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Hoare’s algorithm find.

Most textbooks on algorithms and data structures mention Hoare’s algorithm find

(Hoare, 1961) for the selection of the k-th smallest from a set of n pairwise different elements:

one grabs a pivot uniformly at random from the available elements, and compares the n − 1

remaining elements against it. If the rank of the pivot is `, and ` = k, we return the pivot itself.

If ` < k, we recursively return the k-th smallest of the set of smaller elements. If ` > k, we return

the (` − k)-th smallest from the set of larger elements. The randomization is done by initially

randomly permuting the data, and keeping the elements in that random order throughout. The

pivots are the first elements in the sets searched. Denote the number of comparisons by Tn,k.

This process may be visualized through a binary search tree that is constructed by consecutive

insertions of the elements of the random permutation. To find the k-th order statistic, start at

the root (the first pivot), assign a cost of n− 1, go the appropriate subtree, and recurse, always

assigning a cost equal to the size of the subtree of a node, minus one. The worst-case cost for

this fixed random tree (with respect to k) is obtained by taking that path down the tree that

yields the largest sum of individual costs. This way of looking at the problem is explored in the

paper.

Many results are known about Tn,k. In particular, if k ∼ xn as n→∞ and x ∈ (0, 1) is

fixed, then
� {Tn,k} /n→ 2− 2t log t− 2(1− t) log(1− t) (Grübel and Rösler, 1996). This can

also easily be derived from a 1972 formula of Knuth,

� {Tn,k} = 2(n+ 3 + (n+ 1)Hn − (k + 2)Hk − (n+ 3− k)Hn+1−k ,

where Hn denotes the n-th harmonic number. Furthermore, Tn,k/n
L→W (x), where

L→ denotes

convergence in distribution, and where the law of W (x) is described in the work of Grübel and

Rösler (1996). We also know that

sup
1≤k≤n

� {Tn,k ≥ tn} ≤ Cρt

for any ρ > 3/4 and some constant C(ρ) (Devroye, 1984), so that Tn,k is indeed linear in n in

a very strong uniform sense. This paper will strengthen that belief. We denote the worst-case

time by

Tn = max
1≤k≤n

Tn,k .

The purpose of this note is to give a short proof of the following.
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Theorem 1 (theorem 12 of grübel and rösler, 1996). We have

Tn
n

L→ S

where S is a random variable supported on [2,∞), and whose distribution is uniquely described

by the sole (proper random variable) solution of the distributional identity

S
L
= max(US′, (1− U)S′′) + 1 .

Here
L
= means identity in distribution, U is a uniform [0, 1] random variable, and S ′, and S′′ are

distributed as S, and U, S ′ and S′′ are independent.

The random variable S is the supremum of a process also studied by Grübel and Rösler

(1996), whose work yields Theorem 1 with trivial modifications. The focus of the work of Grübel

and Rösler was the fixed-point method for identifying the limit distribution of the complexity of

find when one looks for the bxnc-th order statistic with x ∈ (0, 1) fixed. The fixed point method

of analysis was pioneered by Rösler (1991, 1992), and surveyed by Rösler and Rüschendorf

(1999), and yielded a characterization of the limit distribution of the complexities of quicksort

(Rösler, 1991), find (Rösler, 1997), partial match in k-d trees (Neininger, 2000), partial match in

quadtrees (Neininger and Rüschendorf, 1999), the internal path length in quadtrees (Neininger

and Rüschendorf, 1999), and many other algorithms. Grübel (1997) provides a Markov chain

alternative to the analysis of find. In the present paper, we merely point out that by using

an embedding technique for random binary search trees, the limiting process can be obtained

rather routinely by monotone convergence, and that the study of S (but not that of Tn,bxnc) and

the proof of Theorem 1 are in fact rather straightforward. This provides an alternative shorter

path to Theorem 12 of Grübel and Rösler (1996). Pruned trees (Lent and Mahmoud, 1996)

form yet a different way of viewing things. In the last section, we provide more information on

the distribution of S and show that it has a density, is Lipschitz continuous, and we also provide

bounds on all moments, as well as explicit exponential and asymptotic superexponential tail

bounds.

Explanation via binary search trees

We could have solved this problem in a number of ways, but the route followed here is

perhaps the most intuitive one. From the random permutation, we construct a random binary

search tree by standard insertion. This tree may be used to explain or visualize the complexity of

find. Indeed, if the k-th smallest element is found by following the path u0, u1, . . . , um starting

from the root u0, then the number of comparisons is (N(u0) − 1) + (N(u0, u1) − 1) + · · · +
(N(u0, u1, . . . , um) − 1), where N(u0, u1, . . . , um) is the size of the subtree rooted at the node

whose path is defined by (u0, u1, . . . , um). To get a handle on the sum of the N(u0, u1, . . . , uj)’s,
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we represent this random binary search tree in yet another way, following Devroye (1986). The

sizes of the subtrees of the root are distributed jointly as (bnUc, bn(1−U)c) where U is uniform

[0, 1]. We associate this value U with the root of an infinite binary search tree that describes

sizes of subtrees. We recursively associate independent uniform random variables with all nodes

in this infinite binary search tree. If we follow the path u0, u1, . . . , um in this new tree, and

Uu0
, Uu0,u1

, . . . , Uu0,u1,...,um are the uniform [0, 1] random variables associated with the nodes on

this path, starting with the root u0, and if we define

N(u0, . . . , um) = b· · · bbnUu0
cUu0,u1

c · · ·Uu0,u1,...,umc ,
then the following property is valid: the infinite collection of Nm’s (one per node) is jointly

distributed as the Nm’s in the original random binary search tree, with the understanding in

the original tree that Nm = 0 denotes a non-existent node or subtree. Clearly, then,

Tn = sup
m≥1;u0,u1,...,um

m∑

j=0

(N(u0, . . . , uj)− 1)+

where the supremum is over all m and all paths u0, u1, . . . , um. Observe the following: if

Uu0,u1,...,ui is the uniform [0, 1] random variable associated with ui, then

n
m∏

j=0

Uu0,u1,...,uj − (m+ 1) ≤ N(u0, . . . , um) ≤ n
m∏

j=0

Uu0,u1,...,uj .

Thus, if P denotes the collection of all paths, and Pm the collection of all paths of m edges

starting from the root, then taking the supremum over all paths in the previous inequality shows

the following:

Tn
n
≤ sup

P

∞∑

j=0

j∏

i=0

Uu0,u1,...,ui .

Furthermore, for any integer m ≥ 1,

Tn
n
≥ sup
Pm

m∑

j=0

j∏

i=0

Uu0,u1,...,ui −
(m+ 1)(m+ 2)

2n
.

So, if we take m = bn1/4c, and let n→∞, then, by monotone convergence, we see that almost

surely, Tn/n tends to

S
def
= sup

P

∞∑

j=0

j∏

i=0

Uu0,u1,...,ui .

The possibly extended random variable S (an extended random variable is one taking the value

∞ with positive probability) does not involve n, and may thus be studied separately, which is

what we will do in the next section. Observe that at this point, we do not know yet whether

S <∞ with probability one!
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The Hoare process and the proof of theorem 1

The proof of Theorem 1 proceeds as follows: first we give another representation for

S in terms of random functions. This representation allows us to prove that S is a proper

random variable (S < ∞ almost surely). We note that S satisfies the distributional identity,

and recall from the last five lines in the proof of Grübel and Rösler’s Theorem 12 (1996), that

the distributional identity has one and only one random variable as a solution. Therefore, we

are done.

For lack of a better name, we now describe the Hoare process on [0, 1], defined by an

infinite binary tree in which each node has an independent copy of a uniform [0, 1] random

variable. Let f0(x) = 1, 0 ≤ x < 1. Define the interval partition A1 = {[0, U), [U, 1)} def
=

{A1,1, A1,2}, where U is the uniform random variable associated with the root. Let

f1(x) =

{
f0(x)U x ∈ A1,1 ;

f0(x)(1− U) x ∈ A1,2 .

Each of the sets of A1 is associated with a child of the root, and has in turn a uniform random

variable associated with it. Calling these uniform random variables V and W , we obtain a new

partition with 22 members, A2 = {[0, UV ), [UV,U), [U,U + (1 − U)W ), [U + (1 − U)W, 1)} def
=

{A2,1, . . . , A2,4}, and a new function

f2(x) =





f1(x)V x ∈ A2,1 ;

f1(x)(1− V ) x ∈ A2,2 ;

f1(x)W x ∈ A2,3 ;

f1(x)(1−W ) x ∈ A2,4 .

This construction, duly iterated, yields functions fn that are staircase-shaped with 2n supporting

intervals. At each x, fn(x) is the product of n random variables. Define

Zn = sup
x
fn(x) ,

the size of the largest of the 2n intervals in the collection An. By taking logarithms, and noting

that when U is uniform [0, 1], then − logU is exponentially distributed, we see that − logZn

is distributed as the minimum of 2n (dependent) sums of n independent exponential random

variables, and is in fact the minimum value in a branching random walk in which we have two

children per node and all displacements are exponentially distributed. The properties of such

minima were studied at length by Biggins (1977) after initial work by Kingman (1975) and

Hammersley (1974), and in fact,
− logZn

n
→ γ

almost surely, where γ is the solution of 2γe1−γ = 1.
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The partial sums

gn(x) =
n∑

j=0

fj(x) , 0 ≤ x < 1,

define the n-th Hoare process, and g(x) =
∑∞

j=0 fj(x) is the Hoare process. Note that by

positivity of the fj ’s, g(x) is well-defined (but possibly infinite) for all x ∈ [0, 1). We note

here that this process goes back to Grübel and Rösler (1996), who use it mainly to analyze the

complexity of find when searching for the bxnc-th order statistic, where x ∈ (0, 1) is fixed. In

fact, the complexity of find in this case is roughly distributed as ng(x).
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Figure 1. The functions gn and the limit function g are shown. Note that the

Hoare supremum S is the supremum of g.

We define the Hoare supremum

S = sup
x

g(x) = lim
n→∞

sup
x

gn(x)
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and introduce the sequence of random variables Sn = supx gn(x). Note that Sn ≤
∑n

j=0 Zj so

that by Biggins’ result cited above, Sn = O(1) almost surely. Furthermore, S ≤ ∑∞j=0 Zj so

that S < ∞ almost surely. As S is a limit of a monotone supremum of a staircase function,

it is easy to see that S is a proper random variable. By the recursive nature of the definition

of the Hoare process, we see that S is distributed as 1 + max(S ′U, S′′(1− U)), where S′, S′′, U

are independent, S ′ and S′′ are distributed as S, and U is uniform [0, 1]. As Grübel and Rösler

(1972, theorem 12) showed, there is only one proper random variable that is a solution of this

distributional identity. This concludes the proof of Theorem 1.

Additional properties of S

We first show that for our random variable, using only the original definition,
� {S} <∞.

This will be needed further on for crucial higher moment bounds.

Lemma 1.
� {S − 1} ≤ 5/

√
2π + 12e/5 < 8.5185.

Proof. Note that if the Ui’s are independent uniform [0, 1] random variables and Gn is a

gamma (n) random variable, then, for t ∈ (0, 1),

� {Zn > t} ≤ 2n
�

{
n∏

i=1

Ui > t

}
= 2n

� {Gn < − log t}

= 2n
∫ − log t

0

xn−1e−x

(n− 1)!
dx ≤ 2(2 log(1/t))n−1

(n− 1)!
.

Thus, for c > 0,

� {Zn} =

∫ 1

0

� {Zn > t} dt ≤
∫ 1

0

min

(
2(2 log(1/t))n−1

(n− 1)!
, 1

)
dt

=

∫ ∞

0

min

(
2(2u)n−1

(n− 1)!
, 1

)
e−udu

≤
∫ cn

0

2(2u)n−1

(n− 1)!
du+ e−cn

=
(2cn)n

n!
+ e−cn .

Using n! ≥
√

2πn(n/e)n, we have

∞∑

n=1

� {Zn} ≤
∞∑

n=1

(2cn)n

n!
+

1

ec − 1
≤
∞∑

n=1

(2ce)n√
2πn

+
1

ec − 1
≤ 2ce

(1− 2ce)
√

2π
+

1

c
.
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Recall that S − 1 ≤∑∞n=1 Zn. Therefore, taking c = 5/(12e), we see that
� {S − 1} ≤ 5/

√
2π+

12e/5 < 8.5185.

Introduce νr =
� {(S − 1)r}.

Lemma 2. S is supported on [2,∞).

Proof. Clearly, S ≥ 1. From the distributional identity,

S ≥ 1 + max(U, 1− U) ≥ 3/2 .

But then,

S ≥ 1 + (3/2) max(U, 1− U) ≥ 7/4 .

By induction, S ≥ 2.

Lemma 3. For integer r ≥ 1,

� {(S − 1)r} def
= νr ≤ 3r−1r!

� {S − 1} <∞ .

Proof. The inequality is valid for r = 1. We prove by induction on r that

νr ≤ 3rr!C , r ≥ 1,

where C =
� {S − 1} /3. Assume r ≥ 2 and assume that the inequality is true up to r − 1. By

applying rather crude bounding (a maximum is less than a sum), we note that

νr =
� {(S − 1)r} ≤ 2

� {S′r} � {U r} =
2

r + 1

� {((S − 1) + 1)r} =
2

r + 1

r∑

j=0

νj

(
r

j

)
.

Thus,

νr ≤
2

r − 1

r−1∑

j=0

νj

(
r

j

)
≤ 2

r − 1

r−1∑

j=0

C3jj!r!

j!(r − j)! ≤
2C3rr!

r − 1

r−1∑

j=0

3j−r

(r − j)! ≤ C3rr!

provided that

2

r−1∑

j=0

1

3r−j(r − j)! ≤ r − 1 .

But the left-hand side is not more than 2
(
e1/3 − 1

)
≤ 2e1/3/3 < 1 ≤ r − 1. Thus, we showed

that

νr ≤ 3r−1r!
� {S − 1} .
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Remark. From Lemma 3, for some finite constant C,

νr ≤ C3rr! , r ≥ 1.

Thus, (νr)
1/(2r) = O(

√
r), which implies

∞∑

r=2

1

(νr)1/(2r)
=∞ .

This is Carleman’s condition (see, e.g., Stoyanov, 1987) for the moments of a positive random

variable so that they uniquely define the distribution. Thus, we showed that any solution of the

distributional identity having
� {S} <∞ is uniquely determined by its moments.

Remark. By carefully checking the last part of the proof of Lemma 3, we see that if we define

D = 1/W (1/2) = 2.843059872 . . ., where W (·) is Lambert’s W-function (defined as the solution

on W (x) exp(W (x)) = x), then

� {(S − 1)r} ≤ r!
� {S − 1}

(W (1/2))r−1
.

Remark. Note that the solution X of X
L
= 1+Xmax(U, 1−U) is a minorant of S in stochastic

order, and may thus be used to obtain lower bounds for moments and tails for S.

Theorem 2. The density of the limit random variable S is supported on [2,∞), has bounded

variation not exceeding 2, is bounded by 1, and is in fact Lipschitz with Lipschitz constant not

exceeding 2. Finally, 3.3862 < 2 + 2 log 2 ≤ � {S} ≤ 1 + 5/
√

2π + 12e/5 < 9.5185.

Proof. We first prove that there is a density and that it is bounded by 1. To see this, we

look at the density of S − 1 = max(S ′U, S′′(1− U)) in the notation of Theorem 1. Condition

on [S′ = a, S′′ = b], where a, b ≥ 2 are arbitrary numbers. Then max(aU, b(1 − U)) has the

following density:

fa,b(x) =
1

a
I[ab/(a+b),a](x) +

1

b
I[ab/(a+b),b](x) .

The density is bounded by 1/a + 1/b ≤ 1. As the unconditional density is obtained by re-

placing a and b by S ′ and S′′ and taking expectations, we see that it too must be bounded

by 1. Furthermore, the conditional density is unimodal and of bounded variation equal to

2(1/a + 1/b) ≤ 2. While this does not guarantee that the unconditional density is unimodal,

it suffices to conclude that the unconditional density is of bounded variation not exceeding
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2. By symmetry,
� {fS′,S′′(x)} =

� {
(2/S′)IS′S′′/(S′+S′′)≤x≤S′

}
, and thus we need only look at

ga,b(x) = 2
a
I[ab/(a+b),a](x). Now, for x < y,

ga,b(x)− ga,b(y) =





2
a

if ab/(a+ b) ≤ x ≤ a < y;

− 2
a

if x < ab/(a+ b) ≤ y ≤ a;

0 otherwise.

Thus, |ga,b(x)− ga,b(y)| ≤ (2/a)Ix≤a<y + (2/a)Ix<ab/(a+b)≤y. Unconditioning, we see that

| � {fS′,S′′(x)} − � {fS′,S′′(y)}| = | � {gS′,S′′(x)} − � {gS′,S′′(y)}|
≤ � {|gS′,S′′(x)− gS′,S′′(y)|}
≤ � {[S′ ∈ [x, y]] ∪ [S′S′′/(S′ + S′′) ∈ [x, y]}
≤ 2(y − x)

as the density of S ′ is bounded by 1, and thus also the density of S ′S′′/(S′ + S′′). Therefore,

the density of S− 1 is Lipschitz with constant not exceeding 2. The last statement follows from

Lemma 1 and the following simple argument:
� {S} ≥ supx

� {g(x)}. From classical results

(see, e.g., Grübel and Rösler, 1996), supx
� {g(x)} = 2 + 2 log 2.

Tail bounds for S

In this section, we derive useful exponential tail bounds for S and Tn (Theorem 3). In

Theorem 4, we give non-explicit superexponential tail bounds for S.

Theorem 3. For t ≥ 4,

sup
n≥1

� {Tn ≥ tn} ≤
� {S ≥ t} ≤

� {(S − 1)} (t− 1)e−
t−4

3

9
.

Proof. For 0 < λ < 1/3, by Lemma 3,

� {
eλ(S−1)

}
=
∞∑

r=0

λr
� {(S − 1)r}

r!
≤

� {(S − 1)}
3

∞∑

r=0

(3λ)r =

� {(S − 1)}
3− 9λ

.

Therefore, by Chernoff’s bounding method, for t ≥ 3,

� {S − 1 ≥ t} ≤ e−λt � {
eλ(S−1)

}
≤ e−λt

� {(S − 1)}
3− 9λ

≤ e−
t−3

3
� {(S − 1)} t

9

where we took λ = (t−3)/(3t) in the last step. Theorem 3 then follows by noting that Tn ≤ nS.
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Considering the remark following Lemma 3, we note that this bound may be slightly

tightened. The bound of Theorem 3 is very useful for comparisons with the standard lin-

ear worst-case algorithms, that, depending upon the implementation have time bounds only

guaranteed to be about 20n. The version of Blum, Floyd, Pratt, Rivest and Tarjan (1973)

has complexity not exceeding 15n − 163 for n > 32. The much more involved algorithm of

Schönhage, Paterson and Pippenger (1976) has complexity 3n+ O((n logn)3/4).

Regarding the stability of find, Grübel and Rösler (1996) showed that the tails of

Tn,xn/n decrease faster than exponentially for x ∈ (0, 1), but no such superexponential behavior

of the tail of Tn/n has been established to date. For related work on superexponential tails, see

Mahmoud, Modarres and Smythe (1995). We show precisely that:

Theorem 4. For any A > 0, there exist constants s and C such that

� {(S − 1)r} ≤ Ce−A(r−s)r! ,

for all integer r ≥ s. For integer t ≥ s,
sup
n≥1

� {Tn ≥ (t+ 1)n} ≤ � {S − 1 ≥ t} ≤ Ce−A(t−s) .

Proof. The second statement follows from the first one by taking r = t, and using Markov’s

inequality, if t ≥ s:
� {S − 1 ≥ t} ≤

� {(S − 1)t}
tt

≤ Ce−A(t−s)t!

tt
≤ Ce−A(t−s) .

Introduce νr =
� {(S − 1)r}. In Lemma 3, we showed that for integer r ≥ 1,

νr ≤ 3r−1r!
� {S − 1} ,

and

νr ≤
2

r − 1

r−1∑

j=0

νj

(
r

j

)
.

Define

s =
⌈
4
(
ee
A − 1

)⌉
.

Set

B =
� {(S − 1)} 3s−1

and note that by Lemma 3, max(ν0, ν1/1!, . . . , νs/s!) ≤ B. Take

C = max

(
B,

4Be

s
,

2Be(2/e)2

s
eA(eA+1−1)

)
.
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We show by induction on r that

νr ≤
{
Br! ≤ Cr! r ≤ s ;

Ce−A(r−s)r! r ≥ s.
The former inequality is obvious by definitions of B and C. Fix r > s and assume the claim

about νr is valid up to index r − 1. Then, if r − s+ 1 ≥ eA+1,

νr ≤
2

r − 1

s−1∑

j=0

νj

(
r

j

)
+

2

r − 1

r−1∑

j=s

νj

(
r

j

)

≤ 2Br!

r − 1

∞∑

j=r−s+1

1

j!
+

2Cr!

r − 1

r−1∑

j=s

e−A(j−s)

(r − j)!

≤ 2Ber!

(r − 1)(r − s+ 1)!
+

2Cr!e−A(r−s)

r − 1

r−s∑

j=1

eAj

j!

≤ 2Ber!

s

(
e

r − s+ 1

)r−s+1

+
2Cr!e−A(r−s)

r − 1

(
ee
A − 1

)

≤ Cr!e−A(r−s+1)

2
+

2Cr!e−A(r−s)s

4(r − 1)

≤ Cr!e−A(r−s) .

If s < r < s− 1 + eA+1, then, using the fact that

C ≥ 2Be(2/e)2

s
eA(eA+1−1) ,

we have,
2Ber!

s(e/2)2

(
e

r − s+ 1

)r−s+1

≤ Cr!e−A(eA+1−1) ≤ Cr!e−A(r−s)

so that we can conclude the induction.

Inverting any staircase function

The following problem is important in a number of fields: given are unsorted numbers

x1, . . . , xn, together with a number of positive weights w1, . . . , wn. Determine the unique index

i such that ∑

j:xj<xi

wj < y ≤
∑

j:xj≤xi
wj ,

where y is a given number. We return 0 if no such index exists. It takes just a moment to verify

that this problem can be solved by a trivial adjustment of the two-split version of find: assume

that the (xi, wi)’s are already randomly permuted. Then take x1, and compute v =
∑

j:xj<x1
wj .

If v < y ≤ v + w1, then return 1; if v + w1 < y, then recurse, using only those xj ’s whose

value is > x1, and replace y by y − v − w1. If y ≤ v, then recurse using only the values < x1.
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The complexity of this algorithm (in terms of numbers of comparisons) is a random variable

T (y, w1, . . . , wn). However, note that

sup
y,w1,...,wn

T (y, w1, . . . , wn)
L
= Tn

so that our analysis applies to this situation. In particular, uniformly over all values of the

vector (w1, . . . , wn), the complexity is bounded by Sn, where S is the supremum of the Hoare

process. The adversary may even pick the weight vector after having inspected the permutation!

Finding F inv(y) where

F (x) =
n∑

i=1

wiI[xi,∞)(x)

with positive weights wi, and the xi’s unsorted can thus be done in time bounded above by a

random variable distributed as Tn.

A situation where this arises is the generation of random numbers from {x1, . . . , xn}
with given probability weights p1, . . . , pn. If we preprocess and sort the xi’s and compute the

cumulative weights, that is, the cumulative distribution function, and if we let y be a uniform

[0, 1] random variable, then the returned xi has indeed the correct distribution: this is known

as the inversion method in random variate generation (Devroye, 1986). By keeping two arrays,

the expected time can be shown to be O(1), uniformly over all n and all weight vectors—this is

known as the alias method (Walker, 1977). However, without preprocessing, inversion may be

organized by the find-like algorithm in O(n) expected time, uniformly over all weight vectors,

as we showed above.

Generalizations of find in the hope of obtaining better performance are relatively easy

to obtain. For example, if we use the random permutation model, and pick the median of the

first 2m + 1 for splitting, then with some minor work, one can show that Tn/n has a limit

distributed as S, where S
L
= 1 + max(S′X,S′′(1−X)), and X is beta (m+ 1,m+ 1) distributed.

For related work, see Kirschenhofer, Prodinger and Martinez (1997).

Finally, to search for several order statistics, one may turn to multiple quickselect, a

generalization of Hoare’s method. It was analyzed by Mahmoud and Smythe (1998), Panholzer

and Prodinger (1998) and Prodinger (1995). Its worst-case properties (over all combinations of

m order statistics) should be studied.
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