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ABSTRACT
Motivated by the study of random temporal networks, we introduce a class of random trees that we coin uniform
temporal trees. A uniform temporal tree is obtained by assigning independent uniform [0, 1] labels to the edges of
a rooted complete infinite 𝑛-ary tree and keeping only those vertices for which the path from the root to the vertex
has decreasing edge labels. The 𝑝-percolated uniform temporal tree, denoted by 𝑛,𝑝, is obtained similarly, with the
additional constraint that the edge labels on each path are all below 𝑝. We study several properties of these trees,
including their size, height, the typical depth of a vertex, and degree distribution. In particular, we establish a limit
law for the size of 𝑛,𝑝 which states that ∣𝑛,𝑝∣

𝑒np converges in distribution to an Exponential(1) random variable as 𝑛 → ∞.
For the height 𝐻𝑛,𝑝, we prove that 𝐻𝑛,𝑝

np
converges to 𝑒 in probability. Uniform temporal trees show some remarkable

similarities to uniform random recursive trees.

1 | Introduction

In network science, the graph modeling the network is often equipped with edge labels representing time stamps. For
example, in a network describing human interactions, the network’s vertices represent individuals, edges stand for
encounters, and the edges may be labeled by the time the encounter happens. Such temporal networks allow one to
study the spread of an infection or information (see Holme and Saramäki (2012), Holme and Saramäki (2013), Holme
and Saramäki (2019), Hosseinzadeh et al. (2022), Sanjay Kumar and Panda (2020)).

A simple mathematical model for temporal networks that has been gaining attention is random temporal graphs. In this
model, the time stamps are obtained by assigning a uniform random permutation to the edge set. If one is only interested
in the ordering of the edge labels, equivalently, every edge of a graph is assigned an independent random label, uniformly
distributed in [0, 1]. In particular, the random simple temporal graph model is obtained by adding such labels to the edges
of an Erdős-Rényi random graph 𝐺𝑛,𝑝. Random simple temporal graphs exhibit some remarkable phase transitions (see,
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FIGURE 1 | A uniform temporal tree with 𝑛 = 10.

e.g., Angel et al. (2020); Mertzios et al. (2024); Becker et al. (2022); Broutin et al. (2023); Casteigts et al. (2024); Atamanchuk
et al. (2024)).

Since (sparse) Erdős-Rényi random graphs are locally tree-like, it is natural to study analogous random trees. This moti-
vates our definition of a uniform temporal tree, specified below. The paper’s main goal is to study the basic properties of
such random trees, including their size, height, and degree distribution.

The definition is the following. For a positive integer 𝑛, let 𝑇𝑛 be a rooted infinite complete 𝑛-ary tree (i.e., the root vertex
has degree 𝑛 and every other vertex has degree 𝑛 + 1). To each edge 𝑒 of 𝑇𝑛, assign an independent random variable 𝑈𝑒,
uniformly distributed in [0, 1].𝑈𝑒 is called the label of the edge 𝑒. A path between the root and a vertex 𝑣 is called decreasing
if the edge labels in the path appear in decreasing order. Sometimes it is more convenient to assign labels to vertices. The
label 𝓁𝑣 of a vertex 𝑣 ∈ 𝑇𝑛 is the label 𝑈𝑒 of the edge 𝑒 connecting 𝑣 to its parent (the parent of a vertex 𝑣 is the vertex
adjacent to 𝑣 that is on the path between the root and 𝑣). In some cases, we focus on the vertex labels, calling a path
decreasing if the vertex labelling is decreasing, though this is an equivalent definition. Note that the root vertex does not
have a parent or a label. The (𝑝-percolated) uniform temporal tree, 𝑛,𝑝, is a random tree obtained from 𝑇𝑛 by assigning the
root the label 𝑝 and deleting all vertices whose path from the root is not decreasing with respect to the vertex labelling. Note
that every vertex in a 𝑛,𝑝 has a label at most 𝑝. When 𝑝 = 1, we simplify the notation and just write 𝑛 for 𝑛,1 (Figure 1).

It is clear that 𝑛 (and therefore 𝑛,𝑝) is almost surely finite. Indeed, there are 𝑛𝑘 vertices in the 𝑘-th generation of 𝑇𝑛 and
each vertex 𝑣 in the 𝑘-th generation exists in 𝑛 with probability 1∕𝑘! as the edges on the path from the root to 𝑣 must be
in decreasing order. Thus the probability that 𝑛 has a vertex at depth 𝑘 is at most 𝑛𝑘∕𝑘! which goes to zero as 𝑘 → ∞.

This is not the first work to consider increasing paths on trees. A model that is closely related to temporal graphs,
called accessibility percolation, has been studied in recent years (Berestycki et al. (2014); Martinsson (2015); Berestycki
et al. (2013)). Accessibility percolation on 𝑛-ary trees has been studied before, and its study is closely related to the heights
of uniform temporal trees (Nowak and Krug (2013); Roberts and Zhao (2013)).

In the next section, we present the main results of the paper concerning the distribution of the size of 𝑛,𝑝, the typical
depth of a vertex, the height (i.e., the depth of the deepest vertex), and the degree distribution. The proofs of these results
are given in subsequent sections.

2 | Results

Before presenting the main results, we fix some terminology and notation. Let 𝑇 be a rooted tree. 𝑃 (𝑣) for any 𝑣 ∈ 𝑇

(except for the root) denotes the unique path between the root and 𝑣. The set 𝑃 −(𝑣) is 𝑃 (𝑣) with the root removed. The
depth of 𝑣, ∣ 𝑣 ∣, is the number of edges in 𝑃 (𝑣). The parent of 𝑣, 𝑝(𝑣) is the single neighbor of 𝑣 in 𝑃 (𝑣), and the set of
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children of 𝑣, 𝐶(𝑣), contains all vertices at depth ∣ 𝑣 ∣ +1 that are adjacent to 𝑣. The out-degree of a vertex 𝑣 is the number
∣ 𝐶(𝑣) ∣ of its children. Two vertices 𝑢 and 𝑣 are siblings if 𝑝(𝑢) = 𝑝(𝑣). For a vertex 𝑣 ∈ 𝑇 , 𝑇 (𝑣) is the subtree of 𝑇 rooted at
𝑣 containing all descendants of 𝑣 in 𝑇 , that is, the tree containing 𝑣, its children, grandchildren, and so on. Convergence
in distribution for a sequence of random variables is denoted by


→, and


= is used for equality in distribution. Finally, we

let
ℙ
→ represent convergence in probability for a sequence of random variables.

Many features of uniform temporal trees are quite similar to those of uniform random recursive trees, so we define this
model before presenting our results. The uniform random recursive tree on 𝑛 vertices is a random rooted tree with vertices
labeled in {1,… , 𝑛}. The root has label 1. Vertices 𝑖 ∈ {2,… , 𝑛} are attached recursively such that vertex 𝑖 is attached to
a vertex in {1,… , 𝑖 − 1} selected uniformly at random. The uniform random recursive tree is one of the most ubiquitous
trees in computer science and has been thoroughly studied (see Meir and Moon (1978); Devroye (1988); Pittel (1994);
Janson (2005); Drmota (2009); Addario-Berry and Eslava (2018)).

The first result concerns the size of 𝑛,𝑝. As is shown as the start of Section 4, a quick computation yields that the expected
size of 𝑛,𝑝 is 𝑒np. However, the size does not concentrate around the mean. We show that it admits a limit law: the size
divided by its expectation converges, in distribution, to an exponential random variable. Moreover, we establish a joint
limit law for the “distribution of mass” at the root, that is, for the sizes of the subtrees of children of the root with the
largest labels.

Theorem 2.1. Let 𝑝 ∈ (0, 1] and consider a percolated uniform temporal tree 𝑛,𝑝. Then

E ∣ 𝑛,𝑝 ∣= 𝑒np

and
∣ 𝑛,𝑝 ∣
𝑒np

>
→ 𝐸 as 𝑛 → ∞,

where 𝐸 is an exponential(1) random variable.

Moreover, for 1 ≤ 𝑖 ≤ 𝑛, let 𝑣𝑖 be the child of the root with the 𝑖-th largest label. Then for any fixed 𝑚 ≥ 1,(|𝑛,𝑝(𝑣1
)
∣

𝑒np ,… ,
∣ 𝑛,𝑝(𝑣𝑚) ∣

𝑒np

)
>
→
(
𝐸1𝑈1, 𝐸2𝑈1𝑈2,… , 𝐸𝑚𝑈1 · · ·𝑈𝑚

)
as 𝑛 → ∞,

where
(
𝐸𝑘

)
𝑘≥0 is a sequence of independent Exponential(1) random variables and

(
𝑈𝑘

)
𝑘≥0 is an independent sequence of

independent uniform random variables on [0, 1].

Remark. It follows from Theorem 2.1 that if 𝑈1, 𝑈2,… are independent uniform [0, 1] and 𝐸1, 𝐸2,… are independent
exponential(1) random variables, then

∞∑
𝑖=1

𝐸𝑖

𝑖∏
𝑗=1

𝑈𝑗

is an exponential(1) random variable. This identity may also be checked directly.

Theorem 2.1 is the technically most involved result of the paper. Its proof is given in Section 4. The key idea behind the
proof is a representation of the labels in 𝑇𝑛 as a sum of uniform spacings; this representation is given in Section 3. Using
this representation, we identify a connection between the evolution of the labels in 𝑇𝑛 and the evolution of values in a
branching random walk on an infinite binary tree, which we briefly describe now.

Let  ∗ be a rooted infinite complete binary tree (the root has one child, and every other vertex has precisely two chil-
dren). We consider the root to be in generation −1. Let

(
𝑋𝑣 ∶ 𝑣 ∈  ∗) be a branching random walk on  ∗ with step size

Exponential(1)∕𝑛 (see e.g., Shi (2015) for a monograph on branching random walks). It is worth pointing out that this
step size is an asymptotic approximation for one uniform spacing. To each vertex, associate a tree 𝑣 which is distributed
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like 𝑛,𝑝−𝑋𝑣
. Assume that the collection

(𝑣 ∶ |𝑣| = 𝐿
)

is conditionally independent given the vector
(
𝑋𝑣 ∶ |𝑣| = 𝐿

)
for

any 𝐿 ≥ −1. The proof in Section 4 is mostly focused on arguing, for sufficiently large 𝐿, that

|||||||
|𝑛,𝑝|
𝑒np −

∑
|𝑣|=𝐿|𝑣|

𝑒np

|||||||
is small as 𝑛 → ∞. This approximation is explored in Lemma 4.2. The labels of the roots in

(𝑣 ∶ |𝑣| = 𝐿
)

are exactly
described by a branching walk, and so we can complete precise computations concerning them. The final limit law comes
from a martingale analysis of E

[∑|𝑣|=𝐿 |𝑣|
𝑒np |(𝑋𝑣 ∶ |𝑣| = 𝐿

)]
. This analysis is summarized in Lemma 4.4.

The next result concerns the height 𝐻𝑛,𝑝 of a uniform temporal tree, that is, the maximum vertex depth in 𝑛,𝑝. The fol-
lowing theorem, proved in Section 5, states that the height is about 𝑒 times the logarithm of the size of the tree. This
property is reminiscent of uniform random recursive trees (see Devroye (1987) and Pittel (1994)). The result can be seen
as a generalization of results for accessibility percolation for 𝑛-ary trees found in (Roberts and Zhao (2013); Nowak and
Krug (2013)). It is worth noting that the techniques used in our proof differ from those used to derive similar results in
previous works.

Theorem 2.2. Fix 𝑝 ∈ (0, 1], and let 𝐻𝑛,𝑝 denote the height of a percolated uniform temporal tree 𝑛,𝑝. Then

𝐻𝑛,𝑝

np
ℙ
→ 𝑒 and

𝐻𝑛,𝑝

log ∣ 𝑛,𝑝 ∣
ℙ
→ 𝑒 as 𝑛 → ∞.

Note that the second statement follows from the first since Theorem 2.1 implies that
(
log |𝑛,𝑝|)∕(np) → 1 in probability.

The proof of this theorem is based on a connection between uniform temporal trees and branching random walks that is
similar to the one used for Theorem 2.1.

The next property establishes the typical depth of a vertex in a uniform temporal tree. Just like in a uniform ran-
dom recursive tree, the depth is concentrated around the natural logarithm of the size of the tree (see Devroye (1998)
for the corresponding results on depths in other recursive trees). The proof of the next theorem is provided in
Section 6.

Theorem 2.3. Let 𝑝 ∈ (0, 1], and let 𝐷𝑛,𝑝 denote the depth of a uniformly chosen vertex in a percolated uniform temporal
tree 𝑛,𝑝. Then

𝐷𝑛,𝑝

np
ℙ
→ 1 and

𝐷𝑛,𝑝

log ∣ 𝑛,𝑝 ∣
ℙ
→ 1 as 𝑛 → ∞.

Finally, the next theorem establishes the asymptotic expected degree distribution of a uniform temporal tree. In particular,
the expected number of leaves is about half of the expected number of vertices, the expected number of vertices with one
child is a quarter of the expected size, etc. Once again, this property is similar to the corresponding asymptotic degree
distribution of a uniform random recursive tree. The following theorem is proved in Section 7.

Theorem 2.4. Let 𝑝 ∈ (0, 1], and, for 𝑘 ≥ 0, let 𝐿𝑛,𝑘 denote the number of vertices of out-degree 𝑘 in a percolated uniform
temporal tree 𝑛,𝑝. Then

E𝐿𝑛,𝑘

𝑒np → 2−(𝑘+1) as 𝑛 → ∞.

As has been highlighted above, uniform temporal trees share several of their basic characteristics with random recursive
trees. One may wonder whether a random recursive tree is equivalent to a uniform temporal tree 𝑛 when conditioning
on the size ∣ 𝑛 ∣. However, while in a uniform temporal tree, the root vertex always has maximal degree, in a uni-
form random recursive tree, there are vertices with much higher degree Devroye and Lu (1995); Addario-Berry and
Eslava (2018); Eslava (2022). Moreover, the distribution of mass at the root established in Theorem 2.1 is different from
the “stick-breaking” distribution of the uniform random recursive tree.

4 of 23 Random Structures & Algorithms, 2025
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Broutin et al. (2023) utilizes direct couplings between neighborhoods of vertices in sparse random simple temporal graphs
and uniform random recursive trees to prove statements about connectivity. In sparse random graphs, neighborhoods
around vertices are tree-like and so match the structure of the 𝑛,𝑝 closely.

3 | The Uniform Spacings Coupling

In the proof of Theorems 2.1 and 2.2 we use representations of the labels in a uniform temporal tree as a sum of uniform
spacings. We explore the connection in this section.

Let 𝑈1,… , 𝑈𝑛 be a collection of independent Uniform[0, 1] random variables and let 𝑉1 ≥ · · · ≥ 𝑉𝑛 be the corresponding
order statistics. We also set 𝑉0 = 1, 𝑉𝑛+1 = 0. Writing 𝑆𝑖 = 𝑉𝑖−1 − 𝑉𝑖 (𝑖 ∈ {1,… , 𝑛 + 1}) for the induced spacings, we use
the representation

(
𝑆1,… , 𝑆𝑛+1

) ≔ (
𝑉0 − 𝑉1,… , 𝑉𝑛 − 𝑉𝑛+1

) 
=

(
𝐸1∑𝑛+1
𝑖=1 𝐸𝑖

,… ,
𝐸𝑛+1∑𝑛+1
𝑖=1 𝐸𝑖

)
,

where 𝐸1,… , 𝐸𝑛+1 are independent Exponential(1) random variables (see, e.g., Devroye (1986)). We record a key
observation about uniform random variables needed to incorporate the uniform spacings.

Lemma 3.1. Let 𝑈1,… , 𝑈𝑛 be a collection of independent Uniform[0, 1] random variables, let 𝑥 ∈ [0, 1], and let 𝐼 ={
1 ≤ 𝑖 ≤ 𝑛 ∶ 𝑈𝑖 ≥ 𝑥

}
. Define a collection of random variables

(
𝑈∗

1 ,… , 𝑈∗
𝑛

)
, where

𝑈∗
𝑖
=

{
𝑈𝑖 − 1 𝑖 ∈ 𝐼

𝑈𝑖 otherwise

Then,
(
𝑈∗

1 ,… , 𝑈∗
𝑛

)
is distributed like a vector of independent uniform random variables on the interval [𝑥 − 1, 𝑥]. In partic-

ular, if 𝑉 ∗
1 ,… , 𝑉 ∗

𝑛
are the order statistics of

(
𝑈∗

1 ,… , 𝑈∗
𝑛

)
and

(
𝑆1,… , 𝑆𝑛+1

)
is a vector of uniform spacings, then

(
𝑉 ∗

1 ,… , 𝑉 ∗
𝑛

) 
=
(
𝑥 − 𝑆1,… , 𝑥 −

(
𝑆1 + · · · + 𝑆𝑛

))
.

Proof. The transformation described in the lemma is equivalent to moving the section of the interval [0, 1] above 𝑥 (and
the corresponding points in

{
𝑈1,… , 𝑈𝑛

}
that lie above 𝑥) to be below zero. The points in [0, 𝑥] and [1 − 𝑥, 0] are still

uniformly distributed over these intervals, and thus together are uniform over [1 − 𝑥, 𝑥] (see Figure 2). ◽

The uniform spacings representation then yields an equivalent description of how labels evolve in uniform temporal trees.
Let

((
𝑆𝑣,1,… , 𝑆𝑣,𝑛+1

)
∶ 𝑣 ∈ 𝑇𝑛

)
be a collection of independent uniform spacings. We define labels recursively for all of

the vertices in 𝑇𝑛. First, the root 𝜌 is given the label 𝓁𝜌 = 𝑝. Then, for a vertex 𝑣 ∈ 𝑇𝑛 with label 𝓁𝑣, we define the labels of
its children 𝑣1,… , 𝑣𝑛 as

𝓁𝑣𝑗
= 𝓁𝑣 −

𝑗∑
𝑖=1

𝑆𝑣,𝑖 for 𝑗 ∈ {1,… , 𝑛}.

FIGURE 2 | The rotation of the uniform spacings around a vertex 𝑥. The blue section above 𝑥 is moved from above 𝑥 to below 0.
After the segment is moved, the points are distributed uniformly over [𝑥 − 1, 𝑥].
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FIGURE 3 | The evolution of labels in a 𝑛,𝑝 according to the spacings coupling. The random variables 𝑆1, 𝑆2, 𝑆
′
1, 𝑆

′
2 are all uniform

spacings. The label of a vertex is the label of its next lower-rank sibling (or parent if its rank is 1) minus a spacing.

Deleting the vertices with negative labels in 𝑇𝑛 is equivalent to deleting the vertices that have labels above 𝑝 and also
generates 𝑛,𝑝. Moreover, applying the reverse of the transformation from Lemma 3.1 reveals that this labelling is equiv-
alent to the original from the introduction. We refer to generating the labels of 𝑇𝑛 in this manner as the uniform spac-
ings coupling. The following notation is useful when discussing the evolution of labels under the uniform spacings
coupling.

i. Define the rank of a vertex in a 𝑛,𝑝 as the placement of its label among its siblings. That is, the sibling with the
largest label gets rank 1, the sibling with the second largest label gets 2, and so forth. We denote the rank of a vertex
by 𝑟(𝑣), and by convention, the rank of the root is 0.

ii. The index of a vertex, which we denote by 𝜄(𝑣), is defined to be the sum of all the ranks of vertices in 𝑃 (𝑣), 𝜄(𝑣) =∑
𝑢∈𝑃 (𝑣) 𝑟(𝑢).

iii. The set 𝐼(𝑗) for any 𝑗 ≥ 0 is the subset of all vertices in a 𝑛,𝑝 that have index 𝑗, 𝐼(𝑗) =
{
𝑣 ∈ 𝑛,𝑝 ∶ 𝜄(𝑣) = 𝑗

}
. Note

that if 𝑣1,… , 𝑣𝑛 are the children of some vertex 𝑣 in 𝑇𝑛 listed in decreasing order of label, then 𝑟
(
𝑣𝑖
)
= 𝑖.

Using this notation, we may describe the label of any vertex 𝑣 that exists in a 𝑛,𝑝 in terms of ranks via the uniform spacings
coupling:

𝓁𝑣 = 𝑝 −
∑

𝑢∈𝑃 −(𝑣)

𝑟(𝑢)∑
𝑖=1

𝑆𝑝(𝑢),𝑖.

See Figure 3 for an illustration. We use this representation in the proofs of Theorems 2.1 and 2.2.

4 | The Size

Throughout this section, 𝑝 is always a fixed parameter in (0, 1]. First, we examine the first two moments of the size of a
𝑛,𝑝. There are 𝑛𝑘 vertices at depth 𝑘 in 𝑇𝑛, and each 𝑣 ∈ 𝑇𝑛 with ∣ 𝑣 ∣= 𝑘 exists in 𝑛,𝑝 with probability 𝑝𝑘∕𝑘! as the edges
in 𝑃 (𝑣) must all have label below 𝑝 and be monotone decreasing. Hence, for any 𝑛 ≥ 1,

E ∣ 𝑛,𝑝 ∣=
∞∑
𝑘=0

(np)𝑘

𝑘!
= 𝑒np,

establishing the first statement of Theorem 2.1. In the next lemma, we provide an upper bound for the second moment.
The upper bound yields a concentration inequality for the average size of large collections of uniform temporal trees.

Lemma 4.1.

(i) For all 𝑛, E|||𝑛,𝑝|||2 ≤ 5
(
E|𝑛,𝑝|)2.

(ii) Let 𝑚 be a fixed positive integer and let 𝑞1,… , 𝑞𝑚 ∈ (0, 𝑝). For 𝑖 ∈ [𝑚], define 𝑝𝑖 = 𝑝 − 𝑞𝑖. Let 𝑛,𝑝𝑖 , 𝑖 ∈ [𝑚] be indepen-
dent uniform temporal trees and let 𝜇 =

∑𝑚

𝑖=1E ∣ 𝑛,𝑝𝑖 ∣= ∑𝑚

𝑖=1𝑒
np𝑖 . For all 𝜖 > 0 and 𝑛,
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P

(|||||
𝑚∑
𝑖=1
|𝑛,𝑝𝑖 | − 𝜇

||||| > 𝜖𝜇

)
≤ 5

𝜖2

(
max1≤𝑖≤𝑚 𝑒−nq𝑖∑𝑚

𝑖=1𝑒
−nq𝑖

)
.

The proof of the lemma is given in the appendix. As mentioned in the introduction, aside from the above concentration
inequality, the other main ingredient in the proof of Theorem 2.1 is a connection between the labels of 𝑛,𝑝 and branching
random walks. The representation in terms of uniform spacings described in Section 3 plays a key role in the construction.

First, let us briefly recall the definition of a branching random walk. Given a random variable 𝑋 (called the step size) and
a locally finite rooted tree 𝑇 , label each edge in 𝑇 with an independent copy of 𝑋,

(
𝑋𝑒

)
𝑒∈𝑇 . A branching random walk on

𝑇 is a collection of vertex-indexed random variables
(
𝑌𝑣

)
𝑣∈𝑉 , where 𝑌𝑣 is the sum of the labels of the edges in 𝑃 (𝑣). The

random variable 𝑌𝑣 is called the value of the vertex 𝑣 in the branching random walk.

We define a branching random walk on a rooted infinite complete binary tree  ∗. The root has one child, and every other
vertex has precisely two children. To match the standard notation for branching random walks, the root is in generation
−1, its child in generation 0, and so forth. For any generation 𝐿 ≥ 0, there are 2𝐿 vertices.

Lemma 4.2. Let 𝐿 ≥ 0 be an integer, let 𝛿 ∈ (0, 1), and let 𝜖, 𝑥 > 0. Let 𝑝 − 𝑝1,… , 𝑝 − 𝑝2𝐿 be the values of the vertices
in the 𝐿-th generation of a branching random walk on the infinite complete binary tree  ∗ with step size 𝑋


= 𝐸

𝑛
, where 𝐸

is an exponential(1) random variable. Define 𝑝+
𝑖
(𝜖) and 𝑝−

𝑖
(𝜖) such that 𝑝 − 𝑝+

𝑖
(𝜖) = (1 + 𝜖)

(
𝑝 − 𝑝𝑖

)
and 𝑝 − 𝑝−

𝑖
(𝜖) = (1 −

𝜖)
(
𝑝 − 𝑝𝑖

)
for all 1 ≤ 𝑖 ≤ 2𝐿. Then,

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P
⎛⎜⎜⎝ 1
𝑒np

⎛⎜⎜⎝
2𝐿∑
𝑖=1
|𝑛,𝑝−

𝑖
(𝜖)| + | ′

𝑛,𝑝−
𝑖
(𝜖)|⎞⎟⎟⎠ > 𝑥(1 − 𝛿)

⎞⎟⎟⎠ + 𝑜𝑛(1)

and

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≥ P
⎛⎜⎜⎝ 1
𝑒np

⎛⎜⎜⎝
2𝐿∑
𝑖=1
|𝑛,𝑝+

𝑖
(𝜖)| + | ′

𝑛,𝑝+
𝑖
(𝜖)|⎞⎟⎟⎠ > 𝑥(1 + 𝛿)

⎞⎟⎟⎠ − 𝑜𝑛(1),

where the trees 𝑛,𝑝±
𝑖
(𝜖),  ′

𝑛,𝑝±
𝑖
(𝜖) are uniform temporal trees that are all conditionally independent given

(
𝑝1,… , 𝑝2𝐿

)
.

Proof of Lemma 4.2. Let  be the event that all vertices with 𝜄(𝑣) ≤ 𝐿 have children of index (𝜄(𝑣) + 1),… , 𝐿 + 1. That
is,  is the event that the out-degree of each vertex in 𝐼(𝑗) is at least 𝐿 − 𝑗 + 1 for each 𝑗 ∈ {0,… , 𝐿}. Since the degree of
fixed-index vertices tends to infinity as 𝑛 → ∞ and 𝐿 is a fixed integer, we know that P() → 1 as 𝑛 → ∞.

Let 𝑣 ∈ 𝑛,𝑝 be a fixed vertex of rank 𝑘, and suppose that 𝑝(𝑣) has 𝓁 children listed in order of increasing rank 𝑣1,… , 𝑣𝓁
where 𝑣 = 𝑣𝑘. Recall the definition that 𝑛,𝑝(𝑣) is the subtree rooted at 𝑣 in 𝑛,𝑝. We define  (𝑣) to be the collection of all
the subtrees rooted at higher rank siblings of 𝑣, that is,

 (𝑣) =
𝓁⋃

𝑖=𝑘+1
𝑛,𝑝(𝑣𝑖).

A simple observation is that every vertex in
⋃

𝑗≥𝐿+1 𝐼(𝑗) is in exactly one set 𝑛,𝑝(𝑣) or  (𝑣) for some 𝑣 ∈ 𝐼(𝐿 + 1), that is,⋃
𝑗≥𝐿+1

𝐼(𝑗) =
⋃

𝑣∈𝐼(𝐿+1)

(𝑛,𝑝(𝑣)⋃ (𝑣)
)
.

Since all the sets on the right-hand side are disjoint and ∣ 𝐼(0)
⋃

…
⋃

𝐼(𝐿 + 1) ∣ is finite, this implies that

1
𝑒np ∣ 𝑛,𝑝 ∣= 1

𝑒np

∑
𝑣∈𝐼(𝐿+1)

∣ 𝑛,𝑝(𝑣) ∣ + 1
𝑒np

∑
𝑣∈𝐼(𝐿+1)

∣  (𝑣) ∣ +𝑜𝑛(1). (1)

For any fixed 𝑘 ≥ 0, define 𝑛,𝑝(𝑘) to be the induced subtree of 𝑛,𝑝 on the vertex set 𝐼(0)
⋃

· · ·
⋃

𝐼(𝑘). Let 𝜖 > 0. Since
𝑛,𝑝(𝐿 + 1) is a finite tree, we can apply the law of large numbers to the spacings from the uniform spacings coupling

Random Structures & Algorithms, 2025 7 of 23
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(
𝑆𝑣,𝑖 ∶ 𝑣 ∈ 𝑛,𝑝(𝐿 + 1), 𝑖 ∈ {1,… , 𝐿 + 1}

)
to assert that, for a sequence of independent Exponential(1) random variables(

𝐸𝑣,𝑖

)
𝑣∈𝑇𝑛,1≤𝑖≤𝑛+1,

P
(
𝑆≤
) ≔ P

⎛⎜⎜⎝
⋂

𝑣∈𝑛,𝑝(𝐿+1)

{
𝓁𝑣 ≤ 𝓁−

𝑣
(𝜖)
}⎞⎟⎟⎠ → 1,

and

P
(
𝑆≥
) ≔ P

⎛⎜⎜⎝
⋂

𝑣∈𝑛,𝑝(𝐿+1)

{
𝓁𝑣 ≥ 𝓁+

𝑣
(𝜖)
}⎞⎟⎟⎠ → 1,

as 𝑛 → ∞, where

𝓁−
𝑣
(𝜖) ≔ 𝑝 − 1 − 𝜖

𝑛

∑
𝑢∈𝑃 −(𝑣)

𝑟(𝑢)∑
𝑖=1

𝐸𝑝(𝑢),𝑖, and 𝓁+
𝑣
(𝜖) ≔ 𝑝 − 1 + 𝜖

𝑛

∑
𝑢∈𝑃 −(𝑣)

𝑟(𝑢)∑
𝑖=1

𝐸𝑝(𝑢),𝑖.

Conditioning on 𝑆≤ and 𝑆≥ allows us to remove many dependencies between vertex labels.

Next, on the event  , we recursively define a one-to-one mapping 𝜙 of the vertices in a 𝑛,𝑝(𝐿 + 1) with the vertices of
 ∗(𝐿) (the tree truncated at generation 𝐿) and assign a corresponding edge labeling

(
𝑋𝑒

)
𝑒∈ ∗(𝐿). The following properties

hold for our mapping and together provide our branching random walk description:

i. In  ∗(𝐿), the collection of random variables
(∑

𝑒∈𝑃 (𝑣) 𝑋𝑒

)
𝑣∈ ∗(𝐿) is a branching random walk with step size 1+𝜖

𝑛
𝐸.

ii. For all 𝑣 ∈ 𝑛,𝑝(𝐿 + 1), the value of 𝜙(𝑣) determines 𝓁+
𝑣
(𝜖). That is, 𝓁+

𝑣
= 𝑝 −

∑
𝑒∈𝑃 (𝜙(𝑣)) 𝑋𝑒.

iii. The 𝑗th generation of  ∗(𝐿) contains the vertices of index 𝑗 + 1 in 𝑛,𝑝(𝐿 + 1).

We only describe the construction for
(
𝓁+
𝑣
(𝜖) ∶ 𝑣 ∈ 𝐼(𝐿 + 1)

)
, though the same can be done for

(
𝓁−
𝑣
(𝜖) ∶ 𝑣 ∈ 𝐼(𝐿 + 1)

)
using a similar procedure.

First, the root of 𝑛,𝑝(𝐿 + 1), which we denote with 𝜌, is mapped to the root of  ∗(𝐿). The unique index-1 vertex in 𝑛,𝑝(𝐿 +
1)—call it 𝑐—, is mapped to the unique child of the root in  ∗(𝐿). The edge going into this vertex in  ∗(𝐿) is given the
label 𝑋𝑒 =

1+𝜖
𝑛
𝐸𝜌,1. The three properties above hold for this base case.

Now, suppose that𝜙has been defined for 𝐼(0),… , 𝐼(𝑘),𝑘 ≤ 𝐿 and that the three properties hold for the partial assignment.
Each vertex in 𝑣 ∈ 𝐼(𝑘)has exactly one child 𝑐𝑣 and one sibling 𝑠𝑣 of index 𝑘 + 1. As 𝑣 ∈ 𝐼(𝑘), its image𝜙(𝑣) in  ∗ is already
defined, and by assumption the left and right children of 𝜙(𝑣), 𝜙(𝑣)𝓁 and 𝜙(𝑣)𝑟, are not in the image 𝜙(𝐼(0)

⋃
· · ·

⋃
𝐼(𝑘)).

Define 𝜙
(
𝑐𝑣
)
= 𝜙(𝑣)𝓁 and 𝜙

(
𝑠𝑣
)
= 𝜙(𝑣)𝑟. We give the edges 𝑒1 =

{
𝜙(𝑣), 𝜙(𝑣)𝓁

}
and 𝑒2 =

{
𝜙(𝑣), 𝜙(𝑣)𝑟

}
the labels 1+𝜖

𝑛
𝐸𝑣,1

and 1+𝜖
𝑛
𝐸𝑝(𝑣),𝑟(𝑣)+1 respectively. Point (iii) holds by definition for this extension of 𝜙 as all index-(𝑘 + 1) vertices are either

a direct sibling or child of an index-𝑘 vertex previously placed into the tree. Moreover, by assuming that (ii) holds for the
𝑘-th step implies that it still holds for the 𝑘 + 1-th step. Since the exponential random variables 𝐸𝑣,1 and 𝐸𝑝(𝑣),𝑟(𝑣)+1 have
not been used in the construction previously (this is a consequence of assuming that property (ii) holds for the first 𝑘
levels), property (i) holds for the extension as well (Figure 4).

This construction is almost sufficient to complete the proof, though there is still an approximation for  (𝑣) with a tree
that is needed. We delay proving this fact until the appendix, though we record and use the result. ◽

Lemma 4.3. Let 𝛿 > 0 and let 𝑣 ∈ 𝑛,𝑝 be a vertex of fixed finite index. There are random trees  +(𝑣) and  −(𝑣)
that are conditionally independent of the labels of 𝑣 and its lower rank siblings in 𝑇𝑛 given

(
𝓁±
𝑣
(𝜖) ∶ 𝑣 ∈ 𝐼(𝐿 + 1)

)
(and in particular 𝑇𝑛(𝑣)), such that ∣  −(𝑣) ∣


=∣ 𝑛,𝓁−

𝑣
(𝜖) ∣, ∣  +(𝑣) ∣


=∣ 𝑛,𝓁+

𝑣
(𝜖) ∣ and P(| (𝑣)| ≤ (1 + 𝛿)| −(𝑣)|) → 1 and

P
(| (𝑣)| ≥ (1 − 𝛿)| +(𝑣)|)→ 1 as 𝑛 → ∞.

In the above lemma,  (𝑣) is already independent of everything other than the label of its siblings and its parent, so the
above-noted independence lines up with the desired result. The approximation for 𝑛,𝑝(𝑣) is a little bit simpler. If we
remove paths that are non-decreasing and have labels all below 𝓁−

𝑣
(𝜖) instead of 𝓁𝑣 from 𝑇𝑛, then the resulting tree  −

2 (𝑣)

8 of 23 Random Structures & Algorithms, 2025
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FIGURE 4 | The mapping 𝜙 up to index 𝐿 = 3. The left tree is 𝑛,𝑝 and the right is the binary tree  ∗ with the labelling obtained
from 𝜙. The vertices are ordered from left to right in order of increasing index in 𝑛,𝑝. A left child (blue edge) in  ∗ corresponds to
moving down to the vertex’s child of the smallest index in 𝑛,𝑝, and a right child (red edge) corresponds to moving to a vertex’s sibling
of the smallest index in 𝑛,𝑝.

is at least as large as 𝑛,𝑝(𝑣) and is conditionally independent of the rest of 𝑇𝑛 when we condition on the label 𝓁−
𝑣
(𝜖) as

desired.

Using this lemma, and the fact that the events 𝑆≤ and  have probability tending to 1 as 𝑛 → ∞ we see that, for any 𝑥 > 0
and any 𝛿 > 0, (1) gives

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P

(
1
𝑒np

( ∑
𝑣∈𝐼(𝐿+1)

|𝑛,𝑝(𝑣)| + | (𝑣)|) + 𝑜𝑛(1) > 𝑥

)
+ 𝑜𝑛(1)

≤ P

(
(1 + 𝛿)
𝑒np

( ∑
𝑣∈𝐼(𝐿+1)

| −
2 (𝑣)| + | −(𝑣)|) > 𝑥

)
+ 𝑜𝑛(1).

Replacing  −
2 (𝑣) and  −(𝑣) in the above computation with  +

2 (𝑣) and  +(𝑣) yields the corresponding lower bound, com-
pleting the proof. ◽

Applying Lemmas 4.1 and 4.2 transforms the analysis of ∣ 𝑛,𝑝 ∣ into the analysis of a branching random walk on  ∗. Next,
we establish some results for the walk.

Lemma 4.4. Let
(
𝑝𝑖
)2𝐿

𝑖=1,
(
𝑝±
𝑖
(𝜖)
)2𝐿

𝑖=1 be as in Lemma 4.2 and set 𝑞𝑖 = 𝑝 − 𝑝𝑖, 𝑞
±
𝑖
(𝜖) = 𝑝 − 𝑝±

𝑖
(𝜖). Introduce the notation

𝑄𝑖 = nq𝑖 and 𝑄±
𝑖,𝜖

= nq±
𝑖
(𝜖). For any 𝑛 ≥ 1,

i. 𝑋𝐿 ≔ ∑2𝐿

𝑖=1𝑒
−𝑄𝑖

>
→ 𝐸

2
as 𝐿 → ∞.

ii. Let 𝑋±
𝐿
(𝜖) ≔ ∑2𝐿

𝑖=1𝑒
−𝑄±

𝑖,𝜖 . There is a sequence 𝜖(𝐿) for 𝐿 ≥ 0 such that 𝑋±
𝐿
(𝜖(𝐿))

>
→ 𝐸

2
.

iii. There is a sequence 𝜖(𝐿) for 𝐿 ≥ 0 such that E

[
max1≤𝑖≤2𝐿 exp

(
−𝑄±

𝑖,𝜖(𝐿)

)
𝑋±

𝐿
(𝜖(𝐿))

]
→ 0 as 𝐿 → ∞. Moreover, E

[
max1≤𝑖≤2𝐿 exp(−𝑄𝑖))

𝑋𝐿

]
→

0 as 𝐿 → ∞.

Remark. The random variables 𝑋𝐿 and 𝑋±
𝐿
(𝜖) do not depend on the parameter 𝑛. The step sizes of the branching random

walks defining each 𝑝𝑖 and 𝑝±
𝑖
(𝜖) are distributed like 1

𝑛
𝐸 and 1±𝜖

𝑛
𝐸 respectively, so the random variables 𝑄𝑖 = nq𝑖 and

𝑄±
𝑖,𝜖

= nq±
𝑖
(𝜖) do not depend on 𝑛 due to cancellations.

The proof of Lemma 4.4 can be found in the Appendix. All of the required lemmas have now been presented and we are
prepared to prove Theorem 2.1.

Proof of Theorem 2.1. Let 𝑥 > 0. By Lemma 4.2 we know that, for any 𝜖 > 0, 𝛿 ∈ (0, 1), and 𝐿 ≥ 0

P
(

1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P
(

1
𝑒np

∑2𝐿

𝑖=1

(|𝑛,𝑝−
𝑖
(𝜖)| + | ′

𝑛,𝑝−
𝑖
(𝜖)|) > (1 − 𝛿)𝑥

)
+ 𝑜𝑛(1).

Random Structures & Algorithms, 2025 9 of 23
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Let 𝛿2 ∈ (0, 1), let 𝑀 =
∑2𝐿

𝑖=1

(
𝑒𝑛(𝑝−𝑞−𝑖 (𝜖)) + 𝑒𝑛(𝑝−𝑞−𝑖 (𝜖))

)
, and let

𝐸𝑛,𝛿2
=
⎧⎪⎨⎪⎩
||||||

2𝐿∑
𝑖=1

(|𝑛,𝑝−
𝑖
(𝜖)| + | ′

𝑛,𝑝−
𝑖
(𝜖)|) −𝑀

|||||| ≤ 𝛿2𝑀

⎫⎪⎬⎪⎭.
We note that 𝑀 is the mean of the sum

∑2𝐿

𝑖=1

(|𝑛,𝑝−
𝑖
(𝜖)| + | ′

𝑛,𝑝−
𝑖
(𝜖)|). Applying Lemma 4.1 we get,

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P
⎛⎜⎜⎝ 1
𝑒np

2𝐿∑
𝑖=1

(|𝑛,𝑝−
𝑖
(𝜖)| + | ′

𝑛,𝑝−
𝑖
(𝜖)|) > (1 − 𝛿)𝑥 | 𝐸𝑛,𝛿2

⎞⎟⎟⎠ + P
(
𝐸𝑐

𝑛,𝛿2

)
+ 𝑜𝑛(1)

≤ P
⎛⎜⎜⎝ 1
𝑒np

2𝐿∑
𝑖=1

(
𝑒𝑛(𝑝−𝑞−𝑖 (𝜖)) + 𝑒𝑛(𝑝−𝑞−𝑖 (𝜖))

)
>

1 − 𝛿

1 + 𝛿2
𝑥

⎞⎟⎟⎠ + 5
𝛿2

2
E

[
max1≤𝑖≤2𝐿 𝑒−𝑄𝑖∑2𝐿

𝑖=1𝑒
−𝑄𝑖

]
+ 𝑜𝑛(1)

= P
⎛⎜⎜⎝

2𝐿∑
𝑖=1

2𝑒−𝑄
−
𝑖,𝜖 >

1 − 𝛿

1 + 𝛿2
𝑥

⎞⎟⎟⎠ + 5
𝛿2

2
E

[
max1≤𝑖≤2𝐿 𝑒−𝑄𝑖∑2𝐿

𝑖=1𝑒
−𝑄𝑖

]
+ 𝑜𝑛(1).

Note that the first two terms of the upper bound do not have any dependence on 𝑛, and therefore we have

lim sup
𝑛→∞

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P
⎛⎜⎜⎝

2𝐿∑
𝑖=1

2𝑒−𝑄
−
𝑖,𝜖 >

1 − 𝛿

1 + 𝛿2
𝑥

⎞⎟⎟⎠ + 5
𝛿2

2
E

[
max1≤𝑖≤2𝐿 𝑒−𝑄𝑖∑2𝐿

𝑖=1𝑒
−𝑄𝑖

]
,

for any 𝜖 > 0, 𝛿, 𝛿2 ∈ (0, 1), and any 𝐿 ≥ 0. As 𝛿 is arbitrarily small, continuity of measure implies that the inequality can
be strengthened to

lim sup
𝑛→∞

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P
⎛⎜⎜⎝

2𝐿∑
𝑖=1

2𝑒−𝑄
−
𝑖,𝜖 >

(
1 + 𝛿2

)−1
𝑥

⎞⎟⎟⎠ + 5
𝛿2

2
E

[
max1≤𝑖≤2𝐿 𝑒−𝑄𝑖∑2𝐿

𝑖=1𝑒
−𝑄𝑖

]
. (2)

Then, Lemma 4.4 asserts that, for any 𝛿2, 𝛿3 ∈ (0, 1) we can choose 𝐿 large and 𝜖 small enough such that

P
⎛⎜⎜⎝

2𝐿∑
𝑖=1

2𝑒−𝑄
−
𝑖,𝜖 >

(
1 + 𝛿2

)−1
𝑥

⎞⎟⎟⎠ ≤ P
(
𝐸 >

(
1 + 𝛿2

)−1
𝑥
)
+ 𝛿3

and

5
𝛿2

2
E

[
max1≤𝑖≤2𝐿 𝑒−𝑄𝑖∑2𝐿

𝑖=1𝑒
−𝑄𝑖

]
≤ 5

𝛿2
2
𝛿3

2 .

Combining these two inequalities with (2) we get.

lim sup
𝑛→∞

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P
(
𝐸 >

(
1 + 𝛿2

)−1
𝑥
)
+ 𝛿3 + 5𝛿2,

where 𝛿2, 𝛿3 are arbitrary. Taking 𝛿2, 𝛿3 ↓ 0 and using the continuity of measure gives that

lim sup
𝑛→∞

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≤ P(𝐸 > 𝑥).

Repeating an almost identical procedure, we obtain a matching lower bound,

lim inf
𝑛→∞

P
( 1
𝑒np |𝑛,𝑝| > 𝑥

) ≥ P(𝐸 > 𝑥).
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This completes the proof of the first statement in Theorem 2.1.

Let 𝑣1,… , 𝑣𝑚 be the children of the root of rank 1,… , 𝑚 in 𝑛,𝑝. Using the uniform spacings coupling, we can take a vector
of spacings

(
𝑆1,… , 𝑆𝑛+1

)
such that (

𝓁𝑣1
,… ,𝓁𝑣𝑚

)
=
(
𝑝 − 𝑆1,… , 𝑝 − 𝑆𝑚

)
.

By the law of large numbers,

𝑋𝑛 ≔ (
nS1,… ,nS𝑚

) ℙ
→
(
𝐸1,… , 𝐸𝑚

)
, (3)

as 𝑛 → ∞, where 𝐸1,… , 𝐸𝑚 are independent Exponential(1) random variables. Using Lemma 2.1 from Devroye (1986)
we can write the joint density function for the vector 𝑋𝑛 as

𝑓𝑛

(
𝑥1,… , 𝑥𝑚

)
= 1

𝑛
⋅

𝑛!
(𝑛 − 𝑚)!𝑛𝑚

(
1 −

∑𝑚

𝑖=1𝑥𝑖

𝑛2

)𝑛

for all
(
𝑥1,… , 𝑥𝑚

)
∈ Δ𝑚 ≔ {(

𝑥1,… , 𝑥𝑚

)
∶ 𝑥𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑚, 𝑥1 +…+ 𝑥𝑚 ≤ 𝑛

}
. Note that 𝑛!

(𝑛−𝑚)!𝑛𝑚
≤ 1. For 𝑥,∈ Δ𝑚

we have, by using the binomial theorem, the triangle inequality, and the inequality
(
𝑛

𝑖

)
≤ 𝑛𝑖∕𝑖!,

∣ 𝑓𝑛(𝑥) − 𝑓𝑛(𝑦) ∣≤ 1
𝑛

𝑛−𝑚∑
𝑖=0

(
𝑛

𝑖

)|||||‖‖‖‖ 𝑥

𝑛2

‖‖‖‖𝑖1 − ‖‖‖‖ 𝑦

𝑛2

‖‖‖‖𝑖1||||| ≤ 1
𝑛

∞∑
𝑖=0

1
𝑖!

|||||‖‖‖‖𝑥𝑛‖‖‖‖
𝑖

1
−
‖‖‖‖𝑦𝑛‖‖‖‖𝑖1|||||.

Now, suppose that ∥ 𝑦 ∥1≤∥ 𝑥 ∥1. Then, we have,

∣ 𝑓𝑛(𝑥) − 𝑓𝑛(𝑦) ∣≤ 1
𝑛

∞∑
𝑖=0

1
𝑖!

|||||‖‖‖‖𝑥𝑛‖‖‖‖
𝑖

1
−
‖‖‖‖𝑦𝑛‖‖‖‖𝑖1||||| = 1

𝑛

(
𝑒∥𝑥∥1∕𝑛 − 𝑒∥𝑦∥1∕𝑛

)
.

By the same argument for ∥ 𝑦 ∥1≥∥ 𝑥 ∥1, we deduce that

∣ 𝑓𝑛(𝑥) − 𝑓𝑛(𝑦) ∣≤ 1
𝑛

|||𝑒∥𝑥∥1∕𝑛 − 𝑒∥𝑦∥1∕𝑛|||.
for all 𝑛 ≥ 𝑚. Since ∥ 𝑥 ∥1, ∥ 𝑦 ∥1≤ 𝑛 by definition, it is straightforward to see that this inequality yields uniform equiconti-
nuity for the sequence of functions

(
𝑓𝑛

)∞
𝑛=𝑚. Combining this equicontinuity with (3), we can conclude that ∥ 𝑓𝑛 − 𝑓 ∥∞→ 0

as 𝑛 → ∞, where 𝑓 is the density function for the vector
(
𝐸1,… , 𝐸𝑚

)
(see e.g., Boos (1985) Lemma 1). Now, using

the conditional independence of the trees 𝑛,𝑝(𝑣1
)
,… , 𝑛,𝑝(𝑣𝑚) upon the labels of 𝑣1, .., 𝑣𝑚 and we fact that 𝓁𝑣𝑖

= 𝑝 −(
𝑆1 +…+ 𝑆𝑖

)
we have, for 𝑥 =

(
𝑥1,… , 𝑥𝑚

)
∈ Δ𝑚,

P

(|𝑛,𝑝(𝑣1
)
∣

𝑒np ≥ 𝑦1,… ,
∣ 𝑛,𝑝(𝑣𝑚) ∣

𝑒np ≥ 𝑦𝑚 | 𝑋𝑛 = 𝑥

)
=

𝑚∏
𝑖=1

P

(|𝑛,𝑝(𝑣𝑖) ∣
𝑒𝑛𝓁𝑣𝑖

𝑒−(𝑥1+…+𝑥𝑖) ≥ 𝑦𝑖

)
. (4)

Then, using the first part of this theorem, we have

P

(|𝑛,𝑝(𝑣1
)
∣

𝑒np ≥ 𝑦1,… ,
∣ 𝑛,𝑝(𝑣𝑚) ∣

𝑒np ≥ 𝑦𝑚 | 𝑋𝑛 = 𝑥

)
→

𝑚∏
𝑖=1

P
(

Ee−(𝑥1+…+𝑥𝑖) ≥ 𝑦𝑖

)
. (5)

as 𝑛 → ∞, where 𝐸 is an Exponential(1) random variable. Combining the fact that ∥ 𝑓𝑛 − 𝑓 ∥∞→ 0 as 𝑛 → ∞ with (5)
and applying the dominated convergence theorem, we obtain, for 𝐹1,… , 𝐹𝑚 all independent Exponential(1) random
variables,

P

(|𝑛,𝑝(𝑣1
)
∣

𝑒np ≥ 𝑦1,… ,
∣ 𝑛,𝑝(𝑣𝑚) ∣

𝑒np ≥ 𝑦𝑚

)
= ∫Δ𝑚

P

(|𝑛,𝑝(𝑣1
)
∣

𝑒np ≥ 𝑦1,… ,
∣ 𝑛,𝑝(𝑣𝑚) ∣

𝑒np ≥ 𝑦𝑚 | 𝑋𝑛 = 𝑥

)
𝑓𝑛(𝑥) dx

→ ∫Δ𝑚

𝑚∏
𝑖=1

P
(

Ee−(𝑥1+···+𝑥𝑖) ≥ 𝑦𝑖

)
𝑓 (𝑥) dx
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= ∫Δ𝑚

P
(
𝐹1𝑒

−𝑥1 ≥ 𝑦1,… , 𝐹𝑚𝑒
−(𝑥1+…+𝑥𝑚)

)
𝑓 (𝑥) dx

= P
(
𝐹1𝑒

−𝐸1 ≥ 𝑦1,… , 𝐹𝑚𝑒
−(𝐸1+···+𝐸𝑚) ≥ 𝑦𝑚

)
.

From here, noting that 𝑒−𝐹𝑖 is a Uniform[0, 1] random variable, the desired result follows. ◽

5 | The Height

In this section, we prove Theorem 2.2, and begin with a technical lemma that uses Cramér’s large deviations theorem
Cramér (1938, 1944); Cramér and Touchette (2022).

Lemma 5.1. Let 𝑘 ≥ 0 be a fixed integer, and let 𝐾 be a uniform random variable on {1,… , 𝑘}. For 𝑖 ∈ {1,… , 𝑘}, let 𝐺𝑖

be independent gamma (𝑖) random variables and let 𝑋1,… , 𝑋𝑛 be independently distributed as 𝐺𝐾 . Then, there is a sequence
𝜙(𝑘) with 𝜙(𝑘) → 0 as 𝑘 → ∞, such that for any 0 < 𝑥 <

𝑘+1
2

,

P

(
𝑛∑

𝑖=1
𝑋𝑖 ≤ nx

)
≥ exp

(
−𝑛
(

log
(
𝑘

ex

)
+ 𝜙(𝑘) + 𝑜𝑛(1)

))
. (6)

Proof. By Cramér’s theorem (Klenke 2008, Theorem 23.11), we have that, for 0 < 𝑥 <
𝑘+1

2
,

lim inf
𝑛→∞

1
𝑛

log P

(
𝑛∑

𝑖=1
𝑋𝑖 ≤ nx

)
≥ − inf

0<𝑦<𝑥
𝐼(𝑦) = −𝐼(𝑥)

where
𝐼(𝑥) = sup

𝜆∈𝑅

(
𝜆x − log E𝑒𝜆𝑋1

)
is the Legendre-Fenchel transform of the cumulant-generating function of 𝑋1 (i.e., the logarithm of the moment gener-
ating function E𝑒𝜆𝑋1 ). Observe that, for 𝜆 ∈ (0, 1),

E
(
𝑒𝜆𝑋1

)
= 1

𝑘

𝑘∑
𝑖=1

E
(
𝑒𝜆𝐺𝑖

)
= 1

𝑘

𝑘∑
𝑖=1

1
(1 − 𝜆)𝑖

= −1
k𝜆

(
1 − 1

(1 − 𝜆)𝑘

)
,

and for 𝜆 ≥ 1, E𝑒𝜆𝑋1 = ∞. Altogether,

log E𝑒𝜆𝑋1 =
⎧⎪⎨⎪⎩
∞, 𝜆 ≥ 1
1, 𝜆 = 0
−1
k𝜆

(
1 − (1 − 𝜆)−𝑘

)
, otherwise

The function 𝐽 (𝜆) ≔ 𝜆x − log E𝑒𝜆𝑋1 is concave. To see this, recall that the moment generating function is always
log-convex and that any linear function minus a convex function is concave. It can also be seen to be continuous by
similar logic. Moreover, one can compute that 𝐽 (0) = 0 and 𝐽 ′(0) = 𝑥 − 𝑘+1

2
. Together these facts imply that 𝐽 (𝜆) ≤ 0 for

all 𝜆 ≥ 0 when 0 < 𝑥 <
𝑘+1

2
. Moreover, for 𝑥 > 0, we have that lim𝜆→−∞ 𝐽 (𝜆) = −∞. Noting that 𝐽 (−1∕𝑥) > 0, the above

facts imply that 𝐽 (𝜆) attains a global maximum at some 𝜆∗ ∈ (∞, 0) when 0 < 𝑥 <
𝑘+1

2
. Thus,
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𝐼(𝑥) = sup
𝜆<0

(
𝜆x + log(𝑘) + log(−𝜆) − log

(
1 − 1

(1 − 𝜆)𝑘

))
≤ log(𝑘) + sup

𝜆>0
(𝜆x + log(−𝜆)) + log

(
1 − 1(

1 − 𝜆∗
)𝑘
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≔ϕ(𝑘)

= log(𝑘) − log(𝑥) − 1 + 𝜙(𝑘)

for all fixed 0 < 𝑥 <
𝑘+1

2
. Note that 𝜙(𝑘) → 0 as 𝑘 → ∞. From here, recalling (6) completes the proof. ◽

Now we are ready to prove Theorem 2.2. For simplicity, we only present the proof for 𝑝 = 1. The extension to the general
case is immediate.

Proof of Theorem 2.2. Recall that a vertex 𝑢 ∈ 𝑇𝑛 is in the temporal tree 𝑛 when the sequence of labels from the root
to 𝑢 decreases monotonically. Thus, for a vertex in generation 𝑑 of 𝑇𝑛,

P
(
𝑢 ∈ 𝑛) = 1

𝑑!
.

By the union bound and Stirling’s formula,

P
(
𝐻𝑛 ≥ en

) ≤ 𝑛en⌈en⌉! ≤ 𝑛en

Γ(en + 1)
≤ 1√

2𝜋en
= 𝑜𝑛(1).

From here, it suffices to show that for every constant 𝛾 < 𝑒, and any integer 𝑀 > 0,

P
(
𝐻𝑛 ≥ 𝛾n +𝑀

)
→ 1

as 𝑛 → ∞. We do this by exhibiting the existence of a vertex in 𝑛 of depth ≥ 𝛾n +𝑀 , following a proof method that goes
back to Biggins (1976, 1977). For the rest of the proof, we view our tree in function of the uniform spacings coupling of
𝑇𝑛. Note that this implies that the children of a vertex 𝑣 ∈ 𝑇𝑛 all have label below 𝓁𝑣.

Let 𝐾 > 1 be an integer. We trim the tree 𝑇𝑛 by, for each 𝑣 ∈ 𝑇𝑛, keeping only the 𝐾 children with the largest labels ordered
from greatest to least label as 𝑣1,… , 𝑣𝐾 . The result of this process is an infinite 𝐾-ary tree that we denote by  (𝐾)

𝑛
. Recall

that, using the uniform spacings coupling, we may write, for 𝑣 ∈  (𝐾)
𝑛

,

𝓁𝑣 = 1 −
∑

𝑢∈𝑃 −(𝑣)
𝑆∗

𝑝(𝑢),𝑟(𝑢),

where 𝑆∗
𝑣,𝑖

= 𝑆𝑣,1 + · · · + 𝑆𝑣,𝑖 and 𝑟(𝑢) is the rank of vertex 𝑢. This means that the labels of vertices in  (𝐾)
𝑛

follow a gen-
eralized branching random walk in which the branching factor is 𝐾 at each generation and the step sizes are distributed
like

(
𝑆∗

1 ,… , 𝑆∗
𝐾

)
where 𝑆∗

𝑖
= 𝑆1 + · · · + 𝑆𝑖 and

(
𝑆1,… , 𝑆𝑛+1

)
is a vector of uniform spacings (for the rest of the proof we

shall refer to these types of generalized step size branching random walks as just branching random walks). Altogether,
this implies that

P
(
𝐻𝑛 ≤ 𝛾n +𝑀

) ≤ P
⎛⎜⎜⎝

⋂
𝑣∈ (𝐾)

𝑛 ∶∣𝑣∣=⌈𝛾n+𝑀⌉
{ ∑

𝑢∈𝑃 −(𝑣)
𝑆∗

𝑝(𝑢),𝑟(𝑢) ≥ 1

}⎞⎟⎟⎠.
Thus, what matters is the largest label of any vertex at depth ⌈𝛾n +𝑀⌉ in a 𝐾-ary branching random walk in which the
children have displacements distributed as 𝑆∗

1 ,… , 𝑆∗
𝐾

. Let 𝐷 be the maximal label of any vertex at distance 𝑀 from the
root. The 𝐾𝑀 vertices at distance 𝑀 from the root have subtrees that behave in an i.i.d. manner, and each vertex in these
subtrees has a label at most equal to 𝐷 plus the total displacement within its subtree. Therefore,
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P
⎛⎜⎜⎝

⋂
𝑣∈ (𝐾)

𝑛 ∶∣𝑣∣=⌈𝛾n+𝑀⌉
{ ∑

𝑢∈𝑃 −(𝑣)
𝑆∗

𝑝(𝑢),𝑟(𝑢) ≥ 1

}⎞⎟⎟⎠ ≤ P
⎛⎜⎜⎝

⋂
𝑣∈ (𝐾)

𝑛 ∶∣𝑣∣=⌈𝛾n+𝑀⌉
{ ∑

𝑢∈𝑃 −(𝑣)
𝑆∗

𝑝(𝑢),𝑟(𝑢) ≥ 1 −𝐷

}⎞⎟⎟⎠
𝐾𝑀

≤ P(𝐷 > 𝜖) + 𝐴𝑛(𝜖)𝐾
𝑀

, (7)

where

𝐴𝑛(𝜖) = P
⎛⎜⎜⎝

⋂
𝑣∈ (𝐾)

𝑛 ∶∣𝑣∣=⌈𝛾n+𝑀⌉
{ ∑

𝑢∈𝑃 −(𝑣)
𝑆∗

𝑝(𝑢),𝑟(𝑢) ≥ 1 − 𝜖

}⎞⎟⎟⎠.
Recall that, jointly over 1 ≤ 𝑖 ≤ 𝐾 ,

𝑆∗
𝑖


=

𝐸1 + · · · + 𝐸𝑖

𝐸1 + · · · + 𝐸𝑛+1
,

where 𝐸1,… , 𝐸𝑛+1 are i.i.d. exponential random variables. As 𝐷 is smaller than the sum of 2𝐾𝑀 random variables dis-
tributed as 𝑆∗

𝐾
, we have by Markov’s inequality,

P(𝐷 > 𝜖) ≤ 2𝐾𝑀

𝜖

𝐾

𝑛 + 1
= 𝑜𝑛(1).

We show that for special choices of 𝜖 > 0, 𝐾 > 0,

𝐴𝑛(𝜖) ≤ 𝑞 < 1, (8)

for all 𝑛 large enough. Then the right-hand side in (7) is upper bounded by 𝑜𝑛(1) + 𝑞𝐾
𝑀

, which can be made as small as
desired by taking 𝑀 large enough and letting 𝑛 tend to infinity. We conclude by establishing (8).

The dependence of the distribution of 𝑆∗
𝑖

on 𝑛 is a slight inconvenience, so we consider a branching random walk with
larger displacements. To that end, we introduce a Bernoulli

(
𝑝𝑛
)

random variable 𝐵𝑛, where

𝑝𝑛 = P
(
𝐸𝐾+1 + · · · + 𝐸𝑛+1 ≤ 𝑛(1 − 𝜖)

)
.

Then, the values of the vertices in the branching random walk on  (𝐾)
𝑛

defined by step sizes

(
1 − 𝐵𝑛

)𝐸1 + · · · + 𝐸𝑖

𝑛(1 − 𝜖)
+ 𝐵𝑛 1 ≤ 𝑖 ≤ 𝐾

dominate the values for the vertices in the original branching random walk described above. By the law of large numbers,
for fixed 𝐾 and 𝜖, 𝑝𝑛 → 0 as 𝑛 → ∞. So, given 𝛿 > 0, 𝑝𝑛 ≤ 𝛿 for all 𝑛 large enough. Let 𝐵 be a Bernoulli(𝛿) random variable.
We introduce a final branching random walk where the family of step sizes, for 1 ≤ 𝑖 ≤ 𝐾 , is

𝑊𝑖 =

{
𝐸1 + · · · + 𝐸𝑖 if B = 0
∞ if B = 1

.

Let, for all 1 ≤ 𝑖 ≤ 𝐾 and 𝑣 ∈  (𝐾)
𝑛

,

𝑊𝑣,𝑖 =

{
𝐸𝑣,1 + · · · + 𝐸𝑣,𝑖 if Bv = 0
∞ if Bv = 1

,

where
(
𝐸𝑣,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝐾, 𝑣 ∈  (𝐾)

𝑛

)
are i.i.d. Exponential(1) random variables and 𝐵𝑣 are independent Bernoulli(𝛿) ran-

dom variables. For sufficiently large 𝑛 we have,

𝐴𝑛(𝜖) ≤ P
⎛⎜⎜⎝

⋂
𝑣∈ (𝐾)

𝑛 ∶∣𝑣∣=⌈𝛾n+𝑀⌉
{ ∑

𝑢∈𝑃 −(𝑣)
𝑊𝑝(𝑢),𝑟(𝑢) ≥ 𝑛(1 − 𝜖)2

}⎞⎟⎟⎠. (9)
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As the step sizes of this new branching random walk do not depend upon 𝑛, we can identify a supercritical Galton-Watson
process with an extinction probability that upper bounds the right-hand side of (9).

Define c= (1− 2𝜖)/𝛾 . Let 𝑊 be a branching random walk with step sizes
(
𝑊1,… ,𝑊𝑘

)
. Fix an integer 𝐿 and consider all

𝐾𝐿 vertices in generation 𝐿 of 𝑊 . If any of the Bernoulli random variables for the vertices in generation 𝓁 ≤ 𝐿 is one, then
the root has no children. Otherwise, we set vertices in generation 𝐿 to be a child of the root (in the new Galton-Watson
process) if its label is ≤ 𝑐. For each child of the root with the new Galton-Watson process, we repeat this procedure.

To be more specific, let 𝑢 be a vertex with value 𝑈 in 𝑊 , and suppose that 𝑢 is also in the Galton-Watson process. If any
descendant of 𝑢 up to 𝐿 generations below 𝑢 has its Bernoulli value set to one, then 𝑢 has no children. Otherwise, we
add all vertices that are 𝐿 generations below 𝑢 with values below 𝑈 + Lc as children of 𝑢. We call the resultant of this
Galton-Watson process 𝐺.

If ∣ 𝐺 ∣= ∞, then the values of the vertices at level 𝑗 are ≤ Lj(1 − 2𝜖)∕𝛾 for all 𝑗 ≥ 1. These vertices correspond to vertices
in the original tree at level Lj. In particular, conditioned on survival, there are vertices at level ⌈𝛾n⌉ that have value

≤
⌊⌈𝛾n⌉

𝐿

⌋
× 𝐿(1 − 2𝜖)

𝛾
≤ 1

𝛾
+ (1 − 2𝜖)𝑛 < (1 − 𝜖)2𝑛,

for 𝑛 large enough. In particular, combined with (9), this implies that 𝐴𝑛(𝜖) ≤ P(|𝐺| < ∞).

To determine the survival probability of 𝐺, we check that the expected number of children of the root, called 𝐺1, is larger
than one. Indeed,

E
[
𝐺1
]
= (1 − 𝛿)𝐾𝐿

∑
∣𝑣∣=𝐿

P(the value of 𝑣 is at most Lc)

= (1 − 𝛿)𝐾𝐿

𝐾𝐿P(a uniform vertex in generation L has value at most Lc)

= (1 − 𝛿)𝐾𝐿

𝐾𝐿P
(
𝐺𝑌1

+ · · · + 𝐺𝑌𝐿
≤ Lc

)
,

where 𝑌1,… , 𝑌𝐿 are i.i.d. random integers uniformly distributed on {1,… , 𝐾}, and 𝐺𝑚 stands for a gamma random vari-
able with parameter 𝑚. By Lemma 5.1,

P
(
𝐺𝑌1

+ · · · + 𝐺𝑌𝐿
≤ Lc

) ≥ exp
(
−𝐿

(
log
(
𝐾

ce

)
+ 𝜙(𝐾) + 𝑜𝐿(1)

))
= (ce)𝐿

𝐾𝐿
𝑒−L𝜙(𝐾)−𝑜𝐿(𝐿),

for 𝑐 ≤ 𝐾+1
2

, and so
E
[
𝐺1
] ≥ (1 − 𝛿)𝐾𝐿 (ce)𝐿𝑒−L𝜙(𝐾)−𝑜𝐿(𝐿).

For fixed 𝛾 < 𝑒, we can find 𝜖 > 0 small enough such that ce > 1. Then, we can choose 𝐿, 𝐾 large enough and 𝛿 > 0 small
enough that the expected number of children is strictly larger than one. Then, with these chosen 𝑐, 𝐿,𝐾, 𝛿, 𝐺 becomes
extinct with some probability 𝑞 < 1. As noted above, this implies that 𝐴𝑛(𝜖) ≤ 𝑞 for all 𝑛 large enough, finishing the
proof. ◽

6 | Typical Depths

In this section, we prove Theorem 2.3. As in the previous section, we present the proof for the 𝑝 = 1 case only, as the
extension to the general case is straightforward.

Let
(𝑘

)
𝑘≥0 be the number of vertices in generation 𝑘 of the tree 𝑛. Let 𝐻𝑛 be the height of 𝑛. Since we argued previously

that 𝐻𝑛∕𝑛
ℙ
→ 𝑒, it is sufficient to argue that 1 +…+⌊(1−𝜖)𝑛⌋ and ⌊(1+𝜖)𝑛⌋ +…+⌊2en⌋ are both negligible compared to

∣ 𝑛 ∣ for any 𝜖 ∈ (0, 1). One may use Markov’s inequality, the union bound, and Stirling’s formula. Indeed, for 𝛿 < 𝜖2,
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P
(1 + · · · +⌊(1−𝜖)𝑛⌋ > 𝑒(1−𝛿)𝑛

) ≤ ⌊(1−𝜖)𝑛⌋∑
𝑖=1

P
(
𝑖 >

1
(1 − 𝜖)𝑛

𝑒(1−𝛿)𝑛
)

≤ (1 − 𝜖)2𝑛2
E
[⌊(1−𝜖)𝑛⌋]
𝑒(1−𝛿)𝑛

≤ (1 − 𝜖)2𝑛2𝑛(1−𝜖)𝑛

(⌊(1 − 𝜖)𝑛⌋)!𝑒(1−𝛿)𝑛
≤ 𝐶

𝑛3𝑒(1−𝜖)𝑛−(1−𝛿)𝑛

(1 − 𝜖)(1−𝜖)𝑛

≤ Cn3 exp(𝛿n − 𝜖n + (1 − 𝜖) log(1 − 𝜖)𝑛)

≤ Cn3 exp(𝛿n − 𝜖n + (1 − 𝜖)𝜖n) → 0,

where 𝐶 > 0 is a constant. For the other side, we repeat the same computation, with the only changes being that (1 − 𝜖)
is replaced with (1 + 𝜖) and that the expected values are slightly different for the 𝑖s. Indeed, for 𝛿 < 𝜖3,

P
(⌊(1+𝜖)𝑛⌋ +…+⌊2en⌋ > 𝑒(1−𝛿)𝑛

) ≤ (2𝑒)2𝑛2𝑛(1+𝜖)𝑛

(⌊(1 + 𝜖)𝑛⌋)!𝑒(1−𝛿)𝑛
≤ 𝐶 ′ 𝑛3𝑒(1+𝜖)𝑛

(1 + 𝜖)(1+𝜖)𝑛𝑒(1−𝛿)𝑛

≤ 𝐶 ′𝑛3 exp(𝜖n − 𝛿n − (1 + 𝜖) log(1 + 𝜖)𝑛)

≤ 𝐶 ′𝑛3 exp
(
𝜖n − 𝛿n − (1 + 𝜖)

(
𝜖 − 𝜖2)𝑛) → 0,

for some constant 𝐶 ′ > 0. Finally, applying Theorem 2.1 allows us to assert that P
(|𝑛| ≤ 𝑒(1−𝛿∕2)𝑛) → 0 as 𝑛 → ∞. Choos-

ing 𝛿 = 𝜖4 (recall that we assume 𝜖 < 1) we are able to conclude that

1 + · · · +⌊(1−𝜖)𝑛⌋ +⌊(1+𝜖)𝑛⌋ + · · · +⌊2en⌋
∣ 𝑛 ∣

ℙ
→ 0,

as 𝑛 → ∞ for any 𝜖 > 0. From the remarks at the beginning of the proof, this means that

⌊(1−𝜖)𝑛⌋ + · · · +⌊(1+𝜖)𝑛⌋
∣ 𝑛 ∣

ℙ
→ 1,

as 𝑛 → ∞ for any 𝜖 > 0, which means that uniformly chosen vertices will be between depth (1 − 𝜖)𝑛 and (1 + 𝜖)𝑛 for any
𝜖 > 0 with probability tending to 1 as 𝑛 → ∞.

7 | The Expected Degree Distribution

In this section, we prove Theorem 2.4. Once again, for the sake of clarity of the presentation, we only consider the case
𝑝 = 1. The extension to the general case is immediate.

Consider a vertex 𝑢 of depth 𝓁 in 𝑇𝑛. The vertex has degree at least 𝑘 in 𝑛 if and only if the labels of the 𝓁 edges on the
path from the root to 𝑢 are decreasing, moreover, at least 𝑘 of the 𝑛 labels of the out-edges of 𝑢 have labels less than the
minimum edge label on the path from the root to 𝑢. The probability of this event equals

1
𝓁!

⋅
𝑛

𝑛 + 𝓁
⋅

𝑛 − 1
𝑛 − 1 + 𝓁

· · · 𝑛 − 𝑘 + 1
𝑛 − 𝑘 + 1 + 𝓁

.

Thus, the expected number of vertices of outdegree at least 𝑘 is

E𝐿𝑛,≥𝑘 =
∞∑
𝓁=1

𝑛𝓁

𝓁!

𝑘−1∏
𝑖=0

1
1 + 𝓁

𝑛−𝑖

= 𝑒𝑛E
𝑘−1∏
𝑖=0

1
1 + 𝑋𝑛

𝑛−𝑖

,
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where 𝑋𝑛 is a Poisson(𝑛) random variable. Since 𝑋𝑛∕(𝑛 − 𝑖) → 1 in probability for each fixed 𝑖 ∈ {0, 1,… , 𝑘 − 1}, and for
every 𝑘 ≥ 1,

lim
𝑛→∞

EL𝑛,≥𝑘
𝑒𝑛

= 2−𝑘,

which implies Theorem 2.4 for 𝑝 = 1.
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Appendix A
Proof of Lemma 4.1. Recall that at the beginning of Section 4 we showed that E ∣ 𝑛,𝑝 ∣= 𝑒np. The second moment of ∣ 𝑛,𝑝 ∣ =∑

𝑣∈𝑇𝑛
𝟏{𝑣∈𝑛,𝑝} is a sum, over pairs of vertices of 𝑇𝑛, the probability that both vertices exist in 𝑛,𝑝. We may split the sum based on

where the pairs of paths stop overlapping,

E|||𝑛,𝑝|||2 ≤ E ∣ 𝑛,𝑝 ∣ +2
∞∑
𝑘=0

∞∑
𝓁=𝑘

𝑘∑
𝑚=0

𝑛𝑘−𝑚

(
𝑛

2

)
𝑛𝑚−1𝑛𝓁−𝑘+𝑚−1𝑝𝓁+𝑚

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

1
𝑚!

1
(𝓁 − 𝑘 + 𝑚)!

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
II

(𝓁 − 𝑘 + 2𝑚)!
(𝓁 + 𝑚)!

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
III

.

Term I comes from choosing the pairs of paths and ensuring the paths have edge labels below 𝑝, term II is the probability that the
portion of both paths after the overlap is decreasing (𝑚 and 𝓁 − 𝑘 + 𝑚 edges), and term III is the probability that the (𝑘 − 𝑚) edges in
the overlap are such that both paths as a whole are decreasing. Rearranging this expression and swapping the order of summation gives

E|||𝑛,𝑝|||2 ≤ E ∣ 𝑛,𝑝 ∣ +
∞∑
𝑘=0

∞∑
𝓁=𝑘

𝑘∑
𝑚=0

(np)𝓁+𝑚

(𝓁 + 𝑚)!

(
𝓁 − 𝑘 + 2𝑚

𝑚

)

≤ E ∣ 𝑛,𝑝 ∣ +
∞∑
𝓁=0

𝓁∑
𝑚=0

(np)𝓁+𝑚

(𝓁 + 𝑚)!

(
𝓁∑

𝑘=𝑚

(
𝓁 − 𝑘 + 2𝑚

𝑚

))
.

Writing
(
𝓁 − 𝑘 + 2𝑚

𝑚

)
≔ 𝑓 (𝑘), we can bound the innermost sum with a geometric series. Since,

𝑓 (𝑘 + 1)
𝑓 (𝑘)

= (𝓁 − 𝑘 + 𝑚)!
(𝓁 − 𝑘 + 𝑚)!

(𝓁 − 𝑘 + 2𝑚 − 1)!
(𝓁 − 𝑘 + 𝑚 − 1)!

= 𝓁 − 𝑘 + 𝑚

𝓁 − 𝑘 + 2𝑚
≤ 𝓁

𝓁 + 𝑚
,

for all 𝑘 ≥ 𝑚, we have that
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𝓁∑
𝑘=𝑚

(
𝓁 − 𝑘 + 2𝑚

𝑚

)
≤ 𝑓 (𝑚)

∞∑
𝑗=0

(
𝓁

𝓁 + 𝑚

)𝑗

= 𝑓 (𝑚) 1
1 − 𝓁

𝓁+𝑚

= 𝑓 (𝑚)
(

1 + 𝓁
𝑚

)
.

Splitting off the 𝑚 = 0 term from the original expression and applying this bound gives

E|||𝑛,𝑝|||2 ≤ E ∣ 𝑛,𝑝 ∣
⏟⏟⏟

I

+
∞∑
𝓁=0

(np)𝓁

𝓁!
2𝓁

⏟⏞⏞⏞⏟⏞⏞⏞⏟
II

+
∞∑
𝓁=0

𝓁∑
𝑚=1

(np)𝓁+𝑚

(𝓁 + 𝑚)!

(
𝓁 + 𝑚

𝑚

)(
1 + 𝓁

𝑚

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

III

.

Clearly I = 𝑒np, II = 𝑒2np, and III can be bounded as,

III ≤ 2
∞∑
𝓁=0

𝓁∑
𝑚=1

(np)𝓁

𝓁!
(np)𝑚

𝑚!
𝓁
𝑚

≤ 2𝑒2np
∞∑
𝓁=0

𝓁∑
𝑚=1

P
(
𝑋𝑛 = 𝓁

)
P
(
𝑌𝑛 = 𝑚

) 𝓁
𝑚

≤ 2𝑒𝑛E
[
𝑋𝑛

𝑌𝑛

𝟏{1≤𝑌𝑛≤𝑋𝑛}

]
≤ 4𝑒2𝑛E

[
𝑋𝑛

𝑌𝑛 + 1

]
,

where 𝑋𝑛 and 𝑌𝑛 are independent Poisson(np) random variables. Finally, the value of the expected ratio given above is known to be
(1 − 𝑒−np) (see, e.g., Coath et al. (2013)), so we can put the expressions for I, II, and III together to get that

E|||𝑛,𝑝|||2 ≤ 𝑒np + 𝑒2np + 4𝑒2np(1 − 𝑒−np) ≤ 5𝑒2np = 5
(
E|𝑛,𝑝|)2

.

The second statement of the lemma is a quick corollary of the first. Since the trees are independent of one another, an application of
(i) yields

Var

(
𝑚∑
𝑖=1
|𝑛,𝑝𝑖 |

)
≤

𝑚∑
𝑖=1

E|||𝑛,𝑝𝑖 |||2 ≤ 5
𝑚∑
𝑖=1

𝑒2np𝑖 .

Applying Chebyshev’s inequality and upper bounding 𝑒np𝑖 ≤ max1≤𝐼≤𝑚 𝑒np𝑖 gives

P

(|||||
𝑚∑
𝑖=1
|𝑛,𝑝𝑖 | − 𝜇

||||| > 𝜖𝜇

)
≤ 5

𝜖2

(
max1≤𝑖≤𝑚 𝑒np𝑖

)∑𝑚

𝑖=1𝑒
np𝑖(∑𝑚

𝑖=1𝑒
np𝑖

)2 .

Factoring an 𝑒np (recall that 𝑞𝑖 = 𝑝 − 𝑝𝑖) from both the numerator and denominator completes the proof:

P

(|||||
𝑚∑
𝑖=1
|𝑛,𝑝𝑖 | − 𝜇

||||| > 𝜖𝜇

)
≤ 5

𝜖2

max1≤𝑖≤𝑚 𝑒np𝑒−nq𝑖

𝑒np∑𝑚

𝑖=1𝑒
−nq𝑖

= 5
𝜖2

max1≤𝑖≤𝑚 𝑒−nq𝑖∑𝑚

𝑖=1𝑒
−nq𝑖

.

◽

Proof of Lemma 4.3. Let 𝑣 ∈ 𝑇𝑛 have fixed finite index, let 𝑣1,… , 𝑣𝑛 be the children of 𝑣 in 𝑇𝑛 in order of decreasing label, and let 𝑞 ≥ 1
be some fixed integer not depending on 𝑛. Notice that 𝑣𝑞 is also a finite-index vertex. Take a sequence of independent Exponential(1)
random variables

(
𝐸𝑖

)
𝑖≥1 such that

𝑆𝑖 ≔ 𝑆𝑣,𝑖 =
𝐸𝑖

𝐸1 + · · · + 𝐸𝑛+1
,

for all 1 ≤ 𝑖 ≤ 𝑛 + 1, where the collection
(
𝑆𝑣,𝑖 ∶ 𝑣 ∈ 𝑇𝑛, 1 ≤ 𝑖 ≤ 𝑛 + 1

)
contains the spacings from the uniform spacings coupling of

𝑇𝑛 that define the labels of vertices in 𝑇𝑛. The only dependence of
(
𝑆𝑖 ∶ 𝑞 + 1 ≤ 𝑖 ≤ 𝑛 + 1

)
upon

(
𝓁−
𝑣1
(𝜖),… ,𝓁−

𝑣𝑞
(𝜖)
)

comes from the
existence of the random variables 𝐸1,… , 𝐸𝑞 in the denominator. We define new spacings for 𝑞 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑞 + 1 that are independent
of 𝐸1,… , 𝐸𝑞 ,

𝑆∗
𝑖
=

𝐸𝑞+𝑖

𝐸𝑞+1 + · · · + 𝐸𝑛+𝑞+1
.
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Recall that the forest (𝑣𝑞)may be constructed by, for each 𝑞 + 1 ≤ 𝑖 ≤ 𝑛, deleting the vertices from 𝑇𝑛

(
𝑣𝑖
)

whose unique path connect-
ing them to 𝑣𝑖 are not decreasing if 𝓁𝑣𝑖

> 0, and deleting the whole tree if 𝓁𝑣𝑖
< 0. Starting from the forest containing 𝑇𝑛

(
𝑣𝑖
)

for each
𝑞 + 1 ≤ 𝑖 ≤ 𝑛, we construct a new tree 𝑇 −

𝑛
. First, add 𝑞 new vertices 𝑣𝑛+1,… , 𝑣𝑛+𝑞 . Make each of these vertices the root of an independent

tree distributed like 𝑇𝑛. We define labels for the vertices 𝑣𝑞+1,… , 𝑣𝑛+𝑞 (replacing the old labels for 𝑣𝑞+1,… , 𝑣𝑛) by, for each 1 ≤ 𝑖 ≤ 𝑛

𝓁∗
𝑣𝑞+𝑖

≔ 𝓁−
𝑣𝑞
(𝜖) − 𝑆∗

𝑞+1 − · · · − 𝑆∗
𝑞+𝑖.

Finally, we attach 𝑣𝑞+1,… , 𝑣𝑛+𝑞 to some mutual shared root. If we delete vertices from 𝑇 −
𝑛

that have either negative label or are such that
their unique path to the root is not decreasing, then, by construction, the resultant tree, which we denote by  −

𝑛
, is distributed exactly

as 𝑛,𝓁−
𝑣𝑞
(𝜖). Moreover, by construction, the tree 𝑇 −

𝑛
is independent of 𝑇𝑛

(
𝑣1
)
,… , 𝑇𝑛

(
𝑣𝑞
)

when one conditions on
(
𝓁−
𝑣1
(𝜖),… ,𝓁−

𝑣𝑞
(𝜖)
)

.

Let 𝑘𝑛 = ⌊𝑛1∕4⌋. To prove that P
(| (𝑣)| ≤ (1 + 𝛿)| −

𝑛
|) → 1 as 𝑛 → ∞ for any 𝛿 > 0, it suffices the following three claims:

i. P
(⋂𝑘𝑛

𝑖=1
{|𝑛,𝑝(𝑣𝑞+𝑖)| ≤ | −

𝑛

(
𝑣𝑞+𝑖

)|}) → 1 as 𝑛 → ∞.

ii. ∣ (𝑣)∣∑𝑘𝑛
𝑖=1 ∣𝑛,𝑝(𝑣𝑖)∣

ℙ
→ 1 as 𝑛 → ∞.

iii. ∣ −
𝑛
∣∑𝑘𝑛

𝑖=1 ∣ −
𝑛 (𝑣𝑖)∣

ℙ
→ 1 as 𝑛 → ∞.

We begin with (i). Since 𝓁−
𝑣𝑞
(𝜖) ≥ 𝓁𝑣𝑞

, it holds that, for 1 ≤ 𝑖 ≤ 𝑘𝑛,

𝓁𝑣𝑞+𝑖
− 𝓁∗

𝑣𝑞+𝑖
≤
||||||

𝑖∑
𝑗=1

(
𝑆𝑞+𝑗 − 𝑆∗

𝑞+𝑗

)||||||,
with probability tending to 1 as 𝑛 → ∞. Writing 𝑅 =

∑𝑞

𝑗=1𝐸𝑛+𝑗+1 −
∑𝑞

𝑗=1𝐸𝑗 and 𝑇 =
∑𝑛+1

𝑖=1 𝐸𝑖 we can simplify the above to get

𝓁𝑣𝑞+𝑖
− 𝓁∗

𝑣𝑞+𝑖
≤
(

1 + 𝑅

𝑇

)∑𝑖

𝑗=1𝐸𝑞+𝑗(
1 + 𝑅

𝑇

)
𝑇

,

and so

sup
1≤𝑖≤𝑘𝑛

(
𝓁𝑣𝑞+𝑖

− 𝓁∗
𝑣𝑞+𝑖

) ≤
𝑅

𝑇

∑𝑘𝑛

𝑗=1𝐸𝑞+𝑗(
1 + 𝑅

𝑇

)
𝑇

≤
(

1 + 𝑅

𝑇

)∑𝑘𝑛

𝑗=1𝐸𝑞+𝑗

𝑇
≤
(

1 + 𝑅

𝑇 ∗

)∑𝑘

𝑗=1𝐸𝑞+𝑗

𝑇 ∗ ,

with probability tending to 1 as 𝑛 → ∞, where 𝑇 ∗ ≔ ∑𝑛+1
𝑖=𝑞+𝑘+1𝐸𝑖 ≤ 𝑇 . Note that all the terms in the final upper bound are independent.

Applying the law of large numbers, we get that, for any 𝛿 > 0,

sup
1≤𝑖≤𝑘𝑛

(
𝓁𝑣𝑞+𝑖

− 𝓁∗
𝑣𝑞+𝑖

) ≤ (1 + 𝛿)𝑥𝑛𝑘𝑛

𝑛2 , (A1)

with probability tending to 1 as 𝑛 → ∞ for any sequence
(
𝑥𝑛

)∞
𝑛=1 such that 𝑥𝑛 = 𝜔𝑛(1) (since 𝑅 is a finite sum, it does not tend

to infinity). By construction, for each 1 ≤ 𝑖 ≤ 𝑘𝑛, the children of 𝑣𝑞+𝑖 in both 𝑇𝑛 and 𝑇 −
𝑛

have the same labels. Moreover, the child
labels form a vector of independent Uniform[0, 1] random variables. For the vertex 𝑣𝑖, let these uniforms be given by 𝑈

(𝑖)
1 ,… , 𝑈 (𝑖)

𝑛
. If{

𝑈
(𝑖)
1 ,… , 𝑈 (𝑖)

𝑛

}⋂[
𝓁∗
𝑣𝑞+𝑖

,𝓁𝑣𝑞+𝑖

]
= �0, then every child of 𝑣𝑞+𝑖 that is in 𝑛,𝑝 is also in  −

𝑛
. Then, since the labels of these children are the

same in both trees, it must hold that ∣ 𝑛,𝑝(𝑣𝑞+𝑖) ∣≤∣  −
𝑛

(
𝑣𝑞+𝑖

)
∣. Hence,

P
({|𝑛,𝑝(𝑣𝑞+𝑖)| ≥ | −

𝑛

(
𝑣𝑞+𝑖

)|}) ≤ P

(
𝑛⋃

𝑗=1

{
𝑈

(𝑖)
𝑗

∈
[
𝓁∗
𝑣𝑞+𝑖

,𝓁𝑣𝑞+𝑖

]})
.

By conditioning on (A1) and applying the union bound, we get,

P

(
𝑘𝑛⋃
𝑖=1

{|𝑛,𝑝(𝑣𝑞+𝑖)| ≥ | −
𝑛

(
𝑣𝑞+𝑖

)|}) ≤ 𝑘𝑛P
(

Binomial
(
𝑛,

(1 + 𝛿)𝑥𝑛𝑘𝑛

𝑛2

)
> 0

)
+ 𝑜𝑛(1),

≤ (1 + 𝛿)𝑘2
𝑛
𝑥𝑛

𝑛
+ 𝑜𝑛(1) = 𝑜𝑛(1)

when one chooses 𝑥𝑛 = 𝑛1∕4.
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Now we focus on (ii) and (iii). Both convergences may be proved by an almost identical method, so we only present the proof for the
case of ∣  −

𝑛
∣. Clearly, to prove that ∣ −

𝑛
∣∑𝑘𝑛

𝑖=1 ∣ −
𝑛 (𝑣𝑖)∣

ℙ
→ 1 as 𝑛 → ∞, it is enough to show that

∑𝑛

𝑖=𝑘𝑛+1 ∣ 𝑛(𝑣𝑖) ∣
∣  −

𝑛
∣

ℙ
→ 0, (A2)

as 𝑛 → ∞. First, observe that 𝓁∗
𝑣𝑞+𝑖

≤ 𝓁∗
𝑣𝑞+𝑘𝑛

≔ 𝑝𝑘𝑛
for all 𝑘𝑛 ≤ 𝑖 ≤ 𝑛. By replacing the label of each vertex 𝑣𝑞+𝑖 in 𝑇 −

𝑛
for 𝑘𝑛 ≤ 𝑖 ≤ 𝑛 with

𝓁∗
𝑣𝑞+𝑘𝑛

, we can see that it suffices to show the following two points to deduce (A2):

1. If  (1)
𝑛,𝑝𝑘𝑛

,… ,  (𝑛)
𝑛,𝑝𝑘𝑛

are all distributed like 𝑛,𝑝𝑘𝑛 , then, as 𝑛 → ∞

P

(
𝑛∑

𝑖=1
| (𝑖)

𝑛,𝑝𝑘𝑛
| > exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − 𝑛3∕16

)) ℙ
→ 0.

2. P
(| −

𝑛
| ≤ exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − 𝑛1∕16

)) ℙ
→ 0 as 𝑛 → ∞

Let 0 < 𝛿 < 1. Recall that 𝑝𝑘𝑛
= 𝓁−

𝑣𝑞
(𝜖) − 𝑆∗

𝑞+1 − · · · − 𝑆∗
𝑞+𝑘𝑛

. Applying the law of large numbers, we obtain that

P
(
𝑝𝑘 ≤ 𝓁−

𝑣𝑞
(𝜖) − 1 − 𝛿

𝑛3∕4

)
→ 1, (A3)

as 𝑛 → ∞. Applying the union bound, Markov’s inequality, and Lemma 4.1, we have

P

(
𝑛∑

𝑖=1
| (𝑖)

𝑛,𝑝𝑘𝑛
| > exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − 𝑛3∕16

)) ≤ 𝑛E
[
P
(|𝑛,𝓁−

𝑣𝑞
(𝜖)−(1−𝛿)∕𝑛3∕4 | > 1

𝑛
exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − 𝑛3∕16

) | 𝓁−
𝑣𝑞
(𝜖)
)]

+ 𝑜𝑛(1)

≤ 𝑛E
⎡⎢⎢⎢⎣
𝑛 exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − (1 − 𝛿)𝑛1∕4

)
exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − 𝑛3∕16

) ⎤⎥⎥⎥⎦ + 𝑜𝑛(1)

≤ 𝑛2 exp
(
𝑛3∕16 − (1 − 𝛿)𝑛1∕4),

which converges to 0 as 𝑛 → ∞. This proves point 1. Now, let 𝑚𝑛 = ⌊𝑛1∕8⌋, and let 𝑝𝑚𝑛
= 𝓁∗

𝑣𝑚
. Applying the law of large numbers again,

we have, for any 𝛿 > 0,

P
(
𝑝𝑚 ≥ 𝓁−

𝑣𝑞
(𝜖) − 1 + 𝛿

𝑛7∕8

)
→ 1,

as 𝑛 → ∞. Recall that the labels of the vertices 𝑣𝑞+1,… , 𝑣𝑞+𝑚𝑛
are all larger than that of 𝑣𝑞+𝑚. Then, applying Lemma 4.1 and the

Chebyshev-Cantelli inequality, we obtain

P
(| −

𝑛
| ≤ exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − 𝑛1∕16

)) ≤ P
(|𝑛,𝓁−

𝑣𝑞
(𝜖)−(1+𝛿)∕𝑛7∕8 | ≤ exp

(
𝑛𝓁−

𝑣𝑞
(𝜖) − 𝑛1∕16

))𝑚

+ 𝑜𝑛(1)

≤ E
⎡⎢⎢⎣
⎛⎜⎜⎝

Var|𝑛,𝓁−
𝑣𝑞
(𝜖)−(1+𝛿)∕𝑛7∕8 ∣

Var ∣ 𝑛,𝓁−
𝑣𝑞
(𝜖)−(1+𝛿)∕𝑛7∕8 ∣ + 1

5
Var ∣ 𝑛,𝓁−

𝑣𝑞
(𝜖)−(1+𝛿)∕𝑛7∕8 ∣

(
1 − 𝑒(1+𝛿)𝑛1∕8−𝑛1∕16)2

⎞⎟⎟⎠
𝑚⎤⎥⎥⎦ + 𝑜𝑛(1),

which converges to 0 as 𝑛 → ∞. This proves point 2, and concludes the proof of (ii) and (iii). One can construct a tree  +
𝑛

in a completely
analogous fashion to how  −

𝑛
was constructed. Following the same proof approach that was used for  −

𝑛
, one can show the following

three points:

i. P
(⋂𝑘𝑛

𝑖=1
{|𝑛,𝑝(𝑣𝑞+𝑖)| ≥ | +

𝑛

(
𝑣𝑞+𝑖

)|}) → 1 as 𝑛 → ∞.

ii. ∣ (𝑣)∣∑𝑘𝑛
𝑖=1 ∣𝑛,𝑝(𝑣𝑖)∣

ℙ
→ 1 as 𝑛 → ∞.

iii. ∣ +
𝑛
∣∑𝑘𝑛

𝑖=1 ∣ +
𝑛 (𝑣𝑖)∣

ℙ
→ 1 as 𝑛 → ∞.
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As with  −
𝑛

, we obtain the desired result. ◽

Proof of Lemma 4.4. Let
(
𝑌𝑣 ∶ 𝑣 ∈  ∗) be a branching random walk with step size 𝐸

𝑛
. Note that, by definition, for all 𝐿 ≥ −1,

∑
𝑣∶∣𝑣∣=𝐿

𝑒−𝑌𝑣

=

2𝐿∑
𝑖=1

𝑒−𝑄𝑖 .

Define 𝑋𝐿 =
∑

𝑣∶∣𝑣∣=𝐿 𝑒−nY𝑣 . Each vertex 𝑣 has two children, say 𝑣1 and 𝑣2. These children have values 𝑌𝑣1
= 𝑌𝑣 +

1
𝑛
𝐸(1, 𝑣) and 𝑌𝑣2


=

𝑌𝑣 +
1
𝑛
𝐸(2, 𝑣), where 𝐸(𝑖, 𝑣)


= 𝐸

𝑛
for any pair (𝑖, 𝑣) and are independent of all other edge labels in the graph. Since nE(𝑖, 𝑣)


= 𝐸 for all

(𝑖, 𝑣), it holds that 𝑈 (𝑖, 𝑣) ≔ 𝑒−nE(𝑖,𝑣) 
= Uniform[0, 1]. Thus,

E
[
𝑋𝐿+1|𝑋𝐿

]
=
∑
∣𝑣∣=𝐿

2∑
𝑖=1

E
[
𝑈 (𝑖, 𝑣)𝑒−nY𝑣 |𝑋𝐿

]
=
∑
∣𝑣∣=𝐿

2∑
𝑖=1

1
2

E
[
𝑒nY𝑣 |𝑋𝐿

]
= E

[∑
|𝑣|=𝐿𝑒

−nY𝑣 |𝑋𝐿

]
= 𝑋𝐿.

Hence, 𝑋𝐿 is a martingale in 𝐿 with sup𝐿 E
[
𝑋𝐿

]
< ∞ for any 𝑛, and thus has an almost sure limit. Call this limit 𝑋.

Due to the structure of  ∗, going down one step in the tree reveals two copies of  ∗, both of which have an extra exponential from the
first edge in all the vertex values. This structural recursion for the tree implies a distributional equality for the branching random walk:

𝑋𝐿


= 𝑈

(
𝑋𝐿−1 +𝑋′

𝐿−1
)
,

where 𝑈

= Uniform[0, 1] and 𝑋𝐿−1 and 𝑋′

𝐿−1 are two independent copies of 𝑋𝐿−1. From this, we obtain the distributional identity,

𝑋

= 𝑈

(
𝑋′ +𝑋′′) for 𝑋′ and 𝑋′′ independent of each other.

Set 𝑎𝑘 ≔ E
[
𝑋𝑘

]
. Using the distributional identity for 𝑋, we obtain the recursion 𝑎0 = 1, 𝑎1 = 1

2
,

𝑎𝑘 = 1
𝑘 + 1

𝑘∑
𝑖=0

(
𝑘

𝑖

)
𝑎𝑖𝑎𝑘−𝑖.

It is easily verified that 𝑎𝑘 = 𝑘!
2𝑘 solves this recursion. Thus, E

[
𝑋𝑘

]
= 𝑘!

2𝑘 for all 𝑘 ≥ 1, which implies that 𝑋

= 𝐸

2
. The uniqueness of

this distributional identity follows from noticing that the exponential distribution satisfies the Stieltjes moment problem conditions
(Durrett (2019)). This covers the first claim.

The second claim is a consequence of the Biggins-Hammersley-Kingman theorem (see, e.g., Addario-Berry and Reed (2009)). For our
purposes, the theorem implies that both the minimum and maximum value of all vertices in the 𝐿-th generation of a branching random
walk with step size 𝐸

𝑛
is Θ

(
𝐿

𝑛

)
as 𝐿 → ∞. More precisely, we have constants 𝐶1, 𝐶2 > 0 such that

P
(
𝐶1𝐿 ≤ min

1≤𝑖≤2𝐿
nq ≤ max

1≤𝑖≤2𝐿
nq𝑖 ≤ 𝐶2𝐿

)
→ 1 as L → ∞.

If we take 𝜖(𝐿) = 𝐿−2, then min1≤𝑖≤2𝐿 n𝜖(𝐿)𝑞𝑖 and max1≤𝑖≤2𝐿 n𝜖(𝐿)𝑞𝑖 both converge to 0 in probability as 𝐿 → ∞, and so
min1≤𝑖≤2𝐿 exp

(
±n𝜖(𝐿)𝑞𝑖

)
and max1≤𝑖≤2𝐿 exp

(
±n𝜖(𝐿)𝑞𝑖

)
both converge to 1 in probability as 𝐿 → ∞. Now, from the definition of the

values
(
𝑞±
𝑖
(𝜖)
)2𝐿

𝑖=1, we obtain the bounds

min
1≤𝑖≤2𝐿

exp
(
∓n𝜖𝑞𝑖

)
𝑋𝐿 ≤ 𝑋±

𝐿
≤ max

1≤𝑖≤2𝐿
exp

(
∓n𝜖𝑞𝑖

)
𝑋𝐿.

From Slutsky’s theorem and the first claim (i) it holds that both the upper and lower bounds above converge to 𝐸

2
as 𝐿 → ∞, and so

the same holds for 𝑋±
𝐿

.

For the final claim, note that the aforementioned Biggins-Hammersley-Kingman theorem states that max1≤𝑖≤2𝐿 exp
(
−nq±

𝑖
(𝜖)
)
→ 0

almost surely as 𝐿 → ∞. Since
max

1≤𝑖≤2𝐿
𝑒−n𝜖𝑞±

𝑖
(𝜖) ≤ 1,
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the convergence also holds in 𝐿1. Now, let 𝜂 > 0 and let 𝜖(𝐿) be as in the second claim. Splitting up the expectation in (iii) gives the
upper bound

E

[
max1≤𝑖≤2𝐿 exp

(
−nq±

𝑖
(𝜖)
)

∑2𝐿

𝑖=1 exp
(
−nq±

𝑖
(𝜖)
)

]
= E

[
max1≤𝑖≤2𝐿 exp

(
−nq±

𝑖
(𝜖)
)

∑2𝐿

𝑖=1 exp
(
−nq±

𝑖
(𝜖)
) 𝟏{∑2𝐿

𝑖=1 exp(−nq±
𝑖
(𝜖))<𝜂

}
]

+ E

[
max1≤𝑖≤2𝐿 exp

(
−nq𝑖

)
∑2𝐿

𝑖=1 exp
(
−nq±

𝑖
(𝜖)
) 𝟏{∑2𝐿

𝑖=1 exp(−nq±
𝑖
(𝜖))>𝜂

}
]

≤ P
⎛⎜⎜⎝

2𝐿∑
𝑖=1

exp
(
−nq±

𝑖
(𝜖)
)
< 𝜂

⎞⎟⎟⎠ + 1
𝜂

E
[

max
1≤𝑖≤2𝐿

exp
(
−nq±

𝑖
(𝜖)
)]

.

As 𝐿 → ∞ the final upper bound converges to P(𝐸 < 2𝜂). From here, letting 𝜂 ↓ 0 completes the proof. To prove that

E

[
max1≤𝑖≤2𝐿 exp

(
−nq𝑖

)
∑2𝐿

𝑖=1 exp
(
−nq𝑖

)
]
→ 0

as 𝐿 → ∞, it suffices to follow the same procedure as the ± case just covered above. ◽
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