
Electronic Journal of Statistics
Vol. 18 (2024) 5659–5678
ISSN: 1935-7524
https://doi.org/10.1214/24-EJS2331

A note on estimating the dimension
from a random geometric graph

Caelan Atamanchuk1, Luc Devroye1 and Gábor Lugosi2,3,4

1School of Computer Science, McGill University, Montreal, Canada,
e-mail: caelan.atamanchuk@gmail.com; lucdevroye@gmail.com

2Department of Economics and Business, Pompeu Fabra University, Barcelona, Spain
3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

4Barcelona Graduate School of Economics, e-mail: gabor.lugosi@gmail.com

Abstract: Let Gn be a random geometric graph with vertex set [n] based
on n i.i.d. random vectors X1, . . . , Xn drawn from an unknown density f on
R
d. An edge (i, j) is present when ‖Xi−Xj‖ ≤ rn, for a given threshold rn

possibly depending upon n, where ‖·‖ denotes Euclidean distance. We study
the problem of estimating the dimension d of the underlying space when we
have access to the adjacency matrix of the graph but do not know rn or the
vectors Xi. The main result of the paper is that there exists an estimator
of d that converges to d in probability as n → ∞ for all densities with∫
f5 < ∞ whenever n3/2rdn → ∞ and rn = o(1). The conditions allow very

sparse graphs since when n3/2rdn → 0, the graph contains isolated edges
only, with high probability. We also show that, without any condition on the
density, a consistent estimator of d exists when nrdn → ∞ and rn = o(1).
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In network science one often seeks geometric representations of an observed net-
work that help interpret and predict connections and understand the structure
of the network. Indeed, embedding a (weighted) graph in a low-dimensional
Euclidean space—called multidimensional scaling in statistics—is a thoroughly
studied problem; see the monographs of Borg and Groenen [6] and Borg, Groe-
nen, and Mair [7] for a comprehensive treatment. For a sample of the literature
on closely related approaches in computational geometry and machine learn-
ing, see Reiterman, Rödl, Šiňajová [34], Tenenbaum, Silva, and Langford [36],
Shavitt and Tankel [35], Kleinberg [27], Kang and Müller [25], Verbeek and Suri
[38]. A more basic question is to determine the dimension of the underlying
geometric space. In this paper we consider the problem of estimating the di-
mension of the Euclidean space underlying a geometric graph, upon observing
a (combinatorial) graph.
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In order to set up a rigorous statistical problem, we model the graph as a
random geometric graph. Indeed, random geometric graphs occur naturally in
network models in a variety of areas, including bioinformatics or the analysis of
social media. We refer the reader to Duchemin and De Castro [14] for a review
and pointers to the literature. Let Gn be a random geometric graph with vertex
set [n] based on n i.i.d. random vectors X1, . . . , Xn drawn from an unknown
density f on R

d. An edge (i, j) is present when ‖Xi − Xj‖ ≤ rn, for a given
threshold rn possibly depending upon n, where ‖ ·‖ denotes Euclidean distance.
Introduced by Gilbert [18, 19], the properties of these graphs have been well
studied when f is the uniform density on a convex set of Rd or the torus [0, 1]d
in R

d. Its properties are surveyed by Penrose [31]. Noteworthy are the precise
results on connectivity (Appel and Russo [2]; Balister, Bollobás and Sarkar [4];
Balister, Bollobás, Sarkar, and Walters [5]), cover time (Cooper and Frieze [12]),
coverage (Gilbert [17]; Hall [22], Janson [24]), chromatic number (McDiarmid
and Müller [30]), and minimal spanning tree (Penrose [32]).

In the dimension-estimation problem considered here, we observe the adja-
cency matrix of the graph Gn but we do not know d, rn or the vertex locations
Xi. The question then is whether one can estimate the underlying dimension d.
In other words, can one develop an estimate Δn of d, based only on knowledge
of Gn, with the property that Δn → d in probability as n → ∞? When this
convergence happens, we say that Δn is a consistent estimator of d.

Whether consistent estimators exist, may depend on the parameters of the
model, that is, the density f and the sequence of radii {rn}. For example, if the
graph is too sparse, there is no hope to estimate d. Indeed, suppose that f is
the uniform density on [0, 1]d, and rn is such that n3/2rdn → 0. Then Gn only
contains isolated edges, with high probability. Indeed,

P {∃ distinct i, j, k ∈ [n] : ‖Xi −Xj‖ ≤ rn and ‖Xi −Xk‖ ≤ rn}

≤ n3
E

[
P

{
‖X1 −X2‖ ≤ rn and ‖X1 −X3‖ ≤ rn

∣∣∣X1

}]
≤ n3V 2

d r
2d
n → 0 ,

where Vd denotes the volume of the unit ball in R
d

For such graphs it is clearly impossible to infer anything about the underlying
geometry. The main result of this paper shows that, as soon as rn is such that
n3/2rdn → ∞, it is possible to consistently estimate the dimension, for a large
class of densities. More precisely, we prove the following.

Theorem 0.1. Let the density f on R
d satisfy

∫
f5 < ∞. Assume furthermore

that
lim
n→∞

n3/2rdn = ∞ ,

and rn = o(1). Then there exists an estimate Δn such that Δn → d in probabil-
ity.

The condition on the radius rn allows extremely sparse graphs. It suffices
to have rdn ∼ n−3/2ωn for ωn → ∞ arbitrarily slowly. Note that in that case
the graph has merely Op(

√
nωn) edges. Such graphs are extremely sparse as

the great majority of vertices are isolated. Indeed, the expected degree of a
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typical vertex is of the order of n−1/2ωn. The condition
∫
f5 < ∞ excludes

densities with pronounced infinite peaks but it does not assume anything about
the smoothness or tails of the distribution. We also prove a consistency result
for arbitrary densities, though under more stringent conditions on the radii rn:

Theorem 0.2. Let the density f in R
d be arbitrary, and assume that

lim
n→∞

nrdn = ∞ , and lim
n→∞

rn = 0 .

Then there exists an estimate Δn such that Δn → d in probability.

The condition nrdn → ∞ implies that the expected degree of a typical vertex
goes to infinity, albeit arbitrarily slowly. While this is significantly more restric-
tive than the condition of Theorem 0.1, it still allows the graph to be relatively
sparse.

It is an interesting open question whether there exist dimension estimators
that are consistent for all densities under the minimal assumption n3/2rdn → ∞.
We conjecture that the estimator used in this paper to prove Theorem 0.1 is
not consistent for all densities, though the condition

∫
f5 < ∞ may possibly be

relaxed to
∫
f3 < ∞, as discussed below.

The paper is organized as follows. After reviewing some of the related liter-
ature, in Section 1 we introduce four simple estimators of the dimension whose
analysis proves Theorems 0.1 and 0.2. We start analyzing the estimators in Sec-
tion 2 by focusing on the special–but important–case of the uniform density
on the torus. Finally, in Section 3 we state Theorems 0.1 and 0.2 for general
densities. In Section 4 we establish a geometric lemma that is a key tool in our
approach of defining estimators of the dimension. Most proofs are presented in
the Appendix.

Related literature

Numerous heuristics have been proposed for choosing the embedding dimension
in multidimensional scaling (Hout, Papesh, and Goldinger [23]). For a principled
appoach, see Peterfreund and Gavish [33].

Granata and Carnevale [20] consider the dimension-estimation problem in
a more general framework of estimating the intrinsic dimension of geometric
graphs defined in general metric spaces. Instead of focusing on general conditions
for consistency, [20] aim to construct accurate estimates from graph distances.

Bubeck, Ding, Eldan, and Rácz [9] show that, based on a dense random
geometric graph drawn from the uniform distribution on the surface of the d-
dimensional unit sphere, it is possible to estimate d as long as n 
 d.

Lichev, and Mitsche [29] and Casse [11] study properties of the online near-
est neighbor tree based on uniformly distributed points in [0, 1]d and observe
that it is possible to consistently estimate the dimension upon observing the
combinatorial tree.
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Dimension-estimation from geometric graphs is closely related to the problem
of estimating the intrinsic dimensionality of high-dimensional data, see Fuku-
naga and Olsen [16], Verveer and Duin [40], Bruske and Sommer [8], Tenenbaum,
Silva, and Langford [36], Facco, d’Errico, Rodriguez, Laio [15]. Indeed, often the
first step of computing such estimates is to construct a geometric graph from
the data, see, e.g., Grassberger and Procaccia [21], Camastra and Vinciarelli
[10], Kégl [26], Costa and Hero [13], Levina and Bickel [28]. However, all these
approaches assume knowledge of the pairwise distances between data points,
which is equivalent to having access to the geometric graph Gn at all scales
r > 0. In this paper we only assume access to the graph at a single threshold
value rn.

Araya and De Castro [3] study estimating the Euclidean distances between
the point locations upon observing the combinatorial graph for dense random
geometric graphs, though their results also apply to relatively sparse graphs.
von Luxburg and Alamgir [41] discuss the problem of estimating the density
function of the data distribution based on observing the k-nearest neighbor
graph generated by the data.

1. The proposed estimates

In this section we introduce four simple estimators of the dimension d.
Consider the unit ball B(0, 1) in R

d, and let X and Y be independent and
uniformly distributed in B(0, 1). We define the quantity

wd = P{‖X − Y ‖ ≤ 1} .

All four estimators studied in this paper are based on estimating wd. It is shown
in Lemma 4.1 below that the sequence wd decreases strictly monotonically to 0
as d ↑ ∞.

If W is a data-based estimate, then we set

Δn = argmin
d

|W − wd|.

In view of Lemma 4.1, if W → wd in probability, then Δn → d in probability
and therefore it suffices to construct consistent estimators of wd.

By using binary search (first doubling the dimension until an overshoot oc-
curs, and then applying classical binary search), one can find Δn using only
O(log d) computations of the function ws.

We propose simple local estimates W1 and W4 and more powerful global
estimates W2 and W3. Randomly label the nodes of the graph such that all
labelings are equally likely. Denote the degree of vertex i in Gn by Di, and let
δi be the number of edges between nodes in Ni, the set of neighbors of vertex
i (excluding the vertex i). Let M be the smallest index among the vertices of
maximal degree. Let ξij be the indicator that i is connected to j. Our estimates
are as follows:

W1
def.= δM(

DM

2
) ,
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W2
def.=

∑
i<j<k ξkiξkjξij∑
i<j<k ξkiξkj

,

W3
def.=

∑n
i=1

δi(Di
2
)∑n

i=1 1Di≥2
,

and
W4

def.= δ1(
D1
2
) .

We interpret all these ratios as zero when the denominator equals zero. Note
that W1 is the edge density of the subgraph spanned by the neighborhood of
a vertex of maximal degree, while W4 is that of a randomly chosen vertex. W2
counts the ratio of the number of triangles in the graph and the number of
paths of length two. W2 is often called the transitivity of the network. Finally,
the estimator W3 is identical to the clustering coefficient introduced by Watts
and Strogatz [42].

2. Analysis for the uniform density on the torus

In this section we focus on the uniform density on [0, 1]d, and measure Euclidean
distances as in the torus, that is, for x, y ∈ [0, 1]d,

‖x− y‖ def.= min
z∈Zd

‖x− y + z‖ ,

where Zd is the collection of all integer-valued d-dimensional vectors. This allows
us to present some of the ideas in a transparent manner.

Assume that rn ≤ 1/2 to avoid the wraparound effect in the torus. We begin
by analyzing the statistic δ1, assuming that D1 ≥ 2. Note that we can represent
δ1 as

δ1
L=

∑
i,j∈{1,...,D1}:i<j

Yij ,

where Yij = 1‖Zi−Zj‖≤1, and Z1, . . . , ZD1 are i.i.d. random vectors uniformly
distributed in the unit ball of Rd. This representation is valid since the Xi are
uniformly distributed and by the assumption rn ≤ 1/2. Moreover, conditioned
on a fixed number of points falling in the neighborhood of radius rn of any point,
their distribution is independent uniform in that neighborhood. Each random
variable Yij is Bernoulli (wd). Thus, still for D1 ≥ 2,

E

{
δ1(
D1
2
) | D1

}
= wd ,

so that the estimator W4 is unbiased. Then,

Var{δ1|D1}



5664 C. Atamanchuk et al.

= E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

i<j≤D1

(Yij − wd)

⎞
⎠

2

| D1

⎫⎪⎬
⎪⎭

=
(
D1

2

)
E
{
(Y12 − wd)2|D1

}
+ 3
(
D1

3

)
E {(Y12 − wd)(Y13 − wd)|D1} .

Note however that, given D1, Y12 and Y13 are conditionally independent, so that
we can conclude that

Var{δ1|D1} =
(
D1

2

)
wd(1 − wd) .

Therefore, by the Chebyshev-Cantelli inequality, if D1 ≥ 2 and t > 0,

P

{∣∣∣∣∣ δ1(
D1
2
) − wd

∣∣∣∣∣ ≥ t | D1

}
≤ Var{δ1|D1}

Var{δ1|D1} +
(
D1
2
)2
t2

=
(
D1
2
)
wd(1 − wd)(

D1
2
)
wd(1 − wd) +

(
D1
2
)2
t2

= wd(1 − wd)
wd(1 − wd) +

(
D1
2
)
t2

≤ wd

wd +
(
D1
2
)
t2 .

We conclude that W4 = δ1/
(
D1
2
)
→ wd in probability when D1 → ∞ in proba-

bility. As it is discussed in the proof of the next theorem, a sufficient condition
for this is that nrdn → ∞. This latter condition may be somewhat relaxed if one
replaces the estimator W4 by W1. This is shown in the following theorem which
summarizes the consistency properties of the estimators W1 and W2.

Theorem 2.1. Let the density f be the uniform density on the unit torus [0, 1]d,
and assume that rn ≤ 1/2 for all n.

(i) If
lim
n→∞

nrd(1−ε)
n = ∞

for all ε > 0, then W1 → wd (and thus Δn → d) in probability as n → ∞.
A sufficient condition for this is that nrdn ≥ L(n) with L(n) slowly varying.

(ii) If rn → 0 and n3/2rdn → ∞, then W2 → wd (and thus Δn → d) in
probability as n → ∞.

The computational complexity of the inferior estimate W1 is less than that
of W2, so both estimates have their use. On the other hand, W1 requires at
least n/L(n) edges, where L(n) is slowly varying. For example, for constant k,
n/ logk(n) edges will do. At the same time, one may reduce the computational
cost of W2 by considering Monte-Carlo subsampling to approximate W2.
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3. General densities

In the Appendix we prove the following theorem, which implies Theorem 0.2.

Theorem 3.1. Let the density f be arbitrary. Assume that rn = o(1) and
nrdn → ∞. Then W4 → wd (and thus Δn → d) in probability as n → ∞.

Finally, the following result—proven in the Appendix–implies Theorem 0.1.

Theorem 3.2. Let the density f have
∫
f5 < ∞. Assume that rn = o(1) and

n3/2rdn → ∞. Then W2 → wd (and thus Δn → d) in probability as n → ∞.

We suspect that
∫
f3 < ∞ suffices in Theorem 3.2, but this would require a

substantially longer proof. In any case, the restriction
∫
f5 < ∞ would imply, for

example, that for the univariate beta (a, b) density, we need to have min(a, b) >
4/5. Nevertheless the theorem still covers most densities, including some that
are nowhere continuous.

4. A geometric lemma

Recall that
wd = P{‖X − Y ‖ ≤ 1} ,

where X and Y are independent, uniformly distributed random vectors in the
unit ball B(0, 1) in R

d. The following property shows that by consistently esti-
mating wd, one obtains a consistent estimator of d.

Lemma 4.1. We have

wd = 3
2P
{
β

(
1
2 ,

d + 1
2

)
≥ 1

4

}
,

where β(a, b) denotes a beta random variable with shape parameters a and b.
The sequence wd decreases strictly monotonically to 0 as d ↑ ∞.

On the value of wd

The explicit density of ‖X − Y ‖ was derived by Aharonyan and Khalatyan
[1]. From it, one can deduce a formula for wd as a function of some gamma
functions. As Lemma 4.1 shows, the constant wd is simply related to the upper
tail of a beta random variable, so wd is a constant times an incomplete beta
integral. For general properties of random variables uniformly distributed in
high-dimensional convex sets, we refer to Vershynin [39].

On the sample size needed

The representation of wd given in Lemma 4.1 permits us to show that wd −
wd+1 ≥ d−(d+o(d))/2 (see Appendix E). Our proposed algorithms are all based
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on estimates of wd, and have errors that decline at polynomial rates in n, the
sample size. Thus, while all estimates are consistent in the limit, there is no
hope of a good performance when d 
 logn/ log logn. In [9] it is shown that,
in the case of very dense graphs and the uniform density on the surface of
the unit sphere, there exist estimators that work well as soon as n 
 d. It is a
challenging problem for further research to determine the exact tradeoff between
edge density and required sample size for accurately estimating d.

Appendix A: Proof of Theorem 2.1

Proof of (i). Replacing D1 by DM in the analysis of δ1/
(
D1
2
)

implies that if we
can show that DM → ∞ in probability, then W1 → wd in probability, and thus
Δn → d in probability as n → ∞. For a random geometric graph on the torus
of Rd, we have from simple considerations that DM → ∞ in probability if for
all ε > 0

lim
n→∞

nrd(1−ε)
n = ∞ .

A sufficient condition for this is that nrdn ≥ L(n) with L(n) slowly varying. See
Bingham, Goldie and Teugels [37] for more on this topic. We have DM ≥ D1, and
thus DM → ∞ in probability when D1 → ∞ in probability. As D1 is binomial
(n − 1, Vdr

d
n), where Vd denotes the volume of the unit ball in R

d, we have
D1 → ∞ in probability when nrdn → ∞. When nrdn → c > 0 for a constant c, we
know that DM ∼ logn/ log logn in probability by a Poissonization argument.
Thus, to show that DM → ∞, we just need to consider the case nrdn → 0.

Fix an arbitrary large integer t. Then DM < t means that for each data
point, the t-th nearest neighbor is at least distance r away. So, we grid the torus
with cubes of side length ρ

def.= rn/(2
√
d), which ensures that each cell in the

grid can at most have t data points. As the cardinalities of the cells jointly form
a multinomial random vector, and the multinomial components are negatively
associated, we have

P{DM < t} ≤ P{all cells have ≤ t data points}
≤ (P{Binomial(n, ρd) ≤ t})1/ρd

≤ exp
(
−P{Binomial(n, ρd) > t}

ρd

)

≤ exp
(
−
(

n
t+1
)
ρd(t+1)(1 − ρd)n−t−1

ρd

)
.

The absolute value of the exponent is of asymptotic order

(nρd)t+1

ρd
= Θ

(
nt+1rdtn

)
,

and this tends to ∞ as n → ∞ by our condition. �
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Proof of (ii). We rewrite the estimate as

W2
def.= A1/A2 ,

where
A1 = 1(

n
3
) ∑

1≤i<j<k≤n

ξkiξkjξij

and
A2 = 1(

n
3
) ∑

1≤i<j<k≤n

ξkiξkj .

We observe that E{A1} = wdπ
2
n and E{A2} = π2

n, where πn
def.= Vdr

d
n. The

ratio of these means is wd. By bounding the variances of both we shall show
that A1/E{A1} → 1 and A2/E{A2} → 1 in probability, so that A1/A2 → wd in
probability, as required.

We begin with

Var

⎧⎨
⎩
∑

i<j<k

ξkiξkj

⎫⎬
⎭ = E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

i<j<k

(ξki − πn)(ξkj − πn)

⎞
⎠

2
⎫⎪⎬
⎪⎭ .

Let s be the set {i, j, k} and let s′ be the set {i′, j′, k′}. Observe that if |s ∩
s′| ≤ 1, then ξki, ξkj , ξk′i′ , ξk′j′ are independent. When expanding the squared
expression, we are left with contributions coming from the cases when |s∩s′| ≥ 2.
If the intersection is of size three, then the two ordered triples are identical. This
yields a term equal to

E

⎧⎨
⎩
∑

i<j<k

(ξki − πn)2(ξkj − πn)2
⎫⎬
⎭ =

(
n

3

)
π2
n(1 − πn)2 ≤ n3π2

n.

When |s ∩ t| = 2, the graph formed by (k, i), (k, j), (k′, i′), (k′, j′) is either a
tree (in fact, a star on four vertices) or a 4-cycle. Only in the latter case do we
have dependence and a non-vanishing contribution. To see this, note that, for
example, if k = k′ and i = i′, then the corresponding term equals

E
{
(ξki − πn)2(ξkj − πn)(ξkj′ − πn)

}
= 0 .

On the other hand, in the case of a 4-cycle, for example, when i = i′ and j = j′,
then the corresponding term may be bounded as follows:

E {(ξki − πn)(ξkj − πn)(ξk′i − πn)(ξk′j − πn)}
≤ E {|ξki − πn||ξkj − πn||ξk′i − πn|}
= E {|ξki − πn|}3 ≤ π3

n .
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Therefore, the contribution to the variance coming from the 4-cycles is at most
n4π3

n. We conclude that

Var

⎧⎨
⎩
∑

i<j<k

ξkiξkj

⎫⎬
⎭ ≤ n3π2

n + n4π3
n .

As ⎛
⎝E

⎧⎨
⎩
∑

i<j<k

ξkiξkj

⎫⎬
⎭
⎞
⎠

2

=
(
n

3

)2
π4
n ,

Chebyshev’s inequality shows that A2/E{A2} → 1 in probability whenever

n3π2
n → ∞ .

The reasoning for A1 is similar. When expanding

Var

⎧⎨
⎩
∑

i<j<k

ξkiξkjξij

⎫⎬
⎭ = E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

i<j<k

(ξki − πn)(ξkj − πn)(ξij − πn)

⎞
⎠

2
⎫⎪⎬
⎪⎭ ,

we once again only need to consider triples s and s′ with |s∩ s′| ≥ 2. When the
intersection is of size 3, the contribution to the variance is O(n3π2

n). When the
intersection is of size 2, after breaking up the two cycles in the graph formed
by the five edges involves, the contribution to the variance is easily seen to be
O(n4π3

n). Arguing as for A2, we conclude that A1/E{A1} → 1 in probability
whenever n3π2

n → ∞. �

Appendix B: Proof of Theorem 3.1

We condition on X1 and D1, and let Y1, . . . , YD1 be i.i.d. random vectors drawn
from f restricted to the ball B(X1, rn). Set ξij = 1||Yi−Yj ||≤rn . Let Z1, Z2, . . .
be i.i.d. uniform random variables on B(X1, rn). Then

δ1 =
∑

1≤i<j≤D1

ξij

and therefore,

E {W4 | X1, D1} = 1D1≥2 × P{||Y1 − Y2|| ≤ rn|X1} .

Set πn = Vdr
d
n and μn(x) =

∫
B(x,rn) f , x ∈ R

d. The density of Y1 given X1 is
given by

f(y)
μn(X1)

1y∈B(X1,rn) .
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The total variation distance TV(Y1, Z1) given X1 is

1
2

∫
B(X1,rn)

∣∣∣∣ f(y)
μn(X1)

− 1
πn

∣∣∣∣ dy = 1
2μn(X1)

∫
B(X1,rn)

∣∣∣∣f(y) − μn(X1)
πn

∣∣∣∣ dy
def.= ψn(X1)

2μn(X1)
.

= ψn(X1)
πn

× πn

2μn(X1)
.

The Lebesgue density theorem (see, e.g., Wheeden and Zygmund [43]), implies
that for almost all x,

lim
r↓0

1
Vdrd

∫
B(x,r)

f(y)dy = f(x) .

Thus, as rn ↓ 0, ψn(x)/πn → 0 as n → ∞ for almost all x. Similarly, μn(x)/πn →
f(x) as n → ∞ for almost all x. We can couple Y1 and Z1 such that, for any x
with f(x) > 0, conditional on X1 = x,

P{Y1 �= Z1} = o(1)

for almost all x. Similarly, we can couple Y2 with a uniform random vector Z2.
Thus,

|P{||Y1 − Y2|| ≤ rn} − wd| = |P{||Y1 − Y2|| ≤ rn} − P{||Z1 − Z2|| ≤ rn}|
≤ P{[Y1 �= Z1] ∪ [Y2 �= Z2]}

=
∫

f(x)P{[Y1 �= Z1] ∪ [Y2 �= Z2]|X1 = x} dx

= o(1)

by the Lebesgue dominated convergence theorem.
From the discussion above, it helps to define the mean

νn(x) = E{ξ12|X1 = x} .

We have

Var{δ1|X1, D1} = 1D1≥2E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

1≤i<j≤D1

(ξij − νn(X1))

⎞
⎠

2

|X1, D1

⎫⎪⎬
⎪⎭

= 1D1≥2

(
D1

2

)
E
{
(ξ12 − νn(X1))2|X1

}
≤ 1D1≥2

(
D1

2

)
νn(X1) .

Finally, for arbitrary ε > 0,

P {|W4 − wd| > 2ε | X1, D1}
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≤ 1D1≥2P {|W4 − νn(X1)| > ε | X1, D1}
+1D1≥2P {|νn(X1) − wd| > ε | X1} + P{D1 ≤ 1}

def.= I + II + III.

We have
E{II} ≤

∫
f(x)P {|νn(x) − wd| > ε} dx → 0

as n → ∞ by the Lebesgue dominated convergence theorem, since νn(x) → wd

as n → ∞ for almost all x. By Chebyshev’s inequality,

P {|W4 − νn(X1)| > ε | X1, D1} ≤ 1
ε2
E

{
(W4 − νn(X1))2 | X1, D1

}
≤ 1

ε2
1D1≥2

νn(X1)(
D1
2
) ,

and therefore

E{I} ≤ 1
ε2

∫
f(x)νn(x)dx× E

{
1D1≥2(

D1
2
)
}

≤ 1
ε2
E

{
1D1≥2(

D1
2
)
}

which is o(1) if D1 → ∞ in probability. Finally, E{III} → 0 under the same
condition on D1. We conclude by noting that D1 → ∞ in probability if nrdn →
∞, as D1 is binomial (n− 1, μn(X1)). So, for any fixed t,

P{D1 ≤ t} ≤ P{(n− 1)μn(X1) ≤ 2t} + P{binomial((n− 1), 2t/(n− 1)) ≤ t}
def.= A + B.

Clearly, B ≤ 2/t by Chebyshev’s inequality. Noting that μn(x)/πn → f(x) at
almost all x as n → ∞, we have for arbitrary ε > 0,

A = P{(n− 1)μn(X1) ≤ 2t}

≤ 1(n−1)πn≤1/ε + P

{
μn(X1)

πn
≤ 2tε

}

=
∫

f(x)1μn(x)/πn≤2tε + o(1)

≤
∫

f(x)1f(x)≤3tε + o(1)

which can be made as small as desired by our choice of ε. Hence, for any fixed
t > 0, P{D1 ≤ t} ≤ 2/t + o(1), which implies that D1 → ∞ in probability. �

Appendix C: Proof of Theorem 3.2

We use the notation μn(x) = P{X1 ∈ B(x, rn)} and νn(x) = P{[X1, X2 ∈
B(x, rn)] ∩ [‖X1 −X2‖ ≤ rn]}. We have

E{ξ12} = E{μn(X1)} =
∫

f(x)μn(x) dx .
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Let us introduce the maximal function

f∗(x) = sup
r>0

∫
B(x,r) f(y) dy

Vdrd
,

and observe that f ≤ f∗ almost everywhere, and that
∫
fp < ∞ for fixed

p > 1 implies
∫

(f∗)p < ∞ [see, e.g., Wheeden and Zygmund [43]]. Thus, as∫
fμn ≤ Vdr

d
n

∫
(f∗)2 and μn(x)/(Vdr

d
n) → f(x) at almost all x by the Lebesgue

density theorem and rn → 0, the Lebesgue dominated convergence theorem
implies that

∫
fμn ∼ Vdr

d
n

∫
f2 as n → ∞. In other words,

E{ξ12} = Vdr
d
n

(∫
f2 + o(1)

)
.

Next,
E{ξ12ξ13}

def.= Mn = E{μ2
n(X1)} =

∫
f(x)μ2

n(x) dx .

Extending the argument given above, we see that if
∫
f3 < ∞, then

E{ξ12ξ13} = (Vdr
d
n)2
(∫

f3 + o(1)
)

.

Using the coupling argument of the proof of Theorem 3.1, we can verify that

E{ξ12ξ13ξ23} def.= M ′
n =

∫
f(x)νn(x) dx = wd(Vdr

d
n)2
(∫

f3 + o(1)
)

.

We also need a general upper bound for

E

{∏
e∈E

ξe

}

where E is a fixed finite set of pairs of indices drawn from {1, 2, . . . , n}. An
example includes E{ξ12ξ13ξ23ξ24ξ45}. Let v(E) denote the size of the set of
vertices involved in the definition of E, and assume that the graph defined by
E is connected. Since the graph is connected, all vertices are at most at graph
distance v(E) − 1 from the node of smallest index. Thus,

E

{∏
e∈E

ξe

}
≤
(
Vd(v(E) − 1)drdn

)v(E)−1
∫

f(x)(μ′
n(x))v(E)−1 dx

where

μ′
n(x) =

∫
B(x,(v(E)−1)rn) f

Vd(v(E) − 1)drdn
≤ f∗(x).

As f ≤ f∗, we have

E {∩e∈Eξe} ≤ O
(
rd(v(E)−1)
n

)∫
(f∗)v(E) .
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Armed with this, we have

E

⎧⎨
⎩

∑
1≤i<j<k≤n

ξkiξkj

⎫⎬
⎭ =

(
n

3

)∫
f(x)μ2

n(x) dx

=
(
n

3

)
(Vdr

d
n)2
(∫

f3 + o(1)
)

→ ∞.

Recalling that Mn =
∫
f(x)μ2

n(x) dx, we have

Var

⎧⎨
⎩

∑
1≤i<j<k≤n

ξkiξkj

⎫⎬
⎭ = E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

1≤i<j<k≤n

(ξkiξkj −Mn)

⎞
⎠

2
⎫⎪⎬
⎪⎭ = A0+A1+A2 ,

where

A0 = E

⎧⎨
⎩

∑
1≤i<j<k≤n

(ξkiξkj −Mn)2
⎫⎬
⎭ =

(
n

3

)
(Mn −M2

n) ≤ n3V 2
d r

2d
n

∫
(f∗)3 ,

A1

= E

⎧⎨
⎩

∑
1≤i<j<k≤n

∑
1≤i′<j′<k′≤n

1|{i,j,k,i′,j′,k′}|=5(ξkiξkj −Mn)(ξk′i′ξk′j′ −Mn)

⎫⎬
⎭

= E

⎧⎨
⎩

∑
1≤i<j<k≤n

∑
1≤i′<j′<k′≤n

1|{i,j,k,i′,j′,k′}|=5(ξkiξkjξk′i′ξk′j′ −M2
n)

⎫⎬
⎭

≤ E

⎧⎨
⎩

∑
1≤i<j<k≤n

∑
1≤i′<j′<k′≤n

1|{i,j,k,i′,j′,k′}|=5ξkiξkjξk′i′ξk′j′

⎫⎬
⎭

≤ O(n5) ×O(r4d
n ) ×

∫
(f∗)5 ,

and

A2

= E

⎧⎨
⎩

∑
1≤i<j<k≤n

∑
1≤i′<j′<k′≤n

1|{i,j,k,i′,j′,k′}|=4(ξkiξkj −Mn)(ξk′i′ξk′j′ −Mn)

⎫⎬
⎭

≤ E

⎧⎨
⎩

∑
1≤i<j<k≤n

∑
1≤i′<j′<k′≤n

1|{i,j,k,i′,j′,k′}|=4ξkiξkjξk′i′ξk′j′

⎫⎬
⎭

≤ O(n4) ×O(r3d
n ) ×

∫
(f∗)4 .
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By Chebyshev’s inequality, we see that{∑
1≤i<j<k≤n ξkiξkj

}
(
n
3
)
(Vdrdn)2

∫
f3 → 1

in probability if A0 + A1 + A2 = o(n6r4d
n ), which is easily verified.

Finally, we will show that{∑
1≤i<j<k≤n ξkiξkjξij

}
(
n
3
)
(Vdrdn)2

∫
f3 → wd

in probability, so that W2 → wd in probability, as required. To see this, we
note that the above ratio has expected value tending to one, while its variance
tends to zero. The variance bound mimics the bound obtained for the vari-
ance of

∑
1≤i<j<k≤n ξkiξkj . The troublesome terms involve upper bounds for

E{ξkiξkjξijξk′i′ξk′j′ξi′j′} when |{i, j, k, i′, j′, k′}| ∈ {4, 5}. But by bounding ξij
and ξi′j′ by one, we have an expression similar to that dealt with above, and
thus, the variance tends to zero. �

Appendix D: Proof of Lemma 4.1

We first show the following identity

wd = P

{
β

(
d + 1

2 ,
d + 1

2

)
≤ 1

4

}
+ P

{
β

(
1
2 ,

d + 1
2

)
≥ 1

4

}
. (1)

We recall the formula for the volume of B(0, 1) in R
d:

Vd
def.= πd/2

Γ
(
d+2
2
) .

Let X and Y be defined as above. It is well-known that R def.= ‖X‖ is distributed
as U1/d, where U is uniform on [0, 1]: it has density dxd−1 on [0, 1]. Without
loss of generality, we can assume that X = (R, 0, 0, . . . , 0). Then ‖X−Y ‖ ≤ 1 if
Y ∈ A

def.= B(0, 1)∩B(X, 1). A is a loon-shaped region formed by two spherical
caps of the same size. Call one of the two spherical caps S. Let λ(·) denote the
volume of a set, and recall that Vd = λ(B(0, 1)). We have

P{Y ∈ A} = 2E{λ(S)}
Vd

,

where the volume of the spherical cap is a function of R. Standard spatial
integration yields

λ(S) =
∫ 1

R/2
Vd−1(1 − y2)

d−1
2 dy .
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Thus,

E{λ(S)} =
∫ 1

0
drd−1

∫ 1

r/2
Vd−1(1 − y2)

d−1
2 dy dr

= Vd−1

∫ 1/2

0
(1 − y2)

d−1
2

∫ 2y

0
drd−1 dr dy + Vd−1

∫ 1

1/2
(1 − y2)

d−1
2 dy

= Vd−1

∫ 1/2

0
(1 − y2)

d−1
2 (2y)d dy + Vd−1

∫ 1

1/2
(1 − y2)

d−1
2 dy

= 2d−1Vd−1

∫ 1/4

0
(y(1 − y)

d−1
2 dy + Vd−1

2

∫ 1

1/4
(1 − y)

d−1
2 y−1/2 dy

= I + II .

Now,

I = αP

{
β

(
d + 1

2 ,
d + 1

2

)
≤ 1

4

}
,

where

α = 2d−1Vd−1
Γ2 (d+1

2
)

Γ(d + 1) .

Furthermore,

II = α′
P

{
β

(
1
2 ,

d + 1
2

)
≥ 1

4

}
,

where

α′ = Vd−1

2
Γ
( 1

2
)
Γ
(
d+1
2
)

Γ
(
d+2
2
) .

Combining all of the above, we obtain

P{Y ∈ A} = 2α
Vd

P

{
β

(
d + 1

2 ,
d + 1

2

)
≤ 1

4

}
+ 2α′

Vd
P

{
β

(
1
2 ,

d + 1
2

)
≥ 1

4

}
.

We verify that α = α′ = Vd/2, to conclude (1). The formal verification is as
follows:

2α
Vd

= 2dVd−1

Vd

Γ2 (d+1
2
)

Γ(d + 1) =
2dΓ

(
d+2
2
)

√
πΓ
(
d+1
2
) Γ2 (d+1

2
)

Γ(d + 1)

=
2dΓ

(
d+2
2
)
Γ
(
d+1
2
)

Γ
( 1

2
)
Γ(d + 1)

= 1

by the duplication formula for the gamma function (see, e.g., Whittaker and
Watson, [44, p.240]). This is also immediate by induction on d. Next,

2α′

Vd
= Vd−1

Vd

Γ
( 1

2
)
Γ
(
d+1
2
)

Γ
(
d+2
2
) =

Γ
(
d+2
2
)

√
πΓ
(
d+1
2
) Γ
( 1

2
)
Γ
(
d+1
2
)

Γ
(
d+2
2
) = 1 .
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This proves (1). Next, we show that

P

{
β

(
d + 1

2 ,
d + 1

2

)
≤ 1

4

}
= 1

2P
{
β

(
1
2 ,

d + 1
2

)
≥ 1

4

}
. (2)

That would complete the beta representation in Lemma 4.1. Let B = β
(
d+1
2 , d+1

2
)
.

Observe that

P{B ≤ 1/4} = 1
2 (P{B ≤ 1/4} + P{B ≥ 3/4}) = 1

2P{|2B − 1| ≥ 1/2} .

Now, |2B− 1| has a density proportional to (1−x2) d−1
2 on [0, 1], and (2B− 1)2

is beta (1/2, (d + 1)/2). Thus,

P{B ≤ 1/4} = 1
2P
{
β

(
1
2 ,

d + 1
2

)
≥ 1

4

}
.

The monotonicity claim follows easily. Finally, wd → 0 since β(1/2, d) → 0 in
probability as d → ∞. �

Appendix E: Proof of wd − wd+1 ≥ d−(d+o(d))/2

Observe that
β

(
1
2 ,

d− 1
2

)
L= G(1)∑d

i=1 G(i)
,

where G(1), G(2), . . . are i.i.d. gamma (1/2) random variables. Thus, with this
coupling,

P

{
β

(
1
2 ,

d

2

)
≥ 1

4

}
= P

{
β

(
1
2 ,

d− 1
2

)
≥ 1

4

}

− P

{
β

(
1
2 ,

d− 1
2

)
≥ 1

4 > β

(
1
2 ,

d

2

)}
.

The last summand reduces to

P

{
d∑

i=2
G(i) ≤ 3G(1) <

d+1∑
i=2

G(i)
}

= P

{
3G(1) −G(d + 1) <

d∑
i=2

G(i) ≤ 3G(1)
}

≥ P{G(d + 1) ≥ 6, G(1) ∈ [1, 2]}P
{

d∑
i=2

G(i) ≤ 3
}

def.= ρP

{
d∑

i=2
G(i) ≤ 3

}
.

As
∑d

i=2 G(i) is gamma ((d− 1)/2), we see that

wd−2 − wd−1 ≥ ρ

∫ 3

0

x
d−3
2 e−x

Γ
(
d−1
2
) dx ≥ ρ

e3
3 d−1

2

Γ
(
d+1
2
) = d−

d
2 +o(d) .�
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