly speaking for a convex hull point. However,

this result is not of primary interest in this paper, so a weaker result is sufficient for the sequel, and follows

very easily from our results on border points.

Lemma 9. For any convex set C, E{D∗n} ≤ 1 + 12 logn+ 4E{Sn} = O(
√
n).

Proof. Consider the two vertical lines and the two horizontal lines at distance u =
√

32cv logn/πn from

Xi, where c = 3π/64, and v is the volume of C. Let B be the intersection of C with the square of side 2u

centered at Xi. Then the degree of Xi is clearly bounded by the number of Delaunay edges crossing any

one of those four lines, plus the number of points (Ni) in B. Thus, if Sn denotes the stabbing number,

D∗n ≤ 4Sn + max
i
Ni .

If p = 4u2/v = 128c logn/πn, Lemma A implies that

P
{

max
i
Ni ≥ 2np

}
≤ nP {binomial(n, p) ≥ 2np} ≤ ne−np/3 = n1−128c/3π = 1/n .
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Therefore, E{maxiNi} ≤ 1 + 2np = 1 + 12 logn. By Lemma 8, E{D∗n} = O(
√
n).

We conclude with the following result.

Theorem 2. The expected worst-case complexity of the Green-Sibson method for point location when

the data points are independent and identically distributed on a convex set C is Θ(
√
n). Here, worst-case

refers to the placement of the query point and selection of the starting point from X1, . . . , Xn, even after

having seen the data X1, . . . , Xn.

Proof. We will only show the O(
√
n) upper bound. Assume that the starting point is X1. Then, the

complexity is bounded by D1 + 1 + Sn. Note that ED1 ≤ 6, because the expected degree of a randomly

picked node in any Delaunay triangulation on n nodes is less than 6 (the sums of the degrees being less

than 6n). However, if the starting point is selected maliciously after the data has been shown, then the

complexity is bounded by

sup
i
Di + 1 + Sn .

By Lemma 9, E{supiDi} = O(
√
n). By Lemma 8, E{Sn} = O(

√
n). Therefore, the expected complexity

is O(
√
n).

Nearest Neighbor Query. Nearest neighbor query refers to the problem of deciding, given a query

point X , which of the Xi’s is closest to X . In this section, distance is measured in the standard Euclidean

metric (see Smid (2000) for a survey of closest-point problems). Given a Delaunay triangulation Dn for

data X1, . . . , Xn stored in the standard manner, the structure of the triangulation allows one to quickly

determine the Xi closest to a given query point X .

Before outlining the steps of the algorithm, we introduce the notion of a legal flip. Let ∆(a, b, c)

and ∆(a, c, d) be two triangles sharing the edge [a, c]. If the four points a, b, c, d are in convex position,

then a flip is the operation of replacing edge [a, c] with the edge [b, d] and forming two new triangles.

This flip is legal in the Delaunay sense if the circle through points a, b, d does not contain point c. The

following shows the relation between legal flips and Delaunay triangulations (Okabe, Boots and Sugihara,

1992).

Lemma 10. A triangulation that admits no legal flip is a Delaunay triangulation.

We now outline the steps of the nearest neighbor search algorithm: first, use point location to

determine the triangle T of Dn containing the query point X . Next, add edges from X to the three

vertices of T . This forms a new triangulation. The only edges that can possibly admit legal flips are

those with X as apex of the triangle. Perform all legal flips. By Lemma 10, this results in a Delaunay

triangulation of X,X1, ..., Xn. Since the Delaunay triangulation has the property that every vertex is

adjacent to its nearest neighbor (Okabe, Boots and Sugihara, 1992), report the closest point adjacent to

X as its nearest neighbor.

The complexity of the search is bounded by the time to locate the query point X in Dn, the

number of legal flips and the degree of X . By Theorem 2, the expected cost of the point location is

O(
√
n). The number of legal flips is bounded by the degree of X since every legal flip results in adding

an edge adjacent to X . Therefore, by Lemma 9, both the degree of X and the number of legal flips is

O(
√
n). We conclude with the following:
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Theorem 3. The expected complexity of determining the nearest neighbor of a given query point X

when the data points are independent and uniformly distributed on a convex set C is O(
√
n). Here,

worst-case refers to the placement of the query point, even after having seen the data X1, . . . , Xn.

Range Queries. A range query refers to the following problem. Let S be a set of points in Rd and

let Γ be a set of subsets of Rd. Each element of Γ is referred to as a range. Given a range r ∈ Γ, report all

points in r ∩ S. Many variations exist depending on the types of ranges and queries (see Agarwal (1997)

or Matoušek (1999) for surveys). In this section, we restrict our attention to points in the plane. Assume

that the Delaunay triangulation Dn for the data X1, . . . , Xn is stored in the standard manner. We show

that certain types of range queries can be solved simply and efficiently without additional pre-processing.

First, consider the case where the ranges are half-spaces, and the query is to report all of the data

points lying in a query half-space. Theorem 1 immediately implies a simple algorithm whose expected

running time is O(
√
n+ k) where k is the number of reported points. Let H be the query half-space with

boundary h. Removing all of the edges of Dn that intersect h partitions Dn into two components. One

of the components lies completely in H and the other lies completely outside H . To report all the data

points in H , simply traverse the component of Dn in H in a depth-first or breadth-first manner.

The time required to partition Dn with respect to H is bounded by the number of edges inter-

secting h which is O(
√
n) by Theorem 1. The traversal of the component in H can be performed in O(k)

time where k is the size of the component.

Next, we consider the case where the ranges are axis-parallel rectangles and the query is to report

all of the points in the rectangle. Once again, Theorem 1 implies a simple O(
√
n + k) time algorithm.

Let R(a, b, c, d) be the query rectangle with vertices a, b, c, d in clockwise order. Perform a point location

query to find which triangle of Dn contains a. Next, remove all edges that intersect an edge of the query

rectangle. This can be done by walking in the triangulation around the boundary of the rectangle. Again,

this partitions Dn into two components, one of which is completely in the query rectangle. Report all of

the points by traversing this component. By Theorem 2, the expected cost of locating a in Dn is O(
√
n).

By Theorem 1, the expected number of edges intersecting the boundary of the query rectangle is O(
√
n).

We conclude with the following:

Theorem 4. The expected complexity of performing a half-space range query or an orthogonal range

query or indeed any range query for an `-gon with ` fixed, when the n data points are independent and

uniformly distributed on a convex set C is O(
√
n+ EK) where K is the number of reported points.

Lazy Halfspace Range Search. In a lazy halfspace range search, we are asked to report all

points in a given halfspace H, but are allowed to report these as a connected graph with a pointer to

just one node. We assume that the Delaunay triangulation of the points is given. The cost of finding

that triangulation is a one-time set-up cost. Given the line that defines H, we can find all edges that

are stabbed by the line in expected time O(
√
n) for uniform distributions on convex sets. It suffices to

perform a point location for any point on that line, and then to walk to infinity from triangle to triangle in

both directions. All the stabbed edges are removed from the Delaunay triangulation, and the appropriate

remaining component is output.
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Planar Separator. A planar separator is a set of vertices whose removal separates a graph into

two subgraphs of roughly equal size. More specifically, a separator in a graph G, is a set S such each

component of G\S has at most 2n/3 vertices. Lipton and Tarjan (1979) were the first to show that every

planar graph has an O(
√
n) separator (see also Pach and Agarwal, 1995). Planar separators have found

many applications and are generally useful as they often lead to divide-and-conquer solutions to different

problems on planar graphs (Lipton and Tarjan (1980), Leiserson (1983), Leighton (1983), Gilbert (1980),

Gilbert and Tarjan (1987)).

We present a simple algorithm to compute an O(
√
n) separator of a Delaunay triangulation, Dn.

Let Xm be the Xi with median x-coordinate. Let S be the set of Delaunay vertices that has at least one

adjacent edge intersecting the vertical line through Xm. The removal of S partitions Dn such that each

component has size at most n/2. The set S can be computed in O(n) time and by Theorem 1, S has

expected size O(
√
n).

Theorem 5. A planar separator S with expected size O(
√
n) can be computed in O(n) time when the

data points are independent and uniformly distributed on a convex set C.

Approximate Shortest Paths. In this subsection, we address the problem of approximate shortest

path queries in a Delaunay triangulation Dn. Given a pair of vertices Xi and Xj , the goal is to quickly

compute a path from Xi to Xj in Dn whose length is close to the actual shortest path. By using structural

properties of the Delaunay triangulation, we show how to compute in expected O(
√
n) time, a path that

is at most 5.08 times the Euclidean distance between Xi and Xj , and thus at most 5.08 times the actual

shortest path.

Given the two query vertices, the first step is to locate one of the two vertices, say Xi, in Dn using

point location. The next step is to compute a special subgraph of Dn. Let S be the set of vertices having

at least one adjacent edge intersecting the segment [Xi, Xj ]. Let D be the subgraph of Dn induced by the

set S∪{Xi, Xj}. Bose and Morin (1999) modified an argument by Dobkin, Friedman and Supowit (1990)

to show that the length of the shortest path between Xi and Xj in D is at most 5.08 times ||Xi −Xj ||.
We turn to the complexity of this algorithm. By Theorem 2, the point location step takes O(

√
n)

time. By Theorem 1, the expected size of D is O(
√
n). Since D is a planar graph, computing the shortest

path between two points can be performed simply using Dijkstra’s algorithm (Cormen, Leiserson and

Rivest, 1990) in O(
√
n logn) time or in O(

√
n) time using the slightly more complex algorithm of Klein,

Rao, Rauch and Subramanian (1997). We conclude with the following:

Theorem 6. Let Dn be the Delaunay triangulation of n independent and uniformly distributed data

points in a convex set C. In O(
√
n) expected time, given two of the data points Xi and Xj , a path

between the two points of length at most 5.08 times ||Xi −Xj || can be computed.

The diameter of a random Delaunay triangulation. The distance between two nodes in a graph is

the minimal path distance between the two nodes. The diameter of a graph is the the maximum distance

between any two nodes in a graph.
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Theorem 7. Let X1, . . . , Xn be i.i.d. and uniformly distributed in a convex region C with perimeter p

and volume v > 0. Let ∆n denote the diameter of the random Delaunay triangulation for X1, . . . , Xn.

Then the bound of Theorem 1* applies to ∆n as well. In particular, E{∆n} = O(
√
n).

Proof. Draw a line between points Xi and Xj , and note that the minimal path distance between Xi

and Xj is less than the path distance between Xi and Xj if we are forced to only follow edges that are

cut by the line segment [Xi, Xj ]. There are at most Sn such edges, where Sn is the stabbing number,

uniformly over all i, j. Thus, ∆n ≤ Sn, and the bound of Theorem 1* applies.

Divide-and-conquer construction of the Delaunay triangulation. Using a hashing model of

computation, we can construct the Delaunay triangulation of n points with a uniform distribution on a

convex set C in expected time O(n). Just consider the smallest rectangle R enclosing C, and, assuming

that n = 22k for some integer k, consider a 2k × 2k regular grid partition of R. This partition can be

regarded as a quadtrie, with R corresponding to the root. Place the n data points in the grid cells in O(n)

time. As each grid cell receives a binomial number of points with mean bounded by a constant, we can

construct the Delaunay triangulations for all the grid cells individually by a simplistic quadratic algorithm

in O(1) expected time per cell. From the bottom of the trie upwards, we merge adjacent Delaunay

triangulations in time bounded by the sum of the number of border points of the two triangulations (or,

put differently, in time bounded by the stabbing number of the resulting triangulation). At every step,

the expected time is bounded by the square root of the number of points involved in the merge operation.

Thus, a recurrence for the total expected time Tn is roughly of the form Tn ≤ 2Tn/2 + O(
√
n), which

yields Tn = O(n). The procedure is easy to implement. We recall here that the spiral method of Bentley,

Weide and Yao (1980) also has O(n) expected time, under the same distributional and computational

models, but it appears a bit more complicated.
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Lower bound for the stabbing number.

Theorem 8. Let Sn be the stabbing number for a cloud of n i.i.d. points distributed uniformly in a

convex set C. Then there exists a positive constant c such that

E{Sn} ≥ (c+ o(1))
√
n .

Proof. Omitted.

§5. Appendix: Auxiliary results from probability theory

We need two tail inequalities. First, a rather standard tail bound for binomials will be used in

the following format due to Angluin and Valiant (1979) (see also McDiarmid, 1998):

Lemma A. Let X be binomial (n, p). Then

P{X ≥ (1 + u)np} ≤ e−u2np/3

for all u > 0.

The next couple of symmetrization inequalities will be needed.

Lemma B. Let X,X ′ be i.i.d. random variables, and let m be a median of X . Then, for u > 0,

P{|X −m| ≥ u} ≤ 2P{|X −X ′| ≥ u} .

Proof. We have

P{|X −X ′| ≥ u} ≥ P{X −m ≥ u,X ′ −m ≤ 0}+ P{X −m ≤ −u,X ′ −m ≥ 0}
≥ (1/2) (P{X −m ≥ u}+ P{X −m ≤ −u})
= (1/2)P{|X −m| ≥ u} .

Lemma C. Let X be an arbitrary nonnegative random variable, and let X ′ be an independent copy of

it. Then, for u.0,

P{X > 2E{X}+ u} ≤ 2P{|X −X ′| ≥ u} .

Proof. Assume without loss of generality that X has a unique median m. Then by Markov’s inequality,

1/2 = P{X ≥ m} ≤ E{X}/m. Thus, by Lemma B,

P{X > 2E{X}+ u} ≤ P{X > m+ u} ≤ P{|X −m| ≥ u} ≤ 2P{|X −X ′| ≥ u} .

Finally, we obtain the first tail bound that relates general random functions Y = Yn = Y (X1, . . . , Xn)

of i.i.d. random variables X1, . . . , Xn to their mean.
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Lemma D. Let Y = Yn = Y (X1, . . . , Xn) be a nonnegative function of i.i.d. random variables X1, . . . , Xn

and let the function be permutation invariant. Let X ′1 be independent of the Xi’s and distributed as X1.

Then, with

V = Yn(X1, X2, . . . , Xn)− Yn(X ′1, X2, . . . , Xn) ,

we have, for u, c > 0,

P{Y ≥ 2E{Y }+ u} ≤ 2nP{|V | ≥ c}+ 4 exp

(
− u2

2nc2

)
.

Also, if

W = Yn(X1, X2, . . . , Xn)− Yn−1(X2, . . . , Xn) ,

then, for u > 0,

P{Y ≥ 2E{Y }+ u} ≤ 4nP{|W | ≥ c/2}+ 4 exp

(
− u2

2nc2

)
.

Finally,

P{Y ≥ 3E{Y }} ≤ 4nP{|W | ≥ c/2}+ 4 exp

(
− (E{Y })2

2nc2

)
.

Proof. By Lemma C, if Y ′n is an independent copy of Yn,

P{Y ≥ 2E{Y }+ u} ≤ 2P{|Yn − Y ′n| ≥ u} .
Let X1, . . . , Xn and Z1, . . . , Zn be i.i.d. sequences, and set

Vi = Yn(Z1, . . . , Zi−1, Xi, Xi+1, . . . , Xn)− Yn(Z1, . . . , Zi−1, Zi, Xi+1, . . . , Xn) ,

so that
n∑

i=1

Vi = Yn(X1, . . . , Xn)− Yn(Z1, . . . , Zn) .

Clearly, the Vi’s form a martingale difference sequence with respect to the filtration (Fn), where F0 =

{∅,Ω} ((Ω,F ,P) is our probability space) and Fk = σ(X1, . . . , Xk, Z1, . . . , Zk). If EkV denotes the

conditional expectation of a random variable V with respect to Fk, then EkVk+1 = 0. Furthermore,

given Fk, the conditional distributions of Vk+1 and −Vk+1 are identical. Then, by an extension of the

Azuma-Hoeffding bounded difference inequality as reported in Godbole and Hitczenko (1998),

P

{∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣ ≥ u
}
≤

n∑

i=1

P {|Vi| > c}+ 2 exp

(
− u2

2nc2

)
.

As the Vi’s are all distributed as V , the first part of the proof is complete. The last part follows from the

triangle inequality |V | ≤ |W |+ |W ′|, where W ′ = Yn(X ′1, X2, . . . , Xn)− Yn−1(X2, . . . , Xn) is distributed

as W .

Lemma D provides tail bounds if we know the mean of Yn and have a tail bound for P{|W | ≥ u}.
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