
Discrete Mathematics and Theoretical Computer Science (subm.), by the authors, 26–rev

The Height of List-tries and TST

N. Broutin1 and L. Devroye1†

1School of Computer Science, McGill University, 3480 University Street, H3A 2K6 Montreal, Canada.
Email: {nbrout,luc}@cs.mcgill.ca.

received 14 Oct 1998, revised 15th February 2007, accepted tomorrow.

We characterize the asymptotics of heights of the trees of de la Briandais (1959) and the ternary search trees (TST) of
Bentley and Sedgewick (1997). Our proof is based on a new approach of the structure of tries that distinguishes the
bulk of the tree, called the core, and the long trees hanging down the core, called the spaghettis.

Keywords: Tries, branching process, height, de la Briandais, TST.

1 Introduction
Tries are data structures used to manipulate and store strings by taking advantage of the digital character
of words. They were introduced by de la Briandais (1959). Apparently, the term of trie was coined
by Fredkin (1960) as a part of the word “retrieval”. Their properties and uses are reviewed by Knuth
(1973) and more recently by Szpankowski (2001). Consider n sequences of characters (or strings) from
an alphabet A = {1, . . . ,d}. Each one of the sequences carves a path in an infinite rooted d-ary position
tree T∞ where the children of each node are labeled with the characters of A : starting from the root, the
characters are used in order to move down the tree. If all the sequences are distinct, the corresponding
paths in T∞ are distinct as well. The trie Tn is defined to be the smallest subtree of T∞ such that the paths
corresponding to the sequences are distinct within Tn.

In this paper, we are interested in tries built from n independent sequences. Each sequence is an
infinite sequence of independent and identically distributed (i.i.d.) characters distributed like A, where
P{A = i} = pi. We assume without loss of generality that 1 > p1 ≥ p2 ≥ ·· · ≥ pd > 0. The quantity of
interest under this model is

Q =
d

∑
i=1

p2
i , (1)

It is well known that the height Hn of a trie built from n independent such sequences satisfies (Régnier,
1981; Devroye, 1984; Pittel, 1985; Szpankowski, 1991, 2001)

Hn

logn
−−−→
n→∞

2
log(1/Q)

in probability. (2)

†Research of the authors was supported by NSERC Grant A3456 and a James McGill fellowship.

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/

2 N. Broutin and L. Devroye

The trie is only an abstract data structure, that is, it does not specify the implementation (see Clément
et al., 1998, 2001). The usual implementation of a trie uses an array for the branching structure of a node
(Fredkin, 1960). Although this always ensures constant-time shunting of the strings, the space required
may become an issue for large alphabets: many pointers would be left unused. To avoid this, one can
replace the array by variable size structures. de la Briandais (1959) proposed to use linked-lists, and
we shall call the implementation a list-trie. More recently, Bentley and Sedgewick (1997) proposed an
elegant structure based on binary search trees. It is known as the bst-trie, ternary search trie or TST for
short.

These structures aim at a trade-off between the storage space and the speed, and the access time to
children is no longer constant. In particular, the height of the tree and the worst-case search time are
different in general. List-tries and the TST may be seen as high-level tries whose edges are weighted
to reflect the internal low-level structure of a node (see Figure 2). This point of view has been taken by
Clément, Flajolet, and Vallée (1998, 2001) who analyzed thoroughly these hybrid implementations of
tries. In particular, they analyzed the average size and average depth. The question of the worst-case
search time in hybrid-tries was left open. The worst-case search time is then given by the weighted height
of the tree, we shall call it the height in following. This paper addresses the question of the (weighted)
height of hybrid tries, and of list-tries and TST, in particular.

2 Weighted tries
2.1 An embedding to construct weighted tries
In this section we propose an embedding to construct the weighted tries. Strictly speaking, since we are
interested in the weighted height, we only construct the sequence of weighted depths of the nodes. Note
that our embedding is only one way to build tries with the desired distribution. We will see in section 4
that hybrid tries, like list-tries and TST, can be seen as weighted tries. Our construction emphasizes an
underlying structure consisting of independent random variables. However, in the coupled tries built from
the embedding, the random variables are dependent in general. Consider the distribution {p1, . . . , pd}
over the alphabet A . We assume without loss of generality that 1 > p1 ≥ p2 ≥ ·· · ≥ pd > 0. We are given
n independent strings, each consisting of an infinite sequence of i.i.d. characters of A distributed as A,
where P{A = i}= pi, 1≤ i≤ d.

THE SHAPE OF THE TRIE. The shape of the trie is simply an ordinary trie: Each string defines an infinite
path in T∞. The cardinality Nu of a node u∈ T∞ is the number of strings whose path in T∞ intersect u. Then,
the trie Tn is constructed by pruning T∞ down to every node of cardinality at most one. The sequences are
distinct with probability one, and the strings define distinct paths in T∞. Therefore, the trie Tn is almost
surely finite. The tree Tn constitutes the shape of the weighted trie. We define Ei =− log pi. For the edge
e between u and its i-th child in T∞, we let pe = pi and Ee =− log pe.

DIFFERENT TYPES OF NODES. There are 2d types of nodes, each type being characteristic of the branch-
ing structure of the node. The branching structure of every node u ∈ Tn is described by a d-vector τu: if
u1, . . . ,ud are the d children of u, then we define

τu =
(
1[Nu1 ≥ 1],1[Nu2 ≥ 1], . . . ,1[Nud ≥ 1]

)
.

The vector τu indicates which one of the d edges down u are part of some path in Tn, and influences the
cost of accessing the children of u.

The Height of List-tries and TST 3

THE WEIGHTS. Consider a sequence of random vectors {Zτ : τ ∈ {0,1}d}, where Zτ = (Zτ
1, . . . ,Z

τ

d). The
vectors Zτ describe the cost of accessing the children of the nodes. We assume that

• for all τ ∈ {0,1}d , Zτ ≤ d, and

• for all types τ such that τ is a permutation of (1,0, . . . ,0), Zτ = (1, . . . ,1).

Each node of T∞ is assigned an independent copy of the whole sequence. Consider a node u ∈ T∞, and its
sequence {Zτ}. Weights are associated with the edges to u’s children based on its type τu. The edge ei
between u and its i-th child in T∞ is given the weight

Zei = Zτu
i = ∑

τ∈{0,1}d
Zτ

i ·1[τu = τ].

We use the notations Zτ
i and Ze interchangeably. It should always be clear whether a subscript refers to an

index or an edge. Let π(u) be the set of edges on the path from u up to the root in T∞. The weighted depth
of a node u is defined by Du = ∑e∈π(u) Ze. A tree that may be constructed by this procedure is called a
weighted trie. We are interested in the weighted height of Tn:

Hn = max{Du : u ∈ Tn}= max{Du : Nu ≥ 2}+1.

Surprisingly, the first asymptotic term of Hn depends on two parameters only: the distribution {p1, . . . , pd},
and Z = Z(1,...,1). In particular, the first order asymptotics of Hn stays the same if we modify {Zτ,τ ∈
{0,1}d} in such a way that Z remains unchanged. This may be explained using the structure of a trie.

2.2 The structure of a trie
In a related project, we have explained the profile of a trie by distinguishing a so-called core, that consti-
tutes the bulk of the trie, and spaghetti-like trees hanging down the core (Broutin and Devroye, 2007a).

THE CORE OF A TRIE. What we call the core here should not be confused with the graph-theoretic core,
which happens to be empty for trees (see e.g., Janson et al., 2000). The core of the trie is defined to be
the set of nodes u ∈ T∞ for which Nu ≥ m(n), for m(n)→ ∞ and m(n) = o(logn). The core is denoted by
C . Since m→ ∞, the nodes in the core are of the same type τ = (1, . . . ,1) with probability 1−o(1). As
a consequence, in a weighted trie, the distribution of weights in the core should be closely approximated
by Z = Z(1,...,1). The core can be described by its logarithmic profile

φ(α, t) = lim
n→∞

logEPm(t logn,α logn)
logn

∀t,α > 0, (3)

where Pm(k,h) denotes the number of nodes u, k levels away from the root with Nu ≥ m(n) and Du ≥ h.
In other words, assuming for now that the limit in (3) exists, we have EPm(t logn,α logn) = nφ(α,t)+o(1),
as n→ ∞. This will be proved, and the function φ(·, ·) will be characterized in Theorem 2.

HANGING SPAGHETTIS. The spaghettis are the trees remaining when pulling out the core from the trie.
They lie in the part of the trie where the nodes do not have d children any more: the types of the nodes
take all the values in {0,1}d with positive probability. However, the weighted height of a long spaghetti is
close to the weighted height its unweighted height, or number of levels. To see this, observe that the nodes

4 N. Broutin and L. Devroye

not in the core have cardinality at most m(n) = o(logn), so each spaghetti stores at most m(n) sequences.
Each time the type τ is not a permutation of (1,0, . . . ,0), i.e., the node is truly branching, at least one
string is put aside from the longest path. This can happen at most o(logn) times, and hence the heights
with and without the branching nodes differ by at most o(logn). If the number of levels is Θ(logn), as is
the case for the highest ones, the difference is negligible.

Both the core and the spaghettis contribute significantly to the height of a weighted trie. By figuring
out what the core looks like, we can determine when the spaghettis take over. Roughly speaking, we then
know if an edge’s weight can be approximated by a component of Z or simply remain unweighted. The
main result of this paper is the following theorem.

Theorem 1. Consider an weighted trie built from n independent sequences consisting of i.i.d. characters
distributed as A, where P{A = i} = pi, 1 ≤ i ≤ d. Let Hn be its weighted height. Let φ(α, t) be the
logarithmic weighted profile of the core of Tn. Let

c = sup
{

α+
φ(α, t)

log(1/Q)
: φ(α, t)≥ 0

}
,

where Q = ∑
d
i=1 p2

i . Then Hn = c logn+o(logn) in probability, as n→ ∞.

Remark. The respective contributions of the core and spaghettis are α and φ(α, t)/ log(1/Q).

3 The height of weighted tries
3.1 The shape of the core
Consider a weighted trie defined as in section 2. We consider m = m(n)→ ∞ with m(n) = o(logn). Let
Lk be the set of nodes k levels away from the root in T∞. Let Pm(k,h) be the number of nodes u∈Lk with
Du ≥ h and Nu ≥ m. Since m→ ∞, for n large enough, we have m≥ b and

Pm(k,h) = ∑
u∈Lk

1[Nu ≥ m,Du ≥ h].

The asymptotic properties of the expected profile are directly tied to large deviation theory (Dembo and
Zeitouni, 1998). The random vector of interest here is (Z,E) = (ZK ,− log pK), where K is uniform in
{1, . . . ,d}. For λ,µ ∈ R, the associated generating function of the cumulants is

Λ(λ,µ) = logE
[
eλZ+µE

]
.

Then, we define the convex dual Λ?(·, ·) of Λ by, for x,y ∈ R,

Λ
?(x,y) = sup

λ,µ
{λx+µy−Λ(λ,µ)}.

Theorem 2. Let m = m(n)→ ∞ with m = o(logn). Let k ∼ t logn and h ∼ α logn for some positive
constants t and α. Let

φ(α, t) = t logd− t · inf
{

Λ
? (x,y) : x >

α

t
,y <

1
t

}
. (4)

If φ(α, t) > 0, then EPm(k,h) = nφ(α,t)+o(1), as n→ ∞.

The Height of List-tries and TST 5

Remarks. (a) Observe that Theorem 2 justifies the definition of φ(·, ·) in (3).
(b) The constraint that m(n) is o(logn) is only used in the lower bound. Intuitively, we do not want to
shave off too many layers of the tree for the lower bound. This has no effect on the upper bound.

Unlike the profile of unweighted tries (Devroye, 2002, 2005; Park et al., 2006), that of weighted tries
does not seem concentrated. However, it is log-concentrated in the sense of the following theorem, and
the true profile Pm(k,h) is close enough to EPm(k,h):

Theorem 3. Let m = m(n)→∞ as n→∞ such that m = o(logn). Let k∼ t logn and h∼ α logn for some
positive constants t and α. Then, for all ε > 0, as n→ ∞,

P
{

Pm(k,h)≤ nφ(t,α)−ε

}
−−−→
n→∞

0, and P
{

Pm(k,h)≥ nφ(t,α)+ε

}
≤ n−ε+o(1).

3.2 How long is a spaghetti?
The behavior of the spaghettis is radically different from the one observed in the core. This is because the
number of strings stored by a single spaghetti is at most m(n). We first look at the profile, not of a single
trie, but of a forest of independent tries.

Let T 1,T 2, . . . ,T n be n independent tries. We assume that T i is a weighted trie on mi = mi(n) sequences
generated by a memoryless source with distribution {p1, . . . , pd}. Also, we assume that for all i, m/d ≤
mi ≤m. The roots of T i, 1≤ i≤ n, all lie at level zero. Then, we let Ps(k,h) count the number of nodes u
at level k with Du ≥ h lying in any T i. Since T i is a trie, we only count the nodes for which Nu ≥ 2. We are
interested in EPs(k,h) when k ∼ ρ logn and h∼ γ logn. Recall that the difference between the number of
layers and the weighted height is at most dm(n) = o(logn). Hence, EPm(k,h) = o(1) if h≥ k +Ω(logn).
When h≤ k+o(logn), only the number of level is relevant. For n large enough that m/d ≥ 2, by linearity
of expectation, we have

nQk ≤ EPm(k,h)≤ nm2Qk,

since two strings are identical up to the k-th character with probability Qk. In other words, we have

Theorem 4. Let T i, 1 ≤ i ≤ n, be a forest of n independent tries. Let T i store mi = mi(n) sequences.
Assume that m/d ≤ mi ≤ m for all 1 ≤ i ≤ n. Let k ∼ ρ logn and h ∼ γ logn, as n→ ∞, for positive
constants ρ and γ. Then,

EPs(k,h) =
{

n1+ρ logQ+o(1) if ρ≥ γ

o(1) otherwise.

as n→ ∞.

So the logarithmic profile of our forest is 1+ρ logQ. Theorem 5 claims that the deepest node to occurs
when this logarithmic profile vanishes. Let H1, . . . ,Hn be the weighted heights of T 1, . . . ,T n, respectively,
and define Sn = max{H i : 1≤ i≤ n}. Then:

Theorem 5. Assume that p1 < 1. Assume that m(n)→ ∞ and m(n) = o(logn). Let Then, Sn ∼ log1/Q n
in probability, as n→ ∞. Furthermore, for every ε > 0, there exists δ > 0 such that, as n→ ∞,

P
{

Sn

logn
≥ 1

log(1/Q)
+ ε

}
= O

(
n−δ

)
. (5)

6 N. Broutin and L. Devroye

3.3 Projecting the profile of the core
In this section, we give a sketch of the proof of Theorem 1. Consider a weighted trie Tn. The spaghettis
are rooted at a node u ∈ ∂C , the external node-boundary of the core C in Tn (the nodes u ∈ ∂C are the
children of some node v in the core, but are not themselves in the core). Then, if we write Wu for the
height of the subtree rooted at u, we have

Hn = max{Du +Wu : u ∈ ∂C}= max
h,k
{h+Wu : u ∈ ∂C∩Lk,Du ≥ h},

where the nodes in ∂C have been split into groups depending on their level k and weighted depth h. Then,
we can rewrite

Hn = max
h,k
{h+max{Wu : u ∈ ∂C ,Du ≥ h,u ∈Lk}}.

We have thus separated the contributions of the core from that of the spaghettis,

h and max{Wu : u ∈ ∂C ,Du ≥ h,u ∈Lk},

respectively. Only the latter expression requires more thought. The set of nodes u ∈ ∂C∩Lk with Du ≥ h
roughly contains roughly nφ(α,t)+o(1) by Theorem 2. Hence max{Wu : u ∈ ∂C ,Du ≥ h,u ∈Lk} is Sn′ with
n′ = nφ(α,t)+o(1), that is, φ(α, t)/ log(1/Q) by Theorem 5. This explains why Hn ∼ c logn, where

c = sup
{

α+
φ(α, t)

log(1/Q)
: φ(α, t)≥ 0

}
.

Complete proofs of the theorems can be found in Broutin (2007) or Broutin and Devroye (2007b).
Theorem 1 can be interpreted by projecting the logarithmic profile φ(α, t) on the horizontal plane going

through the origin. See Figure 1.

α

t

φ

t

c

α

α +
φ(α,t)

log(1/Q)

t +
φ(α,t)

log(1/Q)

Fig. 1: A geometric interpretation for the height:
each point (α, t,φ(α, t)) of the logarithmic profile
of the core throws a line whose direction is given
by (1,1, logQ). The line intersects the plane φ =
0 at (α− φ(α, t)/ logQ, t− φ(α, t)/ logQ,0). The
constant c is the largest coordinate of one of these
point measured along the α-axis.

4 Application: the height of hybrid tries
Let A = {1, . . . ,d} be the alphabet. Let {Ai,1≤ i≤ n} be the n strings. In the following, we distinguish
the nodes that constitute the high-level trie structure from the slots which make the low-level structure of
a node, whether this latter be a linked-list or a binary search tree.

The high-level tree between the nodes of an hybrid trie is just the ordinary trie. Only the low-level
structure of the nodes differ from the array-based implementation. Consider a node u ∈ T∞. The subtree

The Height of List-tries and TST 7

rooted at u stores a subset of the strings Ai, 1 ≤ i ≤ n. Let Nu ⊂ {1, . . . ,n} be the set of their indices,
and write Nu = |Nu|. As in ordinary tries, for a node u at level k in T∞, only the k-th characters of each
sequence are used. Moreover, only set Au ⊂ A matters, which consists of the characters appearing at the
k-th position in the sequences Ai, i ∈Nu. In an hybrid trie, the order in which the strings are used to build
the trie matters, and we let σu be the permutation Au where the characters are ordered by first appearance.
The internal structure of the node u is built by successive insertions of the elements of σu into an originally
empty linked list, or binary search tree. For list-tries we then have a random linked list on Au and for TST
a binary search tree on Au. This is shown in Figure 2. The costs of branching to a subtree is then given by
the number of edges to cross inside the node to the subtree. The distribution clearly depends on the type
τu of node u, and when |Au|= 1, the cost is simply 1. This explains why hybrid tries are weighted tries in
the sense of section 2.

1 2 3 4 5 6

1 23 45 6

1

2

3

4

5

6

Fig. 2: The different node structures used for the standard (top-left), list (bottom-left) and bst-trie (right) when the
order of appearance of the characters is 3, 5, 4, 1, 2 and 6. The dashed arrows represent the pointers to further levels
of the trie.

4.1 list-tries
In the list-trie of de la Briandais (1959), the cost of branching to a character a is just the index of a is the
permutation σu. For every node u, for which Au = A , σu is distributed as the sequence (in order) of first
appearance of characters in an infinite string generated by the source. This fully describes the distribution
of Z = Z(1,...,1). Then Zi is the index of i in σ, and (Z,E) = (ZK ,− log pK), where K is uniform in
{1, . . . ,d}.

Theorem 6. Let Hn be the weighted height of a list-trie on n sequences generated by the memoryless
source with probabilities {p1, . . . , pd}. Then, Hn ∼ c logn in probability, as n→ ∞, where

c = sup
α>0

{
α+

φ(t,α)
log(1/Q)

: φ(α, t)≥ 0
}

,

and φ(·, ·) is the logarithmic profile of the trie weighted with (Z,E) is described above.

It seems difficult to obtain φ(α, t) for general {p1, . . . , pd}. We treat completely a concrete example.

Example: symmetric list-tries. For any λ,µ ∈ R, we have

Λ(λ,µ) = logE
[
eλZ ·dµ

]
+µ logd = log

(
d

∑
i=1

eiλ

)
+(µ−1) logd.

8 N. Broutin and L. Devroye

Then, Λ?(x,y) = supλ,µ{λx+µy−Λ(λ,µ)}. For x ∈ [1,d], there exists λ = λ(x) such that

x =
∂Λ(λ,µ)

∂λ
= ∑

d
i=1 ieiλ

∑
d
i=1 eiλ

. (6)

Therefore, we have

Λ
?(x,y) =

{
λx− log

(
∑

d
i=1 eiλ

)
+ logd if x ∈ [1,d],y = logd

∞ otherwise.

For instance, for d = 2, we can find an explicit expression for Λ?: for x ∈ [1,d],

Λ
?(x, log2) = x log

(
1− x
x−2

)
− log

(
1− x
2− x

+
(

1− x
2− x

)2
)

+ log2.

Numerical values for c = c(d) can be found in Table 1.

d 2 3 10

c 3.28661. . . 3.12515. . . 4.92852. . .

Tab. 1: Some numerical values of c = c(d) characterizing the height of symmetric list-tries.

4.2 Ternary search trees
In the ternary search trees introduced by Bentley and Sedgewick (1997), the implementation of a node
uses a binary search tree. The cost of branching to a character i ∈ A at a node u is one plus the depth of
i in the binary search built from the (non-uniform) random permutation σu. When the node u is of type
τu = (1, . . . ,1), the permutation σu is distributed as σ, the ordered list of first appearances of characters in
an infinite string generated by the memoryless source with distribution {p1, . . . , pd}.

Let Zi be distributed as the depth of i in the binary search tree built from σ. Then, Z is distributed as
(Z1, . . . ,Zd) and (Z,E) = (ZK ,− log pK), where K is uniform in {1, . . . ,d}. By Theorem 1, we obtain:

Theorem 7. Let Hn be the weighted height of a TST on n sequences. Let

c = sup
{

α+
φ(α, t)

log(1/Q)
: φ(α, t)≥ 0

}
,

where φ(α, t) is the logarithmic profile of the core of a trie weighted by (Z,E) described above. Then,
Hn ∼ c logn in probability, as n→ ∞.

The random vector (Z,E) seems complicated to describe for general distributions p1, . . . , pd . Some
parameters like the average value and the variance of Zi, 1 ≤ i ≤ d, have been studied by Clément et al.
(1998, 2001) and Archibald and Clément (2006).

Example: Symmetric TST. We assume here that p1 = p2 = · · · = pd . In this case, the permutation σ is
just a uniform random permutation. Hence, Zi is the depth of the key i in a random binary search tree.

The Height of List-tries and TST 9

Observe that unlike in the case of list-tries, Zi, 1 ≤ i ≤ d, do not have the same distribution. This is
easily seen, since, for instance as d→ ∞, EZ1 ∼ logd whereas EZbd/2c ∼ 2logd. However, we are only
interested in the distribution of Z, that is, the depth of a uniform random node. This distribution is known
exactly, and is due to Brown and Shubert (1984):

P{Z = k}=
2d−1

d ·d!

d

∑
j=k

[
d
j

]
, (7)

where
[

n
k

]
denotes the Stirling number of the first kind with parameter n and k (see Sedgewick and Flajolet,

1996; Mahmoud, 1992). Using (7), it is possible to compute the cumulant generating function Λ, and
φ(α, t). Observe that the when d = 2, TST are equivalent to list-tries. When d = 3, we have

Z =

 1 w.p. 1/3
2 w.p. 1/2
3 w.p. 1/6.

Numerical values for the constant c = c(d) such that Hn ∼ c logn in probability as n→ ∞ are given in
Table 2.

d 2 3 10

c 3.28661. . . 2.90777. . .

Tab. 2: Some numerical values of c = c(d) characterizing the height of symmetric ternary search trees.

5 Concluding remarks
Theorem 1 is not the most general one can obtain. In particular, the constraints that the components of
Zτ are bounded may be replaced by bounds on the moment generating function. We weights for non-
branching nodes may also be random instead of the unit values used here. Finally, similar results hold for
b-tries, where the leaves are allowed to contain up to b strings. These extensions and complete proofs of
the theorems can be found in Broutin (2007) or Broutin and Devroye (2007b).

6 Aknowledgement
We are very grateful to Julien Clément for bringing our attention on this problem and for his insightful
comments.

References
M. Archibald and J. Clément. Average depth in binary search tree with repeated keys. In Fourth Colloquium on

Mathematics and Computer Science, 2006.

J. L. Bentley and R. Sedgewick. Fast algorithm for sorting and searching strings. In Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 360–369, 1997.

10 N. Broutin and L. Devroye

N. Broutin. Shedding new light on random trees. PhD thesis, McGill University, Montreal, QC, 2007.

N. Broutin and L. Devroye. The core of a trie. Manuscript, February 2007a.

N. Broutin and L. Devroye. Weighted height of random tries. Manuscript, February 2007b.

G.G. Brown and B.O. Shubert. On random binary trees. Mathematics of Operations Research, 9:43–65, 1984.

J. Clément, P. Flajolet, and B. Vallée. The analysis of hybrid trie structures. In 9th annual ACM-SIAM Symposium on
Discrete Algorithms, pages 531–539, Philadelphia, PA, 1998. SIAM Press.

J. Clément, P. Flajolet, and B. Vallée. Dynamical source in information theory: a general analysis of trie structures.
Algorithmica, 29:307–369, 2001.

R. de la Briandais. File searching using variable length keys. In Proceedings of the Western Joint Computer Confer-
ence, Montvale, NJ, USA. AFIPS Press, 1959.

A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Springer Verlag, second edition, 1998.

L. Devroye. Laws of large numbers and tail inequalities for random tries and PATRICIA trees. Journal of Computa-
tional and Applied Mathematics, 142:27–37, 2002.

L. Devroye. Universal asymptotics for random tries and PATRICIA trees. Algorithmica, 42:11–29, 2005.

L. Devroye. A probabilistic analysis of the height of tries and of the complexity of triesort. Acta Informatica, 21:
229–237, 1984.

E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

S. Janson, T. Łuczak, and A. Ruciński. Random Graphs. Wiley, New York, 2000.

D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley, Reading, MA,
1973.

H. Mahmoud. Evolution of Random Search Trees. Wiley, New York, 1992.

G. Park, H.K. Hwang, P. Nicodème, and W. Szpankowski. Profile of tries. manuscript, 2006.

B. Pittel. Asymptotic growth of a class of random trees. The Annals of Probability, 13:414–427, 1985.

M. Régnier. On the average height of trees in digital search and dynamic hashing. Information Processing Letters,
13:64–66, 1981.

R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithm. Addison-Wesley, 1996.

W. Szpankowski. Average Case Analysis of Algorithms on Sequences. Wiley, New York, 2001.

W. Szpankowski. On the height of digital trees and related problems. Algorithmica, 6:256–277, 1991.

	Introduction
	Weighted tries
	An embedding to construct weighted tries
	The structure of a trie

	The height of weighted tries
	The shape of the core
	How long is a spaghetti?
	Projecting the profile of the core

	Application: the height of hybrid tries
	list-tries
	Ternary search trees

	Concluding remarks
	Aknowledgement

