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ABSTRACT

Motivated by the study of random temporal networks, we introduce a class of random trees that we coin uniform
temporal trees. A uniform temporal tree is obtained by assigning independent uniform [0, 1] labels to the edges of
a rooted complete infinite n-ary tree and keeping only those vertices for which the path from the root to the vertex
has decreasing edge labels. The p-percolated uniform temporal tree, denoted by 7, ,,
additional constraint that the edge labels on each path are all below p. We study several properties of these trees,
including their size, height, the typical depth of a vertex, and degree distribution. In particular, we establish a limit

law for the size of 7, , Which states that le:’}fl converges in distribution to an Exponential(1) random variable asn — oo.

is obtained similarly, with the

For the height H, ,, we prove that IZ—;" converges to e in probability. Uniform temporal trees show some remarkable

similarities to uniform random recursive trees.

1 | Introduction

In network science, the graph modeling the network is often equipped with edge labels representing time stamps. For
example, in a network describing human interactions, the network’s vertices represent individuals, edges stand for
encounters, and the edges may be labeled by the time the encounter happens. Such temporal networks allow one to
study the spread of an infection or information (see Holme and Saramiki (2012), Holme and Saraméki (2013), Holme
and Saramiki (2019), Hosseinzadeh et al. (2022), Sanjay Kumar and Panda (2020)).

A simple mathematical model for temporal networks that has been gaining attention is random temporal graphs. In this
model, the time stamps are obtained by assigning a uniform random permutation to the edge set. If one is only interested
in the ordering of the edge labels, equivalently, every edge of a graph is assigned an independent random label, uniformly
distributed in [0, 1]. In particular, the random simple temporal graph model is obtained by adding such labels to the edges
of an Erd6s-Rényi random graph G, ,. Random simple temporal graphs exhibit some remarkable phase transitions (see,
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FIGURE1 | A uniform temporal tree with n = 10.

e.g., Angel et al. (2020); Mertzios et al. (2024); Becker et al. (2022); Broutin et al. (2023); Casteigts et al. (2024); Atamanchuk
et al. (2024)).

Since (sparse) Erdds-Rényi random graphs are locally tree-like, it is natural to study analogous random trees. This moti-
vates our definition of a uniform temporal tree, specified below. The paper’s main goal is to study the basic properties of
such random trees, including their size, height, and degree distribution.

The definition is the following. For a positive integer n, let T, be a rooted infinite complete n-ary tree (i.e., the root vertex
has degree n and every other vertex has degree n + 1). To each edge e of T, assign an independent random variable U,,
uniformly distributed in [0, 1]. U, is called the label of the edge e. A path between the root and a vertex v is called decreasing
if the edge labels in the path appear in decreasing order. Sometimes it is more convenient to assign labels to vertices. The
label Z, of a vertex v € T, is the label U, of the edge e connecting v to its parent (the parent of a vertex v is the vertex
adjacent to v that is on the path between the root and v). In some cases, we focus on the vertex labels, calling a path
decreasing if the vertex labelling is decreasing, though this is an equivalent definition. Note that the root vertex does not
have a parent or a label. The (p-percolated) uniform temporal tree, 7, ,, is a random tree obtained from 7, by assigning the
root the label p and deleting all vertices whose path from the root is not decreasing with respect to the vertex labelling. Note
that every vertex in a 7, , has a label at most p. When p = 1, we simplify the notation and just write 7, for 7, ; (Figure 1).

It is clear that 7, (and therefore 7, ) is almost surely finite. Indeed, there are n* vertices in the k-th generation of 7, and
each vertex v in the k-th generation exists in 7, with probability 1/k! as the edges on the path from the root to v must be
in decreasing order. Thus the probability that 7, has a vertex at depth k is at most n* /k! which goes to zero as k — co.

This is not the first work to consider increasing paths on trees. A model that is closely related to temporal graphs,
called accessibility percolation, has been studied in recent years (Berestycki et al. (2014); Martinsson (2015); Berestycki
et al. (2013)). Accessibility percolation on n-ary trees has been studied before, and its study is closely related to the heights
of uniform temporal trees (Nowak and Krug (2013); Roberts and Zhao (2013)).

In the next section, we present the main results of the paper concerning the distribution of the size of 7, ,, the typical
depth of a vertex, the height (i.e., the depth of the deepest vertex), and the degree distribution. The proofs of these results
are given in subsequent sections.

2 | Results

Before presenting the main results, we fix some terminology and notation. Let T be a rooted tree. P(v) forany v € T
(except for the root) denotes the unique path between the root and v. The set P~(v) is P(v) with the root removed. The
depth of v, | v |, is the number of edges in P(v). The parent of v, p(v) is the single neighbor of v in P(v), and the set of
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children of v, C(v), contains all vertices at depth | v | +1 that are adjacent to v. The out-degree of a vertex v is the number
| C(v) | of its children. Two vertices u and v are siblings if p(u) = p(v). For a vertex v € T, T'(v) is the subtree of T rooted at
v containing all descendants of v in T, that is, the tree containing v, its children, grandchildren, and so on. Convergence

c c
in distribution for a sequence of random variables is denoted by —, and = is used for equality in distribution. Finally, we

P
let — represent convergence in probability for a sequence of random variables.

Many features of uniform temporal trees are quite similar to those of uniform random recursive trees, so we define this
model before presenting our results. The uniform random recursive tree on n vertices is a random rooted tree with vertices
labeled in {1, ...,n}. The root has label 1. Vertices i € {2, ...,n} are attached recursively such that vertex i is attached to
avertexin {1,...,i — 1} selected uniformly at random. The uniform random recursive tree is one of the most ubiquitous
trees in computer science and has been thoroughly studied (see Meir and Moon (1978); Devroye (1988); Pittel (1994);
Janson (2005); Drmota (2009); Addario-Berry and Eslava (2018)).

The first result concerns the size of 7, ,. As is shown as the start of Section 4, a quick computation yields that the expected
size of TW is e"?. However, the size does not concentrate around the mean. We show that it admits a limit law: the size
divided by its expectation converges, in distribution, to an exponential random variable. Moreover, we establish a joint
limit law for the “distribution of mass” at the root, that is, for the sizes of the subtrees of children of the root with the
largest labels.

Theorem 2.1. Let p € (0,1] and consider a percolated uniform temporal tree T,, ,. Then
E|T,,|=¢"
and
| Top | >

np
- FE as n— oo,
e"p

where E is an exponential(1) random variable.

Moreover, for 1 < i < n, let v; be the child of the root with the i-th largest label. Then for any fixed m > 1,

(m,,,(vl) | T (v) |

—
It o w) as n— o,

>L
> = (E\U,, E,UU,, ... E, U, - U,

where (Ek) 10 18 @ sequence of independent Exponential(1) random variables and (U k) is an independent sequence of

independent uniform random variables on [0, 1].

k>0

Remark. It follows from Theorem 2.1 that if U;, U,, ... are independent uniform [0, 1] and E,, E,, ... are independent
exponential(1) random variables, then

2E[]Y
=1  j=1

is an exponential(1) random variable. This identity may also be checked directly.

Theorem 2.1 is the technically most involved result of the paper. Its proof is given in Section 4. The key idea behind the
proof is a representation of the labels in 7, as a sum of uniform spacings; this representation is given in Section 3. Using
this representation, we identify a connection between the evolution of the labels in 7,, and the evolution of values in a
branching random walk on an infinite binary tree, which we briefly describe now.

Let 7* be a rooted infinite complete binary tree (the root has one child, and every other vertex has precisely two chil-
dren). We consider the root to be in generation —1. Let (X, : v € T*) be a branching random walk on 7 * with step size
Exponential(1)/n (see e.g., Shi (2015) for a monograph on branching random walks). It is worth pointing out that this
step size is an asymptotic approximation for one uniform spacing. To each vertex, associate a tree 7, which is distributed
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like 7, , x,- Assume that the collection (TU Dol = L) is conditionally independent given the vector (X o ol = L) for
any L > —1. The proof in Section 4 is mostly focused on arguing, for sufficiently large L, that

217

S
e"p e"p

is small as n — co. This approximation is explored in Lemma 4.2. The labels of the roots in (Tv Dol = L) are exactly
described by a branching walk, and so we can complete precise computations concerning them. The final limit law comes

. . |7, . .. . .
from a martingale analysis of E [% | (X o ool = L)] . This analysis is summarized in Lemma 4.4.

The next result concerns the height H, , of a uniform temporal tree, that is, the maximum vertex depth in 7, ,. The fol-
lowing theorem, proved in Section 5, states that the height is about e times the logarithm of the size of the tree. This
property is reminiscent of uniform random recursive trees (see Devroye (1987) and Pittel (1994)). The result can be seen
as a generalization of results for accessibility percolation for n-ary trees found in (Roberts and Zhao (2013); Nowak and
Krug (2013)). It is worth noting that the techniques used in our proof differ from those used to derive similar results in
previous works.

Theorem 2.2. Fix p € (0,1], and let H, , denote the height of a percolated uniform temporal tree T, ,. Then

H",P P Hn,p P
—— > e¢ and ———— — e as n — co.
np log | T,, |

Note that the second statement follows from the first since Theorem 2.1 implies that (log |7, ,|)/(np) — 1 in probability.
The proof of this theorem is based on a connection between uniform temporal trees and branching random walks that is
similar to the one used for Theorem 2.1.

The next property establishes the typical depth of a vertex in a uniform temporal tree. Just like in a uniform ran-
dom recursive tree, the depth is concentrated around the natural logarithm of the size of the tree (see Devroye (1998)
for the corresponding results on depths in other recursive trees). The proof of the next theorem is provided in
Section 6.

Theorem 2.3. Let p € (0,1], and let D, , denote the depth of a uniformly chosen vertex in a percolated uniform temporal
tree 7, ,. Then
D D,,

np P P
-1 and ——— —>1 as n— oo.
np log |7, |

Finally, the next theorem establishes the asymptotic expected degree distribution of a uniform temporal tree. In particular,
the expected number of leaves is about half of the expected number of vertices, the expected number of vertices with one
child is a quarter of the expected size, etc. Once again, this property is similar to the corresponding asymptotic degree
distribution of a uniform random recursive tree. The following theorem is proved in Section 7.

Theorem 2.4. Letp € (0,1],and, for k > 0, let L, denote the number of vertices of out-degree k in a percolated uniform
temporal tree T, ,. Then

EL,,
e

— 27D 35§ > 0.

As has been highlighted above, uniform temporal trees share several of their basic characteristics with random recursive
trees. One may wonder whether a random recursive tree is equivalent to a uniform temporal tree 7, when conditioning
on the size | 7, |. However, while in a uniform temporal tree, the root vertex always has maximal degree, in a uni-
form random recursive tree, there are vertices with much higher degree Devroye and Lu (1995); Addario-Berry and
Eslava (2018); Eslava (2022). Moreover, the distribution of mass at the root established in Theorem 2.1 is different from
the “stick-breaking” distribution of the uniform random recursive tree.

40f23 Random Structures & Algorithms, 2025
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Broutin et al. (2023) utilizes direct couplings between neighborhoods of vertices in sparse random simple temporal graphs
and uniform random recursive trees to prove statements about connectivity. In sparse random graphs, neighborhoods
around vertices are tree-like and so match the structure of the 7, , closely.

3 | The Uniform Spacings Coupling

In the proof of Theorems 2.1 and 2.2 we use representations of the labels in a uniform temporal tree as a sum of uniform
spacings. We explore the connection in this section.

Let Uy, ..., U, be a collection of independent Uniform[0, 1] random variables and let V; > - - - > ¥, be the corresponding
order statistics. We also set V, =1, V,; = 0. Writing S, = V;_; — V; (i € {1, ..., n+ 1}) for the induced spacings, we use
the representation

c E E,
(S Spa) = (Vo= VooV, = Vo) = (Z”QE.’“.’ Zn+J1r;E.>’

i=1 i=1

where E,,..., E,,, are independent Exponential(1) random variables (see, e.g., Devroye (1986)). We record a key
observation about uniform random variables needed to incorporate the uniform spacings.

Lemma3.1. Let U,,...,U, be a collection of independent Uniform[0, 1] random variables, let x € [0,1], and let I =

{1<i<n:U >x}. Definea collection of random variables (U}, ..., U*), where
g Jui-tiel
' U, otherwise
Then, (Ul* e, U:) is distributed like a vector of independent uniform random variables on the interval [x — 1, x]. In partic-
ular, if V¥, ..., V* are the order statistics of (U;,...,U*) and (S, ...,S,,1) is a vector of uniform spacings, then

(Vi V) = (x=Sp o x = (S 4+ 4+ S,).

1°

Proof. The transformation described in the lemma is equivalent to moving the section of the interval [0, 1] above x (and
the corresponding points in {Ul, ey Un} that lie above x) to be below zero. The points in [0, x] and [1 — x, 0] are still
uniformly distributed over these intervals, and thus together are uniform over [1 — x, x] (see Figure 2). ]

The uniform spacings representation then yields an equivalent description of how labels evolve in uniform temporal trees.
Let ((S,1,.... S, 1) 1 v € T,) be a collection of independent uniform spacings. We define labels recursively for all of
the vertices in T,. First, the root p is given the label 7 , =D Then, for a vertex v € T, with label 7, we define the labels of
its children vy, ..., v, as
J
£, =C,— .S, for je{l,..n}

i=1

S
| f ’
| o-e ® | -
0 b | x 1
v oy v
S
|
| ® | o ® |
x—1 0 X
FIGURE 2 | The rotation of the uniform spacings around a vertex x. The blue section above x is moved from above x to below 0.
After the segment is moved, the points are distributed uniformly over [x — 1, x].
Random Structures & Algorithms, 2025 50f23
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P

T

p—S1 p—S1—S, ----

N T

p—S1—S, p—S—S,—S, ...

FIGURE 3 | Theevolution oflabelsina T,, » according to the spacings coupling. The random variables S, S,, S{, Sé are all uniform
spacings. The label of a vertex is the label of its next lower-rank sibling (or parent if its rank is 1) minus a spacing.

Deleting the vertices with negative labels in 7, is equivalent to deleting the vertices that have labels above p and also
generates 7, . Moreover, applying the reverse of the transformation from Lemma 3.1 reveals that this labelling is equiv-
alent to the original from the introduction. We refer to generating the labels of T, in this manner as the uniform spac-
ings coupling. The following notation is useful when discussing the evolution of labels under the uniform spacings
coupling.

i. Define the rank of a vertex in a 7, , as the placement of its label among its siblings. That is, the sibling with the
largest label gets rank 1, the sibling with the second largest label gets 2, and so forth. We denote the rank of a vertex
by r(v), and by convention, the rank of the root is 0.

ii. The index of a vertex, which we denote by 1(v), is defined to be the sum of all the ranks of vertices in P(v), 1((v) =

ZuGP(U) r(u).
iii. The set I(j) for any j > 0 is the subset of all vertices in a 7, , that have index j, I(j) = {v € T, , : 1(v) = j }. Note
that if vy, ..., v, are the children of some vertex v in 7, listed in decreasing order of label, then r(v;) = i.

Using this notation, we may describe the label of any vertex v that exists in a 7, , in terms of ranks via the uniform spacings
coupling:

r(u)

£, =p-— Z ZSp(u),i'

ueP-(v) i=1

See Figure 3 for an illustration. We use this representation in the proofs of Theorems 2.1 and 2.2.

4 | The Size

Throughout this section, p is always a fixed parameter in (0, 1]. First, we examine the first two moments of the size of a
7, - There are n* vertices at depth k in T, and each v € T, with | v |= k exists in 7, , with probability pk/k! as the edges
in P(v) must all have label below p and be monotone decreasing. Hence, for any n > 1,

(s

k
E | 7.;[4) |= Z(”lp) =",

= k!

establishing the first statement of Theorem 2.1. In the next lemma, we provide an upper bound for the second moment.
The upper bound yields a concentration inequality for the average size of large collections of uniform temporal trees.

Lemma 4.1.
F<s(EIT,)

(i) Foralln,E|T,,

(ii) Let m be a fixed positive integer and let q, ... ,q,, € (0, p). For i € [m], define p, = p—q;. Let T, ,, i € [m] be indepen-

n,p;?
dent uniform temporal treesand let y = 3" \E| T, , |= Y e"i. Foralle > 0 and n,

i=
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m —ng;
5 ( MaXyjqiqp€
o[ Si7 1 ] > en ) < 3 Masen )
sDi - —
< i=1 € X e

The proof of the lemma is given in the appendix. As mentioned in the introduction, aside from the above concentration
inequality, the other main ingredient in the proof of Theorem 2.1 is a connection between the labels of 7, , and branching
random walks. The representation in terms of uniform spacings described in Section 3 plays a key role in the construction.

First, let us briefly recall the definition of a branching random walk. Given a random variable X (called the step size) and
a locally finite rooted tree 7', label each edge in T with an independent copy of X, (X e)eer' A branching random walk on
T is a collection of vertex-indexed random variables (YU)UGV’ where Y, is the sum of the labels of the edges in P(v). The
random variable Y, is called the value of the vertex v in the branching random walk.

We define a branching random walk on a rooted infinite complete binary tree 7 *. The root has one child, and every other
vertex has precisely two children. To match the standard notation for branching random walks, the root is in generation
—1, its child in generation 0, and so forth. For any generation L > 0, there are 2L vertices.

Lemmad4.2. Let L >0 be an integer, let 6 € (0,1), and let ¢,x > 0. Let p— p,, ..., p — p,r be the values of the vertices
c

in the L-th generation of a branching random walk on the infinite complete binary tree T * with step size X = f, where E

is an exponential(1) random variable. Define p:r(e) and p; (e) such that p — p:r(e) =1+¢) ( p— p,-) and p—p;(e) = (1 —

e)(p—p;) forall1 <i < 2", Then,

2L
1 1
P<QTP|7:1’[7| > x) <P eTp Zln,pi’(e” + |TI7CP:(€)| > x(l - 6) +0n(1)
i=1
and
2L
1 1 ,
p(e7p|rn,p| >x) > P Z‘fm,,,r(sﬂ HIT) o> 20+ 8) [ = 0,0,
i=

where the trees T, =, T’ are uniform temporal trees that are all conditionally independent given ( Diseevs sz).

n.p(€)

Proof of Lemma 4.2.  Let € be the event that all vertices with 1(v) < L have children of index («(v) + 1), ..., L + 1. That
is, € is the event that the out-degree of each vertex in I(j) is at least L — j + 1 for each j € {0, ..., L}. Since the degree of
fixed-index vertices tends to infinity as » — oo and L is a fixed integer, we know that P(€) — 1 asn — .

Letv e Tn’p be a fixed vertex of rank k, and suppose that p(v) has # children listed in order of increasing rank vy, ..., v,
where v = v,.. Recall the definition that 7, ,(v) is the subtree rooted at v in 7, ,. We define 7 (v) to be the collection of all
the subtrees rooted at higher rank siblings of v, that is,

¢
F(v) = U T,,(v).

i=k+1
A simple observation is that every vertex in | J isp1 1()1sin exactly one set 7, ,(v) or F(v) for some v € I(L + 1), that is,

U= U (moUre)

j=L+1 vel(L+1)
Since all the sets on the right-hand side are disjoint and | 7(0) | ... | I(L + 1) | is finite, this implies that

o Tlm e Y AT, 4o Y 7@ | +o,(0). )

e"p

ehp | np
vel(L+1) vel(L+1)

For any fixed k > 0, define 7, ,(k) to be the induced subtree of 7, , on the vertex set 1(0) U:--U (k). Let € > 0. Since
T,,(L +1) is a finite tree, we can apply the law of large numbers to the spacings from the uniform spacings coupling
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(S tveT, (L+1),ief{l,....L+ 1}) to assert that, for a sequence of independent Exponential(1) random variables

vi

(Ev,i ) veT, 1<i<n+1’

P(s.)=P [] {t.<t@}]-1

veT, ,(L+1)

and

P(s,)=P [] {t,2¢l@}]|-1
ueTM,(L+1)

asn — oo, where
1 r(u) 1+ r(u)
_ —€ €
fv (€):=p— Z ZEP(M)J’ and f:(E) =p— z ZEP(")J'

" ueP~(v) i=1 n ueP-(v) i=1

Conditioning on S, and ., allows us to remove many dependencies between vertex labels.

Next, on the event &£, we recursively define a one-to-one mapping ¢ of the vertices in a 7, ,(L + 1) with the vertices of
T*(L) (the tree truncated at generation L) and assign a corresponding edge labeling (X, ) The following properties
hold for our mapping and together provide our branching random walk description:

eeT*(L)"

i. In 7*(L), the collection of random variables (Y, Py Xe is a branching random walk with step size 1—Z€E

)UET*(L)
.o . + . + _
ii. Forallv €7, (L + 1), the value of ¢(v) determines £ (¢). Thatis, £ = p — ZeeP(¢(U)) X,.

iii. The jth generation of 7*(L) contains the vertices of index j + 1in 7, ,(L +1).

We only describe the construction for (f:(e) cvel(l+ 1)), though the same can be done for (f L@ rvel(ll+ 1))
using a similar procedure.

First, the root of 7, ,(L + 1), which we denote with p, is mapped to the root of 7*(L). The unique index-1 vertexin 7, ,(L +
1)—call it c—, is mapped to the unique child of the root in 7*(L). The edge going into this vertex in 7*(L) is given the
label X, = lni E, ;. The three properties above hold for this base case.

Now, suppose that ¢p has been defined for 7(0), ..., I (k), k < L and that the three properties hold for the partial assignment.
Eachvertexin v € I (k) has exactly one child ¢, and one sibling s, ofindex k + 1. Asv € I(k), itsimage ¢(v) in 7 * is already
defined, and by assumption the left and right children of ¢(v), ¢(v), and ¢(v),, are not in the image ¢(1(0) | - - - | I(k)).
Define ¢(c,) = $(v), and ¢(s,) = ¢(v),. We give the edges e; = {$(v), p(v), } and e, = {P(v), p(v), } the labels %Eu’l
and %EP(U)Y,(U) +1 respectively. Point (iii) holds by definition for this extension of ¢ as all index-(k + 1) vertices are either
a direct sibling or child of an index-k vertex previously placed into the tree. Moreover, by assuming that (ii) holds for the
k-th step implies that it still holds for the k + 1-th step. Since the exponential random variables E, ; and E,, ,,,; have
not been used in the construction previously (this is a consequence of assuming that property (ii) holds for the first &
levels), property (i) holds for the extension as well (Figure 4).

This construction is almost sufficient to complete the proof, though there is still an approximation for 7(v) with a tree
that is needed. We delay proving this fact until the appendix, though we record and use the result. O

Lemmad4.3. Let 6>0 and let v €T, , be a vertex of fixed finite index. There are random trees T*(v) and T~ (v)
that are conditionally independent of the labels of v and its lower rank siblings in T, given (ff(e) rvel(L+ 1))
(and in particular T,(v)), such that | T~ (v) |§| Tor© | | THW) |§| Tor @ | and P(IF@)| <A+ 8T~ (v)|) - 1 and
P(IF@)| > 1 -8)ITHw)) - lasn — .

In the above lemma, 7 (v) is already independent of everything other than the label of its siblings and its parent, so the
above-noted independence lines up with the desired result. The approximation for 7, ,(v) is a little bit simpler. If we
remove paths that are non-decreasing and have labels all below ¢ (¢) instead of #, from T}, then the resulting tree 7,”(v)
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1 1
/[\
2 3 4 F(4) 2/
A
8/% Tap(6) Tnp(7) 8/\6 7/\4
% Tap(8) F(8) Tap(6) F(6) Tapl7) F(7) Tap4) F(4)

FIGURE4 | The mapping ¢ up to index L = 3. The left tree is 7, , and the right is the binary tree 7 with the labelling obtained
from ¢. The vertices are ordered from left to right in order of increasing index in 7, ,. A left child (blue edge) in 7 corresponds to
moving down to the vertex’s child of the smallest index in 7, ,, and a right child (red edge) corresponds to moving to a vertex’s sibling
of the smallest index in 7, .

is at least as large as 7, ,(v) and is conditionally independent of the rest of 7, when we condition on the label £ (¢) as
desired.

Using this lemma, and the fact that the events S_ and £ have probability tending to 1 as n — oo we see that, for any x > 0
and any 6 > 0, (1) gives

P(p 17,0 > x) < P(eip( > T 01+ |F(u)|> 0,0 > x) +0,(1)

vel(L+1)

5
< P((le-:p )< RIACE |T—(u)|> > x> +0,(1).

vel(L+1)

Replacing 7,7 (v) and 7 ~(v) in the above computation with 7’2+(v) and 7 *(v) yields the corresponding lower bound, com-
pleting the proof. O

Applying Lemmas 4.1 and 4.2 transforms the analysis of | 7, , | into the analysis of a branching random walk on 7. Next,
we establish some results for the walk.

L L
Lemma4.4. Let (p,-)le, (pii(e))[z=1 be as in Lemma 4.2 and set q; = p — p;, q*(¢) = p — p*(e). Introduce the notation
O, = nq; and O3, = nq;(e). Foranyn > 1,

. <2t 0Lt E
L Xp=2_e%>>asL— oo
2L

+ L
i=1e_Qi’€' There is a sequence e(L) for L > 0 such that Xf(e(L)) % %

ii. Let X*(e) = ¥,

maxX, gjoL exP<_Qfe(u)
XE(e(L)

iii. Thereis a sequence e(L) for L > 0 such that E l e
L

] —>0asL — oo.Moreover,E[w] -
Oas L - oo.

Remark. The random variables X; and X7 (¢) do not depend on the parameter n. The step sizes of the branching random

walks defining each p; and p;"(e) are distributed like %E and %E respectively, so the random variables Q; = nq; and

= =ng’(e) do not depend on # due to cancellations.

ie

The proof of Lemma 4.4 can be found in the Appendix. All of the required lemmas have now been presented and we are
prepared to prove Theorem 2.1.

Proof of Theorem 2.1.  Let x > 0. By Lemma 4.2 we know that, for any ¢ > 0, € (0,1),and L > 0

P(iln,pl > X) S P(e%pziz:1<|7'n,pi_(s)| + |7:l/,p,_(€)|> > (1 - 5)X> +0n(1)'
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Let 8, € (0,1),let M = Y2 (e"(lf—qf’ ©) 4 onlp=a; <€>)>, and let

oL

Evs, =3 | 2 (1Tl # 170l ) = M| < 6,M ¢

i=1

. 2L .
We note that M is the mean of the sum 7, ( |7:1,p7(€)| + ITn/,p; © | ) Applying Lemma 4.1 we get,

2L
1 1 '
P(I7,, > x) <P eTpZ{('T»up:(e)' 1Ty o) > A =00x | By [+P(E, ) +0,(D
£

2L -0,
<P LZ(en(p—q,‘(S)) + en(p—q,‘(f))> > ﬂx + iE lM] +o0,(1)
=P N

2 L
p 1+, 55 ziZ:le—Q,
< o _ 1-6 5 | max; e e
= P ZZe e > 1+6 x|+ EE 2"— + On(l).
i=1 2 P i:le_Qi

Note that the first two terms of the upper bound do not have any dependence on #, and therefore we have

2" -0,
_ — max, ;L e <t
lim sup P(%ijl >x> <P Zze‘Qi.E > 1 5x +%E 15:;2 i
o enp P 1+9, 52 Ei2=1e_Q,

foranye > 0, 6,6, € (0,1), and any L > 0. As 6 is arbitrarily small, continuity of measure implies that the inequality can
be strengthened to

2L -0
_ _ max,_._,L e =i
lim sup P(im |>x> <P[ Y2 > (146,) ' IRER') i )
- enp’ P : 52 P
nmee i=1 2 Zi=1e !

Then, Lemma 4.4 asserts that, for any 6,, 6; € (0, 1) we can choose L large and e small enough such that

2L
P| Y2e7% > (148,) x| <P(E > (146,) ") +5,
i=1

and

-0,
max; ;. e 9
R ) = )
Y2 e <
i=1

Combining these two inequalities with (2) we get.

. 1 -1
lim sup P<e7p|T,,,p| > x) < P<E > (1+6,) x> + 6, + 56,

n—oo

where 6,, 6, are arbitrary. Taking 6,, 6; | 0 and using the continuity of measure gives that

lim sup P(%pm” > x) <P(E > x).
7.

n—oo

Repeating an almost identical procedure, we obtain a matching lower bound,

lim inf P(imﬂ > x) > P(E > x).

n—oo enp
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This completes the proof of the first statement in Theorem 2.1.

Letv,, ..., v, be the children of the root of rank 1, ... ,min 7:,, - Using the uniform spacings coupling, we can take a vector
of spacings (.S}, ..., S, ) such that

(Coproinly ) = (p=S1sp = S,).
By the law of large numbers,

X, = (nS,,....nS,) LR (Ey.....E,). ®)

n

as n — oo, where E,, ..., E, are independent Exponential(1) random variables. Using Lemma 2.1 from Devroye (1986)
we can write the joint density function for the vector X, as

f,,(xl,...,xm)=1. n! (1_ Zi:lxi>

n (n—m)lnm n?

forall (xy,...,x,) €A, ::{(xl,...,xm) Dox; 20, VI<i<m, x;+..+x, <n} Notethat <1l.Forx,e A,

)l m

we have, by using the binomial theorem, the triangle inequality, and the inequality <l> <n/il,

1n—m n X i 1 o0 1 ;
|fn(x)_fn(y) IS ;i:§0<i> ﬁ ) _; EOZ_ e 1'
Now, suppose that || y ||;<|| x ||;. Then, we have,
=B | A
| fu() = f,(0) |< ;igoﬁ al =1l = ;(ellxlll/n — eloh/n),

By the same argument for || y ||;>]| x ||;, we deduce that

elxlh/n _ gliyli/n]

| £, = £, |< %

foralln > m.Since || x ||, || ¥ ||l; < nby definition, it is straightforward to see that this inequality yields uniform equiconti-
nuity for the sequence of functions ( fa ) :ozm Combining this equicontinuity with (3), we can conclude that || £, — f ||,— O
as n - oo, where f is the density function for the vector (El, ) (see e.g., Boos (1985) Lemma 1). Now, using
the conditional independence of the trees 7, ,(v,). ..., 7, ,(v,) upon the labels of v,,..,v, and we fact that £, =p—
(S, + ... +.5;) we have, for x = (x,...,x,) €A,,

175 (01) | | 7op () | Yof Tnp(vi) ]
P< pe(npl)_ 2 Viseens I;Etp ) 2V | Xn=x> =HP<#6_(M+M+&)ZJ}‘>. “

i=1 e

Then, using the first part of this theorem, we have

np ehp

|Tn,p(vl) | | Tn,p(vm) | u —(x 4. 4x;)
P(e—Zyl,...,—Zym | X, =x —>EP<Ee zy,.>. (5)

as n — oo, where E is an Exponential(1) random variable. Combining the fact that || f, — f |[|,— 0 as n = oo with (5)
and applying the dominated convergence theorem, we obtain, for Fi, ..., F,, all independent Exponential(1) random
variables,

17,,(01) | | T (V) | 170 (v1) | | T (V) |
P<I;Tp12y1”[;72ym :AP I;Tplzyls'“’[;TZymlxn:x fn(x)dx

N / HP(Ee‘("1+"'+X")Zy,-)f(x) dx
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=/ P(Fle"‘l 2yl,...,Fme_(x1+"‘+x”’)>f(x) dx
A

m

= P(Fle_E1 >y, ..., F e (Brt+E) > ym>.

From here, noting that e~ is a Uniform[0, 1] random variable, the desired result follows. O

5 | The Height

In this section, we prove Theorem 2.2, and begin with a technical lemma that uses Cramér’s large deviations theorem
Cramér (1938, 1944); Cramér and Touchette (2022).

Lemma 5.1. Let k > 0 be a fixed integer, and let K be a uniform random variableon {1, ... ,k}. Fori € {1, ...k}, let G,
be independent gamma (i) randomvariables and let X1, ..., X, be independently distributed as G . Then, there is a sequence

¢(k) with p(k) — 0 as k - oo, such that forany 0 < x < %

P(Zn:Xi < nx> > exp(—n(log(i) + (k) + o,,(1))>. (6)

i=1

k+1

Proof. By Cramér’s theorem (Klenke 2008, Theorem 23.11), we have that, for 0 < x < =

n—00 £
i=1

S | - .
lim 1nf; logP<2X,. < nx) > —Ogylgxl(y) =—I(x)

where

I(x) = sup(Ax — log Ee**1)

AER

is the Legendre-Fenchel transform of the cumulant-generating function of X; (i.e., the logarithm of the moment gener-
ating function Ee*X1). Observe that, for 1 € (0, 1),

E(e™) = £ X B(¢"%)

i=1
k

1 1
=%Z(1—,1)i

i=1

11
_M(l (1—A>k>’

and for 1 > 1, Ee**1 = 0. Altogether,

0, A>1
log Ee**1 = {1, A=0
;—1 (1-@1 - D7), otherwise

The function J(4) := Ax — log Ee*X1 is concave. To see this, recall that the moment generating function is always
log-convex and that any linear function minus a convex function is concave. It can also be seen to be continuous by
similar logic. Moreover, one can compute that J(0) = 0 and J'(0) = x — ]%1 Together these facts imply that J(4) < 0 for
all A >0when0< x < % Moreover, for x > 0, we have that lim,_,__ J(4) = —oco. Noting that J(-1/x) > 0, the above

facts imply that J(4) attains a global maximum at some A, € (c0,0) when 0 < x < k—;l Thus,
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I(x) = sup<ix+ log(k) + log(—4) — 10g<1 — ;>>
<0

(1 - Ak
< log(k) + sup(ix + log(—4)) + log| 1 — ;k
>0 (1 — g*)
=400
= log(k) — log(x) — 1 + (k)
for all fixed 0 < x < % Note that ¢(k) — 0 as k — oo. From here, recalling (6) completes the proof. O

Now we are ready to prove Theorem 2.2. For simplicity, we only present the proof for p = 1. The extension to the general
case is immediate.

Proof of Theorem 2.2. Recall that a vertex u € T, is in the temporal tree 7, when the sequence of labels from the root
to u decreases monotonically. Thus, for a vertex in generation d of T,

1
By the union bound and Stirling’s formula,

en en

P(H, >en) < " 1

1
< < <
[en]! " Ten+1) = | /oren

From here, it suffices to show that for every constant y < e, and any integer M > 0,

=o0,(1).

P(H,>yn+M) -1

as n — oo. We do this by exhibiting the existence of a vertex in 7, of depth > yn + M, following a proof method that goes
back to Biggins (1976, 1977). For the rest of the proof, we view our tree in function of the uniform spacings coupling of
T,,. Note that this implies that the children of a vertex v € T, all have label below Z,,.

Let K > 1be an integer. We trim the tree T, by, for each v € T,, keeping only the K children with the largest labels ordered
from greatest to least label as v}, ..., vg. The result of this process is an infinite K-ary tree that we denote by 7' (%), Recall
that, using the uniform spacings coupling, we may write, for v € 7%,

£y =1~ Z Sy

ueP~(v)

where S}, = S,; +--+S,; and r(u) is the rank of vertex u. This means that the labels of vertices in 7 (&) follow a gen-
eralized branching random walk in which the branching factor is K at each generation and the step sizes are distributed
like (S7,..., 8% ) where S* =8, +---+ S, and (S, ..., S,,, ) is a vector of uniform spacings (for the rest of the proof we
shall refer to these types of generalized step size branching random walks as just branching random walks). Altogether,
this implies that

P(H,<yn+M) <P N { D S;(u)’r(u)ZI} :

veT, X oj=[yn+M] \uEP™(V)

Thus, what matters is the largest label of any vertex at depth [yn + M| in a K-ary branching random walk in which the
children have displacements distributed as S7, ..., SI*(. Let D be the maximal label of any vertex at distance M from the
root. The KM vertices at distance M from the root have subtrees that behave in an i.i.d. manner, and each vertex in these
subtrees has a label at most equal to D plus the total displacement within its subtree. Therefore,
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KM
P N { 2 Sworw 2 1} <P N { 2 Sworw21-D }
veT, 0 ol=[yn+m] \uEP™ @) veT, O ol=[yn+m] \u€P~ @)
<P(D>e)+ A, (e)K", (7)
where
A,e) =P ﬂ { Z Spwrw =1 5} :
veT X oj=[yn+ M) \uEP(V)
Recall that, jointly over 1 <i < K,
gL Bt +E
OE e+ By
where E,, ..., E,; are i.i.d. exponential random variables. As D is smaller than the sum of 2K™ random variables dis-
tributed as S, we have by Markov’s inequality,
2KM K
PD>¢e) < ————=90,(1).
( )< e n+1 (D)
We show that for special choices of ¢ > 0, K > 0,
Ae)<qg<1, (®)

for all n large enough. Then the right-hand side in (7) is upper bounded by o, (1) + ¢X"', which can be made as small as
desired by taking M large enough and letting » tend to infinity. We conclude by establishing (8).

The dependence of the distribution of S on n is a slight inconvenience, so we consider a branching random walk with
larger displacements. To that end, we introduce a Bernoulli(p, ) random variable B,, where

D= P(EKJr1 +---+E,_; <nl- e)).
Then, the values of the vertices in the branching random walk on 7 (K) defined by step sizes

E +-+E .
(1-B,)———+B, 1<i<K
n(l—e)
dominate the values for the vertices in the original branching random walk described above. By the law of large numbers,
for fixed K and ¢, p, - 0asn — . So, given § > 0, p, < 6 for all n large enough. Let B be a Bernoulli(6) random variable.
We introduce a final branching random walk where the family of step sizes, for 1 <i < K, is

{E1+~-+Ei if B
W, =

0
' ) if B )

Let,foralll1 <i< Kandv e Tn(K),

W, = E, +---+E,; %fBV =0
) if B, =

where (EUJ 1<i<K,veT, (K)) are i.i.d. Exponential(1) random variables and B, are independent Bernoulli(6) ran-
dom variables. For sufficiently large n we have,

A,,(E) <P ﬂ { Z I/I/p(u),r(u) 2 I’l(]. - 6)2} . (9)

veT, O ol=[yn+m] \UEP™ ()
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As the step sizes of this new branching random walk do not depend upon n, we can identify a supercritical Galton-Watson
process with an extinction probability that upper bounds the right-hand side of (9).

Define ¢ =(1 —2¢)/y. Let W be a branching random walk with step sizes (I/V1 cees I/Vk) Fix an integer L and consider all
K E vertices in generation L of W. If any of the Bernoulli random variables for the vertices in generation # < L is one, then
the root has no children. Otherwise, we set vertices in generation L to be a child of the root (in the new Galton-Watson
process) if its label is < ¢. For each child of the root with the new Galton-Watson process, we repeat this procedure.

To be more specific, let u be a vertex with value U in W, and suppose that u is also in the Galton-Watson process. If any
descendant of u up to L generations below u has its Bernoulli value set to one, then u has no children. Otherwise, we
add all vertices that are L generations below u with values below U + Lc as children of u. We call the resultant of this
Galton-Watson process G.

If | G |= oo, then the values of the vertices at level j are < Lj(1 — 2¢)/y for all j > 1. These vertices correspond to vertices
in the original tree at level Lj. In particular, conditioned on survival, there are vertices at level [yn] that have value

< V}’n]JxL(l—ze) <lia-20m<a-ern
L 4 4

for n large enough. In particular, combined with (9), this implies that A,(¢) < P(|G| < o).

To determine the survival probability of G, we check that the expected number of children of the root, called G, is larger
than one. Indeed,

E[G,| =01~ §)K* Z P(the value of v is at most Lc)
|v|l=L
= (1 — 6)X" K'P(a uniform vertex in generation L has value at most Lc)

=(1- 8 K'P(Gy, ++-++ Gy, <Lc),

where Y}, ..., Y, areii.d. random integers uniformly distributed on {1, ..., K}, and G,, stands for a gamma random vari-
able with parameter m. By Lemma 5.1,

P(Gy +-- +Gy <Lc)2 exp(—L(log(é) + ¢(K) + oL(l))) - %e_L"’(K)_OL(L),

for ¢ < % and so

E[Gl] > (1 - 8)K (ce)Le oKL (L)

For fixed y < e, we can find e > 0 small enough such that ce > 1. Then, we can choose L, K large enough and § > 0 small
enough that the expected number of children is strictly larger than one. Then, with these chosen ¢, L, K, §, G becomes
extinct with some probability ¢ < 1. As noted above, this implies that A4,(¢) < ¢ for all n large enough, finishing the
proof. O

6 | Typical Depths

In this section, we prove Theorem 2.3. As in the previous section, we present the proof for the p = 1 case only, as the
extension to the general case is straightforward.
Let (Z k) 1>0 D€ the number of vertices in generation k of the tree 7,. Let H, be the height of 7,,. Since we argued previously

P
that H,/n — e, itis sufficient to argue that Z, + ... + Z|q_¢),; a0d Z(11¢)s) T+ --- + Z|20n) are both negligible compared to
| 7, | for any e € (0,1). One may use Markov’s inequality, the union bound, and Stirling’s formula. Indeed, for § < €?,
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[(1-e)n]
1
P(Z,+- -+ o > 7)< z P(Z >——el-om
(2 Zia-om| > © ) Z Z; (l—e)ne

E[Z|0-on]
2 2 [A=e)n|
<({1-¢e)n —e(l—a)n

(1 _ €)2n2n(1—e)n
~ (LA = e)n])le=om
n3e(1—e)n—(1—§)n

(1 _ e)(l—e)n
< Cn’exp(6n — en + (1 — €) log(1 — €)n)

< Cn’exp(én —en+ (1 —€)en) — 0,

where C > 0 is a constant. For the other side, we repeat the same computation, with the only changes being that (1 — ¢)
is replaced with (1 + €) and that the expected values are slightly different for the Z;s. Indeed, for § < €3,

2,2 ,(1+e)n
=8y (2e)*n*n
B(Z1cvons + -+ L > 7)< o g

n3e(l+€)n
(1 + €)(1+€)ne(1—6)n
< C'n*exp(en — én — (1 + €)log(1 + €)n)

/

<C'nexp(en—dn—(1+e¢)(e—e*)n) -0,

for some constant C’ > 0. Finally, applying Theorem 2.1 allows us to assert that P(|7,| < e=%/2") — 0asn — co. Choos-
ing 6 = e* (recall that we assume e < 1) we are able to conclude that

Zi+ o+ Zaeon T Elaren T Z2en) i
| 7, |

Oa

as n — oo for any e > 0. From the remarks at the beginning of the proof, this means that

Zia—om T+ Zjasem P
-1
| T

s
n |

as n — oo for any ¢ > 0, which means that uniformly chosen vertices will be between depth (1 — €)n and (1 + ¢)n for any
€ > 0 with probability tending to 1 as n — oo.

7 | The Expected Degree Distribution

In this section, we prove Theorem 2.4. Once again, for the sake of clarity of the presentation, we only consider the case
p = 1. The extension to the general case is immediate.

Consider a vertex u of depth # in T,,. The vertex has degree at least k in 7,, if and only if the labels of the # edges on the
path from the root to u are decreasing, moreover, at least k of the n labels of the out-edges of u have labels less than the
minimum edge label on the path from the root to u. The probability of this event equals

i. n_ n—1 n—k+1
£l n+¢ n-1+¢ n—-k+1+7¢

Thus, the expected number of vertices of outdegree at least k is

o, k-1 1 k-1 1
n
EL">k=z_II =e"EII—,
> ¢ X
f:lf!i=01+n__i i=0 1+ =
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where X, is a Poisson(n) random variable. Since X, /(n — i) — 1 in probability for each fixed i € {0, 1, ...,k — 1}, and for
every k > 1,
. ELn >k
lim =

= 2_k,
n—-o0o eh

which implies Theorem 2.4 for p = 1.
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Appendix A

Proof of Lemma4.1. Recall that at the beginning of Section 4 we showed that E | 7, , |= ¢"P. The second moment of |7, ,| =
ZUGT" Ler, ) is a sum, over pairs of vertices of T, the probability that both vertices exist in 7, ,. We may split the sum based on
where the pairs of paths stop overlapping,

0 o k
2 o\ et e 1 1 (€ =k +2m)!
k—m m—1_¢—k+m—-1_¢£+m
E|T.,| <EIT, 1420, % Dn (2)" " Pl —k+mn ~ @ +my
k=0¢=km=0 N : ;\ :

I 11 111

Term I comes from choosing the pairs of paths and ensuring the paths have edge labels below p, term II is the probability that the
portion of both paths after the overlap is decreasing (m and ¢ — k + m edges), and term III is the probability that the (k — m) edges in
the overlap are such that both paths as a whole are decreasing. Rearranging this expression and swapping the order of summation gives

. © o k mp)*m (¢ —k+2
sEm,pHZZZm( m)

k=0£=km=0 m

o 7 4
(np)’*m £ —k+2
wir EEE(E(70))

=0m=0 k=m m

T

n.p

E

C—k+2 . . . . .
m+ m> = f(k), we can bound the innermost sum with a geometric series. Since,

Writing <

S+l _(C—k+m (€ —k+2m=D! _ £—k+m _ _¢
fky ~ C—k+m)! C—k+m=1)!  f—k+2m " £+m

for all k > m, we have that

18 of 23 Random Structures & Algorithms, 2025

85U90117 SUOLULLIOD SIS0 3|01 ddke aU) Ag pouBA0B a1 SOOI YO ‘95N JO S9N 10} AIRIGIT8UIIUO AB|IA UO (SUONIPUOD-PLB-SLLLBILLICO" A1 A2Ac]1[BU 1|U0//'SANY) SUO I IPUOD) PUE SWB | 81 39S [G202/2T/62] Uo ARigi aUlIuO AB]1M * 01/6Q 9N Aq 0700L SI/Z00T OT/10p/LIC" A1 AZeq1jpu |uo//SAy Wol) Papeo|umod ‘v ‘G202 ‘§TvZ860T



LI f(m)<1+ f).
- = m

‘+m

(¢ —k+2m (0 ¢\
Z( ; Sf(m)j;<f+m) = fm)

k=m

Splitting off the m = 0 term from the original expression and applying this bound gives

(P) o (np)ﬂ’"’ 4+ m A
Elr '<e|7 |+Z =2 ZZ(“,@! 1+~ ).
w_z

np

f0m1 m

1I 111

Clearly I = ™, II = ¢*", and III can be bounded as,

I < 222 (”P)f (”P)m

£=0m=

< 2e2npi“2p(x,, =¢)P(Y, = m)%

£=0m=1

n Xn
<2"E Tnl{ISYnSXn}

< 4”"E|—2—|,
Y +1

n

where X, and Y, are independent Poisson(np) random variables. Finally, the value of the expected ratio given above is known to be
(1 — e7"P) (see, e.g., Coath et al. (2013)), so we can put the expressions for I, II, and III together to get that

2
E|T,,| <™+ 4P (1- ) < 562 = 5(E|T, ,|)".

np

The second statement of the lemma is a quick corollary of the first. Since the trees are independent of one another, an application of
(i) yields

Va Z|Tn,p,|> <YE
i=1 i=1

Applying Chebyshev’s inequality and upper bounding " < max, ., e"" gives

P( =3 2
€ (X em)

Factoring an " (recall that g; = p — p;) from both the numerator and denominator completes the proof:

P<
Proof of Lemma 4.3. Let v € T, have fixed finite index, let vy, ..., v, be the children of v in T, in order of decreasing label, and let g > 1

be some fixed integer not depending on n. Notice that v, is also a finite-index vertex. Take a sequence of independent Exponential(1)
random variables (E,) ., such that

m
2 2np;
Ton| S5
i=1

m

DAY

i=1

> 6#) < 5 (Mg ) T

m

AT = 1

i=1

< = = =
2 ey emng; 2 " e=ng;
€ emyie e 2le

N, —H —
5 max, ., e"Pe " 5 mMax; ., e "%
>ep | <

[m]

S =8, = Ei
YT E 4+ Eyy

for all 1 <i < n+ 1, where the collection ( S, tveT,1<i<n+ 1) contains the spacings from the uniform spacings coupling of

T,, that define the labels of vertices in T,. The only dependence of (S,. 1q+1<i<n+ 1) upon (f;l €,....¢, (e)) comes from the

existence of the random variables E|, ..., E,in the denominator. We define new spacings for g + 1 < i < n + g + 1 that are independent

of Ey,.... E,,

E

% q+i

! Eq+1 +-t En+q+1
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Recall that the forest F(vq) may be constructed by, for each ¢ + 1 < i < n, deleting the vertices from T, (v,-) whose unique path connect-
ing them to v, are not decreasing if #, > 0, and deleting the whole tree if #, < 0. Starting from the forest containing 7;, (v;) for each

q+1<i < n,weconstructanew tree 7. First, add g new vertices v,,,;, ..., v, e Make each of these vertices the root of an independent
tree distributed like 7,. We define labels for the vertices v, ..., v,,, (replacing the old labels for v,,;, ..., v,) by, foreach 1 <i <n
* — P * *
qu+,» = qu(e) - Sq+l - Sq+i'

Finally, we attach Ugils -+ » Upyq tOSOME mutual shared root. If we delete vertices from 7' that have either negative label or are such that
their unique path to the root is not decreasing, then, by construction, the resultant tree, which we denote by 7 -, is distributed exactly

>tn

as T,,f;q(e). Moreover, by construction, the tree T is independent of T,, (v, ). ..., T, (v, ) when one conditions on (f;l (e), ... ,f;q(e)>.

Let k, = [n'/*]. To prove that P(|F(v)| < (1+6)|7,7|) — 1 asn — oo for any & > 0, it suffices the following three claims:

i PN {17 (000) | 17,7 (001} ) = Lasn = oo,

S P
. # —lasn — oo.
Z,£1|Tn,p(”r')|
17,71
T ()

We begin with (i). Since 7 (e) > qu, it holds that, for 1 <i < k,,,

P
1il. —lasn — oo.

i

Vgri fiq+, Z<Sq+j - S;H) ’

=

IA

with probability tending to 1 as n — co. Writing R = ijlE,, i~ 27=1E sand T = Z:’:E, we can simplify the above to get

Ry
(1 + ?>2j=1Eq+j

ly, .
(1 + ;)T

#
_fv ‘<

U,

and so

Rk R\, R k
=Y E. (1+f>z'=1Eq+j (1+F>Z':1Eq+j
sup (fvw -7 +_> < TL=a - J < = j ’
1<i<k o (1 + B)T

T

with probability tending to 1 asn — oo, where T* := 2:’:; +is1Ei < T. Note that all the terms in the final upper bound are independent.

Applying the law of large numbers, we get that, for any 6 > 0,

1+ 6)x,k,

- (A1)

sup <’f]vq+,. -7 ) <

1<i<k,

with probability tending to 1 as n — oo for any sequence (x,,):O=1 such that x, = @,(1) (since R is a finite sum, it does not tend

to infinity). By construction, for each 1 <i < k,,, the children of Uy IN both 7, and T have the same labels. Moreover, the child
labels form a vector of independent Uniform[0, 1] random variables. For the vertex v;, let these uniforms be given by Ul(i), s U,Ei). If

{U{i), s U,(,") } N [f: ,fuﬁ,] = ¢, then every child of v,4; thatisin 7, is also in 7,~. Then, since the labels of these children are the
same in both trees, it must hold that | 7, ,(v,,;) |<| 77 (v,,,;) |. Hence,

j=1

P({I7,, (04| 2 17, (v,0))1}) < P(LnJ{Uf” € [ff] }>

By conditioning on (A1) and applying the union bound, we get,
o 1+ 8)x,k
P<U{|T,,_p(vq+,.)| > |Tn(vq+,.)|}> < knP<Binomial(n, —2) > o) +0,(1),
= n

1+ 8)kx,
<——"" 40,(1)=0,1)

when one chooses x,, = n'/4.
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Now we focus on (ii) and (iii). Both convergences may be proved by an almost identical method, so we only present the proof for the

case of | 7.~ |. Clearly, to prove that ||TT—_|()| — lasn — oo, it is enough to show that
Zl k,+1 I T( ) | P
e U o, (A2)
17,1
as n — oo. First, observe that f* < f* = Py for all k, <i < n. By replacing the label of each vertex v, in T~ for k, < i < n with

¢ ; , we can see that it sufﬁces to show the following two points to deduce (A2):

q+kp

1 If T, (},i T (”) are all distributed like 7, , , then,asn — oo

np ’

(i) -\ 3/16 P
P(ern.pknl > exp(nfuq(e) n )) - 0.

i=1

P<|Tn_| < eXp(nf; (e) —n1/16>> B 0asn — o

Let0 < 6 < 1.Recall that p, =7 () — Soa = S;‘+k Applying the law of large numbers, we obtain that
-6
P(po<tp -7 ) =1L (A3)

as n — oo. Applying the union bound, Markov’s inequality, and Lemma 4.1, we have

<i|r<l> | > exp(nt, (e) - W)) <nB[P(1T,- oacaymn] > 5 exp(n; @ =) | £, @) +0,0

i=1

nexp(nf; (e)—(1— 6)n1/4)
< nE u +0,(1)
exp(nzf’; (e) — n3/16)

<n? eXp(l13/16 -(1- 5)n1/4),

which converges to 0 as n — co. This proves point 1. Now, let m, = [#'/%], and let P, =7 * . Applying the law of large numbers again,
we have, for any 6 > 0,

P(p, > ¢ () - j/f) -1,

as n — oo. Recall that the labels of the vertices Ugi1s U
Chebyshev-Cantelli inequality, we obtain

q+m, are all larger than that of v .. Then, applying Lemma 4.1 and the

m
P(IT,,‘I < exp(nf;q(e) - nl/m)) < P(I w0 syl < exp(m/ﬂ (e) — n1/16)> +0,(1)
m
Var|7, - (©=(1+8)/n7/8 |
=F — | |+e.
1/8 _,1/16
Varl ne; (e) (148)/n7/8 | += Var| ne; (e) A48)/ /8 | (1 — e(L+d)n/8=n )

which converges to 0 asn — 0. This proves point 2, and concludes the proof of (ii) and (iii). One can construct a tree 7.* in a completely
analogous fashion to how 7~ was constructed. Following the same proof approach that was used for 7., one can show the following
three points:

( l l{' ( q+i —|T,l+(Uq+,')|})—>13$n—)oo,
[F)
k" |Tp(v)‘

17, P
T ()l

ii. lasn—)oo.

iii. — lasn — oo.
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As with 7~, we obtain the desired result. |

Proof of Lemma 4.4. Let (Y, : v € T*) be a branching random walk with step size f Note that, by definition, for all L > —1,

v

2],

_y £ _
LYo

vilv|=L i=1

Define X; = 3. =1 e ™o Each vertex v has two children, say v; and v,. These children have values Y, =Y, + iE(l, v)and Y,
c c

Y, + %E(z, v), where E(i,v) = f for any pair (i, v) and are independent of all other edge labels in the graph. Since nE(i, v) = E for all

(i, v), it holds that U (i, v) = ¢~"#0) = Uniform(0, 1]. Thus,

2
E[X X, ] = ) YE[UGv)e™|X,]

|v|=L i=1
2
= I Y3ElIx]
|=L i=1
=E { D e‘”Yv|XL] =X,.

Hence, X, is a martingale in L with sup, E[X, ] < oo for any n, and thus has an almost sure limit. Call this limit X.

Due to the structure of 7*, going down one step in the tree reveals two copies of 7 *, both of which have an extra exponential from the
first edge in all the vertex values. This structural recursion for the tree implies a distributional equality for the branching random walk:

X, =U (X, + X, ),

c

where U = Uniform[0,1] and X, , and X’ | are two independent copies of X; ;. From this, we obtain the distributional identity,
c

X=U(X"+ X") for X’ and X' independent of each other.

Set a;, = E[X “]. Using the distributional identity for X, we obtain the recursion a, = 1, a; = %,

a 1 ; kaa
k= k+1,0 k=i

c
It is easily verified that a, = k—k' solves this recursion. Thus, E[X k] = ;‘—k' for all k > 1, which implies that X = g The uniqueness of
this distributional identity follows from noticing that the exponential distribution satisfies the Stieltjes moment problem conditions
(Durrett (2019)). This covers the first claim.

The second claim is a consequence of the Biggins-Hammersley-Kingman theorem (see, e.g., Addario-Berry and Reed (2009)). For our
purposes, the theorem implies that both the minimum and maximum value of all vertices in the L-th generation of a branching random
walk with step size % is ®(§> as L — oo. More precisely, we have constants C;, C, > 0 such that

P<C1L < min ng < max ng; < C2L> —1 as L - oo
1<i<2t 1<i<2t

If we take e(L) = L72, then min,,,c ne(L)q; and max,,. ne(L)q; both converge to 0 in probability as L — oo, and so

min, .;,: exp(+ne(L)q;) and max, .. exp(+ne(L)g;) both converge to 1 in probability as L — co. Now, from the definition of the

L
values (ql.i(e))iz:l, we obtain the bounds

min exp(Fneq,) X, < X7 < max exp(Fneq,) X
1<i<2t 1<i<2t

From Slutsky’s theorem and the first claim (i) it holds that both the upper and lower bounds above converge to f as L — oo, and so
the same holds for X7.

For the final claim, note that the aforementioned Biggins-Hammersley-Kingman theorem states that max, ;. exp(—ng=(e)) —
almost surely as L — oo. Since

max e ‘()<].
= 4
1<i<2t
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the convergence also holds in L,. Now, let # > 0 and let (L) be as in the second claim. Splitting up the expectation in (iii) gives the

upper bound

max, .., exp(—ngi(e)) max, .., exp(—ng(e))
2L + =B 2f + 1 { thle exp(—nq:—'(e))qy}
Zi:l eXp(_nqt_(e)) Zi=1 eXP(—”l(Z,‘(G))

TE max, ;.,e exp(-ng;)
2 )

2],

<P Z exp(—ng*(e)) <n|+ %E[max exp(—nq;—'(e))].

cenL
=1 1<i<2

As L — oo the final upper bound converges to P(E < 2#). From here, letting # | 0 completes the proof. To prove that

. [maxlSL,SzL exp(—nq,) } -0
21'2:1 eXp(_nqi)

as L — oo, it suffices to follow the same procedure as the + case just covered above.
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