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Introduction

Tries are efficient data structures that were initially developed and analyzed by

Fredkin (1960) and Knuth (1973). The tries considered here are constructed from n inde-

pendent strings X1, . . . , Xn, each drawn from
∏∞
i=1 Ωi, where Ωi, the i-th alphabet, is a

countable set. By appropriate mapping, we can and do assume that for all i, Ωi = Z . In

practice, the alphabets are often {0, 1}, but that won’t even be necessary for the results in

this paper. Each string Xi = (Xi1, Xi2, . . .) defines an infinite path in a tree: from the root,

we take the Xi1-st child, then its Xi2-st child, and so forth. The collection of nodes and

edges visited by the union of the n paths is the infinite trie. If the Xi’s are different, then

each infinite path ends with a suffix path that is traversed by that string only. If this suffix

path for Xi starts at node u, then we may trim it by cutting away everything below node

u. This node becomes the leaf representing Xi. If this process is repeated for each Xi, we

obtain a finite tree with n leaves, called the trie. patricia is a space efficient improvement

of the classical trie discovered by Morrison (1968) and first studied by Knuth (1973). It is

simply obtained by removing from the trie all internal nodes with one child. While it still

has n leaves, each non-leaf (or internal) node has two or more children.

This article attempts to unify the concentration results for most trie parameters,

and is a continuation of an earlier paper of the author (2002), where universal concentration

results were obtained for the height, size and profile of random patricia trees. A real-

valued trie parameter Zn is said to be concentrated if Zn/E{Zn} → 1 in probability. It is

universally concentrated if this holds for all string distributions, as long as the strings are

independent. If it holds whenever the strings are independent and identically distributed,

then we say that Zn is universally concentrated for i.i.d. input. These results are obtained

by powerful exponential inequalities developed most recently by Boucheron, Lugosi and

Massart (2000, 2002), which are related to but more easily applicable than their ancestors,

the inequalities of Talagrand (1988, 1989, 1990, 1991a-b, 1993a-b, 1994, 1995, 1996a-b).

Ledoux (1996a-b), Azuma (1967) and McDiarmid (1989, 1998). For the practicing computer

scientist, they imply that analyzing E{Zn} often suffices, as the random variable Zn is highly

likely to be close to its mean most of the time. In addition, the inequalities give explicit

numerical support for that closeness, not hidden behind O(·) terms, and not requiring often

tedious calculations of variances (denoted here by V{Zn}).

String models

We will refer to a number of string models in this paper. The oldest model is that

of the i.i.d. symbols: each symbol is drawn from a symbol distribution (p0, p1, p2, . . .) over

the nonnegative integers. We will call this the i.i.d. symbol model.

Text files have given rise to the Markovian string model, in which the symbols in a

string form a Markov chain on the nonnegative integers. This is completely characterized
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by the distribution of the first symbol, and the transition probability matrix over Z × Z
(Régnier (1988), Szpankowski (1988), Jacquet and Szpankowski (1991) and Pittel (1985)).

Flajolet and Vallée (1998) and their co-workers have considered various models for

storing real numbers. Their base model has as symbols the coefficients in the continued

fraction expansion of a random variable X , drawn from a density on [0, 1]. We call this

the continued fraction trie and patricia tree. Alternatively, Devroye (1984, 1992) takes

the k-ary expansion of X , and lets the symbols be the digits in the expansion. This is

the so-called density model. Just as with the continued fraction model, the symbols are

in general dependent. However, in the density model, they are asymptotically uniformly

distributed on Zk. In the continued fraction model, the distribution on the positive integers

is asymptotically fixed as well. Thus, both models should in many cases yield results that

are valid for most or all densities of X .

Clément, Flajolet and Vallée (1998, 2001) and Flajolet and Vallée (1998) con-

sider dynamic sources. Here, the real number X starts off functional iterations, leading

to X, f(X), f(f(X)), . . ., where f : [0, 1]→ [0, 1] is a mapping. There is a second mapping

s : [0, 1]→ Z+, the nonnegative integers, and the string symbols are

s(X), s(f(X)), s(f(f(X))), . . . .

For example, by taking f(x) = kx mod 1, and defining s(.) by partitioning the unit interval

equally among 0, 1, . . . , k − 1, we obtain the density model. The continued fraction and

Markovian models can be obtained as special cases as well. The first-order parameters of

the resulting tries were studied by Flajolet and Vallée (1998) and Clément, Flajolet and

Vallée (2001). For random patricia trees, they can be found in the thesis of Bourdon

(2002).

Tries are also used as multidimensional data structures. They were first introduced

by Orenstein (1982) for database applications. Related ideas had earlier been proposed by

Bentley and Burkhard (1976). If X is a random vector of [0, 1]d, then any of the ways

of transforming a real number into a string of integers described above can be used. The

simplest model uses the k-ary expansions of each component of X to generate a string of

symbols, each taking values in Zdk . The resulting tries have a possible fanout of kd. With k =

2, they are called quadtries, useful data structures for the compaction of multidimensional

(geometric, video) information. In the present paper, parameters such as height, depth,

profile and size are dealt with uniformly for all models of tries. The multidimensional tries

become interesting in their own right when one considers multivariate operations such as

partial match. Puech and Yahia (1985) provide the first analytical study.
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Boucheron-Lugosi-Massart inequality

The following inequalities will be fundamental for the remainder of the paper.

Lemma 1 is an almost trivial extension of a similar inequality due to Boucheron, Lugosi

and Massart (2000). Its proof is based on logarithmic Sobolev inequalities developed in part

by Ledoux (1996a).

Lemma 1 (boucheron, lugosi and massart, 2000). Let Ω = Zn. Let f ≥ 0 be

a function on Ω, let c ≥ 0 be a constant, and let g be a real-valued function on Zn−1

satisfying the following properties for every x = (x1, . . . , xn) ∈ Ω:

0 ≤ f(x)− g(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1 , 1 ≤ i ≤ n ;

n∑

i=1

(f(x)− g(x1, . . . , xi−1, xi+1, . . . , xn)) ≤ f(x) + c .

Then for any X = (X1, . . . , Xn) with independent components Xi ∈ Z , and all t ≥ 0,

P{f(X) ≥ E{f(X)}+ t} ≤ exp

(
− t2

2E{f(X) + c}+ 2t/3

)

and

P{f(X) ≤ E{f(X)}− t} ≤ exp

(
− t2

2E{f(X) + c}

)
.

The most outstanding application area for these inequalities are Talagrand’s con-

figuration functions. However, as we need to define g on a space of dimension one less

than n, it is best to reformulate things in terms of “properties”. Assume that we have

a property P defined over the union of all finite products Zk. Thus, if i1 < · · · < ik,

we have an indicator function that decides whether (xi1 , . . . , xik ) ∈ Zk satisfies prop-

erty P . We assume that P is hereditary in the sense that if (xi1 , . . . , xik ) satisfies P ,

then so does any subsequence (xj1 , . . . , xj`) where {j1, . . . , j`} ⊆ {i1, . . . , ik}, with the

jm’s increasing. The configuration function fn(xi1 , . . . , xin) gives the size of the largest

subsequence of xi1 , . . . , xin satisfying P . Any subsequence of maximal length satisfying

property P is called a witness. In Lemma 1, we can set f(x1, . . . , xn) = fn(x1, . . . , xn)

and g(x1, . . . , xn−1) = fn−1(x1, . . . , xn−1). Clearly, the first condition of Lemma 1 is

satisfied, as adding a point to a sequence can only increase the value of the configura-

tion function (so, f ≥ g), but by not more than one. To verify the second condition, let

{xi1 , . . . , xik} ⊆ {x1, . . . , xn} be a witness of the fact that f(x1, . . . , xn) = k. For i ≤ n

and xi 6∈ {xi1 , . . . , xik}, we have f(x1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xn), and thus, the

difference between f and g in the second condition can only be one if xi ∈ {xi1 , . . . , xik}.
Therefore, the sum in that condition is at most k = f(x1, . . . , xn). Properties P include

being monotonically increasing, being in convex position, and belonging to a given set S.

4



We also need some exponential versions of the Efron-Stein inequality. To this end,

let X1, . . . , Xn be independent random variables in a measurable space, and let X ′1, . . . , X
′
n

be an independent copy. Let f be a measurable mapping, and set

Z = f(X1, . . . , Xn)

and

Zi = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) .

We write X = (X1, . . . , Xn). Conditional on X , Zi is thus a function of X ′i only. Define

V+ = E

{
n∑

i=1

(Z − Zi)21[Z>Zi]

∣∣∣X
}

and

V− = E

{
n∑

i=1

(Z − Zi)21[Z<Zi ]

∣∣∣X
}
.

The Efron-Stein inequality (Efron and Stein, 1981) states that

V{Z} ≤ E{V+} = E{V−} .

By Chebyshev’s inequality, we see that if Z ≥ 0 is a positive random variable, and ε > 0,

P {|Z − E{Z}| ≥ εE{Z}} ≤ V{Z}
ε2E2{Z} ≤

E{V+}
ε2E2{Z} .

In many cases (examples will follow), this ratio tends to zero. However, it does so rather

slowly, and the resulting bounds are sometimes unsatisfactory. In this sense, the following

inequality is very useful:

Lemma 2 (boucheron, lugosi and massart, 2002). Assume Z ≥ 0. If V+ ≤ aZ + b

for some nonnegative constants a, b, then for all t > 0,

P{Z ≥ E{Z}+ t} ≤ exp

(
− t2

4aE{Z}+ 4b+ 2at

)
.

If there exists a nondecreasing function h such that

V− ≤ h(Z) ,

then

P{Z ≤ E{Z} − t} ≤ exp

(
− t2

4E{h(Z)}

)
.

Finally, the following inequality is useful whenever only V+ is easy to bound.
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Lemma 3 (boucheron, lugosi and massart, 2002). Assume Z ≥ 0 and assume that

for all i, |Z − Zi| ≤ α. If V+ ≤ α2h(Z/α) for some nondecreasing function h, then for all

0 < t < (e− 1)αE{h(Z/α)},

P{Z ≤ E{Z} − t} ≤ exp

(
− t2

4α2(e− 1)E{h(Z/α)}

)
.

Occupancy problems

Consider a very general bin model in which we have n balls thrown independently

into a countable number of bins, where each ball has its own distribution over the bins. Let

N1, N2, . . . be the numbers of balls in the bins. Quantities of interest in certain applications

include Mn = maxiNi, the maximum number of balls in a single bin, and On =
∑
i 1Ni>0,

the number of occupied bins. If we throw one less ball, then Mn and On both decrease

by at most one. Thus, uniformly over distributions, by the bounded difference inequality

(Azuma, 1967; McDiarmid, 1989), we have

P{|On − E{On}| ≥ t} ≤ 2e−t
2/2n .

Also,

P{|Mn − E{Mn}| ≥ t} ≤ 2e−t
2/2n .

These results are sometimes unsatisfactory, as t needs to be at least Ω(
√
n) for the inequal-

ities to kick in. Note however that both On and Mn may be cast in the format of Lemma

1, with Mn being the configuration function for the hereditary property “belonging to the

same bin”, and On being the configuration function for the hereditary property “belonging

to different bins”. Thus, by Lemma 1,

P{On ≥ E{On}+ t} ≤ exp

(
− t2

2E{On}+ 2t/3

)
, t ≥ 0 ,

and

P{On ≤ E{On} − t} ≤ exp

(
− t2

2E{On}

)
, t ≥ 0 .

Also, for fixed t > 0, if E{On} → ∞,

P

{∣∣∣∣∣
On − E{On}√

E{On}

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 + o(1)

)
.

And precisely the same inequalities hold when On is replaced by Mn throughout. Note that

these inequalities are strong enough to imply the following:

On
E{On}

→ 1

in probability whenever E{On} → ∞, and the result is true over a triangular array of bin

distributions. Also, we have
Mn

E{Mn}
→ 1

in probability whenever E{Mn} → ∞.
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In data structures, these results are relevant for hashing with chaining with equal or

unequal probabilities. The maximal chain length satisfies the law of large numbers regardless

of how the table size changes with n. For Mn, if the number of bins equals the number of

balls, then Mn ∼ logn/ log logn if each bin has equal probability of receiving a ball. The

inequalities at the top of the section would not allow one to obtain a law of large numbers.

However, Lemma 1, as shown above, suffices to obtain it. See Gonnet (1981), Devroye

(1985), or Knuth (1973) for more on the maximum chain length.

It is interesting to note that problems on tries can often be regarded as problems

on bins. In fact, we consider levels of nested bins, with the 0-th level consisting of one bin,

corresponding to the root, the first level having one bin for each child of the root, and so

forth. A string Xi = (Xi1, Xi2, . . .) thus drops a ball in the bin characterized by Xi1 of

the level 1 collection, a ball in the bin characterized by (Xi1, Xi2) of the level 2 collection,

and so forth. We call bin (Xi1, . . . , Xi,j+1) a child bin of (Xi1, . . . , Xi,j). In a trie, a bin

that receives at least two balls corresponds to an internal node. The number of nodes is n

(the number of leaves) plus the number of internal nodes, which is a random variable. In a

patricia tree, a bin with at least two balls, whose parent bin has more balls, corresponds

to an internal node. These observations permit us to make observations about the size and

the profile of random tries and patricia trees.

Size of a patricia tree

Let Sn be the number of internal nodes, and let Tn = Sn+n be the total number of

nodes in a patricia tree for n strings. Note that for binary patricia trees, Sn = n− 1, so

only non-binary trees have random sizes. Adding a string increases Tn by one and Sn by one

or zero. Thus, if the strings are independent (but not necessarily identically distributed),

by the bounded difference inequality (McDiarmid, 1989),

P{|Sn − E{Sn}| ≥ t} = P{|Tn − E{Tn}| ≥ t} ≤ 2 exp

(
− t

2

2n

)
.

The fanout and string distributions do not figure in the bound. We immediately have

Tn
E{Tn}

→ 1

almost surely (as Tn ≥ n), and
Sn

E{Sn}
→ 1

in probability whenever E{Sn}/
√
n→∞ (which is satisfied, for example, if the strings con-

sist of independent identically distributed symbols, or when the tree is of bounded fanout).

Even though these results do not require Lemma 1, they appear to be new. Still, we would

like to offer a stronger result.

Let Z = Sn be the parameter of interest. Observe that removing a string Xi causes
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Z to shrink by at most one node, so that |Z − Zi| ≤ 1. Furthermore,
∑

i

(Z − Zi)21[Z>Zi]
≤
∑

i

1[Z>Zi ]
≤ 2Z

as each internal node can be removed only when it has two balls and one of its two balls

are removed. It cannot be removed when it has more than two balls. Thus, V+ ≤ 2Z. We

are in a position to apply Lemma 2 with (a, b) = (2, 0), and obtain

P{Sn ≥ E{Sn}+ t} ≤ exp

(
− t2

8E{Sn}+ 4t

)
.

Furthermore, we can apply Lemma 3 with h(u) = 2u, α = 1 and obtain

P{Sn ≤ E{Sn} − t} ≤ exp

(
− t2

8(e− 1)E{Sn}

)
, 0 < t < 2(e− 1)E{Sn}.

By setting t = εE{Sn}, we conclude immediately that

Sn
E{Sn}

→ 1 in probability

whenever E{Sn} → ∞. Only pathological examples do not satisfy this condition. For

example, this would occur if Xi = (i, i, i, . . .), so that the patricia tree consists of one root

and n child leaves, and thus, Sn = 1.

When the strings are independent and identically distributed, and the symbols in

the strings are independent and identically distributed as well, the size Sn of a random

trie has been studied by Régnier and Jacquet (1989) and Jacquet and Régnier (1989). The

expected value E{Sn} is close to n/H, where H is the entropy of a random symbol. (If a

symbol has distribution (pj)j≥0, then the entropy Hk of order k is
∑
j pj logk(1/pj). The

entropy is the entropy of order one.) There are string distributions that cause E{S2} =∞:

just let each string be all zeroes, with ones added in at places W1,W1 + W2, . . ., and the

Wi’s are i.i.d. with the same distribution on the positive integers. Then S2 ≥ min(W1,W
′
1),

the minimum of two independent copies of W1. Thus, P{min(W1,W
′
1) ≥ t} = (P{W1 ≥ t})2

and so, whenever P{W1 ≥ t} ≥ C/
√
t, for some positive C, we have E{S2} =∞.

Rais, Jacquet and Szpankowski (1993) studied Sn for patricia trees when the

symbols are independent. Bourdon (2001, 2002) studied Sn for patricia trees under a

general string distribution model. It is noted that in the former case, E{Sn} is about

(1 − H2/(2H2))n/H. With more general definitions of entropy for dependent sequences

of symbols (as in Markovian sources), the same result was obtained by Bourdon. For the

continued fraction trie, Bourdon showed that E{Sn}/n is about

6 log 2

π2

(this is the inverse of Lévy’s constant), and for the random patricia tree, he showed that

it is about equal to the same constant multiplied by
(

1− 12γ log 2

π2
− 9 log2 2

π2
+

72ζ ′(2) log 2

π4
+ 1/2

)
≈ 0.87.
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Here γ is Euler’s constant, and ζ is Riemann’s zeta function. The study of variances and

second order properties of Sn for patricia trees was left as a major open problem in the

thesis of Bourdon (2002). For symbol distributions that are “periodic”, the expected value

of Sn/n oscillates forever for random tries and patricia trees, so the limiting constants

mentioned above are not true “limits”. However, as we showed in this paper, even in

those cases, Sn/E{Sn} → 1 in probability. We did not have to worry about the oscillation

phenomenon. We observe in fact, that for all models, without exception,

V{Sn} ≤ E{V+} ≤ 2E{Sn} .

Multidimensional tries and the partial match operation

We can define a general query in a trie or patricia tree as follows: it is defined by

a sequence of sets S1, S2, S3, . . . of symbols, and asks for all the leaves (if any) of the trie

or patricia tree that are in the infinite query tree as well, where the query tree consists of

a root, all nodes at level one indexed by s1 ∈ S1, all nodes at level 2 indexed by (s1, s2) ∈
S1 × S2, and so forth. Thus, the query tree can be viewed as an infinite trie. The time

needed to collect all the leaves that need reporting is proportional to the number N of nodes

in the intersection of the query tree and the original trie or patricia tree. In the case of

a patricia, care must be taken to identify nodes in the tree not by their position but by

their index. Some examples follow that show that most parameters in a random trie can be

viewed as special cases of N .

Example 1. If S1 = S2 = · · · is the full symbol set, then we must report all leaves, and

the time N in that case is the size of the random trie.

Example 2. If Si = {yi} for all i, then the query tree is the infinite path (y1, y2, y3, . . .),

and thus, N is the size of the path followed when we search for the string (y1, y2, y3, . . .) in

the trie or patricia tree. This is equal to the depth of the unique leaf on that path plus

one. Thus, search times for individual strings are obtained as special cases.

Example 3. In the multivariate random trie and random patricia tree, with a fanout of

kd (see the introduction for the notation), we may describe each symbol as an element of

Zdk . A partial match query can be regarded as a general query in which Si = Si1×· · ·×Sid,
Sij = Zk for all j ∈ J ⊆ {1, 2, . . . , d}, the so-called set of wild cards. For j 6∈ J , we

have Sij = {yij}, a singleton set. The partial match is thus determined by all the values

yij , i ≥ 1, j 6∈ J . Usually, the interpretation is easy in term of a vector y ∈ [0, 1]d, whose
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j-th component has a k-ary expansion (y1j , y2j , . . .). Thus, the pair (y, J) uniquely defines

a partial match query. We may thus write N(y, J) to denote the size of the intersection

of our two trees for the query given by (y, J). If J is the full set, then the query tree is

the full tree, and we are reduced to example 1. If J is empty, then the query tree reduces

to a path, as in example 2. The only interesting cases appear when 0 < |J | < d, and in

that case, we speak of a proper partial match. Few results are known, and they all relate

to random tries with k = 2, when each of the strings in the random trie is generated by

an independently drawn random vector uniformly distributed on [0, 1]d. In that case, all

symbols in all strings are independent and uniformly distributed on Zd2 . Consider a proper

partial match. Flajolet and Puech (1986) showed that

E{N(y, J)} = τ(log2 n)n|J |/d + o
(
n|J |/d

)

where τ is a continuous positive periodic function. Kirschenhofer, Prodinger and Sz-

pankowski (1993) showed that for k = 2, d = 2, |J | = 1,

V{N(y, J)} ∼ τ(log2 n)
√
n

where τ is again a continuous positive periodic function. This was generalized to d > 2 by

Schachinger (1995). In 2000, Schachinger proved that

N(y, J)

E{N(y, J)} → 1

in probability as n→∞, and

N(y, J)− E{N(y, J)}√
V{N(y, J)}

L→ N (0, 1) ,

where
L→ denotes convergence in distribution. Using concentration inequalities, Devroye

and Zamora-Cura (2002) were able to show that

supyN(y, J)

infyN(y, J)
→ 1

in probability, which shows a remarkable stability of all partial match query times: every

partial match query time is with high probability close to E{N(y0, J)}, where y0 is the vector

of all zeroes. The asymmetric Bernoulli model refers to strings with independent identically

distributed symbols, and each symbol consists of d independent components, with each

component drawn from some non-uniform distribution of Z2. For this model, some asymp-

totics for E{N(y, J)} are obtained by Kirschenhofer, Prodinger and Szpankowski (1993),

and, with y replaced by a random Y , by Schachinger (2000). In the latter paper, it is

shown that N(y, J)/E{N(Y, J)} L→ Zp under an idealized partial match model that does

not correspond to our definition, where the distribution of Zp depends upon the probabil-

ity p only. More recently, Schachinger has studied the asymptotic behavior of the ratio

logN(y, J)/E{logN(y, J)}.

Example 4. If we take all Si, 1 ≤ i ≤ k equal to the full set of symbols, and all Si, i > k

empty, then we obtain the cumulative size of the tree up to level k. It is also called the
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cumulative profile. In fact, the profile would be obtained by considering all the nodes at

one level. Strictly speaking, the profile does not follow the subtree analogy set up in this

section, so we will deal with it below.

So, we consider N for a general query, freed from the multidimensional confines.

This N is our random variable to which we want to apply some concentration inequalities.

When a string is removed, in the patricia version, N decreases by at most two, as one leaf

disappears and possibly one internal node. Thus, denoting by Ni the size of the intersection

tree when string Xi is removed but an independent copy X ′i is added, we see that |N−Ni| ≤
2. Furthermore, ∑

i

(N −Ni)21[N>Ni]
≤ 4

∑

i

1[N>Ni]
≤ 8N

as each internal node can be removed only when it has two balls and one of its two balls is

removed. It cannot be removed when it has more than two balls. Thus, V+ ≤ 8N . We are

in a position to apply Lemma 2 with (a, b) = (8, 0), and obtain

P{N ≥ E{N}+ t} ≤ exp

(
− t2

32E{N}+ 16t

)
.

Furthermore, we can apply Lemma 3 with h(u) = 4u, α = 2 and obtain

P{N ≤ E{N} − t} ≤ exp

(
− t2

32(e− 1)E{N}

)
, 0 < t < 8(e− 1)E{N}.

By setting t = εE{N}, we conclude immediately that

N

E{N} → 1 in probability

whenever E{N} → ∞.

Finally, the Efron-Stein inequality implies that for all models, without exception,

and for any kind of general query,

V{N} ≤ E{V+} ≤ 8E{N} .

It is interesting to note that the addition of one string to a trie can cause a trie to

grow by many nodes, and that this growth cannot be a priori bounded. The concentration

inequalities given here can thus not be used directly. However, if Xi is removed and replaced

by string X ′i, we have
∑

i

(N −Ni)21[N>Ni]
≤ (1 +Hn)2

∑

i

1[N>Ni]
≤ 2(1 +Hn)2N

where Hn is height of the random trie, as |N −Ni| ≤ 1 +Hn. Thus, V+ ≤ 2(1 +Hn)2N . In

most, but not all, models, Hn is of the order of logn, so that one can expect to make good

use of this if one has further information on the height Hn, and this requires, unfortunately,

some information on the string distributions. We would like to draw the attention though

to an inequality of Boucheron, Lugosi and Massart (2002) that deals precisely with the case

that V+ ≤ WZ, where Z is the random variable of interest, and W is another random
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variable, whose tail can be bounded sufficiently tightly. This way, one can obtain good

concentration inequalities, although not universal ones, for N in random tries.

The second way in which N can be dealt with in random tries is by decomposing

N =
∑
`N

(`), where N (`) is the number of nodes in the intersection with the query tree

that are at level `. As N (`) is easy to deal with, one can obtain a concentration inequality

for it (see the section on general profiles). It is also true that in many models, N is nearly

equal to the sum of N (`) with ` ranging over just a few levels. In those cases, concentration

for N follows. An example of this approach is worked out by Devroye and Zamora-Cura

(2002) for partial match queries in multidimensional tries in which all symbols are i.i.d. and

uniformly distributed on Zd2 .

Height of a patricia tree

Given are n independent infinite strings X1, . . . , Xn (if they are not infinite, pad

them by some designated character, repeated infinitely often), each drawn from a distribu-

tion on Z . The height of the patricia tree is denoted by Hn. If (deterministic) strings

x1, . . . , xk induce a patricia tree of height k− 1, then the patricia tree can have only one

configuration, namely, it consists of a chain of length k − 1 from the root on down, with

every node of this chain receiving one leaf, except the furthest node, which receives two

leaves. We say that such a collection of strings has the patricia property. This property is

clearly hereditary, and Hn + 1 is thus a configuration function.

Six strings with the patricia property. Each (black) leaf repre-

sents a contracted infinite string. The height is five.

We have

P{Hn ≥ E{Hn}+ t} ≤ exp

(
− t2

2E{(Hn + 1)}+ 2t/3

)
, t ≥ 0 ,

12



and

P{Hn ≤ E{Hn} − t} ≤ exp

(
− t2

2E{(Hn + 1)}

)
, t ≥ 0 .

We stress that the individual strings may have any distribution. The symbols themselves

need not be independent or identically distributed. And the strings need not be identically

distributed. All patricia trees, without exception, are thus stable and well-behaved. For

any patricia tree constructed by using n independent strings, if limn→∞ E{Hn} =∞, then

Hn
E{Hn}

→ 1

in probability as n→∞, and
Hn − E{Hn}√

E{Hn}
= O(1)

in probability in this sense: for fixed t > 0,

P

{∣∣∣∣∣
Hn − E{Hn}√

E{Hn}

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 + o(1)

)
.

The last inequality remains valid whenever 0 < t = o(E{Hn}).

the condition on E{Hn}. In patricia trees of bounded degree, it is clear that E{Hn} →
∞. In unbounded degree trees, this is also true provided that the strings are identically dis-

tributed and the probability of two identical strings is zero. However, without the identical

distribution constraint, patricia trees may have Hn = 1 for all n: just let the i-th string

be (i, 0, 0, 0, . . .).

bibliographic remark: height of patricia trees. All parameters of a patricia tree

such asHn improve over those of the associated trie: for the uniform trie model, Pittel (1985)

has shown that Hn/ log2 n→ 1 almost surely, which constitutes a 50% improvement over the

trie. For other properties, see Knuth (1973), Flajolet and Sedgewick (1986), Kirschenhofer

and Prodinger (1986) and Szpankowski (1990, 1991). Pittel and Rubin (1990), Pittel (1991)

and Devroye (1992) showed that

Hn − log2 n√
2 log2 n

→ 1 almost surely.

More refined results for general multi-branching patricia trees and tries are given by Sz-

pankowski and Knessl (2000). For the independent symbol trie model with symbol proba-

bilities pj , we have E{Hn} ∼ c logn, where c = 2/ log2(1/
∑
j p

2
j ).
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Depth along a given path in a patricia tree

Consider a string x that defines an infinite path in a trie. We define the depth of

the path x, denoted by Dn(x) in the patricia tree as the depth (distance to the root) of

the leaf that corresponds to x in the patricia tree for X1, . . . , Xn, x. We say that strings

x1, . . . , xk have the x-property if the prefixes x ∩ x1, . . . , x ∩ xk are strictly nested. That

is, there is a reordering x′1, . . . , x
′
k of the strings such that the common prefix of x′1 and x

is strictly contained in that of x′2 and x, and so forth. In that case, the distance of the

leaf of x from the root of the patricia tree for x1, . . . , xk, x is precisely k. The function

Dn(x) = f(x1, . . . , xn) that describes the length of the longest subset of x1, . . . , xn with the

x-property is clearly a configuration function, to which Lemma 1 may be applied. Thus, we

conclude as in the previous section:

For any patricia tree constructed by using n independent strings, if x is a string

such that limn→∞ E{Dn(x)} =∞, then

Dn(x)

E{Dn(x)} → 1

in probability as n→∞, and

Dn(x) − E{Dn(x)}√
E{Dn(x)}

= O(1)

in probability in this sense: for fixed t > 0,

P

{∣∣∣∣∣
Dn(x)− E{Dn(x)}√

E{Dn(x)}

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 + o(1)

)
.

General profiles

This section is about the profile in random tries. The profile of a trie is the sequence

(P1, P2, P3, . . .), where P` is the number of nodes at level ` (at distance ` from the root).

This is in fact the number of nodes that have either at least leaves in their subtrees or

correspond to leaves. Let P`i denote the value when string Xi is deleted and string X ′i is

added. It is easy to see that |P` − P`i| ≤ 1. Furthermore,
∑

i

(P` − P`i)21[P`>P`i]
≤
∑

i

1[P`>P`i]
≤ 2P`

because only internal nodes with two balls can be deleted when Xi is deleted from the list

of strings. Summed over all i, this can happen just twice. So, we have a situation exactly

like that for the size Sn of a patricia tree. In particular, V+ ≤ 2P`. We apply Lemma 2

with (a, b) = (2, 0):

P{P` ≥ E{P`}+ t} ≤ exp

(
− t2

8E{P`}+ 4t

)
.
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Furthermore, we can apply Lemma 3 with h(u) = 2u, α = 1 and obtain

P{P` ≤ E{P`} − t} ≤ exp

(
− t2

8(e− 1)E{P`}

)
, 0 < t < 2(e− 1)E{P`}.

By setting t = εE{P`}, we conclude immediately that

P`
E{P`}

→ 1 in probability

whenever E{P`} → ∞, regardless of whether ` is fixed or varies with n. Finally,

V{P`} ≤ 2E{P`} .

All of the above remains valid for the general profile, which for each level counts

the number of trie nodes (internal or leaves) that belong to certain set S on the space of all

indices.

Height of a random trie: lower bound

Note the duality

[Hn ≥ `] = [P` > 0] .

Thus,

P{Hn < `} = P{P` = 0} = P{P` − E{P`} ≤ −E{P`}} ≤ exp

(
− E{P`}

8(e− 1)

)
.

This inequality is valid without any conditions. For random tries, we have a simple universal

lower bound on the tail of the height Hn in terms of the first moment of P` only. Since we

also have

P{Hn ≥ `} = P{P` ≥ 1} ≤ E{P`} ,
we can conclude that if ` = `(n) is a function of n, then

lim
n→∞ P{Hn ≥ `(n)} =

{
0 if limn→∞ E{P`(n)} = 0,

1 if limn→∞ E{P`(n)} =∞.

First-order behavior of the height of all random tries reduces thus simply to the study of

the expected profile.

bibliographic remark: height of random tries. The asymptotic behavior of tries

under the uniform trie model is well-known. For example, it is known that

Hn/ log2 n→ 2 almost surely .

The limit law of Hn was obtained in Devroye (1984), and laws of the iterated logarithm for

the difference Hn − 2 log2 n can be found in Devroye (1990). The height for other models

was studied by Régnier (1981), Mendelson (1982), Flajolet and Steyaert (1982), Flajolet

(1983), Devroye (1984), Pittel (1985, 1986), and Szpankowski (1988,1989). For the depth of
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a node, see e.g., Pittel (1986), Jacquet and Régnier (1986), Flajolet and Sedgewick (1986),

Kirschenhofer and Prodinger (1986), and Szpankowski (1988).

Height of a random trie: upper bound

It is possible to deal with upper bounds for the tail of Hn in random tries in

some way, despite the instability of this parameter for some string distributions. The route

suggested here is based on Talagrand’s q-points inequality and a subadditivity argument

due to van der Vaart and Wellner (1996). Assume that random variables Xi ∈ Ω are given

that are independent and identically distributed. Let Ωn be the product space.

Lemma 4 (van der vaart and wellner, 1996). Assume that Ω is Euclidean space, and

that fn : Ωn → R is a permutation-symmetric function, satisfying the following monotonicity

and subadditivity conditions:

fn(x) ≤ fn+m(x, y), x ∈ Ωn, y ∈ Ωm ;

fn+m(x, y) ≤ fn(x) + fm(y), x ∈ Ωn, y ∈ Ωm .

Assume furthermore that 0 ≤ fn ≤ n. Let X = (X1, . . . , Xn) have i.i.d. coordinates in Ωn.

Then

P{fn(X1, . . . , Xn) ≥ t} ≤ exp

(
− t

2
log

(
t

12 max(1,E{fn(X1, . . . , Xn)})

))

for all t > 0, n ≥ 1.

Consider a random trie based upon n i.i.d. strings X1, . . . , Xn with string symbols

from an arbitrary alphabet, and let the string distribution be arbitrary. Then the height

Hn satisfies all the required conditions, except possibly the requirement that Hn ≤ n. But

min(Hn, n) is fully compliant. The Euclidean space requirement is fulfilled as we can study

min(Hn, n) by just considering string collections truncated to their length n prefixes. Set

hn = E{min(Hn, n)}. Note that for n ≥ 2, hn ≥ 1. Then we have for n ≥ 2, 0 ≤ t ≤ n,

P{Hn ≥ t} = P{min(Hn, n) ≥ t} ≤ exp

(
− t

2
log

(
t

12hn

))
.

Thus, if hn →∞, yet hn = o(n), as is usually the case, we see that for every ε > 0,

lim
n→∞ P{Hn ≥ (12 + ε)hn} = 0

in all generality. It is difficult to imagine that one can state such universal results without

access to the powerful machinery provided by Talagrand’s inequalities.
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External path length of a patricia tree

The external path length In of a patricia tree or trie is the sum of the distances

from the leaves to the root. In the case of a trie, it is an upper bound for the time needed

to construct the trie. Upper bounds for the tail of In are thus useful. When the i-th string

is deleted in a patricia tree, then In decreases by Di, the distance from the i-th leaf to the

root, and, in case one internal is removed in the process, by the number of leaves, i excepted,

in the subtree of the node that disappeared (as all those leaves decrease their depth by one).

That number of such leaves is denoted by Ni. Note that Ni = 0 if no leaf changes depth.

Now add new independent string X ′i. Denote by Ini the new external path length. We thus

have ∑

i

(In − Ini)2 1[In>Ini]
≤
∑

i

(Di +Ni)
2 ≤ n

∑

i

(Di +Ni) ≤ 2nIn ,

where we used the fact that
∑
iNi is bounded from above by In, as each leaf contributes at

most its depth towards the total sum. Thus, we are in a position to apply Lemma 2 with

(a, b) = (2n, 0). We see that for all t > 0,

P{In ≥ E{In}+ t} ≤ exp

(
− t2

8nE{In}+ 4nt

)
.

In particular, for s > 0,

P{In ≥ (1 + s)E{In}} ≤ exp

(
− s2E{In}

8n+ 4ns

)
.

This probability tends to zero whenever E{In}/n → ∞, a condition that is satisfied for all

models with a finite symbol alphabet, and nearly all models with infinite symbol alphabet

as well. In fact E{In} =
∑
i E{Di} = nE{D1}, so that the condition holds if and only if

E{D1} → ∞.

Other parameters

We can deal with other parameters of tries and patricia trees with equal ease.

Easiest among these is the Horton-Strahler number, which measures the minimum number

of registers needed for evaluating an expression when the tree is considered as an expression

tree. This quantity is always bounded by O(log2 n) and can change by at most one when any

string is deleted or added. It is thus stable in a strong sense, and concentration inequalities

are easily derived. In the context of tries, this quantity is however less important, as most

models of random tries do not qualify as good models of expression trees.

The stack size of a tree is the maximal stack size needed when traversing a tree in

pre-order, while the last subtree (the last trie symbol) is not put on the stack. It is bounded

by the height of the tree, and is analyzed for a number of random trie models by Bourdon,

Nebel and Vallée (2001). For the patricia tree, this parameter can be dealt with using the

configuration function method used for the height. The details are left to the reader.
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If N is the number of nodes in a patricia tree with k children, then adding a new

string can increase N by at most one. The Azuma-McDiarmid inequality thus immediately

implies

P{|N − E{N}| ≥ t} ≤ 2e−t
2/2n .

This should suffice for most situations. In this case, V+ is bounded by the number of nodes

with k − 1 children, and thus, a different argument than that provided by Lemmas 2 and 3

is needed, if one wants to improve on the Azuma-McDiarmid inequality.

Our analysis still requires the strings to be independent. It is an interesting challenge

to deal with dependent strings, such as those occurring in suffix tries and suffix trees. In

those cases, we will invariably have to place conditions on the string symbols themselves,

as most concentration inequalities, at their core, require independence. This will be dealt

with elsewhere.
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