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Preface

Children learn effortlessly by example and exhibit a remarkable capacity of
generalization. The field of machine learning, on the other hand, stumbles along
clumsily in search of algorithms and methods, but nothing available today comes
even close to an average two-year-old toddler. So, modestly, we present some results
on one of the main paradigms in machine learning—nearest neighbor methods.

Rummaging through old data for the closest match seems like a sensible thing
to do, and that primitive idea can be formalized and made rigorous. In the field of
nonparametric statistics, where one is concerned with the estimation of densities,
distribution functions, regression functions, and functionals, the nearest neighbor
family of methods was in the limelight from the very beginning and has achieved
some level of maturity.

We do not wish to survey the literature, but we think that it is important to bring
the key statistical, probabilistic, combinatorial, and geometric ideas required in the
analysis together under one umbrella. Our initial intent was to write chapters that
roughly correspond each to a 90-minute lecture, but we were not disciplined enough
to carry that through successfully.

The authors were influenced by many others who came before them and thank
many colleagues and coauthors for their insight and help. We are particularly
grateful to László Györfi.

The book was written in Montreal during Gérard’s visits between 2013 and 2015.
Bea was very supportive and deserves a special nod. And so do Marie France and
Bernard. We also thank Montreal’s best pâtissière, Birgit.

Gérard Biau
Luc Devroye

Montreal, February 2015
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Chapter 1
Order statistics and nearest neighbors

1.1 Uniform order statistics

We start with some basic properties of uniform order statistics. For a general
introduction to probability, see Grimmett and Stirzaker (2001). Some of the
properties of order statistics presented in this chapter are covered by Rényi (1970);
Galambos (1978), and Devroye (1986).

If U1; : : : ;Un are i.i.d. uniform Œ0; 1� random variables, then the order statistics
for this sample are U.1;n/; : : : ;U.n;n/, where

U.1;n/ � � � � � U.n;n/

and .U.1;n/; : : : ;U.n;n// is a permutation of .U1; : : : ;Un/. Ties occur with zero
probability and may be broken arbitrarily, e.g., by declaring that Ui is smaller than
Uj whenever Ui D Uj and i < j. To simplify the notation, we omit the double indices
when no confusion is possible and write U.1/; : : : ;U.n/ instead of U.1;n/; : : : ;U.n;n/.

By definition, the vector .U1; : : : ;Un/ is uniformly distributed in the unit cube
Œ0; 1�n. It follows that .U.1/; : : : ;U.n// is also uniformly distributed in the simplex

An D f.x1; : : : ; xn/ 2 R
n W 0 � x1 � � � � � xn � 1g :

Throughout the book, 1A stands for the indicator function of the set A.

Theorem 1.1. The joint density of .U.1/; : : : ;U.n// is

f .x1; : : : ; xn/ D nŠ1An.x1; : : : ; xn/:

© Springer International Publishing Switzerland 2015
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4 1 Order statistics and nearest neighbors

Proof. We denote by .�1; : : : ; �n/ the permutation of .1; : : : ; n/ such that U.i/ D U�i

for all i. Let A be an arbitrary Borel set of Rd. We have

P
˚
.U.1/; : : : ;U.n// 2 A

�

D
X

all permutations
.�1;:::;�n/ of .1;:::;n/

P f.U�1 ; : : : ;U�n/ 2 A; .�1; : : : ; �n/ D .�1; : : : ; �n/g

D nŠP f.U1; : : : ;Un/ 2 A; .�1; : : : ; �n/ D .1; : : : ; n/g
.since all orderings have the same probability/

D nŠ
Z

A
1An.x1; : : : ; xn/dx1 : : : dxn:

The result follows by the arbitrariness of A. ut
Next, let U1; : : : ;Un be i.i.d. uniform Œ0; 1� random variables with order statistics

U.1/ � � � � � U.n/. The statistics Si defined by

Si D U.i/ � U.i�1/; 1 � i � n C 1;

where, by convention, U.0/ D 0 and U.nC1/ D 1 are called the uniform spacings.

Theorem 1.2. The vector .S1; : : : ; Sn/ is uniformly distributed in the simplex

Bn D
n
.x1; : : : ; xn/ 2 R

n W xi � 0;

nX

iD1
xi � 1

o
;

and the vector .S1; : : : ; SnC1/ is uniformly distributed in

n
.x1; : : : ; xnC1/ 2 R

nC1 W xi � 0;

nC1X

iD1
xi D 1

o
:

Proof. We know from Theorem 1.1 that .U.1/; : : : ;U.n// is uniformly distributed in
the simplex An. The transformation

8
ˆ̂
<̂

ˆ̂̂
:

s1 D u1
s2 D u2 � u1
:::

sn D un � un�1
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has as inverse

8
ˆ̂̂
<

ˆ̂̂
:

u1 D s1
u2 D s1 C s2

:::

un D s1 C s2 C � � � C sn;

and the Jacobian, i.e., the determinant of the matrix formed by @sj

@ui
, is 1. This shows

that the density of .S1; : : : ; Sn/ is uniform on the set Bn. The second statement is
clear. ut

Proofs of this sort can often be obtained without the cumbersome transforma-
tions. For example, when U has the uniform density on a set A � R

d, and T is
a nonsingular linear transformation from R

d to R
d, then Z D TU is uniformly

distributed in TA, as can be seen from the following argument: for any Borel set
B � R

d,

PfZ 2 Bg D PfTU 2 Bg D PfU 2 T�1Bg

D

Z

.T�1B/\A
dx

Z

A
dx

D

Z

B\.TA/
dx

Z

TA
dx

:

Theorem 1.3. The vector .S1; : : : ; SnC1/ is distributed as

 
E1

PnC1
iD1 Ei

; : : : ;
EnC1

PnC1
iD1 Ei

!

;

where E1; : : : ;EnC1 are independent standard exponential random variables.

The proof of Theorem 1.3 is based upon Lemma 1.1:

Lemma 1.1. For any sequence of nonnegative real numbers x1; : : : ; xnC1, we have

PfS1 > x1; : : : ; SnC1 > xnC1g D
"

max

 

1 �
nC1X

iD1
xi; 0

!#n

:

Proof. Assume, without loss of generality, that
PnC1

iD1 xi < 1 (for otherwise the
lemma is obviously true). In the notation of Theorem 1.2, we start from the fact that
.S1; : : : ; Sn/ is uniformly distributed in Bn. Our probability is equal to

P

n
S1 > x1; : : : ; Sn > xn; 1 �

nX

iD1
Si > xnC1

o
;
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that is,

P

n
x1 < S1; : : : ; xn < Sn;

nX

iD1
.Si � xi/ < 1 �

nC1X

iD1
xi

o
:

This is the probability of a set B?n that is a simplex just as Bn, except that its top is not
at .0; : : : ; 0/ but rather at .x1; : : : ; xn/, and that its sides are not of length 1 but rather
of length 1 �PnC1

iD1 xi. For uniform distributions, probabilities can be calculated as
ratios of areas. In this case, we have

Z

B?n

dx
Z

Bn

dx
D
 

1 �
nC1X

iD1
xi

!n

: ut

Proof (Theorem 1.3). Let G D GnC1 be the random variable
PnC1

iD1 Ei. Note that we
only need to show that the vector

�
E1
G
; : : : ;

En

G

�

is uniformly distributed in Bn. The last component EnC1

G is taken care of by noting
that it equals 1 minus the sum of the first n components. Let us use the symbols ei,
y, xi for the running variables corresponding to Ei, G, Ei

G . We first compute the joint
density of .E1; : : : ;En;G/:

f .e1; : : : ; en; y/ D
nY

iD1
e�ei e�.y�e1�����en/1Œmini ei�0�1Œy�Pn

iD1 ei�

D e�y1Œmini ei�0�1Œy�Pn
iD1 ei�:

Here we used the fact that the joint density is the product of the first n variables and
the density of G given E1 D e1; : : : ;En D en. Next, by the simple transformation
of variables x1 D e1

y ; : : : ; xn D en
y ; y D y, it is easily seen that the joint density of

.E1
G ; : : : ;

En
G ;G/ is

ynf .x1y; : : : ; xny; y/ D yne�y1Œy�0�1Bn.x1; : : : ; xn/:

Finally, the density of .E1
G ; : : : ;

En
G / is achieved by integrating the last density with

respect to dy, which gives us
Z 1

0

yne�ydy1Bn.x1; : : : ; xn/ D nŠ1Bn.x1; : : : ; xn/: ut

We end this section by two useful corollaries of Theorem 1.3.
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Corollary 1.1. The vector .U.1/; : : : ;U.n// is distributed as

 
E1

PnC1
iD1 Ei

;
E1 C E2
PnC1

iD1 Ei

; : : : ;
E1 C � � � C En
PnC1

iD1 Ei

!

;

where E1; : : : ;EnC1 are independent standard exponential random variables.

Corollary 1.2. The i-th order statistic U.i/ has the beta density with parameters i
and n C 1 � i. Its density is

f .x/ D nŠ

.i � 1/Š.n � i/Š
xi�1.1 � x/n�i; 0 � x � 1:

Proof. From Corollary 1.1, we deduce that

U.i/
DD Gi

Gi C GnC1�i
;

where Gi and GnC1�i are independent gamma random variables with parameters
i and n C 1 � i, respectively. The conclusion follows from Lemma 20.9 in the
Appendix. ut

Of particular importance is the distribution of U.n/ D max.U1; : : : ;Un/, with
density nxn�1 on Œ0; 1�. Another important order statistic is the median. The median
of U1; : : : ;U2nC1 is U.nC1/. Its density is the symmetric beta,

f .x/ D .2n C 1/Š

nŠ2
.x.1 � x//n ; 0 � x � 1:

1.2 The probability integral transform
and the k-th order statistic

Throughout the book, the vector space R
d of all d-tuples x D .x1; : : : ; xd/ is

equipped with the Euclidean norm kxk D .x21 C � � � C x2d/
1=2. For � � 0, we denote

by B.x; �/ the closed ball in R
d centered at x of radius �, i.e., B.x; �/ D fy 2 R

d W
ky � xk � �g. Similarly, we define Bı.x; �/ as the open ball centered at x of radius
�, i.e., B.x; �/ D fy 2 R

d W ky � xk < �g.
The probability integral transform states that if U is uniform Œ0; 1� and the real-

valued random variable X has continuous distribution function F, then

F.X/
DD U:

Now, let X be a R
d-valued random variable with distribution �, and let x be a fixed

point in R
d. When � has a density f with respect to the Lebesgue measure, then

the random variable kX � xk is continuous, and the probability integral transform
implies that
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�
�
B.x; kX � xk/� DD U:

If X1; : : : ;Xn are i.i.d. with common distribution �, and if U1; : : : ;Un are i.i.d. uni-
form Œ0; 1�, then

�
�
�
B.x; kX1 � xk/�; : : : ; ��B.x; kXn � xk/�

�
DD .U1; : : : ;Un/;

and using reordered samples with

kX.1/.x/ � xk � � � � � kX.n/.x/ � xk

and

U.1/ � � � � � U.n/;

we have
�
�
�
B.x; kX.1/.x/ � xk/�; : : : ; ��B.x; kX.n/.x/ � xk/�

�
DD �

U.1/; : : : ;U.n/
�
:

The study of �.B.x; kX.k/.x/ � xk// is thus the study of U.k/.
At numerous places in the book, the index k is allowed to vary with n. In this

case, we continue to use the notation k (instead of kn) and implicitly assume that
1 � k � n. Observe that

EU.k/ D k

n C 1
;

since, by Corollary 1.2, U.k/ is Beta.k; n C 1 � k/. Similarly (see Section 20.9 in the
Appendix),

VU.k/ D k.n C 1 � k/

.n C 1/2.n C 2/
;

where the symbol V denotes variance. Therefore, by Chebyshev’s inequality, for
ı > 0,

P

	 ˇ̌
ˇU.k/ � k

n C 1

ˇ̌
ˇ >

ık

n C 1



� VU.k/

.ık=.n C 1//2

D 1

ı2k
� n C 1 � k

n C 2

� 1

ı2k
:

Thus, we immediately have the law of large numbers:
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Theorem 1.4. If k ! 1, then

U.k/

k=n
! 1 in probability:

The strong law of large numbers can be shown using tail inequalities for U.k/. In
particular, for ı > 0,

P

	
U.k/ >

.1C ı/k

n



D P

n
Bin

�
n; .1Cı/kn

�
< k

o

� exp

�
k � .1C ı/k � k log

�
k

.1C ı/k

��

.by Chernoff’s bound—see Theorem 20.5 in the Appendix/

D exp
�
Œlog.1C ı/ � ı�k�

and, for ı 2 .0; 1/,

P

	
U.k/ <

.1 � ı/k
n



D P

n
Bin

�
n; .1�ı/kn

�
� k

o

� exp

�
k � .1 � ı/k � k log

�
k

.1 � ı/k
��

D exp
�
Œı C log.1 � ı/� k�:

Both upper bounds are of the form e�˛k for some ˛ > 0, and thus, by the Borel-
Cantelli lemma:

Theorem 1.5. If k ! 1 such that, for all ˛ > 0,

X

n�1
e�˛k < 1; (1.1)

then

U.k/

k=n
! 1 almost surely:

We note that k= log n ! 1 is sufficient for (1.1). It is a fun exercise to show that
if k is monotonically increasing, then (1.1) implies k= log n ! 1 as well.

Theorem 1.5 implies the strong law of large numbers. However, something gets
lost in the Borel-Cantelli argument. We offer the following “improved” strong law
of large numbers, which is roughly equivalent to a result by Kiefer (1972).
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Theorem 1.6. If k ! 1 such that, for all n;m � 1,

1 � knCm

kn
�  

�m

n

�
; (1.2)

where � 1 is an increasing function with limı#0  .ı/ D 1, and if k=.log log n/ !
1, then

U.k/

k=n
! 1 almost surely:

We note that the smoothness condition (1.2) is satisfied for most monotone
choices. In particular, it holds if kn D bn˛c for any ˛ > 0, or if kn D blogˇ nc
for any ˇ > 0 (b�c is the floor function). Because the proof requires only minimal
effort, and introduces a well-known sequencing trick, we offer it here.

Proof (Theorem 1.6). We partition the integers into sections defined by the
thresholds

n` D �
.1C ı/`

˘
;

where ` D 1; 2; : : :, and ı is a positive constant to be selected later. For all n large
enough and

n` < n � n`C1;

we have, using the fact that U.k;n/ is increasing in k (for fixed n) and decreasing in n
(for fixed k),

L`
defD U.kn`C1;n`C1/

kn`C1
=.n` C 1/

� U.kn;n/

kn=n
�

U.kn`C1
;n`C1/

kn`C1=n`C1
defD R`:

By the Borel-Cantelli lemma, we are done if we can show that, for all " > 0,
X

`�1
PfR` > 1C "g < 1

and, for all " 2 .0; 1/,
X

`�1
PfL` < 1 � "g < 1:

We show the part involving R`, and leave the other part as a small exercise.
Observe that

PfR` > 1C "g D P

	
U.kn`C1

;n`C1/ >
.1C "/kn`C1

n`C1




D P

n
Bin

�
n` C 1;

.1C"/kn`C1

n`C1

�
< kn`C1

o
:
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Since

n` C 1

n`C1
.1C "/ � .1C ı/`.1C "/

.1C ı/`C1
D 1C "

1C ı
;

then, for ı � ", by Chernoff’s bound (Theorem 20.5),

PfR` > 1C "g

� exp

�
kn`C1

� n` C 1

n`C1
.1C "/kn`C1 � kn`C1

log

�
kn`C1

kn`C1
� n`C1

n` C 1
� 1

1C "

��
:

Using

n` C 1

n`C1
� .1C ı/`

.1C ı/`C1
D 1

1C ı
;

n`C1
n` C 1

� 1;
kn`C1

kn`C1
� 1;

and

kn`C1

kn`C1
�  

�
n`C1 � n` � 1

n` C 1

�
�  .ı/;

we bound the last expression by

exp

�
kn`C1

�
 .ı/ � 1C "

1C ı
C  .ı/ log.1C "/

�
:

The quantity in the square brackets tends to log.1C "/� " < 0 as ı # 0. So, choose
ı > 0 such that its value is �˛ for some ˛ > 0. Thus,

PfR` > 1C "g � e�˛kn`C1 :

For all n large enough, we have kn >
2
˛

log log n. Therefore, for all ` large enough,

PfR` > 1C "g � exp .�2 log log.n` C 1//

D 1

log2.n` C 1/

� 1

`2 log2.1C ı/
;

so that
X

`�1
PfR` > 1C "g < 1;

as required. ut



Chapter 2
The nearest neighbor distance

2.1 Consistency

Let X be a random variable taking values in R
d, and let X1; : : : ;Xn be an

i.i.d. sample drawn from X. For fixed x 2 R
d, we denote by X.1/.x/; : : : ;X.n/.x/

a reordering of X1; : : : ;Xn according to increasing values of kXi � xk, that is,

kX.1/.x/ � xk � � � � � kX.n/.x/ � xk:

If Xi and Xj are equidistant from x, i.e., if kXi � xk D kXj � xk for some i ¤ j, then
we have a distance tie. By convention, ties are broken by comparing indices, that is,
by declaring that Xi is closer to x than Xj whenever i < j.

Let k be an integer comprised between 1 and n. A natural concern is to know
whether the distance kX.k/.X/ � Xk approaches zero in some probabilistic sense
when the sample size tends to infinity and k may possibly vary with n. To answer
this question, denote by � the distribution of X, and recall that the support of X
(or support of �) is defined by

supp.�/ D ˚
x 2 R

d W � .B.x; �// > 0 for all � > 0
�
:

Its properties are well known (see, e.g., Kallenberg, 2002):

.i/ supp.�/ is a closed set.
.ii/ supp.�/ is the smallest closed subset of Rd of �-measure one.
.iii/ One has PfX 2 supp.�/g D 1.

A density is an equivalence class. For fixed f , its equivalence class consists of
all g for which

R
A g.x/dx D R

A f .x/dx for all Borel sets A. In particular, if f D g
Lebesgue-almost everywhere, then g is in the equivalence class of f . Define

© Springer International Publishing Switzerland 2015
G. Biau, L. Devroye, Lectures on the Nearest Neighbor Method,
Springer Series in the Data Sciences, DOI 10.1007/978-3-319-25388-6_2
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f .x/ D lim inf
�#0

Z

B.x;�/
f .y/dy

� .B.x; �//
; Nf .x/ D lim sup

�#0

Z

B.x;�/
f .y/dy

� .B.x; �//
;

where B.x; �/ is the closed ball centered at x of radius �, and � denotes the Lebesgue
measure on R

d. Both f and Nf are equivalent to f since f D Nf D f at �-almost all x by
the Lebesgue differentiation theorem (see Theorem 20.18 in the Appendix). If the
probability measure � has density f , it is in general not true that

supp.�/ D fx 2 Rd W f .x/ > 0g;

where NA is the closure of the set A. However, we have the following:

Lemma 2.1. Let the probability measure � have a density f . If A D fx 2 R
d W

f .x/ > 0g, then supp.�/ D NA.

Proof. If x 2 A, then �.B.x; �// > 0 for all � > 0, and thus A � supp.�/. Since
supp.�/ is closed, NA � supp.�/.

Next, we take x 2 supp.�/. We construct a sequence fxng 2 A with xn ! x,
which shows that x 2 NA, and thus supp.�/ � NA. Since x 2 supp.�/, we have
�.B.x; 1=n// > 0 for all n. For fixed n, find xn in B.x; 1=n/ such that

f .xn/ �

Z

B.x;1=n/
f .y/dy

� .B.x; 1=n//
D

Z

B.x;1=n/
f .y/dy

� .B.x; 1=n//
> 0;

so xn 2 A, and kxn � xk � 1=n. ut
The support of the probability measure � plays an important role in nearest

neighbor analysis because of Lemma 2.2 below.

Lemma 2.2. For x 2 R
d, set

�x D inf fky � xk W y 2 supp.�/g :

If k=n ! 0, then kX.k/.x/ � xk ! �x almost surely. In particular, if x 2 supp.�/
and k=n ! 0, then kX.k/.x/ � xk ! 0 almost surely.

Proof. First note, since supp.�/ is a closed set, that �x D 0 if and only if x belongs
to supp.�/. Moreover, by definition of the support, X.k/.x/ falls in supp.�/ with
probability one. Therefore, with probability one, kX.k/.x/�xk � �x. Now, let " > 0
be arbitrary, and let

px D P fkX � xk � "C �xg D � .B .x; "C �x// > 0:
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Then, for all n large enough,

P
˚kX.k/.x/ � xk � �x > "

� D P
˚kX.k/.x/ � xk > "C �x

�

D P fBin.n; px/ < kg
� P

n
Bin.n; px/ � npx < �npx

2

o
:

Thus, by Markov’s inequality and Corollary 20.2 in the Appendix,

P
˚kX.k/.x/ � xk � �x > "

� � EjBin.n; px/ � npxj4
.npx=2/4

� cn2EjBer.px/ � pxj4
.npx=2/4

� 16c

n2p4x
; (2.1)

where c is a positive constant. These probabilities are summable in n for all " > 0.
Therefore, kX.k/.x/� xk ! �x almost surely. The second assertion of the lemma is
clear. ut
Remark 2.1. We leave it as an exercise to show, using Chernoff’s bound
(Theorem 20.5 in the Appendix), that for k=n ! 0 and all n large enough,

P
˚kX.k/.x/ � xk � �x > "

� � e�˛n

for some ˛ > 0 (depending upon x and "). ut
Since the support of X is of �-measure one, we conclude from Lemma 2.2 that,

at �-almost all x, kX.k/.x/ � xk ! 0 almost surely whenever k=n ! 0. In the
same vein, we have the following lemma, which answers the question asked at the
beginning of the chapter.

Lemma 2.3. Assume that X is independent of the data X1; : : : ;Xn. If k=n ! 0,
then kX.k/.X/ � Xk ! 0 almost surely.

Proof. By independence of X and X1; : : : ;Xn, we have, for all " > 0,

P
˚kX.k/.X/ � Xk > "� D

Z

Rd
P
˚kX.k/.x/ � xk > "��.dx/:

This last term converges to zero by Lemma 2.2 and the Lebesgue dominated
convergence theorem. This shows the convergence in probability towards zero of
kX.k/.X/ � Xk. To establish the almost sure convergence, we use the more precise
notation X.k;n/.X/ D X.k/.X/ and prove that the sequence fsupm�n kX.k;m/.X/ �
Xkgn�1 tends to zero in probability. If k does not change with n, then kX.k;m/.X/�Xk
is monotonically decreasing, so that
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sup
m�n

kX.k;m/.X/ � Xk D kX.k;n/.X/ � Xk

and the lemma is proved. If k is allowed to vary with n such that k=n ! 0, then,
according to (2.1), at �-almost all x, for some positive C and all n large enough,

P

	
sup
m�n

kX.k;m/.x/ � xk > "



�
X

m�n

P
˚kX.k;m/.x/ � xk > "� � C

X

m�n

1

m2
:

This shows that supm�n kX.k;m/.x/ � xk tends to zero in probability (as n ! 1) at
�-almost all x, and thus, by dominated convergence, that supm�n kX.k;m/.X/ � Xk
tends to zero in probability. ut

2.2 Rates of convergence

As in the preceding section, we let X;X1; : : : ;Xn be i.i.d. random vectors of Rd,
and let X.1/.X/; : : : ;X.n/.X/ be a reordering of X1; : : : ;Xn according to increasing
values of kXi � Xk. For various applications and approximations, we will require
information on the size of

EkX.1/.X/ � Xk2; (2.2)

and, more generally, of EkX.k/.X/ � Xk2, for k an integer between 1 and n. This
problem and related questions are explored in Evans et al. (2002); Liitiäinen et al.
(2008a); Penrose and Yukich (2011)—see also Bickel and Breiman (1983). Nearest
neighbor distances play a significant role in residual variance estimation (Devroye
et al., 2003; Liitiäinen et al., 2007, 2008b, 2010), entropy estimation (Kozachenko
and Leonenko, 1987; Leonenko et al., 2008; see also Chapter 7), and convergence
analysis of estimates (Kulkarni and Posner, 1995; Kohler et al., 2006; Biau et al.,
2010; see also Chapter 14).

By symmetry, (2.2) is the same as EkX.1;1/ � X1k2, where X1; : : : ;XnC1 are
i.i.d. random vectors, and X.1;1/ is the nearest neighbor of X1 among X2; : : : ;XnC1.
Denoting by X.i;1/ the nearest neighbor of Xi among X1; : : : ;Xi�1;XiC1; : : : ;XnC1,
this is also the same as

1

n C 1

nC1X

iD1
EkX.i;1/ � Xik2: (2.3)

The quantity (2.2) can be infinite—just on the real line, note that it is at least
1

nC1EjX.n/ � X.nC1/j2 if X.1/ � � � � � X.nC1/ are the order statistics for X1; : : : ;XnC1,
because X.n/ is the nearest neighbor of X.nC1/. It is easy to construct long-tailed
distributions with EjX.n/ � X.nC1/j2 D 1.
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However, given that X1 2 Œ0; 1�d, there are universal (i.e., distribution-free)
bounds for (2.2). This remarkable fact is captured in Theorem 2.1 below. Through-
out, we let Vd be the volume of the unit Euclidean ball in R

d, and recall that

Vd D �d=2

	
�

d
2

C 1
� ;

where 	 .�/ stands for the gamma function, defined for x > 0 by 	 .x/ DR1
0

tx�1e�tdt.

Theorem 2.1. Let X takes values in Œ0; 1�d. Then, for d � 2,

EkX.1/.X/ � Xk2 � cd

�
1

n C 1

�2=d

;

where

cd D 4.1C p
d/2

V2=d
d

:

For d D 1, we have

EkX.1/.X/ � Xk2 � 2

n C 1
:

Remark 2.2. The set Œ0; 1�d is chosen for simplicity of the analysis. We leave it
to the reader to adapt the results to the case where X takes values in an arbitrary
compact subset of Rd. ut
Proof (Theorem 2.1). For the proof, it is convenient to consider form (2.3). Let
Ri D kX.i;1/ � Xik. Let Bi D fx 2 R

d W kx � Xik < Ri=2g. Note that when
Ri D 0, then Bi D ;. Clearly, the Bi’s are disjoint. Since Ri � p

d, we see that

[nC1
iD1 Bi � Œ�

p
d
2
; 1C

p
d
2
�d. Therefore, if � is the Lebesgue measure,

�

 
nC1[

iD1
Bi

!

� .1C p
d/d:

Hence,

nC1X

iD1
Vd

�
Ri

2

�d

� .1C p
d/d: (2.4)
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Now, for d � 2,

 
1

n C 1

nC1X

iD1
R2i

!d=2

� 1

n C 1

nC1X

iD1
Rd

i

.by Jensen’s inequality/

� 1

n C 1
� 2d.1C p

d/d

Vd
:

The theorem follows immediately for d � 2. For d D 1, we only have

1

n C 1

nC1X

iD1
R2i �

 
1

n C 1

nC1X

iD1
Ri

!

� max
1�i�nC1Ri

� 2

n C 1
: ut

Remark 2.3. It is a good exercise to show that, up to multiplicative constants
possibly depending upon d, these bounds are best possible, in the sense that

sup
all distributions of X on Œ0; 1�d

EkX.1/.X/ � Xk2 �
(

˛d
.nC1/2=d for d � 2
˛1

nC1 for d D 1,

for constants ˛d. For d D 1, consider the distribution

PfX D 0g D 1

n
; PfX D 1g D 1 � 1

n
:

Then

EjX.1/.X/ � Xj2 � PfX D 0;X1 D � � � D Xn D 1g

D 1

n

�
1 � 1

n

�n

� 1

en
as n ! 1:

For d � 2, it suffices to consider the uniform distribution on Œ0; 1�d and recall

that �.B.X; kX.1/.X/ � Xk// DD U.1/, where U.1/ � � � � � U.n/ are uniform Œ0; 1�

order statistics (Chapter 1). Clearly, for this distribution, �.B.X; kX.1/.X/�Xk// �
VdkX.1/.X/ � Xkd. The conclusion follows by recalling that U.1/ is Beta.1; n/ and
by working out the moments of the beta law (see Section 20.9 in the Appendix). ut

For singular distributions (with respect to the Lebesgue measure), the behavior
of (2.2) is better than predicted by the bounds.
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Theorem 2.2. If X is singular and takes values in Œ0; 1�d, then

n1=dkX.1/.X/ � Xk ! 0 in probability:

(This theorem is valid for all d � 1.)

Proof. By Theorem 20.20 in the Appendix, if � is the singular probability measure
of X, and B.x; �/ is the closed ball of radius � centered at x, then, at �-almost all x,

� .B.x; �//
�d

! 1 as � # 0: (2.5)

We show that for any " > 0,

P

n
kX.1/.X/ � Xk > "

n1=d

o
! 0:

We have

lim sup
n!1

P

n
kX.1/.X/ � Xk > "

n1=d

o
D lim sup

n!1
E

h�
1 � �

�
B
�

X;
"

n1=d

���ni

� E

�
lim sup

n!1

�
1 � �

�
B
�

X;
"

n1=d

���n


.by Fatou’s lemma/

� E

�
lim sup

n!1
exp

�
�n�

�
B
�

X;
"

n1=d

���

.since 1 � u � e�u for all u/

D E

h
exp

�
� lim inf

n!1 n�
�

B
�

X;
"

n1=d

���i

D 0

since � is singular—see (2.5). ut
Thus, finally, we consider absolutely continuous X with density f on Œ0; 1�d.

(Note that in this case, by Hölder’s inequality,
R
Œ0;1�d

f 1�2=d.x/dx < 1 for d � 2.)

Theorem 2.3. Let X have a density f on Œ0; 1�d. Then, for d > 2,

n2=d
EkX.1/.X/ � Xk2 ! 	

�
2
d C 1

�

V2=d
d

Z

Œ0;1�d
f 1�2=d.x/dx:

For d D 1,

lim inf
n!1 n2EkX.1/.X/ � Xk2 � 1

2

Z

Œ0;1�d Wf>0
dx

f .x/
> 0:
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For d D 2, we have, for all densities f ,

1

�
C o.1/ � nEkX.1/.X/ � Xk2 < 4

�
.1C p

2/2:

Remark 2.4. This theorem points out the special status of R1. On the real line, for
absolutely continuous X, jX.1/.X/ � Xj2 converges at a rate above 1=n2. We recall
that if X is singular, then jX.1/.X/ � Xj2 D oP.1=n2/. Therefore, jX.1/.X/ � Xj2
can be used to distinguish between a purely singular distribution and an absolutely
continuous distribution. ut
Proof (Theorem 2.3). We will repeatedly make use of the gamma integral

Z 1

0

e�ˇt˛dt D 	
�
1
˛

C 1
�

ˇ1=˛
; ˛; ˇ > 0:

We have

EkX.1/.X/ � Xk2 D
Z 1

0

P
˚kX.1/.X/ � Xk2 > t

�
dt

D
Z 1

0

E

h�
1 � � �B.X;pt/

��n
i

dt

.where � is the distribution of X/

D 1

n2=d

Z 1

0

E

"�
1 � �

�
B

�
X;

p
t

n1=d

���n
#

dt:

By the Lebesgue differentiation theorem (Theorem 20.18 in the Appendix), at
Lebesgue-almost all x, as � # 0,

� .B.x; �//
Vd�d

! f .x/:

At such x, therefore, we have for fixed t, as n ! 1,
�
1 � �

�
B

�
x;

p
t

n1=d

���n

! exp.�f .x/Vdtd=2/:

Fatou’s lemma implies

lim inf
n!1 n2=d

EkX.1/.X/ � Xk2 �
Z

Œ0;1�d

Z 1

0

exp.�f .x/Vdtd=2/f .x/dtdx

D 	

�
2

d
C 1

�Z

Œ0;1�d Wf>0
f .x/

.f .x/Vd/2=d
dx

D 	
�
2
d C 1

�

V2=d
d

Z

Œ0;1�d Wf>0
f 1�2=d.x/dx:
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This shows the second assertion of the theorem, as well as the lower bound for
the first and third statements. To establish the upper bound for d > 2, we take an
arbitrary large constant R and note that

n2=d
EkX.1/.X/ � Xk2 D n2=d

E

h
kX.1/.X/ � Xk21ŒkX.1/.X/�Xk�R=n1=d �

i

C n2=d
E

h
kX.1/.X/ � Xk21ŒkX.1/.X/�Xk>R=n1=d �

i

defD I C II:

By Fatou’s lemma, we have

lim sup
n!1

n2=d
E

h
kX.1/.X/ � Xk21ŒkX.1/.X/�Xk�R=n1=d �

i

�
Z

Œ0;1�d

Z R2

0

exp.�f .x/Vdtd=2/dtdx

� 	
�
2
d C 1

�

V2=d
d

Z

Œ0;1�d
f 1�2=d.x/dx:

Next, II is small by choice of R. To see this, note again that, by (2.3),

II D n2=d

n C 1
E

"
nC1X

iD1
kX.i;1/ � Xik21ŒkX.i;1/�Xik>R=n1=d �

#

:

Using Ri for kX.i;1/ � Xik, we already observed in (2.4) that

nC1X

iD1
Rd

i � ad
defD 2d.1C p

d/d

Vd
:

Set K D PnC1
iD1 1ŒRi>R=n1=d �, and note that, necessarily, K � nad=Rd. Then, by

Jensen’s inequality, whenever K > 0,

 
1

K

nC1X

iD1
R2i 1ŒRi>R=n1=d �

!d=2

� 1

K

nC1X

iD1
Rd

i 1ŒRi>R=n1=d � � ad

K
:

Thus,

II D n2=d

n C 1
E

"

1ŒK>0�

nC1X

iD1
R2i 1ŒRi>R=n1=d �

#

� n2=d

n
E

�
K �

�ad

K

�2=d
1ŒK>0�
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D a2=d
d E

�
K

n

1�2=d

� ad

Rd�2 ;

which is as small as desired by choice of R when d > 2.
Finally, for d D 2, by (2.4),

�

nC1X

iD1
R2i � 4.1C p

2/2:

Since

nEkX.1/.X/ � Xk2 D n

n C 1
E

"
nC1X

iD1
R2i

#

;

the upper bound follows. ut
We conclude this section by providing an extension of Theorem 2.1 to the

k-nearest neighbor (1 � k � n).

Theorem 2.4. Let X takes values in Œ0; 1�d. Then, for d � 2,

EkX.k/.X/ � Xk2 � c0
d

�
k

n

�2=d

;

where

c0
d D 23C 2

d .1C p
d/2

V2=d
d

:

For d D 1, we have

EkX.k/.X/ � Xk2 � 8k

n
:

Proof. The problem can be reduced to the nearest-neighbor inequality covered in
Theorem 2.1. First, notice that EkX.k/.X/� Xk2 � d. But, recalling that Vd � 6 for
all d � 1, we have, for 2k > n,

inf
d�2 c0

d

�
k

n

�2=d

� d

and 8k
n � 1. Thus, the bounds are trivial for 2k > n, so we assume that 2k � n.
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Partition the set fX1; : : : ;Xng into 2k sets of sizes n1; : : : ; n2k, with

2kX

jD1
nj D n and

j n

2k

k
� nj �

j n

2k

k
C 1:

Let X?
.1/.j/ be the nearest neighbor of X among all Xi’s in the j-th group. Observe

that, deterministically,

kX.k/.X/ � Xk � 1

k

2kX

jD1
kX?

.1/.j/ � Xk

and, similarly,

kX.k/.X/ � Xk2 � 1

k

2kX

jD1
kX?

.1/.j/ � Xk2;

because at least k of these nearest neighbors have values that are at least
kX.k/.X/ � Xk. Apply Theorem 2.1 for d � 2 to obtain

EkX.k/.X/ � Xk2 � 1

k

2kX

jD1
cd

�
1

nj C 1

�2=d

� 1

k

2kX

jD1
cd

�
2k

n

�2=d

D 21C 2
d cd

�
k

n

�2=d

:

For d D 1, we argue similarly and get the upper bound

1

k

2kX

jD1

2

nj C 1
� 1

k

2kX

jD1

4k

n
D 8k

n
: ut



Chapter 3
The k-nearest neighbor density estimate

3.1 Nonparametric density estimation

A random vector X taking values in R
d has a (probability) density f with respect to

the Lebesgue measure if, for all Borel sets A � R
d, PfX 2 Ag D R

A f .x/dx. In other
words, if A is a small ball about x, the probability that X falls in A is about f .x/
times the volume of A. It thus serves as a tool for computing probabilities of sets
and, as a function that reveals the local concentration of probability mass, it may be
used to visualize distributions of random variables.

The purpose of density estimation is to estimate an unknown density f from an
i.i.d. sample drawn according to f . The view we take in this book is nonparametric,
thereby assuming that f is largely unknown and that no assumptions can be made
about its properties. Nonparametric estimation is particularly important when the
common parametric forms—often unimodal—are suspect. For example, pattern
recognition problems frequently involve densities that are multimodal and, even in
the unimodal situation, there is rarely enough information available to warrant any
parametric assumption. Thus, in the nonparametric context, a density estimate fn is
a Borel measurable function of x and the data X1; : : : ;Xn:

fn.x/ D fn.xI X1; : : : ;Xn/:

Often, but not always, fn is itself a density in x, i.e., it is Lebesgue-almost everywhere
nonnegative and integrates to one. The choice of a density estimate is governed
by a number of factors, like consistency (as the number of observations grows),
smoothness, ease of computation, interpretability, and optimality for certain criteria.

The problem of nonparametric density estimation has a long and rich history,
dating back to the pioneering works of Fix and Hodges (1951, 1952)—see also Fix
and Hodges (1991a,b)—, Akaike (1954); Rosenblatt (1956); Whittle (1958); Parzen
(1962); Watson and Leadbetter (1963), and Cacoullos (1966) in the late 50s and
early 60s of the 20th century. The application scope is vast, as density estimates
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are routinely employed across the entire and diverse range of applied statistics,
including problems in exploratory data analysis, machine condition monitoring,
pattern recognition, clustering, simulation, detection, medical diagnoses, financial
investments, marketing, and econometrics. There are too many references to be
included here, but the monographs by Rao (1983); Devroye and Györfi (1985);
Silverman (1986); Devroye (1987); Scott (1992), and Tsybakov (2008) will provide
the reader with introductions to the general subject area, both from a practical and
theoretical perspective.

3.2 Distances between densities

The quality of a density estimate is measured by how well it performs the task at
hand, estimating probabilities. In this respect, denoting by B the Borel sets of Rd,
the total variation criterion dTV.fn; f / is a natural distance:

dTV.fn; f / D sup
A2B

ˇ̌
ˇ̌
Z

A
fn.x/dx �

Z

A
f .x/dx

ˇ̌
ˇ̌ :

It should be noted that whenever fn is a density, 0 � dTV.fn; f / � 1. When dTV.fn; f /
is smaller than ", then we know that for any Borel set A, the probability assigned to
it by f differs at most by " from the probability assigned to it by the estimate fn. In
other words, dTV.fn; f / is a practical easy-to-understand quantity.

Suppose now we look for an estimate fn for which dTV.fn; f / ! 0 in some
probabilistic sense (e.g., almost surely, in probability, or in expectation) as n ! 1.
We see that this property will follow whenever

Z

Rd
jfn.x/ � f .x/j dx ! 0

in the same probabilistic sense. Indeed,

dTV.fn; f / � sup
A2B

Z

A
jfn.x/ � f .x/j dx �

Z

Rd
jfn.x/ � f .x/j dx;

and, if fn is itself a density,

dTV.fn; f / D 1

2

Z

Rd
jfn.x/ � f .x/j dx

(see, e.g., Devroye and Györfi, 1985). This shows the importance of
R
Rd jfn.x/ �

f .x/jdx for the study of the uniform convergence properties of the corresponding
probability measures.
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As might be expected, there are other possible global measures to assess the
proximity between the estimate fn and the target density f . First and foremost, there
is the Lp distance

Lp.fn; f / D
8
<

:

�Z

Rd
jfn.x/ � f .x/jp dx

�1=p

for 0 < p < 1
ess supx2Rd jfn.x/ � f .x/j for p D 1,

where the essential supremum is with respect to the Lebesgue measure. The entropy-
related Kullback-Leibler divergence is defined by

K.f ; fn/ D
8
<

:

Z

Rd
f .x/ log

�
f .x/
fn.x/

�
dx if f 	 fn

1 otherwise,

where f 	 fn means that
R

A f .x/dx D 0 for every set A for which
R

A fn.x/dx D 0.
For p > 0, the Hellinger distance takes the form

Hp.fn; f / D
�Z

Rd

ˇ̌
f 1=p
n .x/ � f 1=p.x/

ˇ̌p
dx
�1=p

:

Clearly, H1 is the standard L1 distance. For an account on the various properties and
relationships between these and other global proximity measures, we refer to the
introductory chapter of Devroye (1987).

The k-nearest neighbor density estimate that is discussed in this chapter hasR
Rd jfn.x/j dx D 1 (Proposition 3.1 below), so that it is not suited for applications

where one wants
R
Rd jfn.x/ � f .x/jdx to converge to zero as n tends to infinity.

Thus, for this or other reasons, we may also be interested in estimates fn for which
fn.x/ ! f .x/ in some probabilistic sense at Lebesgue-almost all x. We say that fn is
a weakly (strongly) pointwise consistent estimate of f on A if

fn.x/ ! f .x/ in probability (almost surely) for all x 2 A:

3.3 The k-nearest neighbor estimate

Our goal in this and the next few chapters is to investigate the properties of the
k-nearest neighbor density estimate, which is defined below. Let X1; : : : ;Xn be a
sequence of i.i.d. random vectors taking values in R

d, and assume that the common
probability measure � of the sequence is absolutely continuous with respect to the
Lebesgue measure �, with a density f .
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By the Lebesgue differentiation theorem (Theorem 20.18 in the Appendix), we
have, at �-almost all x,

f .x/ D lim
�#0

� .B.x; �//
� .B.x; �//

:

In view of this relation, one can estimate f .x/ by the following method. Let k be an
integer such that 1 � k � n, let R.k/.x/ be the distance from x to the k-th nearest
neighbor in the data sequence, and let �n be the empirical distribution, i.e., for any
Borel set A � R

d,

�n.A/ D 1

n

nX

iD1
1ŒXi2A�:

The k-nearest neighbor density estimate is

fn.x/ D �n
�
B.x;R.k/.x//

�

�
�
B.x;R.k/.x//

� ;

which, by construction, can also be written as follows:

fn.x/ D k

n�
�
B.x;R.k/.x//

� :

It was first introduced by Fix and Hodges (1951)—see also Fix and Hodges
(1991a)—in the context of nonparametric discrimination, and further worked out by
Loftsgaarden and Quesenberry (1965). The basic difference between this estimate
and the kernel estimate of Akaike (1954); Rosenblatt (1956), and Parzen (1962)
is that here a specific number of observations k is given and the distance to the
k-th closest from x is measured. On the other hand, in the kernel approach, one
counts the number of observations falling within a specified distance h from x.
Thus, the nearest neighbor and the kernel methods are somehow dual, the latter
being equivalent to fix R.k/.x/ and then determine k. A major practical advantage of
the k-nearest neighbor estimate is that it is particularly easy to compute.

Let X.i/.x/ be the i-th nearest neighbor of x among X1; : : : ;Xn. (Note that in
this density context, distance ties happen with zero probability and may be broken
arbitrarily.) Thus, kX.1/.x/� xk � � � � � kX.n/.x/� xk. Denoting by Vd the volume
of the unit ball in .Rd; k � k/, and observing that

�
�
B.x;R.k/.x//

� D VdkX.k/.x/ � xkd;

we have the following definition:

Definition 3.1. For 1 � k � n, the k-nearest neighbor density estimate is defined by

fn.x/ D k

nVdkX.k/.x/ � xkd
; x 2 R

d:
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Adopting the convention 1=0 D 1, we note once and for all that, for fixed
x, fn.x/ is positive and finite with probability one. Similarly, for fixed values of
X1; : : : ;Xn, fn.x/ is positive and finite at �-almost all x. We also recall that in the
d-dimensional Euclidean space,

Vd D �d=2

	
�

d
2

C 1
� ;

where 	 .�/ is the gamma function.

3.4 First properties

The following proposition states some trivial properties of the k-nearest neighbor
estimate.

Proposition 3.1. Let fn be the k-nearest neighbor density estimate. Then, for
0 � p � 1,

Z

Rd
f p
n .x/dx D 1:

On the other hand, for p > 1, with probability one,
8
ˆ̂̂
<

ˆ̂̂
:

Z

Rd
f p
n .x/dx D 1 if k D 1

Z

Rd
f p
n .x/dx < 1 if k > 1.

In addition, still with probability one,
(

ess supx2Rd fn.x/ D 1 if k D 1

ess supx2Rd fn.x/ < 1 if k > 1,

where the essential supremum is with respect to the Lebesgue measure.

Proof. Set

Zn D max
1�i�n

kXik:

Clearly, for fixed x 2 R
d, by the triangle inequality,

kX.k/.x/ � xk � kxk C Zn:
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Thus,

Z

Rd
f p
n .x/dx D kp

npVp
d

Z

Rd

1

kX.k/.x/ � xkpd
dx

� kp

npVp
d

Z

Rd

1

.kxk C Zn/
pd dx:

Using a hyperspherical coordinate change of variables (see, e.g., Miller, 1964,
Chapter 1), we obtain

Z

Rd

1

.kxk C Zn/
pd dx D 2�d=2

	
�

d
2

�
Z 1

0

rd�1

.r C Zn/pd
dr;

and the last integral is easily seen to be infinite whenever 0 � p � 1.
Assume now that p > 1. Let

S1 D ˚
x 2 R

d W X.1/.x/ D X1

�
;

and observe that X1 belongs to the interior of S1 with probability one. For k D 1,
we have

fn.x/ � 1

nVdkX1 � xkd
1Œx2S1�:

Thus,
Z

Rd
f p
n .x/dx � 1

npVp
d

Z

S1

1

kX1 � xkpd
dx

D 1

npVp
d

Z

S1�X1

1

kxkpd
dx;

where

S1 � X1 D fx � X1 W x 2 S1g:
Using once again a hyperspherical coordinate change of variables, we see that the
integral on the right-hand side is infinite for p > 1.

If k > 1, let, for 1 � i � n,

Si D ˚
x 2 R

d W X.k/.x/ D Xi
�
:

It is easy to see that, on the event En D ŒXj ¤ X`; j ¤ `�, the sets S1; : : : ; Sn form a
partition of Rd. Thus, on the event En,

fn.x/ D k

nVd

nX

iD1

1

kXi � xkd
1Œx2Si�;
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and therefore,

Z

Rd
f p
n .x/dx D kp

npVp
d

nX

iD1

Z

Si

1

kXi � xkpd
dx

D kp

npVp
d

nX

iD1

Z

Si�Xi

1

kxkpd
dx:

On En, each Xi belongs to the interior of the complement of Si and thus, by a
hyperspherical coordinate change of variables, we obtain

Z

Si�Xi

1

kxkpd
dx < 1:

The conclusion follows by observing that the event En has probability one. The
assertion with the supremum uses similar arguments and is therefore omitted. ut

Proposition 3.1 implies that it is impossible to study the k-nearest neighbor
estimate properties in L1 or, equivalently, that the k-nearest neighbor estimate is
not attractive for applications where one wants

R
Rd jfn.x/ � f .x/jdx to converge to

zero in some probabilistic sense as n tends to infinity. Thus, in the remainder of the
chapter, we focus on pointwise consistency properties of the estimate fn.

3.5 Weak and strong pointwise consistency

Theorem 3.1 below summarizes results obtained by Loftsgaarden and Quesenberry
(1965); Wagner (1973), and Moore and Yackel (1977a). However, our proof
approach is different and relies on the results of Chapter 1 on uniform order
statistics. It is stressed that it holds whenever x is a Lebesgue point of f , that is,
an x for which

lim
�#0

� .B.x; �//
� .B.x; �//

D lim
�#0

Z

B.x;�/
f .y/dy

Z

B.x;�/
dy

D f .x/:

As f is a density, we know that �-almost all x satisfy this property (see Theorem
20.18 in the Appendix).

Theorem 3.1 (Pointwise consistency). Let fn be the k-nearest neighbor density
estimate. If k=n ! 0, then, for �-almost all x 2 R

d,

.i/ fn.x/ ! f .x/ in probability when k ! 1;
.ii/ fn.x/ ! f .x/ almost surely when k= log n ! 1;
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.iii/ fn.x/ ! f .x/ almost surely when k= log log n ! 1 and there exists an
increasing function  � 1 with limı#0  .ı/ D 1, such that

1 � knCm

kn
�  

�m

n

�
; n;m � 1: (3.1)

Proof. Set R.k/.x/ D kX.k/.x/ � xk. Recall (Chapter 1) that

�
�
B
�
x;R.k/.x/

�� DD U.k/;

where U.k/ is the k-th order statistic for a uniform sample. The k-nearest neighbor
estimate can be written as

fn.x/ D k=n

�
�
B
�
x;R.k/.x/

��

D �
�
B
�
x;R.k/.x/

��

�
�
B
�
x;R.k/.x/

�� � k=n

�
�
B
�
x;R.k/.x/

��

defD gn.x/ � hn.x/:

Assume that x is a Lebesgue point of f . When x is not in the support of �, then
f .x/ D 0 (since x is a Lebesgue point) and there exists �x > 0 such that kX.k/.x/ �
xk � �x with probability one. Therefore, in this case,

fn.x/ � k=n

Vd�d
x

! 0 as k=n ! 0:

So, assume that x is in the support of �. We note that, for fixed " > 0,

jgn.x/ � f .x/j � "

if R.k/.x/ � �.x; "/, for some positive �.x; "/. Thus,

jfn.x/ � f .x/j � jgn.x/ � f .x/j hn.x/C f .x/jhn.x/ � 1j
� " hn.x/C 1:1ŒR.k/.x/>�.x;"/� C f .x/jhn.x/ � 1j
� ."C f .x// jhn.x/ � 1j C "C 1:1ŒR.k/.x/>�.x;"/�:

According to Theorem 1.4, the first term on the right-hand side tends to zero in
probability if f .x/ < 1 and k ! 1. By Theorem 1.5, it tends to zero almost surely
if f .x/ < 1 and k= log n ! 1. Besides, it tends to zero almost surely if f .x/ < 1,
k= log log n ! 1 and k satisfies (3.1), by Theorem 1.6. The second term is small
by choice of ". The third term tends to zero almost surely if x is in the support of �
(which we assume) by Lemma 2.2. The proof is finished by noting that �-almost all
x have f .x/ < 1 and are Lebesgue points of f . ut



Chapter 4
Uniform consistency

4.1 Bounded densities

This chapter is devoted to the study of the uniform consistency properties of the
k-nearest neighbor density estimate fn. Before embarking on the supremum norm
convergence, it is useful to understand the behavior of fn on bounded densities. We
denote the essential supremum (with respect to the Lebesgue measure �) of the
density f by

kf k1 D inf
˚
t � 0 W � fjf j > tg D 0

�
:

Theorem 4.1. Assume that kf k1 < 1. If k= log n ! 1, then the k-nearest
neighbor density estimate fn satisfies

X

n�1
P

	
sup
x2Rd

fn.x/ > 2dC1kf k1


< 1:

In particular, with probability one, for all n large enough,

sup
x2Rd

fn.x/ � 2dC1kf k1:

Also, with probability one, for all n large enough,

inf
x2Rd

kX.k/.x/ � xk � 1

2

�
1

2nVdkf k1

�1=d

:

Before proving the theorem, we observe the following:
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34 4 Uniform consistency

Lemma 4.1. If ' is a nonnegative convex increasing function, '.0/ D 0, and
x1; x2; : : : are nonnegative real numbers with xi � x for some x > 0, then

1X

iD1
'.xi/ � '.x/

x

1X

iD1
xi:

Proof. By convexity, note that '.xi/ � '.x/xi=x. ut
Proof (Theorem 4.1). The proof uses an infinite grid. Given a radius �, we place the
centers of the grid at

G D �p
d
Z

d;

where Zd is the space of all integer-valued vectors in R
d, and �=

p
d is a scale factor.

For y 2 G , define py D �.B.y; 2�//, where � is the distribution associated with f .
Let X1; : : : ;Xn be n i.i.d. points drawn from � on R

d, and let

Mn D max
x2Rd

jB.x; �/j ;

where

jB.x; �/j defD
nX

iD1
1ŒXi2B.x;�/�:

For each x 2 R
d, there exists y 2 G with ky � xk � �. Take such a y. Then

jB.x; �/j � jB.y; 2�/j ;

since B.x; �/ � B.y; 2�/. Therefore,

Mn � max
y2G jB.y; 2�/j :

Note also that

max
y2G py � Vd.2�/

dkf k1:

Finally,
P

y2G py is bounded from above by the maximal overlap among the balls
B.y; 2�/, y 2 G . But a square cell of dimensions 4� � � � � � 4� contains at most
.4

p
d C 1/d points from G , and thus, the overlap is bounded by that number too.

Therefore,
X

y2G
py � .4

p
d C 1/d:
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Consider the function '.u/ D e�uuk. It is easy to verify that ' is convex on
Œ0; k � p

k� and that '.0/ D 0. Thus, if

nVd.2�/
dkf k1 � k

2
� k � p

k

(this is possible for all n large enough since, by our assumption, k ! 1 as n ! 1)
we have, by Lemma 4.1,

X

y2G
e�npy.npy/

k � e�k=2

�
k

2

�k�1X

y2G
npy

� e�k=2

�
k

2

�k�1
.4

p
d C 1/dn:

With the preliminaries out of the way, we note that

inf
x2Rd

kX.k/.x/ � xk < �

implies that

maxx2Rd jB.x; �/j � k;

and thus that

maxy2G jB.y; 2�/j � k:

Now, choose � such that

nVd.2�/
dkf k1 D k

2
;

which implies that maxy2G npy � k=2. Then

P

n
inf

x2Rd
kX.k/.x/ � xk < �

o

�
X

y2G
P fjB.y; 2�/j � kg

�
X

y2G Wpy>0

P
˚
Bin.n; py/ � k

�

�
X

y2G Wpy>0

exp

�
k � npy � k log

�
k

npy

��

.by Chernoff’s bound—see Theorem 20.5 in the Appendix/:
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It follows that

P

n
inf

x2Rd
kX.k/.x/ � xk < �

o
�
�e

k

�k X

y2G
e�npy.npy/

k

� .4
p

d C 1/dn
�e

k

�k
e�k=2

�
k

2

�k�1

D .4
p

d C 1/d
2n

k

�p
e

2

�k

:

Since k= log n ! 1, we have

X

n�1
n

�p
e

2

�k

< 1:

Therefore, by the Borel-Cantelli lemma, with probability one, for all n large enough,

inf
x2Rd

kX.k/.x/ � xk � � D 1

2

�
k

2nVdkf k1

�1=d

:

This shows the second statement of the theorem. The first one follows by observing
that

P

	
sup
x2Rd

fn.x/ > 2dC1kf k1



D P

	
inf

x2Rd
kX.k/.x/ � xk < �



: ut

Remark 4.1. We leave it as a good exercise to show that the coefficient 2dC1 in the
theorem can be replaced by .1C "/ for any " > 0. ut

4.2 Uniformly continuous densities

Since a continuity point of f is also a Lebesgue point, the proof of Theorem 3.1
reveals that jfn.x/ � f .x/j ! 0 almost surely on the continuity set of f , provided
k= log n ! 1 and k=n ! 0. Thus, if f is uniformly continuous, one is tempted to
believe that supx2Rd jfn.x/� f .x/j ! 0 almost surely, under the same conditions on
k. For d D 1, Moore and Henrichon (1969) showed that

sup
x2R

jfn.x/ � f .x/j ! 0 in probability

if f is uniformly continuous and positive on R, if k= log n ! 1 and if, additionally,
k=n ! 0. Kim and Van Ryzin (1975), also for d D 1, proved the same result
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for a slightly different type of estimate under essentially the same conditions. In
the remainder of the section we prove the following theorem, due to Devroye and
Wagner (1977), yet with a different approach.

Theorem 4.2 (Strong uniform consistency). Assume that f is uniformly continu-
ous. If k= log n ! 1 and k=n ! 0, then the k-nearest neighbor density estimate fn
is strongly uniformly consistent, that is,

sup
x2Rd

jfn.x/ � f .x/j ! 0 almost surely:

Notice that supx2Rd jfn.x/ � f .x/j is indeed a random variable if f is continuous,
since it is possible to replace the supremum over R

d by the supremum over a
countable dense subset of R

d in view of the continuity of f and the shape of fn,
which is piecewise constant.

The proof of Theorem 4.2 begins with a lemma. As a prerequisite, we leave it as
an exercise to show that the uniformly continuous density f is bounded and vanishes
as kxk tends to infinity.

Lemma 4.2. Assume that f is uniformly continuous and that " > 0 is fixed. If
k ! 1 and k=n ! 0, then there exist a positive integer n0 and ˛ > 0 such that

sup
x2Rd

P fjfn.x/ � f .x/j � "g � e�˛k for all n � n0:

Proof. We introduce the modulus of continuity !.t/ of f :

!.t/ D sup
ky�xk�t

jf .y/ � f .x/j ;

and note that w.t/ # 0 as t # 0. If B.x; �/ is the closed ball centered at x of radius �,
then

.f .x/ � !.�//Vd�
d �

Z

B.x;�/
f .y/dy � .f .x/C !.�//Vd�

d:

Recall that

fn.x/ D k

nVdRd
.k/.x/

;

where

R.k/.x/ D kX.k/.x/ � xk:
We have, for fixed " > 0,

P ffn.x/ � f .x/C "g D P
˚
R.k/.x/ � t

�
;
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with

t D
�

k

nVd.f .x/C "/

�1=d

:

Thus,

P ffn.x/ � f .x/C "g D P

n
Bin

�
n;
R

B.x;t/ f .y/dy
�

� k
o

� P
˚
Bin

�
n; .f .x/C !.t//Vdtd

� � k
�

D P

n
Bin

�
n; f .x/C!.t/

f .x/C" � k
n

�
� k

o

� P

(

Bin

 

n;
f .x/C!

��
k

nVd"

�1=d�

f .x/C" � k
n

!

� k

)

:

Let n0 be so large that !
��

k
nVd"

�1=d� � "
2

for all n � n0. Then we have a further
upper bound of

P

n
Bin

�
n; f .x/C"=2

f .x/C" � k
n

�
� k

o
� P

n
Bin

�
n; kf k

1

C"=2
kf k

1

C" � k
n

�
� k

o

� e�ˇ1k

by Chernoff’s bound (Theorem 20.5), for ˇ1 depending upon kf k1 and " only.
Similarly, for f .x/ > ",

P ffn.x/ � f .x/ � "g D P
˚
R.k/.x/ � t

�
(4.1)

where now t D �
k

nVd.f .x/�"/
�1=d

. Expression (4.1) is bounded from above by

P

	
Bin

�
n;
Z

B.x;t/
f .y/dy

�
� k



:

Define t? D �
k

nVd"

�1=d
. Let n0 be so large that !.t?/ � "

2
for all n � n0. For f .x/ �

2", we have t � t?, and so

P

n
Bin

�
n;
R

B.x;t/ f .y/dy
�

� k
o

� P

n
Bin

�
n; f .x/�!.t?/

f .x/�" � k
n

�
� k

o

� P

n
Bin

�
n; f .x/�"=2

f .x/�" � k
n

�
� k

o

� P

n
Bin

�
n; kf k

1

�"=2
kf k

1

�" � k
n

�
� k

o

� e�ˇ2k

by Chernoff’s bound, where ˇ2 depends upon kf k1 and ".
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For " < f .x/ � 2", we have

P ff .x/ � fn.x/ � 2"g D 0

and thus, combining both results,

sup
x2Rd

P ff .x/ � fn.x/ � 2"g � e�ˇ2k

for all n � n0. ut
Proof (Theorem 4.2). According to Lemma 4.2, for every " > 0, there exist n0 and
˛ > 0 such that

sup
x2Rd

P fjfn.x/ � f .x/j > "g � e�˛k for all n � n0:

This is quite powerful, but the supremum is, unfortunately, outside the probability.
If G D fx1; : : : ; xnd g is a fixed set of nd points, then the union bound implies

P

n
max
1�i�n

jfn.xi/ � f .xi/j > "
o

� nde�˛k for all n � n0: (4.2)

This is summable in n when k= log n ! 1. The proof is completed by relating our
supremum to this discrete maximum.

Using the uniform continuity of f , we first find a constant a > 0 (and set A D
Œ�a; a�d, A? D Œ�a � 1; a C 1�d) such that

sup
x…A

f .x/ � "

2dC1 and
1

.2a/d
� "

2dC1 :

Let

g.x/ D
8
<

:

f .x/ if x … A
1

.2a/d

Z

A
f .y/dy if x 2 A.

Note that kgk1 � "=2dC1, by construction. Also, if X1; : : : ;Xn are i.i.d., drawn
from f , and Z1; : : : ;Zn are i.i.d., drawn from the uniform law on A, then the
following sample Y1; : : : ;Yn is an i.i.d. sample drawn from g:

Yi D
	

Xi if Xi … A
Zi if Xi 2 A.

The verification is left to the reader. Note that

sup
x…A?

.f .x/ � fn.x// � sup
x…A?

f .x/ � "

2dC1 ;
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and

sup
x…A?

.fn.x/ � f .x// � sup
x…A?

fn.x/

� max

 

sup
x…A?WR.k/.x/�1

fn.x/; sup
x…A?WR.k/.x/<1

fn.x/

!

;

where

R.k/.x/ D kX.k/.x/ � xk:

Therefore,

sup
x…A?

.fn.x/ � f .x// � max

 
k

nVd
; sup

x…A?
gn.x/

!

;

where gn.x/ is the k-nearest neighbor estimate for Y1; : : : ;Yn (since, for x … A?,
fn.x/ D gn.x/ if R.k/.x/ < 1). By Theorem 4.1 for bounded densities, it follows
that, with probability one and for all n large enough,

sup
x…A?

.fn.x/ � f .x// � max

�
k

nVd
; 2dC1kgk1

�
� max

�
k

nVd
; "

�
:

Since k=n ! 0, we see that with probability one, for all n large enough,

sup
x…A?

jfn.x/ � f .x/j � ":

Next, partition A? D Œ�a � 1; a C 1�d into nd equal squares of volume . 2aC2
n /d

each. Denote these squares by Ci, 1 � i � nd, and let G D fx1; : : : ; xnd g be the
collection of their centers. We recall that, by inequality (4.2), with probability one,

max
1�i�nd

jfn.xi/ � f .xi/j � "

for all n large enough. Define


1 D max
1�i�nd

sup
x2Ci

jfn.x/ � fn.xi/j and 
2 D max
1�i�nd

sup
x2Ci

jf .x/ � f .xi/j :

By the triangle inequality, we have with probability one and for all n large enough,

sup
x2A?

jfn.x/ � f .x/j � "C
1 C
2:
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Since .2a C 2/=n ! 0, it is clear that 
2 ! 0 by uniform continuity. Define

Ri D inf
x2Ci

R.k/.x/;

and recall from Theorem 4.1 that with probability one, for all n large enough,

Ri � �
defD 1

2

�
k

2nVdkf k1

�1=d

:

Note that for any k, x, y, we have

ˇ̌
R.k/.x/ � R.k/.y/

ˇ̌ � kx � yk:

Thus,

sup
x;y2Ci

ˇ̌
R.k/.x/ � R.k/.y/

ˇ̌ � sup
x;y2Ci

kx � yk

D diameter.Ci/

D 2.a C 1/
p

d

n
defD �:

In particular,

sup
x2Ci

R.k/.x/ � sup
x2Ci

jR.k/.x/ � Rij C Ri � � C Ri:

Also, for x 2 Ci,

jfn.x/ � fn.xi/j D k

nVd

 
1

mind
�
R.k/.x/;R.k/.xi/

� � 1

maxd
�
R.k/.x/;R.k/.xi/

�

!

;

so that, with probability one, for all n large enough,


1 � k

nVd
max
1�i�nd

�
1

Rd
i

� 1

.� C Ri/d

�

� k

nVd�d

�
1 � 1

.1C �=�/d

�

.since Ri � � with probability one, for all n large enough/

D k

nVd�d
� o.1/
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.since �=� ! 0/

D 2dC1kf k1 � o.1/

! 0 as n ! 1:

This completes the proof. ut
Remark 4.2. For d D 1, using empirical process techniques, Mack (1983) provides
almost sure rates of convergence for the quantity supx2J jfn.x/ � f .x/j, where J is
some suitably chosen interval. ut



Chapter 5
Weighted k-nearest neighbor density estimates

5.1 Linear combinations

There are different ways to weigh or smooth the k-nearest neighbor density estimate.
Some key ideas are surveyed in this chapter. For some of them, consistency theorems
are stated.

Let fnk denote the k-nearest neighbor estimate, where we temporarily make the
dependence upon k explicit. One could consider linear combinations in a number of
ways. If .vn1; : : : ; vnn/ is a probability weight vector (i.e., each vnj is nonnegative
and

Pn
jD1 vnj D 1), then a simple linear combination could be envisaged,

fn D
nX

jD1
vnjfnj:

Sufficient conditions for pointwise and uniform consistency can be derived almost
effortlessly from the results of the preceding chapters.

There are, of course, many other ways of combining k-nearest neighbor estimates
(see, e.g., Breiman et al., 1977; Moore and Yackel, 1977b; Rodríguez and Van
Ryzin, 1985, 1986; Rodríguez, 1986, 2001; Biau et al., 2011). One of particular
interest is the inverse average:

1

fn
D

nX

jD1

vnj

fnj
:

In general, for p 2 R, p ¤ 0, we may consider

.fn/
p D

nX

jD1
vnj.fnj/

p

© Springer International Publishing Switzerland 2015
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as a way of averaging. All of these are consistent under modest conditions on
.vn1; : : : ; vnn/. It provides a bottomless source of student exercises. For simplicity,
we only deal with the case p D 1.

5.2 Weak consistency

For now, we set

fn D
nX

jD1
vnjfnj;

where .vn1; : : : ; vnn/ is a probability weight vector (by convention, we let vnj D 0

for j > n). As in the previous chapters, the distribution of the target density f is
denoted by �. Our first result concerns the weak consistency of fn. (d�e is the ceiling
function.)

Theorem 5.1. Assume that, for all " > 0,

X

j�d1="e
vnj C

X

j�d"ne
vnj ! 0 as n ! 1:

(Or, equivalently, that there exist sequences fkg D fkng and f`g D f`ng with k � `,
such that k ! 1, `=n ! 0, and

P`
jDk vnj ! 1.) Then, for �-almost all x 2 R

d,

fn.x/ ! f .x/ in probability

and indeed, if additionally vn1 D vn2 D 0, then, still for �-almost all x 2 R
d,

E jfn.x/ � f .x/j ! 0:

The proof of Theorem 5.1 starts with two lemmas.

Lemma 5.1. If x 2 R
d is a Lebesgue point of f , then, for all " 2 .0; 1/,

lim inf
n!1 kX.d"ne/.x/ � xk > 0 with probability one:

Proof. If x is not in the support of�, then with probability one kX.d"ne/.x/�xk � �x

for some positive constant �x, and the result follows. So, let us assume that x belongs
to the support of �. In this case, for ı > 0, �.B.x; ı// > 0 and

P
˚kX.d"ne/.x/ � xk < ı� D P

˚
Bin.n; � .B.x; ı/// � d"ne�;

which tends to zero exponentially quickly in n by Chernoff’s bound (see Theo-
rem 20.5 in the Appendix) whenever �.B.x; ı// < ". But, since x is a Lebesgue
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point of f , �.B.x; ı//=.Vdı
d/ ! f .x/ as ı # 0 by the Lebesgue differentiation

theorem (Theorem 20.18). Thus, such a choice of ı exists and we conclude the
proof by the Borel-Cantelli lemma. ut
Lemma 5.2. For any x 2 R

d and any " 2 .0; 1/,

lim sup
n!1

kX.d"ne/.x/ � xk < 1 with probability one:

Proof. For 0 < K < 1,

P
˚kX.d"ne/.x/ � xk > K

� D P
˚
Bin.n; � .B.x;K/// < d"ne�;

which tends to zero exponentially quickly in n by Chernoff’s bound whenever
�.B.x;K// > "C 1

n . As K " 1, �.B.x;K// " 1, and thus, for all n large enough,
it is possible to choose such a K. We conclude by the Borel-Cantelli lemma. ut
Proof (Theorem 5.1). We leave the proof of the last part to the interested reader. Let
us note only that it requires at all Lebesgue points x of f ,

sup
n�1

max
1�j�n

Efnj.x/ < 1:

For the first part, let x be a Lebesgue point of f . Define

H.�/ D sup
0<ı��

ˇ̌
ˇ̌� .B.x; ı//
� .B.x; ı//

� f .x/

ˇ̌
ˇ̌ ;

and recall that H.�/ ! 0 as � # 0. We write R.j/.x/ D kX.j/.x/ � xk, and define

U.j/ D �
�
B
�
x;R.j/.x/

��
:

We have, for any " 2 .0; 1=2/,
ˇ̌
ˇ̌
ˇ
ˇ

nX

jD1
vnjfnj.x/ � f .x/

ˇ̌
ˇ̌
ˇ
ˇ

�
ˇ̌
ˇ̌
ˇ
ˇ

X

j�d"ne
vnj
�
fnj.x/ � f .x/

�
ˇ̌
ˇ̌
ˇ
ˇ

C
� X

j�d"ne
vnj

��
f .x/C max

j�d"ne
fnj.x/

�

defD I C II:

By assumption, the first factor of II is o.1/. The second factor of II is not more than

f .x/C 1

VdRd
.d"ne/.x/

:
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By Lemma 5.1,

lim sup
n!1

1

Rd
.d"ne/.x/

< 1 with probability one:

Therefore, II ! 0 almost surely. Next, using the representation

fnj.x/ D �
�
B
�
x;R.j/.x/

��

�
�
B
�
x;R.j/.x/

�� � j=n

U.j/

D
h
f .x/C�H

�
R.d"ne/.x/

� i � j=n

U.j/
; 1 � j � d"ne;

where� from here on represents an arbitrary random variable with j�j � 1, we see
that

I � f .x/

ˇ
ˇ̌
ˇ̌
ˇ

X

j�d"ne
vnj

�
j=n

U.j/
� 1

�
ˇ
ˇ̌
ˇ̌
ˇ
C H

�
R.d"ne/.x/

� X

j�d"ne

�
vnj � j=n

U.j/

�
:

Recall from Lemma 5.2 that lim supn!1 H.R.d"ne/.x// < 1 with probability one.
Inspection of that proof shows that if f .x/ > 0, then

lim sup
n!1

H
�
R.d"ne/.x/

� � K" < 1 with probability one;

where K" is any constant strictly larger than H./, with  the solution of

� .B.x; // D 2":

If x belongs to the support of �, then, clearly, K" is as small as desired by choice
of ". On the other hand, if x is not in the support of �, then f .x/ D 0 (since x is
a Lebesgue point) and R.1/.x/ � �x for some positive constant �x, with probability
one, and we have

fnj.x/ � j

nVd�d
x
:

Thus, in this case,

I D
X

j�d"ne
vnjfnj.x/ � "C 1=n

Vd�d
x
;

which again is as small as desired by choice of ".
Therefore, the proof is complete if

nX

jD1

�
vnj � j=n

U.j/

�
D OP.1/ (5.1)
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and if

nX

jD1
vnj

ˇ
ˇ̌
ˇ

j=n

U.j/
� 1

ˇ
ˇ̌
ˇ D oP.1/: (5.2)

We treat (5.1) first, bounding it by

max
1�j�n

j=n

U.j/
:

For fixed t > 1, we have

P

	
max
1�j�n

j=n

U.j/
> t



�

nX

jD1
P

	
U.j/ <

j

nt




D
nX

jD1
P

n
Bin

�
n; j

nt

�
� j
o

�
nX

jD1
exp

�
j � j

t
� j log t

�

.by Chernoff’s bound/

�
1X

jD1
e��j;

where � D 1=t C log t � 1, which is positive for t > 1. Hence,

P

	
max
1�j�n

j=n

U.j/
> t



� e��

1 � e�� ;

and therefore

nX

jD1

�
vnj � j=n

U.j/

�
D OP.1/:

Finally, we turn to (5.2), which is bounded from above by

�
1C max

1�j�n

j=n

U.j/

� X

j�d1=ıe
vnj C max

j�d1=ıe

ˇ̌
ˇ̌ j=n

U.j/
� 1

ˇ̌
ˇ̌ defD III C IV;

where ı > 0 will be chosen later. Now, by identity (5.1), one has III=oP.1/ sinceP
j�d1=ıe vnj D o.1/ for any fixed ı > 0. Finally, for t > 0 arbitrary small,
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PfIV > tg �
X

j�d1=ıe

�
P

	
U.j/ <

j

n.1C t/



C P

	
U.j/ >

j

n.1 � t/


�
:

Applying Chernoff’s bound to both probabilities on the right, we have

PfIV > tg �
X

j�d1=ıe

�
e�ˇj C e�� j

�
;

where

ˇ D 1

1C t
C log.1C t/ � 1 .which is > 0/

and

� D 1

1 � t
C log.1 � t/ � 1 .which is > 0/:

So,

PfIV > tg � e�ˇ=ı

1 � e�ˇ C e��=ı

1 � e�� ;

which is as small as desired by choice of ı. This concludes the proof. ut

5.3 Strong consistency

Strong pointwise and uniform consistency of weighted estimates can be problematic
if too much weight is attached to the misbehaving members in the family. We offer
a strong convergence theorem that takes care of this in a minimal manner—the most
worrisome fnj’s are of course those with small values of j. The technical condition
imposed is that for all fixed ı > 0,

X

n�1

�
log n

X

j�d.1=ı/ log ne
vnj

�
< 1: (5.3)

An example of .vn1; : : : ; vnn/ satisfying (5.3) is one in which vnj D 1=k for j � k,
where k= log2 n ! 1. Another example has vnj D 0 for j < k, and k= log n ! 1.

Theorem 5.2. If in addition to the conditions of Theorem 5.1, we have (5.3), then,
for �-almost all x 2 R

d,

fn.x/ ! f .x/ almost surely:
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Proof. The proof is as that of the previous theorem, in which the only modification
needed is in (5.1)–(5.2), which have to be replaced by

nX

jD1

�
vnj � j=n

U.j/

�
D O.1/ almost surely; (5.4)

and

nX

jD1
vnj

ˇ̌
ˇ̌ j=n

U.j/
� 1

ˇ̌
ˇ̌ ! 0 almost surely: (5.5)

This is achieved by replacing 1=ı in the proof throughout by .1=ı/ log n. We bound
(5.4) by

�
max

j�d.1=ı/ log ne
j=n

U.j/

� X

j�d.1=ı/ log ne
vnj C max

j�d.1=ı/ log ne
j=n

U.j/

defD V C VI:

Now, note that for t > 1,

PfVI > tg �
X

j�d.1=ı/ log ne
e��j;

where � D 1=t C log t � 1. Thus,

PfVI > tg � n��=ı

1 � e�� ;

which is summable in n as soon as t is so large that � > ı. Therefore, with
probability one, for all n large enough, VI � t.

Next, for t0 > 1,

P

	
max

j�d.1=ı/ log ne
j=n

U.j/
> t0



�
�

log n

ı

�
e��0

;

where �0 D 1=t0 C log t0 � 1, and therefore, since �0 � log.t0=e/;

P

	
V > t0

X

j�d.1=ı/ log ne
vnj



�
�

log n

ı

�
e

t0
:

Set

t0 D t
P

j�d.1=ı/ log ne vnj
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and note, since

X

j�d.1=ı/ log ne
vnj D o

�
1

log n

�
(5.6)

by condition (5.3), that t0 > 1 for all n large enough. Then

PfV > tg � 2e

ıt

� X

j�d.1=ı/ log ne
vnj

�
log n:

By condition (5.3), this is summable in n. Thus, with probability one, for all n large
enough,

V C VI � 2t;

and t was arbitrary. Finally, we deal with (5.5) as we did with (5.2):

nX

jD1
vnj

ˇ̌
ˇ̌ j=n

U.j/
� 1

ˇ̌
ˇ̌ �

�
1C max

1�j�n

j=n

U.j/

� X

j�d.1=ı/ log ne
vnj

C max
j�d.1=ı/ log ne

ˇ̌
ˇ
ˇ

j=n

U.j/
� 1

ˇ̌
ˇ
ˇ

defD VII C VIII:

Using (5.4) and (5.6), we see that VII D o.1/ with probability one. For arbitrary
small t > 0,

PfVIII > tg � e�.ˇ=ı/ log n

1 � e�� C e�.�=ı/ log n

1 � e��

using the same ˇ and � introduced in the previous proof. This is summable in n if
ı < min.ˇ; �/. Thus, for such ı, with probability one and for all n large enough,

VII C VIII < 2t:

Again, t was arbitrary, and therefore,

VII C VIII ! 0 almost surely

for all " > 0 small enough. This concludes the proof. ut
We conclude this section with the following simple theorem:
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Theorem 5.3. Assume that f is uniformly continuous. If there exist sequences fkg D
fkng and f`g D f`ng such that k � `, k= log n ! 1, `=n ! 0, and vnj D 0 for j < k
or j > `, then

sup
x2Rd

jfn.x/ � f .x/j ! 0 almost surely:

Proof. Verify the proof for the standard k-nearest neighbor estimate (Theorem 4.2),
and note that for any � > 0, " > 0,

X

n�1
n�
 

max
k�j�`P

	
sup
x2Rd

ˇ̌
fnj.x/ � f .x/

ˇ̌
> "


!

< 1: (5.7)

The theorem then follows by the union bound without further work. ut
By (5.7), we also have the following result, which permits us to select the value

of k in the k-nearest neighbor estimate depending upon the data.

Proposition 5.1. Let Kn D Kn.X1; : : : ;Xn/ be a random variable such that almost
surely, Kn=log n ! 1 and Kn=n ! 0. Then, if f is uniformly continuous,

sup
x2Rd

jfn.x/ � f .x/j ! 0 almost surely;

where fn is the k-nearest neighbor density estimate with k D Kn.

Proof. Note that there exist sequences fkg and f`g such that k � `, k= log n ! 1,
`=n ! 0, and with probability one, k � Kn � `. Thus, for " > 0, writing fnk for the
k-nearest neighbor estimate,

P

	
sup
x2Rd

jfnKn.x/ � f .x/j > " i.o.



� PfKn < k i.o.g C PfKn > ` i.o.g

C P

	
max
k�j�` sup

x2Rd

ˇ̌
fnj.x/ � f .x/

ˇ̌
> " i.o.



:

The first two probabilities are zero. The last one is zero by the Borel-Cantelli
lemma if

X

n�1
P

	
max
k�j�` sup

x2Rd

ˇ̌
fnj.x/ � f .x/

ˇ̌
> "



< 1:

But the sum is bounded by

X

n�1

 

n max
k�j�`P

	
sup
x2Rd

ˇ̌
fnj.x/ � f .x/

ˇ̌
> "


!

< 1;

which is finite in view of (5.7). ut



Chapter 6
Local behavior

6.1 The set-up

No study of a density estimate is complete without a discussion of the local behavior
of it. That is, given a certain amount of smoothness at x, how fast does fn.x/ tend to
f .x/? It is clear that for any sequence of density estimates, and any sequence an # 0,
however slow, there exists a density f with x a Lebesgue point of f , such that

lim sup
n!1

E jfn.x/ � f .x/j
an

� 1:

We will not show this, but just point to a similar theorem for the total variation error
in density estimation (Devroye, 1987). However, under smoothness conditions, there
is hope to get useful rates of convergence.

Let us begin by noting that to estimate f .x/ using only kX1 � xk; : : : ; kXn � xk,
we might as well focus on the estimation of the density g of Y

defD kX � xkd at 0. So,
the data are Y1; : : : ;Yn with Yi D kXi � xkd, where the exponent d is chosen for a
reason that will become apparent below. For d D 1, we have

g.y/ D f .x C y/C f .x � y/; y � 0;

and then, g.0/ D 2f .x/. For general d, if x is a Lebesgue point of f ,

g.0/ D lim
�#0

P
˚kX � xkd � �

�

�
D lim

�#0
�
�
B.x; �1=d/

�

�
D Vdf .x/;

where � is the probability measure for f .
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The most essential tool in our study is Taylor series expansion, which states that
if g has ` � 0 continuous derivatives g.0/.0/; : : : ; g.`/.0/ at 0, then

g.y/ D
X̀

jD0

g.j/.0/

jŠ
yj C o.y`/; y # 0:

If f is a smooth density on R
d, d � 1, then there is a multivariate Taylor series of

f around x (see, e.g., Giaquinta and Modica, 2009), which translates into a different
but related expansion for g. For d D 1, if f has ` continuous derivatives at x, then,
in view of

g.y/ D f .x C y/C f .x � y/;

we have

g.`/.0/ D
	
2f .`/.x/ for ` even
0 for ` odd,

so all odd terms are absent. For d > 1 and ` D 2, the correspondence is as follows.
Let x D .x1; : : : ; xd/

> 2 R
d, set

f 0.x/ D
�
@f

@x1
.x/; : : : ;

@f

@xd
.x/
�>

;

and let f 00.x/ be the d � d Hessian matrix of partial derivatives

f 00.x/ D
�

@2f

@xj@xj0
.x/
�

1�j;j0�d

;

where > denotes transposition and vectors are in column format. Then the multi-
variate Taylor series of order two at x is given by

f .x C y/ D f .x/C f 0.x/>y C 1

2
y>f 00.x/y C o.kyk2/; kyk # 0:

Now, g.�/ is the derivative with respect to � of

P
˚kX � xkd � �

� D
Z

B.0;�1=d/

f .x/dy C
Z

B.0;�1=d/

f 0.x/>y dy

C 1

2

Z

B.0;�1=d/

y>f 00.x/y dy C
Z

B.0;�1=d/

o.kyk2/dy

D f .x/Vd�C 0C Vd�

2

Z

B.0;�1=d/

y>f 00.x/y
dy

Vd�
C o.�1C2=d/:



6.1 The set-up 55

The remaining integral can be written as

Vd�

2
EŒY>f 00.x/Y�;

where Y is uniformly distributed inside B.0; �1=d/. By rescaling, this is

Vd�
1C2=d

2
EŒZ>f 00.x/Z�;

where Z is uniform in B.0; 1/. It is a straightforward exercise to show that

Z
DD U1=d � .N1; : : : ;Nd/qPd

iD1 N2
i

;

where N1; : : : ;Nd are i.i.d. standard normal random variables, and U is uniform
Œ0; 1� and independent of the Ni’s. Clearly,

E

"
NjNj0

Pd
iD1 N2

i

#

D
	
1
d if j D j0
0 if j ¤ j0.

Therefore,

Vd�
1C2=d

2
EŒZ>f 00.x/Z� D Vd�

1C2=d

2d
� EU2=d �

dX

jD1

@2f

@x2j
.x/

D Vd�
1C2=d

2d
� 1

1C 2
d

� tr.f 00.x//

D Vd

2d C 4
� tr.f 00.x//�1C2=d;

where tr.
/ stands for the trace (i.e., the sum of the elements on the main diagonal)
of the square matrix 
. We conclude that for general d, if f is twice continuously
differentiable in a neighborhood of x, and y # 0,

g.y/ D d

dy

�
f .x/Vdy C tr.f 00.x//

Vd

2d C 4
y1C2=d


C o.y2=d/

D f .x/Vd C tr.f 00.x//
Vd

2d
y2=d C o.y2=d/:

These expressions are our points of departure. Although g is univariate, notice the
dependence upon d in the expansion about 0.
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6.2 The first example: univariate case

In this section, we discuss the estimation of g.0/ when d D 1, assuming that f (and
thus g) has two continuous derivatives in a neighborhood of x. Since, for y # 0,

g.y/ D g.0/C g00.0/
2

y2 C o.y2/;

we have

� .B.x; �// D
Z �

0

g.y/dy D g.0/�C g00.0/
6

�3 C �3w.�/;

where w.�/ D o.1/ as � # 0. Four cases can be considered according to whether
g.0/ D 0, g.0/ ¤ 0, combined with g00.0/ D 0, g00.0/ ¤ 0. The most important one
is g.0/ ¤ 0, g00.0/ ¤ 0.

As in the previous chapters, we define X.i/.x/, 1 � i � n, by reordering the
kXi � xk’s, so that

kX.1/.x/ � xk � � � � � kX.n/.x/ � xk:
We write simply Y.1/ � � � � � Y.n/, with

Y.i/ D kX.i/.x/ � xk:
Recall from Chapter 1 that

�
�
�
B.x;Y.1//

�
; : : : ; �

�
B.x;Y.n//

� � DD �
U.1/; : : : ;U.n/

�
;

where U1; : : : ;Un are i.i.d. uniform Œ0; 1� random variables. Thus, in particular, we
have

U.k/
DD g.0/Y.k/ C g00.0/

6
Y3.k/ C Zk;

where Zk D Y3.k/w.Y.k//. When g.0/ ¤ 0, inversion of this formula yields

Y.k/
DD U.k/

g.0/
� g00.0/
6g4.0/

U3
.k/ C U3

.k/�.U.k//;

where �.�/ D o.1/ as � # 0 is a given function. We write Wk D U3
.k/�.U.k//.

The ordinary k-nearest neighbor estimate of g.0/ is

gn.0/ D k=n

Y.k/
:
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Thus,

1

gn.0/
D Y.k/

k=n
DD 1

g.0/

U.k/

k=n
� g00.0/
6g4.0/

U3
.k/

k=n
C Wk

k=n

and

1

gn.0/
� 1

g.0/
DD 1

g.0/

�
U.k/

k=n
� 1

�
� g00.0/
6g4.0/

U3
.k/

k=n
C Wk

k=n

defD I C II C III:

We recall that, by Theorem 1.4,

U.k/

k=n
! 1 in probability when k ! 1:

Thus,

II
.k=n/2

! � g00.0/
6g4.0/

in probability:

Recall also (Lemma 2.2) that as k=n ! 0, U.k/ ! 0 almost surely, and thus,

Wk

.k=n/3
! 0 almost surely;

so that

III
.k=n/2

! 0 almost surely:

Finally, we turn to I and recall (Corollary 1.1) that

U.k/
DD E1 C � � � C Ek

E1 C � � � C EnC1
;

where E1; : : : ;EnC1 are independent standard exponential random variables.
Decompose I as

�
n

E1 C � � � C EnC1
� 1

�
E1 C � � � C Ek

g.0/k
C E1 C � � � C Ek � k

g.0/k
:

By an application of the central limit theorem and the delta method (see, e.g., van der
Vaart, 1998),

n

E1 C � � � C EnC1
� 1 D OP

�
1p
n

�
:

In addition, by the law of large numbers,

E1 C � � � C Ek

k
! 1 in probability if k ! 1:
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Next, the central limit theorem and Lemma 20.1 in the Appendix yield

E1 C � � � C Ek � k

k
DD 1p

k

�
N C oP.1/

�
;

where oP.1/ is a random variable tending to 0 in probability as k ! 1, and N is a
standard normal random variable possibly dependent on the oP.1/ term.

Combining all terms, we obtain, if k ! 1 and k=n ! 0,

I C II C III
DD N

g.0/
p

k
C oP

�
1p
k

�
� g00.0/
6g4.0/

�
k

n

�2
C oP

 �
k

n

�2!

:

Using inversions and simple manipulations of OP and oP terms, we finally conclude:

Lemma 6.1. Let gn.0/ be the k-nearest neighbor density estimate of g.0/. If
g.0/ ¤ 0, k ! 1 and k=n ! 0, then

g.0/

gn.0/
� 1 DD Np

k
� g00.0/
6g3.0/

�
k

n

�2
C oP

 
1p
k

C
�

k

n

�2!

;

where N is a standard normal random variable. Moreover,

gn.0/

g.0/
� 1 DD Np

k
C g00.0/
6g3.0/

�
k

n

�2
C oP

 
1p
k

C
�

k

n

�2!

:

This lemma suggests the following definition:

Definition 6.1. When g.0/ ¤ 0, we say that the rate of convergence of the k-nearest
neighbor density estimate gn.0/ of g.0/ is an if

gn.0/

g.0/ � 1
an

D! W

for some random variable W that is not identically 0 with probability one.

For example, if k � � n˛ , 0 < ˛ < 1, � > 0, then Lemma 6.1 implies that

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

gn.0/
g.0/ �1
n�˛=2

D! Np
�

if 0 < ˛ < 4
5

gn.0/
g.0/ �1
n2˛�2

D! g00.0/

6g3.0/
�2 if 4

5
< ˛ < 1

gn.0/
g.0/ �1
n�2=5

D! Np
�

C g00.0/

6g3.0/
�2 if ˛ D 4

5
.
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Thus, if g00.0/ ¤ 0, the best possible rate for the k-nearest neighbor estimate is
n�2=5, which is achieved for k such that k � � n4=5, � > 0. If g00.0/ D 0, then there
exists a sequence fkg D fkng such that the rate o.n�2=5/ is achievable. However,
without further conditions on g, one cannot precisely determine the best possible
rate.

This leaves us with the choice of � . There are several possibilities, all dependent
upon how one interprets the limit random variable

W D Np
�

C g00.0/
6g3.0/

�2:

One can opt to minimize PfjWj � cg for constant c, or minimize EjWjˇ for suitable
ˇ. For example, minimizing

EW2 D 1

�
C g00.0/2

36g6.0/
�4

with respect to � yields the choice

� D
�
9g6.0/

g00.0/2

�1=5
;

whence k � � n4=5. Note that the quantity jg00.0/j
g3.0/

is scale-invariant and measures the
“difficulty” of the estimation problem at hand.

6.3 Bias elimination in weighted k-nearest neighbor estimates

Still for d D 1, consider the weighted estimate

1

gn.0/
D ˛

gnk.0/
C 1 � ˛

gn;2k.0/
; (6.1)

where ˛ 2 R is a weight and gnk is the k-nearest neighbor estimate of g.0/ (it is
implicitly assumed that 1 � k � n=2). We can also consider

gn.0/ D ˛gnk.0/C .1 � ˛/gn;2k.0/; (6.2)

but the conclusions will be the same and are thus left to the reader.

Theorem 6.1. Assume that g has two continuous derivatives in a neighborhood of
0 and g.0/ ¤ 0. Then, if we take ˛ D 4=3, there exists a choice of k D kn such that
the rate of convergence of the weighted nearest neighbor density estimates (6.1)
and (6.2) is o.n�2=5/.



60 6 Local behavior

Without further conditions on g, we cannot pin down the rate of convergence. On
the other hand, with additional smoothness assumptions on g, we could determine
that better rate, but are then faced with the fact that there exists another weighted
estimate with an even better (but undetermined) rate of convergence.

Proof (Theorem 6.1). As in the proof of the previous section, we obtain

g.0/

gn.0/
� 1 DD ˛

�
U.k/

k=n
� 1

�
C .1 � ˛/

�
U.2k/

2k=n
� 1

�

� g00.0/
6g3.0/

"

˛

�
k

n

�2
C .1 � ˛/

�
2k

n

�2#

C oP

 �
k

n

�2!

defD I C II C III:

We can make II D 0 by setting ˛C 4.1� ˛/ D 0, i.e., ˛ D 4=3. This leaves I. It is
clear that I D OP.1=

p
k/ by the central limit theorem, thereby establishing that

I C II C III D OP

�
1p
k

�
C oP

 �
k

n

�2!

;

if k ! 1 and k=n ! 0. This concludes the proof. ut
Remark 6.1. It is easy to verify that

I
DD 1p

k

�
˛N C 1 � ˛

2
.N C N0/


C oP

�
1p
k

�

where N, N0 are independent standard normal random variables. This can be
rewritten as

I
DD 1p

k

r
1C ˛2

2
N C oP

�
1p
k

�
:

For ˛ ¤ 4=3, if we set k � � n4=5, � > 0, and optimize � as in the previous section
(where EW2 in the limit was minimized), then EW2 is a function of ˛ times the
quantity

�
g00.0/2

g6.0/

�1=5
:

The function of ˛ is a constant times

.1C ˛2/4=5j4 � 3˛j2=5;
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which is minimal on Œ0; 1� for ˛ D .8 � p
19/=15. However, the overall minimum

on R is at ˛ D 4=3. This implies that ordinary convex combinations (˛ 2 Œ0; 1�) are
not as powerful as general combinations (˛ 2 R). ut
Remark 6.2. We leave it to the reader to find the best form of the weights vnj, 1 �
j � n, in the weighted estimate

1

gn.0/
D

nX

jD1

vnj

gnj.0/

that jointly makes the bias 0 and minimizes the variance term (the I in the proof).
ut

Remark 6.3. The weighted estimate with ˛ D 4=3 satisfies

1

gn.0/
D

4
3
Y.k/

k=n
�

1
3
Y.2k/

2k=n
D 8Y.k/ � Y.2k/

6k=n
:

This is negative if 8Y.k/ < Y.2k/. However, for any x (in the support of � or not), if
k=n ! 0, then there exist n0.x/ > 0 and �.x/ > 0 such that

Pf8Y.k/ � Y.2k/ < 0g � e��.x/k; n � n0.x/:

This can be shown using the Chernoff’s bound on binomials (Theorem 20.5) and is
left as an exercise as well. ut

6.4 Rates of convergence in R
d

We have seen in Section 6.1 that if f is twice continuously differentiable in a
neighborhood of x, then Y D kX � xkd has density g on Œ0;1/ given by the
expansion

g.y/ D g.0/C c y2=d C o.y2=d/; y # 0;

where c is a function of d and the trace of the Hessian:

c D tr.f 00.x//
Vd

2d
:

Averaging as for the case d D 1, we have

U.k/
DD g.0/Y.k/ C c

1C 2
d

Y1C2=d
.k/ C Zk;
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with Zk D o.Y1C2=d
.k/ /. Thus, if g.0/ ¤ 0, by inversion,

Y.k/
DD U.k/

g.0/
� c

.1C 2
d /g

2C2=d.0/
U1C2=d
.k/ C Wk;

with Wk D o.U1C2=d
.k/ /. The k-nearest neighbor estimate of g.0/ is

gn.0/ D k=n

Y.k/
;

and so,

g.0/

gn.0/
� 1 DD

�
U.k/

k=n
� 1

�
� c
�
1C 2

d

�
g1C2=d.0/

U1C2=d
.k/

k=n
C Wk

k=n

defD I C II C III:

Arguing as for d D 1, one easily obtains

g.0/

gn.0/
� 1 DD Np

k
� c

.1C 2
d /g

1C2=d.0/

�
k

n

�2=d

C oP

 
1p
k

C
�

k

n

�2=d
!

and

gn.0/

g.0/
� 1 DD Np

k
C c

.1C 2
d /g

1C2=d.0/

�
k

n

�2=d

C oP

 
1p
k

C
�

k

n

�2=d
!

:

When we set k � � n
4

dC4 , � > 0, the right-hand side is W C oP.n
� 2

dC4 /, where

W D n� 2
dC4

"
Np
�

C c
�
1C 2

d

�
g1C2=d.0/

�2=d

#

:

Whenever c ¤ 0, minimizing EW2 yields the following choice for � :

� D
�

g2dC4.0/.d C 2/2d

4dc2ddd

� 1
dC4

:

We conclude that the rate of convergence for the k-nearest neighbor estimate is

n� 2
dC4 if c ¤ 0, and is o.n� 2

dC4 / if c D 0.
As in the case d D 1, combining two estimates to eliminate the bias is possible.

Define, for ˛ 2 R,

1

gn.0/
D ˛

gnk.0/
C 1 � ˛

gn;2k.0/
; (6.3)
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or

gn.0/ D ˛gnk.0/C .1 � ˛/gn;2k.0/: (6.4)

Then note that the bias term for (6.3) becomes

�

"

˛
U1C2=d
.k/

k=n
C .1 � ˛/U1C2=d

.2k/

2k=n

#

;

where

� D � c
�
1C 2

d

�
g1C2=d.0/

:

This term is

�

�
k

n

�2=d �
˛ C .1 � ˛/22=d

�C oP

 �
k

n

�2=d
!

:

The main contribution to this bias term is 0 when

˛ D 41=d

41=d � 1 :

Theorem 6.2. Assume that f is twice continuously differentiable in a neighborhood
of x and f .x/ ¤ 0. Then, if we take

˛ D 41=d

41=d � 1 ;

there exists a choice of k D kn such that the rate of convergence of the weighted

nearest neighbor density estimates (6.3) and (6.4) is o.n� 2
dC4 /.

Remark 6.4. If we consider the standard k-nearest neighbor density estimate fn,
then our results show that whenever f is twice continuously differentiable in a
neighborhood of x and f .x/ ¤ 0, then

p
k

fn.x/ � f .x/
f .x/

D! N;

provided k ! 1 and k
n4=.dC4/ ! 0. This is precisely the asymptotic normality result

of Moore and Yackel (1977a) (see also Mack, 1980, and Berlinet and Levallois,
2000). Note however that the condition k

n4=.dC4/ ! 0 is less severe than the condition
k

n2=.dC2/ ! 0 that is imposed by these authors, yet with a less stringent smoothness
assumption on f .
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Following Biau et al. (2011), it is also possible to analyze the mean squared error
development of fn and show that if k ! 1 and k=n ! 0, then

E jfn.x/ � f .x/j2 D f 2.x/
k

C c2x
f 4=d.x/

�
k

n

�4=d

C o

 
1

k
C
�

k

n

�4=d
!

;

where

cx D tr.f 00.x//
2.d C 2/V2=d

d

:

For further references, see Mack and Rosenblatt (1979) and Hall (1983). Thus, for
such x, assuming that cx ¤ 0, and for the choice

k D min

���
df 2C4=d.x/

4c2x

�
n

4
dC4

�
; n

�
;

we have

E jfn.x/ � f .x/j2 D x n� 4
dC4 C o

�
n� 4

dC4
�
;

where

x D
�
1C d

4

��
4f 4=d.x/c2x

d

� d
dC4

:

ut

6.5 Behavior of f near x

The preceding discussions show the importance of the behavior of f near x. We can
in general imagine that

g.y/ D g.0/C �yˇ C o.yˇ/; y # 0;
where ˇ > 0, � ¤ 0. Of course, other behaviors are possible as well, such as

g.y/ D g.0/C �

logˇ.1=y/
C o

�
1

logˇ.1=y/

�

or

g.y/ D g.0/C e��=yˇ C o
�
e��=yˇ

�
;
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and, indeed, many other situations can occur. A case-by-case study is clearly not
productive—what one needs is a manner of adjusting k locally based on the data, so
that one adapts automatically to the local smoothness.

Classically, one considers Taylor series expansions and assumes that the last
term is continuous. Suppose, to simplify, that d D 1 and that f has 2` continuous
derivatives at x, ` � 1. Then g has the Taylor series expansion

g.y/ D
X̀

jD0

g.2j/.0/

.2j/Š
y2j C o.y2`/; y # 0:

Arguing as in the previous sections, it is easy to see that the rate of convergence of

the ordinary k-nearest neighbor estimate is n� 2m
4mC1 , where

m D inf
˚
1 � j � ` W g.2j/.0/ ¤ 0

�
;

assuming at least one of the coefficients in the Taylor series expansion is nonzero.

If g.2j/.0/ D 0, 1 � j � `, then the rate is o.n� 2`
4`C1 /.

Most often, m D 1, and we rediscover the n�2=5 rate. However, given that we
know that 2` continuous derivatives exist, even if all coefficients in the Taylor
series are nonzero, we can define a weighted k-nearest neighbor estimate with rate

o.n� 2`
4`C1 /, where, once again, the precise rate is impossible to pin down without

further knowledge of the behavior of g near 0. It is a straightforward exercise to
derive such weighted estimates. Indeed, we combine as follows, using ` C 1 fixed
weights v1; : : : ; v`C1:

1

gn.0/
D

`C1X

jD1

vj

gn;jk.0/
:

If k ! 1, k=n ! 0, and
P`C1

jD1 vj D 1, then a slight adaptation of Theorem 5.1
shows that this estimate is weakly consistent at 0, even if some weights are negative.
On the other hand, for 1 � j � `, we want the bias terms to disappear. A sketch of
how this is done is as follows. Define

g?.y/ D
X̀

jD0

g.2j/.0/

.2j C 1/Š
y2jC1;

and note that
ˇ̌
ˇ̌g?.y/ �

Z y

0

g.z/dz

ˇ̌
ˇ̌ D o.y2`C1/; y # 0:

Then, by Lagrange inversion of polynomials, there exists a function h on Œ0;1/

with

h.z/ D
X̀

jD0

h?.2j/.0/

.2j C 1/Š
z2jC1 C o.z2`C1/; z # 0;
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such that locally, as y # 0, since g? is invertible in a small enough neighborhood of
0, g?.y/ D z if and only if z D h.y/. The coefficients in the Taylor series expansion
of h depend upon those of g. We thus have for U.jk/, 1 � j � `C 1, jointly,

U.jk/
DD g?.Y.jk//C o.Y2`C1.jk/ /;

and therefore,

Y.jk/
DD h.U.jk//C o.U2`C1

.jk/ /:

The bias term in the expansion of 1
gn.0/

� 1
g.0/ is

`C1X

jD1
vj

"
1

jk=n

X̀

iD1

h?.2i/.0/

.2i C 1/Š
U2iC1
.jk/

#

C
oP
�

U2`C1
.`C1/k

�

k=n

D
X̀

iD1

2

4 h?.2i/.0/

.2i C 1/Š

`C1X

jD1
vj

U2iC1
.jk/

jk=n

3

5C oP

 �
k

n

�2`!

:

Using

U.jk/

jk=n
D 1C OP

�
1p
k

�
;

this is

X̀

iD1

h?.2i/.0/

.2i C 1/Š

2

4
`C1X

jD1
vjj

2i

�
k

n

�2i �
1C OP

�
1p
k

��
3

5C oP

 �
k

n

�2`!

D
X̀

iD1

2

4 h?.2i/.0/

.2i C 1/Š

�
k

n

�2i `C1X

jD1
vjj

2i

3

5C OP

�
1p
k

�
C oP

 �
k

n

�2`!

:

The first term disappears if for all 1 � i � `,
P`C1

jD1 vjj2i D 0. Therefore, the rate of

convergence is o.n� 2`
4`C1 / if this constraint holds together with

P`C1
jD1 vj D 1. That

leaves a linear system of `C 1 equations with `C 1 unknowns, and we can provide
a general way of combining k-nearest neighbor estimates:

0

BBB
@

v1
v2
:::

v`C1

1

CCC
A

D

0

BBB
@

1 1 � � � 1

12 22 � � � .`C 1/2

:::
:::

:::
:::

12` 22` � � � .`C 1/2`

1

CCC
A

�10

BBB
@

1

0
:::

0

1

CCC
A
:
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The central matrix is a Vandermonde matrix of the form

V D

0

BB
BBBB
@

1 1 � � � 1

�1 �2 � � � �`C1
�21 �

2
2 � � � �2`C1

:::
:::
:::

:::

�`1 �
`
2 � � � �``C1

1

CC
CCCC
A

;

where �j D j2, 1 � j � `C 1. A simple form of the inverse matrix V
�1 is described

in terms of UL, where U is an upper triangular matrix and L a lower triangular
matrix (see, e.g., Turner, 1966). The explicit forms of U and L are

uij D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

0 if i > j
1 if i D j D 1

jY

kD1

k¤i

1

�i � �k
otherwise,

and

`ij D
8
<

:

0 if i < j
1 if i D j
`i�1;j�1 � `i�1;j�i�1 otherwise,

with the convention `i0 D 0. In more pedestrian terms,

U D

0

BBBB
@

1 1
�1��2

1
.�1��2/.�1��3/ � � �

0 1
�2��1

1
.�2��1/.�2��3/ � � �

0 0 1
.�3��1/.�3��2/ � � �

:::
:::

:::
: : :

1

CCCC
A

and

L D

0

BBBBB
@

1 0 0 0 � � �
��1 1 0 0 � � �
�1�2 �.�1 C �2/ 1 0 � � �

��1�2�3 �1�2 C �1�3 C �2�3 �.�1 C �2 C �3/ 1 � � �
:::

:::
:::

:::
: : :

1

CCCCC
A
:

It is noted that the last line of L does not depend on �`C1 but only on �1; : : : ; �`.
Elementary matrix operations show that

vj D
8
<

:

1CP`C1
iD2

h
.�1/i�1�1 : : : �i�1

Qi
kD2 1

�1��k

i
if j D 1

P`C1
iDj

h
.�1/i�1�1 : : : �i�1

Qi
kD1

k¤j

1
�j��k

i
if 1 < j � `C 1,
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that is,

vj D
8
<

:

1CP`C1
iD2

h
.�1/i�1 Œ.i � 1/Š�2Qi

kD2 1
1�k2

i
if j D 1

P`C1
iDj

h
.�1/i�1 Œ.i � 1/Š�2Qi

kD1

k¤j

1
j2�k2

i
if 1 < j � `C 1.

Finally, using some manipulations on the gamma function that are left to the reader,
we conclude that

vj D 2.�1/j Œ.`C 1/Š�2 .j � ` � 2/
.j C `C 1/Š.` � j C 2/Š

; 1 � j � `C 1:

It is noteworthy that the proof does not require any knowledge of the actual
coefficients of the inverse function h. There may be better combinations if one
allows more than ` C 1 component estimates. This added freedom can be used to
minimize the variance term, which is proportional to

1

k

`C1X

jD1

v2j

j

in case of `C 1 terms, and to

1

k

LX

jD1

v2j

j

in case of L > ` C 1 terms. However, such optimization does not alter the rate of
convergence.

Remark 6.5. To conclude this section, we would like to point out the need to
develop weighted k-nearest neighbor rules that adapt nicely to analytic densities,
i.e., densities f (or g) that are completely determined by their (infinite) Taylor series
expansions, and thus attain a rate of convergence equal to, or at least close to, 1=

p
n.
ut

6.6 A nonlinear k-nearest neighbor estimate

The situation we are considering, by way of example, is that of the estimation of a
density f on R that has 2` continuous derivatives in a neighborhood of x for ` � 1,
and f .x/ > 0. We know that the density g of Y D kX � xk only has even-numbered
terms in its Taylor series:

g.y/ D
X̀

jD0

g.2j/.0/

.2j/Š
y2j C o.y2`/; y # 0:
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According to the previous section, by a linear combination of the ` C 1 k-nearest

neighbor estimates, one can achieve a rate of convergence that is o.n� 2`
4`C1 /. The

computations of the Lagrange inverse of a polynomial are cumbersome. Here we
present a logical and simple nonlinear approach for bias elimination that has the
same rate.

As before, we write Y.1/ � � � � � Y.n/ for the order statistics of the data. We also
know that

�
�
�
B.x;Y.1//

�
; : : : ; �

�
B.x;Y.n//

� � DD �
U.1/; : : : ;U.n/

�
;

a vector of uniform Œ0; 1� order statistics. Integrating g, we thus have, jointly for all
1 � i � n,

U.i/
DD
X̀

jD0

g.2j/.0/

.2j C 1/Š
Y2jC1
.i/ C  .Y.i//;

where .y/ D o.y2`C1/when y # 0. Let us consider once again `C1 order statistics,
Y.k/;Y.2k/; : : : ;Y..`C1/k/, where k D kn ! 1 and k=n ! 0. Observe that Y..`C1/k/ D
OP.k=n/ as n ! 1. Thus, we have

max
1�i�`C1

ˇ̌
 .Y.ik//

ˇ̌ D oP

 �
k

n

�2`C1!
:

In matrix notation,
0

BBBB
@

Y1.k/ Y3.k/ � � � Y2`C1.k/

Y1.2k/ Y3.2k/ � � � Y2`C1.2k/
:::

:::
:::

:::

Y1..`C1/k/ Y3..`C1/k/ � � � Y2`C1..`C1/k/

1

CCCC
A

0

BBBB
@

g.0/.0/
1Š

g.2/.0/
3Š
:::

g.2`/.0/
.2`C1/Š

1

CCCC
A

DD

0

BBB
@

U.k/

U.2k/
:::

U..`C1/k/

1

CCC
A

C oP

��
k
n

�2`C1�

0

BBB
@

1

1
:::

1

1

CCC
A
:

Note that U.i/ is close to i=n. More precisely, we recall (Chapter 1) that

U.ik/

ik=n
! 1 in probability; 1 � i � `C 1;

and that

U.ik/ � ik=n
p

ik=n

DD N C oP.1/; 1 � i � `C 1;
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where N is a standard normal random variable. The exponential representation of
order statistics (Corollary 1.1) implies the following, if we use Gk.i/ to denote
independent Gamma.k/ random variables, 1 � i � `C 1:

�
U.k/;U.2k/ � U.k/; : : : ;U..`C1/k/ � U.`k/

�

DD 1

E1 C � � � C EnC1
�
Gk.1/; : : : ;Gk.`C 1/

�

D 1C OP.1=
p

n/

n

�
Gk.1/; : : : ;Gk.`C 1/

�

DD 1C OP.1=
p

n/

n

�
k C p

k N1 C oP.
p

k/; : : : ; k C p
k N`C1 C oP.

p
k/
�
;

where N1; : : : ;N`C1 are i.i.d. standard normal random variables. Thus, setting up a
matrix representation, we have

0

BB
B
@

U.k/

U.2k/
:::

U..`C1/k/

1

CC
C
A

DD 1COP

�
1

p

n

�

n

0

BB
B
@

k C p
k N1

2k C p
k .N1 C N2/
:::

.`C 1/k C p
k .N1 C � � � C N`C1/

1

CC
C
A

C oP
�p

k
n

�

0

BB
B
@

1

1
:::

1

1

CC
C
A

and thus,

0

BB
BBB
@

U.k/�k=np
k

U.2k/�2k=np
k
:::

U..`C1/k/�.`C1/k=np
k

1

CC
CCC
A

DD 1
n

0

B
BB
@

N1
N1 C N2

:::

N1 C � � � C N`C1

1

C
CC
A

C
�

OP

� p
k

n3=2

�
C oP

�
1
n

��

0

B
BB
@

1

1
:::

1

1

C
CC
A
:

We note that OP.
p

k=n3=2/ D oP.1=n/. We jointly estimate g.2j/.0/, 0 � j � `,
by estimates e2j, 0 � j � `, by mimicking the matrix representation of the U.ik/’s,
replacing U.ik/ by its central value, ik=n. Thus,

0

BBB
B
@

Y1.k/ Y3.k/ : : : Y2`C1.k/

Y1.2k/ Y3.2k/ : : : Y2`C1.2k/
:::

:::
:::

:::

Y1..`C1/k/ Y3..`C1/k/ : : : Y2`C1..`C1/k/

1

CCC
C
A

0

BBB
B
@

e0
1Š
e2
3Š
:::

e2`
.2`C1/Š

1

CCC
C
A

defD

0

BB
B
@

k
n
2k
n
:::

.`C1/k
n

1

CC
C
A
:

Call the Y-matrix just Y. Then



6.6 A nonlinear k-nearest neighbor estimate 71

0

BBB
B
@

e0
1Š
e2
3Š
:::

e2`
.2`C1/Š

1

CCC
C
A

D Y
�1

0

BBB
@

k
n
2k
n
:::

.`C1/k
n

1

CCC
A
: (6.5)

Theorem 6.3. Assume that f has 2` continuous derivatives in a neighborhood of x,
for fixed ` � 1, and f .x/ > 0. Let g be the density of kX � xk. If g.0/ is estimated by
e0, which is defined by (6.5) in terms of the k-th, 2k-th; : : : ; and .`C 1/-th nearest

neighbor, then the rate of convergence of e0 towards g.0/ is o.n� 2`
4`C1 /.

Proof. Note that the errors, jointly, are represented as follows:

0

BBBB
@

g.0/.0/
1Š

� e0
1Š

g.2/.0/
3Š

� e2
3Š

:::
g.2`/.0/
.2`C1/Š � e2`

.2`C1/Š

1

CCCC
A

DD Y
�1

8
ˆ̂̂
<

ˆ̂̂
:

0

BBB
@

U.k/ � k
n

U.2k/ � 2k
n

:::

U..`C1/k/ � .`C1/k
n

1

CCC
A

C oP
��

k
n

�2`C1�

0

BBB
@

1

1
:::

1

1

CCC
A

9
>>>=

>>>;

:

Our representation for the U.ik/-vector then yields

Error
DD Y

�1
C

defD Y
�1

8
ˆ̂̂
<

ˆ̂
:̂

p
k

n

0

BBB
@

N1
N1 C N2

:::

N1 C � � � C N`C1

1

CCC
A

C oP
�p

k
n

�

0

BBB
@

1

1
:::

1

1

CCC
A

C oP
��

k
n

�2`C1�

0

BBB
@

1

1
:::

1

1

CCC
A

9
>>>=

>>>;

:

The error g.0/�e0 is a linear combination of the entries of C D .C1; : : : ;C`C1/>.
It is easy to see that

max
1�i�`C1 jCij D OP

 p
k

n

!

C oP

 �
k

n

�2`C1!
:

Note that Y
�1 consists of signed minors divided by det.Y/. In particular, the

elements of the first row of Y
�1 are signed minors, each of which is in absolute

value smaller than

`ŠY.2`C1/C.2`�1/C���C3
..`C1/k/ D `ŠY.`C1/

2�1
..`C1/k/ D OP

 �
k

n

�.`C1/2�1!
:
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On the other hand, we have
ˇ
ˇ̌
ˇ

1

det.Y/

ˇ
ˇ̌
ˇ D OP

��n

k

�.`C1/2�
(6.6)

(to be shown). Combined with the previous statement, this leads to

jg.0/ � e0j D OP

�n

k

�
�
"

OP

 p
k

n

!

C oP

 �
k

n

�2`C1!#
;

that is,

jg.0/ � e0j D OP

�
1p
k

�
C oP

 �
k

n

�2`!

:

This identity shows that the rate of convergence is o.n� 2`
4`C1 /. Thus, we are done if

we can prove (6.6).
Writing ai D Y.ik/, we note that

Y D

0

BBB
@

a11 a31 � � � a2`C11

a12 a32 � � � a2`C12
:::

:::
:::

:::

a1`C1 a3`C1 � � � a2`C1`C1

1

CCC
A
:

Its determinant is

a1 : : : a`C1 det

0

BBB
@

1 a21 � � � a2`1
1 a22 � � � a2`2
:::

:::
:::

:::

1 a2`C1 � � � a2``C1

1

CCC
A
;

where the latter matrix is a Vandermonde matrix for elements a2i , 1 � i � `C 1. Its
determinant is

Y

1�i<j�`C1
.a2j � a2i / �

Y

1�i<j�`C1

�
.aj � ai/a1

�

�
�

min
1�i<`C1.aiC1 � ai/a1

.`C1
2 /
:

Thus,

det.Y/ � a
`C1C.`C1

2 /
1

�
min

1�i<`C1.aiC1 � ai/

.`C1
2 /
:
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Recall that

Y.ik/
ik=n

! 1

g.0/
in probability:

Therefore, with probability 1 � oP.1/,

det.Y/ �
�

k

2g.0/n

�`C1C2.`C1
2 /

D
�

k

2g.0/n

�.`C1/2
:

We conclude
ˇ̌
ˇ
ˇ

1

det.Y/

ˇ̌
ˇ
ˇ D OP

��n

k

�.`C1/2�
;

as required. ut
Remark 6.6. It is an easy exercise to show that the errors of the estimates of the

derivatives have worst rates of convergence. For g.2/.0/ � e2 we obtain o.n� 2.`�1/
4`C1 /,

and in general, for g.2j/.0/ � e2j, we have the rate o.n� 2.`�j/
4`C1 /, 0 � j � `, that is, for

g.2`/.0/ � e2`, the rate of convergence is o.1/ only. ut



Chapter 7
Entropy estimation

7.1 Differential entropy

Differential entropy, or continuous entropy, is a concept in information theory
related to the classical (Shannon) entropy (Shannon, 1948). For a random variable
with density f on R

d, it is defined by

E .f / D �
Z

Rd
f .x/ log f .x/dx; (7.1)

when this integral exists (with the convention 0 log 0 D 0). If d D 1 and f is the
uniform density on Œ0; a�, a > 0, then its differential entropy is

E .f / D �
Z a

0

1

a
log

1

a
dx D log a:

We see that for a < 1, log a < 0, so that E .f / can be negative. The standard
exponential has E .f / D 1, and the standard Gaussian has E .f / D log

p
2�e, to

give a few examples.
Since u log u � �1=e for all u � 0, the integral of the positive part of the function

�f log f is finite as soon as f has compact support. Thus, for finite support densities,
one can without any worries use (7.1), even when the integral diverges, for in that
case, E .f / D �1. In fact, we have

E .f / � 1

e
� .supp.f // ;

where � denotes the Lebesgue measure on R
d. The situation E .f / D �1 can only

occur for unbounded densities. Indeed, if f � kf k1 < 1, then

E .f / � � log kf k1:
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An example of a density on R with E .f / D �1 is

f .x/ D log 2

x log2 x
; 0 < x < 1=2:

There are other continuous entropies, most prominently the continuous version
of Rényi’s entropy (Rényi, 1961),

Eq.f / D 1

1 � q
log

Z

Rd
f q.x/dx; q ¤ 1:

The quadratic entropy is E2.f / D � log
R
Rd f 2.x/dx. It is a good exercise to prove

that, under appropriate conditions, limq!1 Eq.f / D E .f /. We will not be concerned
with Eq.f / in this book, except perhaps for the observation that most of this chapter
can be recast, with minor modifications, for Eq.f /—see Section 7.5.

Entropy and related concepts play an important role in fields as diverse as phys-
ical sciences, source coding, texture classification, spectroscopy, image analysis,
and signal processing, just to name a few (see, e.g., Leonenko et al., 2008, and the
differential entropy handbook by Michalowicz et al., 2014—the latter monograph
also provides a comprehensive collection of the entropy of most frequently used
probability densities). The basic features of differential entropy are described in
Cover and Thomas (2006). Of importance are its extremal properties: for example,
if the density f is concentrated on the unit interval Œ0; 1�, then the differential entropy
is maximal if and only if f is uniform on Œ0; 1�, and then E .f / D 0; similarly, if the
density has fixed variance, then E .f / is maximized by the Gaussian density.

Our objective in this chapter is to estimate E .f /. This problem has various
applications in goodness-of-fit testing, parameter estimation, quantization theory,
and econometrics. There are numerous estimates in the literature, mostly listed in
the survey by Beirlant et al. (1997). One of these, based on the nearest neighbor
method, was proposed by Kozachenko and Leonenko (1987). This method, while
natural and deceptively simple, has defied a thorough analysis. We hope to shed
some light on this in the present chapter.

Given a generic density estimate fn, the differential entropy can be estimated by
one of two kinds of plug-in estimates,

�
Z

Rd
fn.x/ log fn.x/dx;

or

�1
n

nX

iD1
log fn.Xi/:

In most cases, the density estimate fn itself is consistent. However, the rate of
convergence of the plug-in estimate is limited by the rate of convergence of Efn to f .
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Kozachenko and Leonenko (1987) noted that if one uses an inconsistent estimate
for plug-in, i.e., the 1-nearest neighbor estimate, then one can in fact improve the
rate of convergence of the plug-in estimate.

7.2 The Kozachenko-Leonenko estimate

Let X1; : : : ;Xn (n � 3) be i.i.d. random variables with density f on R
d. Let Ri denote

the distance between Xi and its nearest neighbor among X1; : : : ;Xi�1;XiC1; : : : ;Xn:

Ri D min
j¤i

kXj � Xik:

Let B.x; �/, as always, denote the closed ball centered at x of radius �, and let � be
the probability measure corresponding to f .

Following Kozachenko and Leonenko (1987), we consider the estimate

`n D 1

n

nX

iD1
log

�
1

n� .B.Xi;Ri//

�
;

where the lowercase ` is used as a mnemonic device. The rationale behind this
definition is that

`n D log

�
n � 1

n

�
C 1

n

nX

iD1
log

�
f .�i/
n�1 .Xi/

�
;

where f .�i/
n�1 is the 1-nearest neighbor density estimate of f based on the n � 1

observations X1; : : : ;Xi�1;XiC1; : : : ;Xn. Thus, under appropriate conditions, `n

should not be asymptotically too far from

E log f .X1/ D
Z

Rd
f .x/ log f .x/dx D �E .f /:

This estimate is sensitive to large tails, as the following example explains.

Lemma 7.1. There exists a function f on R with
Z

R

f p.x/ logq f .x/dx D 0; all p; q > 0;

for which E`n D �1 for all n � 2.

Proof. Define

f .x/ D
1X

jD1
1
Œ22

j
;22

j C 1
j.jC1/ �

:
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Observe that

`n D 1

n

nX

iD1
log

�
1

n� .B.Xi;Ri//

�

D 1

n

nX

iD1
logC

�
1

n� .B.Xi;Ri//

�
� 1

n

nX

iD1
log�

�
1

n� .B.Xi;Ri//

�
: (7.2)

It turns out that, for all n,

E

"
1

n

nX

iD1
logC

�
1

n� .B.Xi;Ri//

�#

< 1;

whereas

E

"
1

n

nX

iD1
log�

�
1

n� .B.Xi;Ri//

�#

D 1:

To prove the first claim, denote by X.1/ � � � � � X.n/ the order statistics for the
sample, and observe that

E

"
1

n

nX

iD1
logC

�
1

n� .B.Xi;Ri//

�#

� E logC
�

1

min1<i�n.X.i/ � X.i�1//

�

.since the function logC is increasing/:

The minimum min1<i�n.X.i/ � X.i�1// is stochastically minimized by the same
quantity if f were the uniform distribution on Œ0; 1�—just squish the intervals in the
definition of f together. That quantity behaves like the minimal uniform spacing,
which is asymptotically distributed as E=n2, where E is standard exponential. To
be precise, denote by U.1/ � � � � � U.n/ uniform Œ0; 1� order statistics, and let the
associated spacings Si be

Si D U.i/ � U.i�1/; 1 � i � n C 1;

where, by convention, U.0/ D 0 and U.nC1/ D 1. Recall that, by Theorem 1.3,

.S1; : : : ; SnC1/
DD
 

E1
PnC1

iD1 Ei

; : : : ;
EnC1

PnC1
iD1 Ei

!

;



7.2 The Kozachenko-Leonenko estimate 79

where E1; : : : ;EnC1 are independent standard exponential random variables.
Therefore,

E logC
�

1

min1<i�n.X.i/ � X.i�1//

�
� E log

�
1

min1<i�n.U.i/ � U.i�1//

�

� E log

�
1

min1�i�nC1 Si

�

D E log

�
GnC1

min1�i�nC1 Ei

�
;

where GnC1 D PnC1
iD1 Ei is Gamma.n C 1/ distributed. Therefore,

E logC
�

1

min1<i�n.X.i/ � X.i�1//

�
� E log GnC1 � E log

�
min

1�i�nC1Ei
�

D E log GnC1 � E log

�
E

n C 1

�

.where E is standard exponential/

� log .EGnC1/ � E log E C log.n C 1/

.by Jensen’s inequality/

D 2 log.n C 1/C �; v

where � D �E log E D � R1
0

e�t log t dt D 0:577215664901532 : : : is the Euler-
Mascheroni constant. Thus, the first term in (7.2) satisfies

E

"
1

n

nX

iD1
logC

�
1

n� .B.Xi;Ri//

�#

< 1:

Next, we show that the expectation of the second term of (7.2) is infinite. To this
aim, we write, using the fact that the function log� is decreasing,

E

"
1

n

nX

iD1
log�

�
1

n� .B.Xi;Ri//

�#

� 1

n
E log�

�
1

X.n/ � X.n�1/

�

� 1

n
E log�

�
1

X.n/ � X.n�1/

�
1A

for any event A. Let

Aj D �
Xn D X.n/, Xn 2 j-th interval, X1; : : : ;Xn�1 2 intervals of index < j

�

and

A D
1[

jD2n

Aj:
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For j � 2n, writing ˇj D 22
j � 22j�1 � 1

.j�1/j for the separating gap between the
.j � 1/-st and j-th intervals, we have

E log�
�

1

X.n/ � X.n�1/

�
1Aj � .logˇj/PfAjg

D logˇj

nj.j C 1/

�
1 � 1

j

�n�1

� logˇj

2nj.j C 1/
:

It is easy to see that
P

j�2n
logˇj

j.jC1/ D 1, so that, for every n,

E log�
�

1

X.n/ � X.n�1/

�
1A D 1: ut

Thus, to avoid annoying conditions, we will simply assume that f has compact
support, which in turn implies that

E .f / D �
Z

Rd
f .x/ log f .x/dx

is properly defined—it is either finite or �1. We leave it as an easy exercise to show
that in this case, for all integers p � 1,

Z

Rd
f .x/ logp f .x/dx < 1 ,

Z

Rd
f .x/ logp.f .x/C 1/dx < 1:

The expression on the right-hand side is easier to handle since the integrand is
always nonnegative. Our main result is as follows:

Theorem 7.1. Assume that f has compact support and that
R
Rd f .x/ log.f .x/ C

1/dx < 1. Then

E`n ! �E .f /C �;

where � D 0:577215664901532 : : : is the Euler-Mascheroni constant. Furthermore,
if
R
Rd f .x/ log2.f .x/C 1/dx < 1, then

V`n � c

n
;

where c is a constant that depends upon f . Finally,

`n ! �E .f /C � in probability:
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Letting Ǹ
n D �`nC� , we also conclude from Theorem 7.1 that Ej Ǹ

n�E .f /j2 ! 0

as n ! 1 (mean squared consistency). In the univariate case, Tsybakov and
van der Meulen (1996) established the mean squared O.1=

p
n/ rate of convergence

of a truncated version of `n, for a class of densities with unbounded support
and exponentially decreasing tails, such as the Gaussian density. Some analysis
for bounded f is to be found in Leonenko et al. (2008). It should be noted that
Theorem 7.1 does not settle the deeper question if, for all compact support densities
f , under the unique condition

R
Rd f .x/ log.f .x/ C 1/dx < 1, `n ! �E .f / C � in

probability.

Proof (Theorem 7.1). Define the following maximal functions:

f ?.x/ D sup
�>0

�
� .B.x; �//
� .B.x; �//

�
and g?.x/ D sup

�>0

�
� .B.x; �//
� .B.x; �//

�
:

Observe that

E`n D E log

�
1

n� .B.X1;R1//

�

D E log

�
n� .B.X1;R1//

n� .B.X1;R1//

�
C E log

�
1

n� .B.X1;R1//

�

.which is allowed since both expected values are finite as we will soon see/

defD I C II:

Note that

� log.g?.X1/C 1/ � log

�
� .B.X1;R1//

� .B.X1;R1//

�
� log.f ?.X1/C 1/;

and thus that

�E log.g?.X/C 1/ � I � E log.f ?.X/C 1/

where X
DD X1. Assume that we can verify that

E log.f ?.X/C 1/ D
Z

Rd
f .x/ log.f ?.x/C 1/dx < 1 (7.3)

and that

E log.g?.X/C 1/ D
Z

Rd
f .x/ log.g?.x/C 1/dx < 1: (7.4)
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Then, by the Lebesgue dominated convergence theorem, we conclude that

I ! E log f .X/ D �E .f /

if

� .B.X1;R1//

� .B.X1;R1//
! f .X1/ in probability:

This follows trivially since R1 ! 0 almost surely (by Lemma 2.3) and �-almost all
x are Lebesgue points of f . Finally,

n� .B.X1;R1//
DD nU.1/;

where U.1/ � � � � � U.n/ are uniform Œ0; 1� order statistics (see Chapter 1). One can
easily check (see Example 20.1 in the Appendix) that, for E a standard exponential
random variable,

E log

�
1

nU.1/

�
! E log

�
1

E

�
D �

Z 1

0

e�t log t dt D �:

To verify (7.3) and (7.4), we use the results on maximal functions given
in Section 20.8 of the Appendix. As f has compact support, we know by
Lemma 20.8 that the condition

R
Rd f .x/ log.f .x/ C 1/dx < 1 impliesR

Rd f .x/ log.f ?.x/C 1/dx < 1. Next, denote by K a positive constant such that
the support of f is included in Œ�K;K�d. Then, similarly, since R1 � 2K

p
d, we

can replace � in the definition of g? by the Lebesgue measure truncated to the ball
B.0; 3K

p
d/. By Lemma 20.7, for t > 0,

�
�˚

x 2 R
d W g?.x/ > t

�� � c

t
�
�

B
�
0; 3K

p
d
��

for a universal constant c. Note that

E log.g?.X/C 1/ D
Z 1

0

�
�˚

x 2 R
d W log.g?.x/C 1/ > t

��
dt

D
Z 1

0

�
�˚

x 2 R
d W g?.x/C 1 > et

��
dt

�
Z 1

0

�
�n

x 2 R
d W g?.x/ >

et

2

o�
dt C

Z log 2

0

dt

� 2c�
�

B
�
0; 3K

p
d
�� Z 1

0

e�tdt C log 2

D 2c�
�

B
�
0; 3K

p
d
��C log 2;
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so that (7.4) follows. This concludes the proof of the first part of the theorem. The
third part follows from the first two by Chebyshev’s inequality. The second part is
shown in the next section. ut

7.3 The variance of the Kozachenko-Leonenko estimate

The purpose of this section is to illustrate the power of some simple bounding
methods—the application to the estimate at hand is only of secondary importance.
We will apply the Efron-Stein inequality (Appendix, Theorem 20.10) to show
that under the conditions of Theorem 7.1, V`n D O.1=n/. To do so, a second
independent sample is needed. We let X1; : : : ;Xn;X0

1; : : : ;X
0
n be i.i.d., all distributed

as X, with density f on R
d. Let `n be the Kozachenko-Leonenko estimate, based on

X1; : : : ;Xn. Consider X2; : : : ;Xn, and let R2.1/; : : : ;Rn.1/ be the nearest neighbor
distances

Ri.1/ D min
j>1;j¤i

kXj � Xik:

Define

`n�1 D 1

n

nX

iD2
log

�
1

n� .B .Xi;Ri.1///

�
:

Finally, let R0
1; : : : ;R

0
n be the nearest neighbor distances based on X0

1;X2; : : : ;Xn,
and set

`0
n D 1

n

"

log

�
1

n�
�
B.X0

1;R
0
1/
�
�

C
nX

iD2
log

 
1

n�
�
B.Xi;R0

i/
�

!#

:

We have, by the Efron-Stein inequality,

V`n � n

2
Ej`n � `0

nj2 � nE
�j`n � `n�1j2 C j`n�1 � `0

nj2�

D 2nEj`n � `n�1j2:

Let �i 2 f1; : : : ; ng denote the index of the nearest neighbor of Xi, so that Ri D
kX�i � Xik. We have

n.`n � `n�1/ D log

�
1

n� .B.X1;R1//

�

C
nX

iD2
1Œ�iD1�

�
log

�
1

n� .B.Xi;Ri//

�
� log

�
1

n� .B .Xi;Ri.1///

�



84 7 Entropy estimation

since only those data points Xi, i � 2, with �i D 1 can have Ri.1/ ¤ Ri (and
thus, Ri.1/ > Ri). Squaring and using the cr-inequality (Proposition 20.1 in the
Appendix) shows that

n2.`n � `n�1/2

�
 

1C
nX

iD2
1Œ�iD1�

!

�
"

log2
�

1

n� .B.X1;R1//

�

C2
nX

iD2
1Œ�iD1� log2

�
1

n� .B.Xi;Ri//

�
C 2

nX

iD2
1Œ�iD1� log2

�
1

n� .B .Xi;R1.1///

�#

:

(7.5)

According to Lemma 20.6, since X has a density, with probability one,

1C
nX

iD2
1Œ�iD1� � �d;

where �d is the minimal number of cones of angle �=6 that cover Rd. The first term
on the right of (7.5) is bounded as follows in expectation:

E log2
�

1

n� .B.X1;R1//

�

D E

"�
log

�
n� .B.X1;R1//

n� .B.X1;R1//

�
C log

�
1

n� .B.X1;R1//

��2#

� 2E log2
�
� .B.X1;R1//

� .B.X1;R1//

�
C 2E log2

�
1

n� .B.X1;R1//

�
: (7.6)

Arguing as in the proof of the first part of Theorem 7.1, and using the closeness of

n�.B.X1;R1//
DD nU.1/ to a standard exponential random variable E, one checks

(Example 20.1 in the Appendix) that the last term in (7.6) tends to 2E log2 E D
2.�2 C �2

6
/. The first term in (7.6) is not larger than

2E log2.f ?.X/C 1/C 2E log2.g?.X/C 1/;

where f ? and g? are as in the previous section. Using the arguments of that
proof together with Lemma 20.8, we see that E log2.f ?.X/ C 1/ < 1 ifR
Rd f .x/ log2.f .x/C 1/dx < 1, and that E log2.g?.X/C 1/ < 1, for all densities

f with compact support.
The middle term of (7.5) has expected value

2.n � 1/E
�
1Œ�2D1� log2

�
1

n� .B.X2;R2//

�

D 2.n � 1/ � 1

n � 1E log2
�

1

n� .B.X2;R2//

�
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since .X2;R2/ is independent of 1Œ�2D1�. Therefore, the middle term is in expectation
twice the expectation of the first one.

Finally, we deal with the last term of (7.5). Its expectation is

2.n � 1/E
"

1Œ�2D1� log2
 

1

n�
�
B.X2;R?2/

�

!#

.where R?2 is the second nearest neighbor distance of X2 among X1;X3; : : : ;Xn/

D 2.n � 1/ � 1

n � 1E log2
 

1

n�
�
B.X2;R?2/

�

!

.since .X2;R?2/ is independent of 1Œ�2D1�/:

We bound the last expected value by

2E log2
 
�
�
B.X2;R?2/

�

�
�
B.X2;R?2/

�

!

C 2E log2
 

1

n�
�
B.X2;R?2/

�

!

: (7.7)

Since n�.B.X2;R?2//
DD nU.2/, the last term can be shown to converge to 2E log2 G2

(where G2 is a Gamma.2/ random variable—see Example 20.1 in the Appendix),
which is a finite constant. Finally, the first term of (7.7) is not larger than

2E log2.f ?.X/C 1/C 2E log2.g?.X/C 1/ < 1:

This concludes the proof of Theorem 7.1. ut

7.4 Study of the bias

The estimation of E .f / or
R
Rd f ˛.x/dx from i.i.d. observations has many applica-

tions, and so, the rate with which these functionals can be estimated is crucial.
A thorough introduction and discussion can be found, e.g., in the work of Birgé
and Massart (1995). Considering for example classes of densities bounded away
from 0 and 1 on Œ0; 1� and satisfying the Lipschitz condition

ˇ̌
f .x/ � f .x0/

ˇ̌ � cjx � x0jˇ; (7.8)

for fixed c > 0, ˇ 2 .0; 1�, they showed that most functionals cannot be estimated
at a rate better than

(
n� 4ˇ

4ˇC1 if ˇ < 1
4

1p
n

if 1
4

� ˇ � 1.
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For
R
Rd f 2.x/dx, this was first observed by Bickel and Ritov (1988), who addition-

ally provided estimates with matching rates of convergence (see also Laurent, 1996).
For E .f /, Donoho (1988) discusses the situation.

For the Kozachenko-Leonenko estimate `n, we know (by Theorem 7.1) that
V`n D O.1=n/, so the bias of the error, E`n C E .f / � � , is of interest. The
phenomenon described above will be rediscovered: for sufficiently smooth f on R,
the rate 1=

p
n is achievable, while for unsmooth f , the bias dominates and makes

the rate much slower. We provide a quick computation for the Lipschitz class given
by (7.8), assuming for convenience that f is supported on Œ0; 1�.

The precise study of the bias will not be done here, as it is not essential for
a better understanding. For a simple class of densities, we offer a quick-and-dirty
upper bound.

Theorem 7.2. Let ˛ > 0, ˇ 2 .0; 1�, c > 0 be given constants, and let the density
f be supported on Œ0; 1�, with infx2Œ0;1� f .x/ D ˛ and, for all x; x0 2 Œ0; 1�,

ˇ
ˇf .x/ � f .x0/

ˇ
ˇ � cjx � x0jˇ:

Then

E`n D �E .f /C � C O

�
1

nˇ

�
;

where � D 0:577215664901532 : : : is the Euler-Mascheroni constant.

Corollary 7.1. Under the conditions of Theorem 7.2,

E j`n C E .f / � � j D
8
<

:

O
�
1

nˇ

�
if ˇ < 1

2

O
�

1p
n

�
if 1
2

� ˇ � 1.

In other words, we rediscover the phenomenon described in Birgé and Massart
(1995).

Proof (Theorem 7.2). We look at E`nCE .f /�� . Note that, if R.x/ D min1�i�n jXi�
xj, x 2 R, then

E`nC1 D E log

�
1

2.n C 1/R.X/

�

.where X is independent of X1; : : : ;Xn/

D E log

�
� .B .X;R.X///

2R.X/f .X/

�
C E log f .X/C E log

�
1

.n C 1/� .B .X;R.X///

�

defD I C II C III:
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Clearly, II D �E .f /, which is finite since f is Lipschitz, hence bounded, and f
is supported on Œ0; 1�. Next, recall (Chapter 1) that .n C 1/�.B.X;R.X/// is .n C
1/Beta.1; n/ distributed, i.e., it has density

n

n C 1

�
1 � x

n C 1

�n�1
; 0 � x � n C 1:

For E a standard exponential random variable, we evaluate

IV D ˇ̌
E log ..n C 1/Beta.1; n// � E log E

ˇ̌

by using

e�x n�1
nC1�x �

�
1 � x

n C 1

�n�1 � e� n�1
nC1 x; 0 � x < n C 1:

We have

IV �
ˇ̌
ˇ̌
Z nC1

0

log x

��
1 � x

n C 1

�n�1 � e� n�1
nC1 x

�
dx

ˇ̌
ˇ̌C O

�
1

n

�

�
Z 1

2 log n
.log x/e� n�1

nC1 xdx C
Z 2 log n

0

j log xje� n�1
nC1 x

�
1 � e�

n�1
nC1

x2

nC1�x

�
dx C O

�
1

n

�

� O

�
log n

n2

�
C 1

n C 1 � 2 log n

Z 1

0

j log xje� n�1
nC1 xx2dx C O

�
1

n

�

D O

�
1

n

�
:

Thus, III D O.1=n/ � E log E D O.1=n/C � .
It remains to show that I D O.1=nˇ/. To this aim, note that, for any � > 0,

2�f .X/ � 2c�ˇC1

ˇ C 1
� � .B.X; �// � 2�f .X/C 2c�ˇC1

ˇ C 1
;

and that

� .B.X; �// � 2˛�:

Thus,

I � E log

�
1C 2cRˇC1.X/

2.ˇ C 1/R.X/f .X/

�

� c

.ˇ C 1/˛
ERˇ.X/
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.since log.1C u/ � u for all u � 0/

� c

.ˇ C 1/˛
E
ˇR.X/

.by Jensen’s inequality/:

Therefore, recalling the notation Ri D minj¤i jXi � Xjj, we are led to

I � c

.ˇ C 1/˛
E
ˇ

"
1

n C 1

nC1X

iD1
Ri

#

� c

.ˇ C 1/˛
�
�

2

n C 1

�ˇ
:

Finally, define the event

A D
�

cRˇ.X/ <
.ˇ C 1/˛

2


:

On A, we have

.ˇ C 1/f .X/ � cRˇ.X/ � .ˇ C 1/˛

2
:

Thus,

�I � E log

0

@ 2R.X/f .X/

max
��
2R.X/f .X/ � 2c

ˇC1RˇC1.X/
�
; 2˛R.X/

�

1

A

� E log

�
1C cRˇ.X/

.ˇ C 1/f .X/ � cRˇ.X/

�
1A C E log

�
f .X/

˛

�
1Ac

� E log

�
1C cRˇ.X/

.ˇ C 1/˛=2

�
1A C log

�
 .ˇ; c/

˛

�
PfAcg;

since, by Lemma 7.2 below,

f .x/ �  .ˇ; c/
defD
�
ˇ C 1

2ˇ

� ˇ
ˇC1

c
1

ˇC1 :
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So,

�I � E

�
cRˇ.X/

.ˇ C 1/˛=2


C log

�
 .ˇ; c/

˛

�
E

�
cRˇ.X/

.ˇ C 1/˛=2



.by Markov’s inequality/

D O

�
1

nˇ

�
;

since ERˇ.X/ � . 2
nC1 /

ˇ , as noted above. ut
Lemma 7.2. If f is a Lipschitz density on Œ0; 1� satisfying jf .x/� f .x0/j � cjx � x0jˇ
for c > 0 and ˇ 2 .0; 1�, then

max
x2Œ0;1� f .x/ �  .ˇ; c/

defD
�
ˇ C 1

2ˇ

� ˇ
ˇC1

c
1

ˇC1 :

Proof. Let M D f .0/. Since f .x/ � max.0;M � cjxjˇ/, we have

1 D
Z 1

0

f .x/dx �
Z .M

c /
1=ˇ

�.M
c /
1=ˇ

�
M � cjxjˇ�dx

D 2M

�
M

c

�1=ˇ
� 2c

ˇ C 1

�
M

c

�1C 1
ˇ

D 2M1C 1
ˇ

c1=ˇ
� ˇ

ˇ C 1
:

Therefore,

M �
�
ˇ C 1

2ˇ

� ˇ
ˇC1

c
1

ˇC1 :

ut

7.5 Rényi’s entropy

Rényi’s entropy suggests that one should be able to mimic the Kozachenko-Leonen-
ko methodology for estimating

R
Rd f q.x/dx when q is close to 1. Assume that q > 1,

and define

bn D 1

n

nX

iD1

�
1

n� .B.Xi;Ri//

�q�1
;
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where we adopt the notation of the previous sections. Then we have:

Theorem 7.3. Assume that
R
Rd f q.x/dx < 1 for fixed q 2 .1; 2/. Then

Ebn ! 	 .2 � q/
Z

Rd
f q.x/dx;

where 	 is the gamma function. If, in addition, q 2 .1; 3=2/ and
R
Rd f 2q�1.x/dx <

1, then Vbn D O.1=n/. In that case,

bn ! 	 .2 � q/
Z

Rd
f q.x/dx in probability:

Proof (Sketch). Note that if f ? is the maximal function of f , then

Ebn D E

"�
1

n� .B.X1;R1//

�q�1#

D E

"�
� .B.X1;R1//

� .B.X1;R1//

�q�1 �
1

n� .B.X1;R1//

�q�1#

defD EŒAnBn�:

On the one hand,

An � .f ?.X1//
q�1

; An ! f q�1.X1/ in probability;

and, since f .x/ � f ?.x/ at �-almost all x,

E

h
.f ?.X1//

q�1i �
Z

Rd
f ?q.x/dx < 1

for q > 1 if
R
Rd f q.x/dx < 1 (by the properties of maximal functions). On the other

hand, Bn is independent of X1 (and thus of f ?.X1/ or f .X1/),

Bn
D!
�
1

E

�q�1
for E standard exponential;

and, if 1 < q < 2,

sup
n

EŒBn1ŒBn>K�� ! 0 as K ! 1

(a property of the sequence of beta distributions under consideration—see Exam-
ple 20.1). Thus, by the generalized Lebesgue dominated convergence theorem
(Lemma 20.2 in the Appendix),
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Ebn ! E
�
f q�1.X1/

� � E

��
1

E

�q�1 

D 	 .2 � q/
Z

Rd
f q.x/dx:

One can use the Efron-Stein technique to show, in addition, that Vbn D O.1=n/
provided that

E

h
.f ?.X1//

2q�2i
< 1 and E

��
1

E

�2q�2 
< 1:

Observe that EŒ.f ?.X1//
2q�2� � R

Rd .f ?.x//2q�1dx, and that this integral is finite
whenever

R
Rd f 2q�1.x/dx < 1 if 2q � 1 > 1, i.e., q > 1. Also,

E

��
1

E

�2q�2 
D 	 .3 � 2q/ < 1

if q < 3=2. ut



Part II
Regression estimation



Chapter 8
The nearest neighbor regression function
estimate

8.1 Nonparametric regression function estimation

Let .X;Y/ be a pair of random variables taking values in R
d � R. The goal of

regression analysis is to understand how the values of the response variable Y
depend on the values of the observation vector X. The objective is to find a Borel
measurable function g such that jY � g.X/j is small, where “small” could be defined
in terms of the Lp risk EjY � g.X/jp (p > 0), for example. Of particular interest is
the L2 risk of g,

E jY � g.X/j2 : (8.1)

One advantage of (8.1) is that the function g that minimizes the risk can be
derived explicitly. To see this, assume that EY2 < 1 and note that we are interested
in a measurable function g? W Rd ! R such that

E jY � g?.X/j2 D inf
g

E jY � g.X/j2 ;

where the infimum is evaluated over all measurable functions g W R
d ! R with

Eg2.X/ < 1. Next, let

r.x/ D EŒYjX D x�

be (a version of) the regression function of Y on X. Observe that, for an arbitrary
g W Rd ! R such that Eg2.X/ < 1,

E jY � g.X/j2 D E jY � r.X/C r.X/ � g.X/j2

D EjY � r.X/j2 C E jr.X/ � g.X/j2 ;
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where we have used

E Œ.Y � r.X// .r.X/ � g.X//� D E ŒE Œ.Y � r.X// .r.X/ � g.X// j X��

D E Œ.r.X/ � g.X//E ŒY � r.X/ j X��

D E Œ.r.X/ � g.X// .r.X/ � r.X//�

D 0:

Thus, denoting by � the distribution of X, we conclude that

E jY � g.X/j2 D E jY � r.X/j2 C
Z

Rd
jg.x/ � r.x/j2 �.dx/:

The second term on the right-hand side is called the L2 error (integrated squared
error) of g. It is always nonnegative and is zero if and only if g.x/ D r.x/ �-almost
surely. Therefore g?.x/ D r.x/ �-almost surely, i.e., the optimal approximation
(with respect to the L2 risk) of Y by a square-integrable function of X is given by
r.X/. It is known that the conditional expectation EŒYjX� exists even if it is only
assumed that Y has a finite first-order moment. Thus, in the sequel, we suppose that
EjYj < 1 and focus our attention on the function r as a good approximation of the
link between X and Y .

In practice, however, the distribution of .X;Y/ (and thus, the regression function)
is usually unknown. Therefore, it is hopeless to predict Y using r.X/. But, fortu-
nately, it is often possible to collect data according to the distribution of .X;Y/ and
to estimate the regression function from this data set. To be more precise, assume
that we are given a sample Dn D ..X1;Y1/; : : : ; .Xn;Yn// of i.i.d. Rd � R-valued
random variables, independent of .X;Y/ and distributed as this prototype pair. The
objective is to use the data Dn in order to construct an estimate rn W R

d ! R of
the function r. Here, rn.x/ D rn.xIDn/ is a Borel measurable function of both x
and the observations. However, for simplicity, we omit Dn in the notation and write
rn.x/ instead of rn.xIDn/.

In modern statistics, regression analysis is widely used for inference and forecast-
ing, where its application has substantial overlap with the field of machine learning.
Over the years, a large body of techniques for carrying out regression estimation
has been developed. Customary methods such as linear and ordinary least squares
regression are parametric, in the sense that the target function is defined in terms of a
finite number of unknown parameters, which are estimated from the data. Parametric
estimates usually depend only upon a few parameters and are therefore suitable even
for small sample sizes n if the parametric model is appropriately chosen. On the
other hand, regardless of the data, a parametric estimate cannot approximate the
regression function better than the best function that has the assumed parametric
structure. For example, a linear fit will produce a large error for every sample
size if the true underlying regression function is not linear and cannot be well
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approximated by linear functions. This inflexibility is avoided by the nonparametric
estimates, which do not assume that the regression function can be described by
finitely many parameters. Such procedures are therefore particularly appropriate
when the joint distribution of X and Y cannot be safely assumed to belong to any
specified parametric family of distributions.

The literature on nonparametric regression methods is too vast to permit anything
like a fair summary within the confines of a short introduction. For a comprehensive
presentation, we refer to the monograph by Györfi et al. (2002), which covers almost
all known nonparametric regression techniques, such as classical local averaging
procedures (including kernel, partitioning, and k-nearest neighbor estimates), least
squares and penalized least squares estimates, local polynomial kernel estimates,
and orthogonal series estimates. Our goal in this and the subsequent chapters is to
offer an in-depth mathematical analysis of the nearest neighbor regression function
estimate, a nonparametric method first discussed by Royall (1966) and Cover (1968)
in the late 60s of the 20th century, and later by Stone (1977).

8.2 The nearest neighbor estimate

The data in our model can be rewritten as

Yi D r.Xi/C "i; 1 � i � n;

where "i D Yi � r.Xi/ satisfies EŒ"ijXi� D 0. Thus, each Yi can be considered as
the sum of the value of the regression function at Xi and some error "i, where the
expected value of the error is zero. This motivates the construction of estimates by
local averaging, i.e., estimation of r.x/ by the average of those Yi’s for which Xi is
“close” to x.

Of particular importance is the nearest neighbor estimate. Let us denote by
.X.1/.x/;Y.1/.x//; : : : ; .X.n/.x/;Y.n/.x// a reordering of the data .X1;Y1/; : : : ;
.Xn;Yn/ according to increasing values of kXi � xk, that is,

kX.1/.x/ � xk � � � � � kX.n/.x/ � xk

and Y.i/.x/ is the Yi corresponding to X.i/.x/. When kXi � xk D kXj � xk but
i ¤ j, then we have a distance tie, and a tie-breaking strategy must be defined to
disambiguate the situation. There are different possible policies to reach this goal.
The one we adopt is based on ranks: if kXi � xk D kXj � xk but i ¤ j, then Xi is
considered to be closer to x if i < j. For more clarity, the next section is devoted
to this messy distance tie issue. Nevertheless, it should be stressed that if � has
a density, then tie-breaking is needed with zero probability and becomes therefore
irrelevant.
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Definition 8.1. The (raw) nearest neighbor estimate is

rn.x/ D
nX

iD1
vniY.i/.x/; (8.2)

where .vn1; : : : ; vnn/ is a given (deterministic) weight vector summing to one.

Remark 8.1. Throughout and when needed, with a slight abuse of notation, we set
vni D 0 for all i > n. ut

Thus, in this procedure, the local averaging is done by weighing the Yi’s
according to a sequence of specified weights and according to the rank of the
distance from Xi to x. The weights .vn1; : : : ; vnn/ are always summing to one. They
are usually nonnegative, but in some cases they can take negative values. Important
subclasses include monotone weight vectors:

vn1 � vn2 � � � � � vnn;

and the uniform weight vector:

vni D
	
1
k for 1 � i � k
0 for k < i � n,

where k is a positive integer not exceeding n. In the latter case, we speak of the
standard k-nearest neighbor estimate.

Nearest neighbor estimation is one of the oldest approaches to regression
analysis and pattern recognition (Fix and Hodges, 1951, 1952; Cover, 1968). It is a
widespread nonparametric method, with hundreds of research articles published on
the topic since the 80s (Dasarathy, 1991, has provided a comprehensive collection
of around 140 key papers). For implementation, it requires only a measure of
distance in the sample space, hence its popularity as a starting point for refinement,
improvement, and adaptation to new settings.

Remark 8.2. There are many ways of defining an ordering of data points. In the
present text, we take the standard Euclidean (`2) distance. One can consider `p

distances in general, and even distances skewed by an affine transformation. In
particular, for x 2 R

d, the norm of x can be defined as kAxk, where A is a fixed
positive definite d � d matrix.

A slightly different approach is taken by Devroye (1991b) (see also Olshen,
1977), where given X1; : : : ;Xn and x, one first ranks all data with respect to each
coordinate. Let rij be the rank of the j-th coordinate of Xi among all j-th coordinates,
and let rj be the rank of the j-th coordinate of x. Assume for now that all marginal
distributions are nonatomic to avoid ties. Then form an `p metric

distance.Xi; x/ D
8
<

:

�Pd
jD1 jrij � rjjp

�1=p
for 1 � p < 1

max1�j�d jrij � rjj for p D 1.
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Most of the results of this book regarding regression function estimation and
classification remain true for the nearest neighbor estimate based on this metric. In
particular, the estimate is universally weakly consistent under the same condition on
the vni’s given in Theorem 11.1. It has the advantage to be invariant under monotone
transformations of the coordinate axes.

One can even construct regression function estimates that are invariant under
all affine transformations of the data. One possibility is described by Biau et al.
(2012). Here is another one. Let > denote transposition and assume that vectors
are in column format. For a given set of D vectors a1; : : : ; aD 2 R

d, rank the data
X1; : : : ;Xn and x according to the values of a>

j Xi, 1 � i � n, and a>
j x, and form the

`p metric on the ranks described above, but now with D, not d, sets of ranks. The
invariance under affine transformations follows when a1; : : : ; aD are selected such
that the ranks do not change. To achieve this, one can take aj perpendicular to the
.d � 1/-dimensional hyperplane determined by .X.j�1/dC1; : : : ;Xjd/. This family of
estimates has not yet been studied, but should be consistent for all fixed D � d, at
least when X has a density. ut

As for density estimation, there are different ways to measure the closeness of
the regression estimate rn to the true regression function r. These include global
criteria, such as the distances in Lp

Lp.rn; r/ D
�Z

Rd
jrn.x/ � r.x/jp �.dx/

�1=p

;

and the uniform deviation

L1.rn; r/ D ess sup
x2Rd

jrn.x/ � r.x/j

(with respect to the distribution �). On the other hand, local criteria fix a query point
x and look at the closeness between rn.x/ and r.x/. The regression function estimate
rn is called weakly (strongly) pointwise consistent on A if

rn.x/ ! r.x/ in probability (almost surely) for all x 2 A:

From the pointwise convergence of rn, one can often deduce results about the
convergence of

R
Rd jrn.x/ � r.x/jp�.dx/, but the inverse deduction is not simple.

In the next few chapters, we will be interested in sufficient conditions on the
weight vector .vn1; : : : ; vnn/ for weak and strong consistency of the general nearest
neighbor estimate, under minimal assumptions regarding the distribution of .X;Y/.
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8.3 Distance tie-breaking

When X has a density with respect to the Lebesgue measure on R
d, distance ties

occur with zero probability. However, in general, X does not have a density and ties
can occur: the event ŒkXi � Xk D kXj � Xk but i ¤ j� can happen with positive
probability, so we have to find a strategy to break the ties.

Remark 8.3. To see that the density assumption cannot be relaxed to the condition
that the distribution � of X is merely nonatomic without facing possible distance
ties, consider the following distribution on R

d � R
d0

with d; d0 � 2:

� D 1

2
.�d ˝ �d0/C 1

2
.�d ˝ �d0/;

where �d denotes the uniform distribution on the surface of the unit ball of Rd and
�d denotes the unit point mass at the origin of Rd. Observe that if X has distribution
�d ˝�d0 and X0 has distribution �d ˝�d0 , then kX�X0k D p

2. Hence, if X1, X2, X3,
X4 are independent with distribution �, then PfkX1 � X2k D kX3 � X4kg D 1=4.

ut
There is no consensus on the best way to break distance ties. Some possible

policies are discussed in Chapter 11 of the monograph by Devroye et al. (1996).
The one we adopt throughout the book is by looking at the index, i.e., whenever
kXi � xk D kXj � xk, i ¤ j, we declare Xi closer to x if i < j. However, the
possibility of distance ties leads to consider various possible versions of the nearest
neighbor regression function estimate. Let us start by defining the rank ˙i of Xi

with respect to x as follows:

˙i D
X

j¤i

1ŒkXj�xk<kXi�xk� C
X

j�i

1ŒkXj�xkDkXi�xk�:

Therefore, if kXi � xk D kXj � xk, then ˙i < ˙j if and only if i < j. Since ties
are broken by looking at the index, we see that the data are reordered by rank with
respect to x, i.e., that our ordering

�
.X.1/.x/;Y.1/.x/

�
; : : : ;

�
.X.1/.x/;Y.1/.x/

�

is such that

.Xi;Yi/ D �
X.˙i/.x/;Y.˙i/.x/

�
:

There is an inverse rank vector .�1; : : : ; �n/, also a permutation of .1; : : : ; n/, which
is defined by

�
X.i/.x/;Y.i/.x/

� D .X�i ;Y�i/:
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Thus, �˙i D i and ˙�i D i for all i. In the raw weighted nearest neighbor estimate,
we have

rn.x/ D
nX

iD1
vniY.i/.x/ D

nX

iD1
vniY�i

D
nX

iD1

nX

jD1
vniYj1Œ˙jDi�:

The knee-jerk reaction of most statisticians is to break distance ties by averaging.
If we write rn.xI X1; : : : ;Xn/ for the raw weighted nearest neighbor estimate, then
the averaged estimate, which removes any dependence on ties, is

Nrn.x/ D 1

nŠ

X

all permutations
.�1;:::;�n/ of .1;:::;n/

rn.xI X�1 ; : : : ;X�n/:

If there are no distance ties, then Nrn.x/ D rn.x/. However, if

kX.i�1/.x/ � xk < kX.i/.x/ � xk D � � � D kX.j�1/.x/ � xk < kX.j/.x/ � xk;

then the weight of each of Y.i/.x/; : : : ;Y.j�1/.x/ in the definition of Nrn.x/ is the
average weight

vni C � � � C vn;j�1
j � i

:

It is the same principle that is used in payouts in a golf tournament in case of ties—
the prize money is averaged. The weight of Y.i/.x/ in Nrn.x/ is written as Vni, which
now is a random variable:

Nrn.x/ D
nX

iD1
VniY.i/.x/:

We still have
Pn

iD1 Vni D 1, and if .vni; 1 � i � n/ is monotone, then so is
.Vni; 1 � i � n/.

Proving consistency and rates of convergence for rn is harder and more informa-
tive than for Nrn in view of the following trivial observations:

E jNrn.x/ � r.x/jp � E jrn.x/ � r.x/jp ;

E

�
sup
x2Rd

jNrn.x/ � r.x/j


� E

�
sup
x2Rd

jrn.x/ � r.x/j

;
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or

E jNrn.X/ � r.X/jp � E jrn.X/ � r.X/jp :
Thus, all our results are for rn.

We conclude this section with the following useful proposition, whose proof is a
good illustration of the utility of the rank formalism. Further results of this sort are
given in Kaufmann and Reiss (1992) and Cérou and Guyader (2006).

Proposition 8.1. Assume that EjYj < 1, and let r.X/ D EŒYjX�. Then,
conditional on X1; : : : ;Xn, the random variables

�
X.1/.x/;Y.1/.x/

�
; : : : ;

�
X.n/.x/;Y.n/.x/

�

are independent. Moreover, for each 1 � i � n,

E
�
Y.i/.x/ � r

�
X.i/.x/

� j X1; : : : ;Xn
� D 0:

Proof. Set Zi D .Xi;Yi/ and Z.i/.x/ D .X.i/.x/;Y.i/.x//, 1 � i � n. We have to
prove that, for any Borel sets A1; : : : ;An,

E

"
nY

iD1
1ŒZ.i/.x/2Ai� j X1; : : : ;Xn

#

D
nY

iD1
E
�
1ŒZ.i/.x/2Ai� j X1; : : : ;Xn

�
:

Let .�1; : : : ; �n/ be the random permutation of .1; : : : ; n/ such that Z.i/.x/ D Z�i .
We may write

E

"
nY

iD1
1ŒZ.i/.x/2Ai� j X1; : : : ;Xn

#

D E

"
nY

iD1
1ŒZ�i 2Ai� j X1; : : : ;Xn

#

D
X

all permutations
.�1;:::;�n/ of .1;:::;n/

"

1Œ.�1;:::;�n/D.�1;:::;�n/� � E

"
nY

iD1
1ŒZ�i 2Ai� j X1; : : : ;Xn

##

;

where, in the last equality, we used the measurability of .�1; : : : ; �n/ with respect to
X1; : : : ;Xn. Next, invoking the independence of .X1;Y1/; : : : ; .Xn;Yn/, it is a simple
exercise to prove that Z1; : : : ;Zn are independent conditional on X1; : : : ;Xn. Thus,

E

"
nY

iD1
1ŒZ.i/.x/2Ai� j X1; : : : ;Xn

#

D
X

all permutations
.�1;:::;�n/ of .1;:::;n/

"

1Œ.�1;:::;�n/D.�1;:::;�n/� �
nY

iD1
E
�
1ŒZ�i 2Ai� j X1; : : : ;Xn

�
#
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D
nY

iD1
E
�
1ŒZ�i 2Ai� j X1; : : : ;Xn

�

D
nY

iD1
E
�
1ŒZ.i/.x/2Ai� j X1; : : : ;Xn

�
:

This shows the first statement of the proposition. To prove the second one, notice
that

E
�
Y.i/.x/ � r

�
X.i/.x/

� j X1; : : : ;Xn
� D E

�
Y.i/.x/ j X1; : : : ;Xn

� � r
�
X.i/.x/

�
:

But

E
�
Y.i/.x/ j X1; : : : ;Xn

�

D
nX

jD1
1Œ�iDj�EŒYj j X1; : : : ;Xn�

D
nX

jD1
1Œ�iDj�EŒYjjXj�

.by independence of .Xj;Yj/ and X1; : : : ;Xj�1;XjC1; : : : ;Xn/

D
nX

jD1
1Œ�iDj�r

�
Xj
�

D r
�
X.i/.x/

�
:

ut



Chapter 9
The 1-nearest neighbor regression
function estimate

9.1 Consistency and residual variance

Our objective in this short chapter is to analyze some elementary consistency
properties of the 1-nearest neighbor regression function estimate. This will also offer
the opportunity to familiarize the reader with concepts that will be encountered in
the next few chapters. Recall that this very simple estimation procedure is defined
by setting

rn.x/ D Y.1/.x/; x 2 R
d;

where .X.1/.x/;Y.1/.x//; : : : ; .X.n/.x/;Y.n/.x// is a reordering of the data according
to increasing values of kXi � xk, and distance ties are broken by looking at indices.

Assuming EY2 < 1, we have seen in the introduction of Chapter 8 that the
regression function r.x/ D EŒYjX D x� achieves the minimal value of the L2 risk
over all Borel measurable functions g W Rd ! R with Eg2.X/ < 1, that is,

E jY � r.X/j2 D inf
g

E jY � g.X/j2 :

The quantity

L? D E jY � r.X/j2 D EY2 � Er2.X/

is called the residual variance (variance of the residual, noise variance). It is zero if
and only if Y D r.X/ with probability one—such a situation is called noiseless.

In this chapter, we prove the following result:

Theorem 9.1. Assume that EY2 < 1. Then the 1-nearest neighbor regression
function estimate rn satisfies

E jrn.X/ � r.X/j2 ! L?:

© Springer International Publishing Switzerland 2015
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105



106 9 The 1-nearest neighbor regression function estimate

Thus, when k D 1, the mean integrated squared error Ejrn.X/�r.X/j2 converges
to the residual variance L?. This convergence is universal, in the sense that it happens
for any distribution of .X;Y/ with EY2 < 1. The 1-nearest neighbor estimate
is L2-consistent (that is, Ejrn.X/ � r.X/j2 ! 0) in the noiseless case only. To
circumvent this problem, a possible strategy is to let the parameter k depend upon n.
In the remaining chapters on regression, k will satisfy k ! 1 and k=n ! 0 as
n ! 1 in order to obtain consistency.

9.2 Proof of Theorem 9.1

The proof of Theorem 9.1 begins with a useful technical lemma, which is a
refinement of an inequality of Stone (1977) (see also Fritz, 1975).

Lemma 9.1. Let p � 1, and let g W Rd ! R be a Borel measurable function such
that Ejg.X/jp < 1. Then

E
ˇ̌
g
�
X.1/.X/

�ˇ̌p � cdE jg.X/jp ;

where cd is a positive constant depending upon the dimension d only.

Proof. Let �1 D �1.XI X1; : : : ;Xn/ be the index in f1; : : : ; ng corresponding to
the nearest neighbor pair .X.1/.X/;Y.1/.X//. Thus, .X.1/.X/;Y.1/.X// D .X�1 ;Y�1/.
Write

E
ˇ
ˇg
�
X.1/.X/

�ˇˇp D E

2

4
nX

jD1
1Œ�1Dj�

ˇ
ˇg.Xj/

ˇ
ˇp
3

5 :

Define the event

A D
n[

iD1
ŒX D Xi�:

Then

E

2

4
nX

jD1
1Œ�1Dj�1A

ˇ̌
g.Xj/

ˇ̌p
3

5 D E

2

4jg.X/jp
nX

jD1
1Œ�1Dj�1A

3

5

� E jg.X/jp :

So, only the case Ac is of interest. Cover R
d with a finite number �d of cones

C1; : : : ;C�d of angle � D �=8 (this is possible by virtue of Theorem 20.15). For
each 1 � ` � �d, let C`.X/ D X C C` be the corresponding translated cone with
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origin at X. Within each translated cone, mark all Xj’s of smallest radius kXj � Xk.
In the `-th cone, let N` be the number of marked Xj’s. If the cone is empty, then
N` D 0. By symmetrization,

E

2

4
nX

jD1
1Œ�1Dj�

ˇ̌
g.Xj/

ˇ̌p
1Œ\n

iD1ŒX¤Xi��

3

5

D
nX

jD1
E

"

1Œ�1.XjIX1;:::;Xj�1;X;XjC1;:::;Xn/Dj� jg.X/jp 1Œ\n
iD1
i¤j

ŒXj¤Xi��1ŒXj¤X�

#

� E

2

4jg.X/jp
�dX

`D1

X

jWXj2C`.X/
1Œ�1.XjIX1;:::;Xj�1;X;XjC1;:::;Xn/Dj�1Œ\n

iD1
i¤j

ŒXj¤Xi��1ŒXj¤X�

3

5 :

Within cone C`.X/, on the event Ac, X can only be the nearest neighbor of at most
one point, namely a marked point. In fact, if N` > 1, then it cannot be the nearest
neighbor of any point. To see this, assume that Xj is marked, that Xj ¤ X, and let
Xs belong to the cone (see Figure 9.1 for an illustration in dimension 2). Then, if
kXs �Xk � kXj �Xk, one has kXj �Xsk < kX �Xsk. Indeed, consider the triangle
.X;Xj;Xs/, and define the angles ˛, ˇ, � as in Figure 9.2. If ˛ D 0, the result is
clear. If ˛ > 0, then

kXj � Xsk
sin˛

D kX � Xsk
sin �

D kXj � Xk
sinˇ

:

2q = π / 4 X j

Xt

X

r

Xs

Fig. 9.1 A cone in dimension 2. Both Xj and Xt are marked points.
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γ

X j

r

Xs

X

≥ r

α

β

Fig. 9.2 Triangle .X;Xj;Xs/ with Xj a marked point.

Now, ˇ C � D � � ˛ and � � ˇ, so � � .� � ˛/=2. Hence,

kXj � Xsk � sin˛

sin
�
��˛
2

�kX � Xsk

D sin˛

cos.˛=2/
kX � Xsk

D 2 sin.˛=2/kX � Xsk
� 2 sin.�=8/kX � Xsk
< 2 sin.�=6/kX � Xsk
D kX � Xsk:

Therefore, �1.XsI X1; : : : ;Xs�1;X;XsC1; : : : ;Xn/ ¤ s if s ¤ j. We conclude
X

jWXj2C`.X/
1Œ�1.XjIX1;:::;Xj�1;X;XjC1;:::;Xn/Dj�1Œ\n

iD1
i¤j

ŒXj¤Xi��1ŒXj¤X� � 1:

The inequality then follows easily with cd D �d C 1. ut
Lemma 9.2. Let p � 1, and let g W Rd ! R be a Borel measurable function such
that E jg.X/jp < 1. Then

E
ˇ
ˇg
�
X.1/.X/

� � g.X/
ˇ
ˇp ! 0 and E

ˇ
ˇg
�
X.1/.X/

�ˇˇp ! E jg.X/jp :

Proof. For " > 0, find a uniformly continuous function g" with compact support
such that Ejg.X/ � g".X/jp � " (see Theorem 20.17 in the Appendix). Then, using
the elementary inequality ja C b C cjp � 3p�1.jajp C jbjp C jcjp/ valid for p � 1

(cr-inequality—see Proposition 20.1 in the Appendix),
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E
ˇ
ˇg
�
X.1/.X/

� � g.X/
ˇ
ˇp

� 3p�1�
E
ˇ̌
g
�
X.1/.X/

� � g"
�
X.1/.X/

�ˇ̌p C E
ˇ̌
g"
�
X.1/.X/

� � g".X/
ˇ̌p

C E jg".X/ � g.X/jp
�

� 3p�1.cd C 1/E jg.X/ � g".X/jp C 3p�1
E
ˇ̌
g"
�
X.1/.X/

� � g".X/
ˇ̌p

.by Lemma 9.1/

� 3p�1.cd C 1/"C 3p�1
E
ˇ̌
g"
�
X.1/.X/

� � g".X/
ˇ̌p
:

We find ı > 0 such that jg".y/ � g".x/j � " if ky � xk � ı. So,

E
ˇ̌
g"
�
X.1/.X/

� � g".X/
ˇ̌p � "p C 2pkg"kp1 � P

˚kX.1/.X/ � Xk > ı� :

Let � be the distribution of X. By the Lebesgue dominated convergence theorem,
we have

P
˚kX.1/.X/ � Xk > ı� ! 0

if for �-almost all x 2 R
d,

P
˚kX.1/.x/ � xk > ı� ! 0:

If x belongs to the support of �, then PfkX�xk � ıg > 0 for all ı > 0 by definition
of the support. Thus,

P
˚kX.1/.x/ � xk > ı� D .1 � P fkX � xk � ıg/n ! 0:

But �.supp.�// D 1 (see Chapter 1) and, putting all the pieces together, we
conclude that

E
ˇ̌
g
�
X.1/.X/

� � g.X/
ˇ̌p � 3p�1 ..cd C 1/"C "p/C o.1/;

so that

E
ˇ̌
g
�
X.1/.X/

� � g.X/
ˇ̌p ! 0:

This shows the first assertion of the lemma. To prove the second one, just note that
ˇ
ˇ̌
E
ˇ̌
g
�
X.1/.X/

�ˇ̌p � E jg.X/jp
ˇ
ˇ̌ � E

ˇ
ˇ̌ ˇ̌

g
�
X.1/.X/

�ˇ̌p � jg.X/jp
ˇ
ˇ̌
;

and apply the first statement to the function jgjp. ut
Lemma 9.3. Assume that EY2 < 1, and let �2.x/ D EŒjY � r.X/j2 j X D x�. Then

E
ˇ̌
Y.1/.X/ � r

�
X.1/.X/

�ˇ̌2 D EŒ�2.X.1/.X//�:
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Proof. As in the proof of Lemma 9.1, we let �1 be the index in f1; : : : ; ng such that
.X.1/.X/;Y.1/.X// D .X�1 ;Y�1/. Then

E
ˇ̌
Y.1/.X/ � r

�
X.1/.X/

�ˇ̌2 D
nX

jD1
E

h
1Œ�1Dj�

ˇ̌
Yj � r.Xj/

ˇ̌2i

D
nX

jD1
E

h
1Œ�1Dj�E

hˇ̌
Yj � r.Xj/

ˇ̌2 ˇ̌
ˇX;X1; : : : ;Xn

ii
;

where, in the second equality, we used the fact that �1 is measurable with respect
to X;X1; : : : ;Xn. Thus, using the independence between the pair .Xj;Yj/ and the
observations X;X1; : : : ;Xj�1;XjC1; : : : ;Xn, we are led to

E
ˇ̌
Y.1/.X/ � r

�
X.1/.X/

�ˇ̌2 D
nX

jD1
E

h
1Œ�1Dj�E

hˇ̌
Yj � r.Xj/

ˇ̌2 ˇ̌
ˇXj

ii

D
nX

jD1
E
�
1Œ�1Dj��

2.Xj/
�

D EŒ�2.X.1/.X//�;

as desired. ut
We are now in a position to prove Theorem 9.1.

Proof (Theorem 9.1). We have

E jrn.X/ � r.X/j2 D E
ˇ̌
Y.1/.X/ � r

�
X.1/.X/

�C r
�
X.1/.X/

� � r.X/
ˇ̌2

D E
ˇ̌
Y.1/.X/ � r

�
X.1/.X/

�ˇ̌2 C E
ˇ̌
r
�
X.1/.X/

� � r.X/
ˇ̌2

C 2E
��

Y.1/.X/ � r
�
X.1/.X/

�� �
r
�
X.1/.X/

� � r.X/
��
:

The second term on the right-hand side tends to zero by Lemma 9.2 and the fact
that Er2.X/ � EY2 < 1. Define �2.x/ D EŒjY � r.X/j2 j X D x�, and note
that the assumption EY2 < 1 implies E�2.X/ D EjY � r.X/j2 < 1. According
to Lemma 9.3, the first term is EŒ�2.X.1/.X//�, and it tends to E�2.X/, again by
Lemma 9.2. Finally, by the Cauchy-Schwarz inequality,

E
2
��

Y.1/.X/ � r
�
X.1/.X/

�� �
r
�
X.1/.X/

� � r.X/
��

� E
�
�2
�
X.1/.X/

�� � E
ˇ̌
r
�
X.1/.X/

� � r.X/
ˇ̌2

D �
E�2.X/C o.1/

� � o.1/

D o(1):

ut



Chapter 10
Lp-consistency and Stone’s theorem

10.1 Lp-consistency

We know that, whenever EY2 < 1, the regression function r.x/ D EŒYjX D x�
achieves the minimal value L? D EjY � r.X/j2 of the L2 risk over all square-
integrable functions of X. It is also easy to show, using the independence of .X;Y/
and the sample Dn, that the (conditional) L2 risk EŒjY � rn.X/j2 jDn� of an estimate
rn of r satisfies

E
� jY � rn.X/j2 jDn

� D E jY � r.X/j2 C
Z

Rd
jrn.x/ � r.x/j2 �.dx/;

where � is the distribution of X. This identity reveals that the L2 risk of the estimate
rn is close to the optimal value if and only if the L2 error

R
Rd jrn.x/� r.x/j2�.dx/ is

close to zero. Therefore, the L2 error (integrated squared error) is a nice criterion to
measure the quality of an estimate.

Since rn is a function of the data set Dn, the L2 error is itself a random variable.
Most often, one is interested in the convergence to zero of the expectation of this
random variable. The estimate rn is said to be (globally) L2-consistent (or mean
integrated squared error consistent) if

E

�Z

Rd
jrn.x/ � r.x/j2 �.dx/


! 0 as n ! 1;

where the expectation E is evaluated with respect to the sample Dn. Taking
expectation with respect to both X and Dn, this can be rewritten in a more compact
form as

E jrn.X/ � r.X/j2 ! 0:

© Springer International Publishing Switzerland 2015
G. Biau, L. Devroye, Lectures on the Nearest Neighbor Method,
Springer Series in the Data Sciences, DOI 10.1007/978-3-319-25388-6_10

111



112 10 Lp-consistency and Stone’s theorem

More generally, denoting by p a positive real number and assuming that
EjYjp < 1, the estimate rn is (globally) Lp-consistent if

E jrn.X/ � r.X/jp ! 0: (10.1)

Note that (10.1) is a global proximity measure—from (10.1) we can merely
conclude that lim infn!1 Ejrn.x/� r.x/jp D 0 at �-almost all x by Fatou’s lemma.
This does not imply that rn.x/ ! r.x/ in probability.

Our main goal in this chapter is to show that the (raw) nearest neighbor regression
function estimate defined in Chapter 8 is universally Lp-consistent, i.e., that (10.1)
holds for all distributions of .X;Y/ with EjYjp < 1. This result is a consequence
of a fundamental theorem of Stone (1977), which provides necessary and sufficient
conditions for consistency in Lp of general local averaging regression estimates.
This is the topic of the next section.

10.2 Stone’s theorem

A local averaging estimate is any estimate of the regression function that can be
written as

rn.x/ D
nX

iD1
Wni.x/Yi; x 2 R

d; (10.2)

where .Wn1.x/; : : : ;Wnn.x// is a weight vector and each Wni.x/ is a Borel mea-
surable function of x and X1; : : : ;Xn (not Y1; : : : ;Yn). It is intuitively clear that
the pairs .Xi;Yi/ such that Xi is “close” to x should provide more information
about r.x/ than those “far” from x. Therefore, the weights are typically larger
in the neighborhood of x, so that rn.x/ is roughly a (weighted) mean of the Yi’s
corresponding to Xi’s in the neighborhood of x. Thus, rn can be viewed as a local
averaging estimate. Often, but not always, the Wni.x/’s are nonnegative and sum to
one, so that .Wn1.x/; : : : ;Wnn.x// is a probability vector.

An example is the kernel estimate (Nadaraya, 1964, 1965; Watson, 1964), which
is obtained by letting

Wni.x/ D K
� x�Xi

h

�

Pn
jD1 K

�
x�Xj

h

� ;

where K is a given nonnegative measurable function on R
d (called the kernel), and h

is a positive number (called the bandwidth) depending upon n only. Put differently,
for x 2 R

d,

rn.x/ D
Pn

iD1 K
� x�Xi

h

�
Yi

Pn
jD1 K

�
x�Xj

h

� :
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If both denominator and numerator are zero, then we set rn.x/ D 1
n

Pn
iD1 Yi. Such

a strategy ensures that rn is a linear function of the Yi’s: if all Yi’s are replaced by
aYi C b, then rn.x/ is replaced by arn.x/ C b. In particular, for the so-called naive
kernel K.z/ D 1Œkzk�1�, one obtains

rn.x/ D
Pn

iD1 1Œkx�Xik�h�YiPn
jD1 1Œkx�Xjk�h�

;

i.e., r.x/ is estimated by averaging the Yi’s such that the distance between x and
Xi is not larger than h. For a more general kernel K, the weight of Yi (i.e., the
influence of Yi on the value of the estimate at x) depends on the distance between x
and Xi through the kernel shape. Popular kernels include the Epanechnikov kernel
K.z/ D .1 � kzk2/1Œkzk�1� and the Gaussian kernel K.z/ D e�kzk2 .

A second important example is the nearest neighbor regression function estimate
rn, which we have introduced in Chapter 8. Recall that

rn.x/ D
nX

iD1
vniY.i/.x/; x 2 R

d; (10.3)

where .vn1; : : : ; vnn/ is a given weight vector summing to one, and the sequence
.X.1/.x/;Y.1/.x//; : : : ; .X.n/.x/;Y.n/.x// is a permutation of .X1;Y1/; : : : ; .Xn;Yn/

according to increasing values of kXi � xk (as usual, distance ties are broken by
looking at indices). We see that the nearest neighbor estimate is indeed of the
form (10.2), since it is obtained by putting

Wni.x/ D vn˙i ;

where .˙1; : : : ; ˙n/ is a permutation of .1; : : : ; n/ such that Xi is the ˙i-th nearest
neighbor of x for all i.

Stone’s theorem (Stone, 1977) offers general necessary and sufficient conditions
on the weights in order to guarantee the universal Lp-consistency of local averaging
estimates.

Theorem 10.1 (Stone, 1977). Consider the following five conditions:

(i) There is a constant C such that, for every Borel measurable function
g W Rd ! R with Ejg.X/j < 1,

E

� nX

iD1
jWni.X/j jg.Xi/j


� C E jg.X/j for all n � 1:

(ii) There is a constant D � 1 such that

P

	 nX

iD1
jWni.X/j � D



D 1 for all n � 1:
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(iii) For all a > 0,

nX

iD1
jWni.X/j1ŒkXi�Xk>a� ! 0 in probability:

(iv) One has

nX

iD1
Wni.X/ ! 1 in probability:

(v) One has

max
1�i�n

jWni.X/j ! 0 in probability:

If .i/–.v/ are satisfied for any distribution of X, then the corresponding regres-
sion function estimate rn is universally Lp-consistent (p � 1), that is,

E jrn.X/ � r.X/jp ! 0

for all distributions of .X;Y/ with EjYjp < 1, p � 1.
Suppose, conversely, that rn is universally Lp-consistent. Then .iv/ and .v/ hold

for any distribution of X. Moreover, if the weights are nonnegative for all n � 1,
then .iii/ is satisfied. Finally, if the weights are nonnegative for all n � 1 and .ii/
holds, then .i/ holds as well.

Remark 10.1. It easily follows from the Lebesgue dominated convergence theorem
that condition .v/ of Theorem 10.1 may be replaced by

E

� nX

iD1
W2

ni.X/


! 0: ut

Before we prove Theorem 10.1 in the next section, some comments are in order.
Condition .i/ is merely technical. It says in particular that for nonnegative weights
and for a nonnegative, noiseless model (i.e., Y D r.X/ � 0 with probability one),
the mean value of the estimate is bounded from above by some constant times the
mean value of the regression function. The attentive reader may note that .i/ is the
condition that permits one to avoid placing a continuity assumption on r. Conditions
.ii/ and .iv/ state that the sum of the weights is bounded and is asymptotically one.
Condition .iii/ requires that the overall weight of Xi’s outside any ball of fixed radius
centered at X must go to zero. In other words, it ensures that the estimate at a point
X is asymptotically mostly influenced by the data close to X. Finally, condition .v/
states that asymptotically all weights become small. Thus, no single observation has
a too large contribution to the estimate, so that the number of points encountered in
the averaging must tend to infinity.
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If .Wn1.X/; : : : ;Wnn.X// is a probability vector, then .ii/ and .iv/ hold automati-
cally and the three remaining conditions are necessary and sufficient for consistency.
This useful result is summarized in the following corollary.

Corollary 10.1. Assume that the weights are nonnegative and sum to one:

Wni.X/ � 0 and
nX

iD1
Wni.X/ D 1:

Then the corresponding regression function estimate is universally Lp-consistent
(p � 1) if and only if the following three conditions are satisfied for any distribution
of X:

(i) There is a constant C such that, for every Borel measurable function g W
R

d ! R with Ejg.X/j < 1,

E

� nX

iD1
Wni.X/ jg.Xi/j


� C E jg.X/j for all n � 1:

(ii) For all a > 0,

nX

iD1
Wni.X/1ŒkXi�Xk>a� ! 0 in probability:

(iii) One has

max
1�i�n

Wni.X/ ! 0 in probability:

Technical condition .i/ in Theorem 10.1 may be hard to verify for some families
of weights. However, this requirement can be bypassed for a bounded Y , at the price
of a stronger assumption on the regression function. Recall the definition

kYk1 D inf
˚
t � 0 W P fjYj > tg D 0

�
:

Corollary 10.2. Assume that kYk1 < 1 and that the regression function is
uniformly continuous on R

d. Assume, in addition, that for any distribution of X,
the weights satisfy the following four conditions:

(i) There is a constant D � 1 such that

P

	 nX

iD1
jWni.X/j � D



D 1 for all n � 1:
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(ii) For all a > 0,

nX

iD1
jWni.X/j1ŒkXi�Xk>a� ! 0 in probability:

(iii) One has

nX

iD1
Wni.X/ ! 1 in probability:

(iv) One has

max
1�i�n

jWni.X/j ! 0 in probability:

Then the corresponding regression function estimate is Lp (p � 1) consistent.

Proof. Verify that the conclusions of Lemma 10.1 and Lemma 10.2 in the next
section hold without condition .i/ of Theorem 10.1 as soon as kYk1 < 1 and r is
uniformly continuous. ut

10.3 Proof of Stone’s theorem

For the sake of clarity, the proof of Theorem 10.1 is divided in a series of five
lemmas. The first two lemmas concern the sufficiency, whereas the last three ones
pertain to the necessity.

Lemma 10.1. Let p � 1. Assume that EjYjp < 1. If conditions .i/-.ii/ and .v/ of
Theorem 10.1 are satisfied, then

E

ˇ̌
ˇ
ˇ

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ̌
ˇ
ˇ

p

! 0:

Proof. We first show that the conclusion of the lemma holds when p D 2. The
general case is then obtained through a truncation argument. Define �2.x/ D EŒjY �
r.X/j2 j X D x�, and note that the assumption EY2 < 1 implies E�2.X/ < 1.
Next, write

E

ˇ
ˇ̌
ˇ

nX

iD1
Wni.X/ .Yi�r.Xi//

ˇ
ˇ̌
ˇ

2

D
nX

iD1

nX

jD1
E
�
Wni.X/Wnj.X/ .Yi�r.Xi//

�
Yj�r.Xj/

� �
:
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For i ¤ j,

E
�
Wni.X/Wnj.X/ .Yi � r.Xi//

�
Yj � r.Xj/

� �

D E
�
EŒWni.X/Wnj.X/ .Yi � r.Xi//

�
Yj � r.Xj/

� j X;X1; : : : ;Xn;Yi�
�

D E
�
Wni.X/Wnj.X/ .Yi � r.Xi//E

�
Yj � r.Xj/ j X;X1; : : : ;Xn;Yi

� �

D E
�
Wni.X/Wnj.X/ .Yi � r.Xi//

�
r.Xj/ � r.Xj/

� �

D 0:

In the third equality, we used the independence between the pair .Xj;Yj/ and
X;X1;Xj�1;XjC1; : : : ;Xn;Yi. Hence,

E

ˇ
ˇ̌
ˇ

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ
ˇ̌
ˇ

2

D E

� nX

iD1
W2

ni.X/ jYi � r.Xi/j2


D E

� nX

iD1
W2

ni.X/�
2.Xi/


: (10.4)

By Stone’s conditions .ii/ and .v/, and the dominated convergence theorem,

E

� nX

iD1
W2

ni.X/


! 0 (10.5)

(see Remark 10.1). If Y is bounded, then so is �2, and (10.5) implies the desired
result. For general �2.x/ and " > 0, a denseness argument (cf. Theorem 20.17 in the
Appendix) reveals that there exists a bounded Borel measurable function �2" .x/ � L
such that Ej�2.X/ � �2" .X/j � ". Thus, by .ii/,

E

ˇ̌
ˇ
ˇ

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ̌
ˇ
ˇ

2

� E

� nX

iD1
W2

ni.X/
ˇ̌
�2.Xi/ � �2" .Xi/

ˇ̌ C E

� nX

iD1
W2

ni.X/�
2
" .Xi/



� DE

� nX

iD1

ˇ̌
Wni.X/

ˇ̌ ˇ̌
�2.Xi/ � �2" .Xi/

ˇ̌ C LE

� nX

iD1
W2

ni.X/

:

Thus, using .i/ and (10.5), we obtain

lim sup
n!1

E

ˇ̌
ˇ
ˇ

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ̌
ˇ
ˇ

2

� CDE
ˇ̌
�2.X/ � �2" .X/

ˇ̌

� CD":

Since " is arbitrary, the lemma is proved for p D 2.
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Consider now the general case p � 1. Given a positive number M, set Y.M/ D
Y1ŒjYj�M� and r.M/.x/ D EŒY.M/jX D x�. Using the elementary inequality ja C b C
cjp � 3p�1.jajp C jbjp C jcjp/ valid for p � 1, we may write

E

ˇ̌
ˇ̌

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ̌
ˇ̌
p

� 3p�1
E

ˇ̌
ˇ̌

nX

iD1
Wni.X/

�
Yi � Y.M/i

�
ˇ̌
ˇ̌
p

C 3p�1
E

ˇ̌
ˇ
ˇ

nX

iD1
Wni.X/

�
Y.M/i � r.M/.Xi/

�
ˇ̌
ˇ
ˇ

p

(10.6)

C 3p�1
E

ˇ̌
ˇ
ˇ

nX

iD1
Wni.X/

�
r.M/.Xi/ � r.Xi/

�
ˇ̌
ˇ
ˇ

p

:

For p > 1, by the triangle and Hölder’s inequalities, setting q D p=.p � 1/, we have

E

ˇ
ˇ̌
ˇ

nX

iD1
Wni.X/

�
Yi � Y.M/i

�
ˇ
ˇ̌
ˇ

p

� E

�� nX

iD1

ˇ̌
Wni.X/

ˇ̌ˇ̌
Yi � Y.M/i

ˇ̌�p

D E

�� nX

iD1

ˇ̌
Wni.X/

ˇ̌1=q ˇ̌
Wni.X/

ˇ̌1=p ˇ̌
Yi � Y.M/i

ˇ̌�p

� E

�� nX

iD1

ˇ
ˇWni.X/

ˇ
ˇ
�p=q nX

iD1

ˇ
ˇWni.X/

ˇ
ˇ
ˇ
ˇYi � Y.M/i

ˇ
ˇp

:

Thus, by conditions .i/–.ii/,

E

ˇ̌
ˇ̌

nX

iD1
Wni.X/

�
Yi � Y.M/i

�
ˇ̌
ˇ̌
p

� CDp=q
E
ˇ̌
Y � Y.M/

ˇ̌p
:

On the other hand, for p D 1,

E

ˇ
ˇ̌
ˇ

nX

iD1
Wni.X/

�
Yi � Y.M/i

�
ˇ
ˇ̌
ˇ � C E

ˇ̌
Y � Y.M/

ˇ̌
:

Using the fact that EjY � Y.M/jp ! 0 as M ! 1, we conclude that, for all p � 1,

lim
M!1 sup

n�1
E

ˇ̌
ˇ̌

nX

iD1
Wni.X/

�
Yi � Y.M/i

�
ˇ̌
ˇ̌
p

D 0:

Similarly, for p > 1,
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E

ˇ
ˇ̌
ˇ

nX

iD1
Wni.X/

�
r.M/.Xi/ � r.Xi/

�
ˇ
ˇ̌
ˇ

p

� CDp=q
E
ˇ̌
r.X/ � r.M/.X/

ˇ̌p

D CDp=q
E
ˇ̌
EŒY � Y.M/ j X�

ˇ̌p

� CDp=q
E
ˇ̌
Y � Y.M/

ˇ̌p

.by Jensen’s inequality/;

whereas for p D 1,

E

ˇ
ˇ̌
ˇ

nX

iD1
Wni.X/

�
r.M/.Xi/ � r.Xi/

�
ˇ
ˇ̌
ˇ � C E

ˇ̌
Y � Y.M/

ˇ̌
:

For p � 1, the term EjY � Y.M/jp approaches zero as M ! 1, uniformly in n. It
follows that the first and third terms in (10.6) can be made arbitrary small for all M
large enough, independently of n. Thus, to prove that the conclusion of the lemma
holds for Y , it is enough to show that it holds for Y.M/. In other words, without loss
of generality, it can be assumed that Y is bounded. But if Y is bounded, then to prove
the result for all p � 1, it is enough to show that it is true for p D 2. Since this has
already been done, the proof of Lemma 10.1 is complete. ut
Lemma 10.2. Let p � 1, and let g W Rd ! R be a Borel measurable function such
that Ejg.X/jp < 1. If conditions .i/–.iii/ of Theorem 10.1 are satisfied, then

E

ˇ̌
ˇ̌

nX

iD1
Wni.X/ .g.Xi/ � g.X//

ˇ̌
ˇ̌
p

! 0:

Proof. For p > 1, by the triangle and Hölder’s inequalities, setting q D p=.p � 1/,
we have

E

ˇ̌
ˇ̌

nX

iD1
Wni.X/ .g.Xi/ � g.X//

ˇ̌
ˇ̌
p

� E

�� nX

iD1
jWni.X/j jg.Xi/ � g.X/j

�p

D E

�� nX

iD1
jWni.X/j1=q jWni.X/j1=p jg.Xi/ � g.X/j

�p

� E

�� nX

iD1
jWni.X/j

�p=q nX

iD1
jWni.X/j jg.Xi/ � g.X/jp


:
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Thus, by condition .ii/,

E

ˇ̌
ˇ̌

nX

iD1
Wni.X/ .g.Xi/ � g.X//

ˇ̌
ˇ̌
p

� Dp=q
E

� nX

iD1
jWni.X/j jg.Xi/ � g.X/jp


:

On the other hand, for p D 1,

E

ˇ̌
ˇ̌

nX

iD1
Wni.X/ .g.Xi/ � g.X//

ˇ̌
ˇ̌ � E

� nX

iD1
jWni.X/j jg.Xi/ � g.X/j


:

Therefore, the result is proved if we show that, for all p � 1,

E

� nX

iD1
jWni.X/j jg.Xi/ � g.X/jp


! 0:

Choose " > 0. Let g" be a continuous function on R
d having compact support

and such that Ejg.X/ � g".X/jp � " (such a choice is possible for p � 1 by a
denseness argument—see Theorem 20.17 in the Appendix). Because ja C b C cjp �
3p�1.jajp C jbjp C jcjp/, we may write

E

� nX

iD1
jWni.X/j jg.Xi/ � g.X/jp


� 3p�1

E

� nX

iD1
jWni.X/j jg.Xi/ � g".Xi/jp



C 3p�1
E

� nX

iD1
jWni.X/j jg".Xi/ � g".X/jp



(10.7)

C 3p�1
E

� nX

iD1
jWni.X/j jg".X/ � g.X/jp


:

By condition .i/,

E

� nX

iD1
jWni.X/j jg.Xi/ � g".Xi/jp


� C E jg.X/ � g".X/jp � C":

Moreover, it follows from .ii/ that

E

� nX

iD1
jWni.X/j jg".X/ � g.X/jp


� DE jg".X/ � g.X/jp � D":

Thus, to prove that the conclusion of Lemma 10.2 holds for g, it suffices to prove
that the second term in (10.7) can be made arbitrarily small as n tends to infinity.
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Since g" is continuous with compact support, it is bounded and uniformly
continuous as well. Choose ı > 0. There is an a > 0 such that jg".y/ � g".x/jp � ı

if x 2 R
d, y 2 R

d, and ky � xk � a. Then, by .ii/,

E

� nX

iD1
jWni.X/j jg".Xi/ � g".X/jp


� 2pkg"kp1 E

� nX

iD1
jWni.X/j1ŒkXi�Xk>a�


CDı:

It follows from .ii/ and .iii/ that

E

� nX

iD1
jWni.X/j1ŒkXi�Xk>a�


! 0:

Thus

lim sup
n!1

E

� nX

iD1
jWni.X/j jg".Xi/ � g".X/jp


� Dı:

Putting all the pieces together, we obtain

lim sup
n!1

E

� nX

iD1
jWni.X/j jg.Xi/ � g.X/jp


� 3p�1 ..C C D/"C Dı/ :

Since " and ı are arbitrarily small, the conclusion of Lemma 10.2 holds. ut
Lemma 10.3. Assume that the weights satisfy the following property: there is a
sequence Z1; : : : ;Zn of independent standard normal random variables such that
.Z1; : : : ;Zn/ is independent of .X;X1; : : : ;Xn/, and

nX

iD1
Wni.X/Zi ! 0 in probability:

Then

max
1�i�n

jWni.X/j ! 0 in probability:

Proof. The conditional distribution of
Pn

iD1 Wni.X/Zi given X;X1; : : : ;Xn is nor-
mal with zero mean and variance

Pn
iD1 W2

ni.X/. Thus, for " > 0,

P

	 ˇ̌
ˇ

nX

iD1
Wni.X/Zi

ˇ̌
ˇ > "



D P

	
jZ1j

vuu
t

nX

iD1
W2

ni.X/ > "



�
�

2p
2�

Z 1

1

e�x2=2dx

�
P

	 nX

iD1
W2

ni.X/ > "
2



;
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and hence

P

	 nX

iD1
W2

ni.X/ > "
2



! 0:

The conclusion of the lemma follows from max1�i�n W2
ni.X/ � Pn

iD1 W2
ni.X/. ut

Lemma 10.4. Assume that the weights are nonnegative and that, for every bounded
and continuous nonnegative function g W Rd ! R,

nX

iD1
Wni.X/g.Xi/ ! g.X/ in probability:

Then condition .iii/ of Theorem 10.1 is satisfied.

Proof. Let a > 0 be given. Choose x0 2 R
d, and let g be a bounded and continuous

nonnegative function on R
d such that g.x/ D 0 for kx � x0k � a=3 and g.x/ D 1

for kx � x0k � 2a=3. Then on the event ŒkX � x0k � a=3�, g.X/ D 0 and

nX

iD1
Wni.X/g.Xi/ �

nX

iD1
Wni.X/1ŒkXi�Xk>a�:

Therefore,

1ŒkX�x0k�a=3�

nX

iD1
Wni.X/1ŒkXi�Xk>a� ! 0 in probability:

Thus, since any compact subset of Rd can be covered by a finite number of closed
balls of radius a=3, we conclude that for every compact subset B of Rd,

1B.X/
nX

iD1
Wni.X/1ŒkXi�Xk>a� ! 0 in probability:

Therefore, since PfkXk > Mg tends to zero as M ! 1, .iii/ holds as desired. ut
Lemma 10.5. Assume that the weights are nonnegative and satisfy the following
property: for every Borel measurable function g W Rd ! R such that Ejg.X/j < 1,

lim sup
n!1

E

� nX

iD1
Wni.X/ jg.Xi/j


< 1:

Then there is a positive integer n0 and a positive constant C such that, for every
Borel measurable function g W Rd ! R with Ejg.X/j < 1,

E

� nX

iD1
Wni.X/ jg.Xi/j


� C E jg.X/j for all n � n0:



10.3 Proof of Stone’s theorem 123

Proof. Suppose that the conclusion of the lemma is false. Then there is a strictly
increasing sequence fn`g of positive integers and a sequence fg`g of Borel measur-
able functions on R

d such that Ejg`.X/j D 2�` and

E

� nX̀

iD1
Wn`i.X/ jg`.Xi/j


� `:

Set g D P1
`D1 jg`j. Then g is a measurable function on R

d, Ejg.X/j D 1 < 1, and

E

� nX̀

iD1
Wn`i.X/ jg.Xi/j


� E

� nX̀

iD1
Wn`i.X/ jg`.Xi/j


� `:

Thus

lim sup
n!1

E

� nX

iD1
Wni.X/ jg.Xi/j


D 1;

which contradicts the hypothesis. Therefore the lemma is valid. ut
We are now ready to prove Theorem 10.1.

Proof (Theorem 10.1). Using the inequality ja C b C cjp � 3p�1.jajp C jbjp C jcjp/,
we may write

E jrn.X/ � r.X/jp � 3p�1
E

ˇ̌
ˇ̌

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ̌
ˇ̌
p

C 3p�1
E

ˇ̌
ˇ̌

nX

iD1
Wni.X/ .r.Xi/ � r.X//

ˇ̌
ˇ̌
p

(10.8)

C 3p�1
E

ˇ̌
ˇ̌
� nX

iD1
Wni.X/ � 1

�
r.X/

ˇ̌
ˇ̌
p

:

The first term of inequality (10.8) tends to zero by Lemma 10.1, whereas the second
one tends to zero by Lemma 10.2. Concerning the third term, we have

E

ˇ̌
ˇ̌
� nX

iD1
Wni.X/ � 1

�
r.X/

ˇ̌
ˇ̌
p

! 0

by conditions .ii/, .iv/ and the Lebesgue dominated convergence theorem.
To prove the second assertion of Theorem 10.1, first note that if rn is Lp-consistent

for some p � 1 and all distributions of .X;Y/ with EjYjp < 1, then

nX

iD1
Wni.X/Yi ! r.X/ in probability: (10.9)
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The first two necessity statements follow from (10.9). The first one is shown by
taking Y D 1, independently of X, so that r.X/ D 1. The second one is an
implication of (10.9) and Lemma 10.3, by letting Y be a standard normal random
variable independent of X, for which in particular r.X/ D 0.

To prove the third necessity assertion, assume that the weights are nonnegative
and take Y D r.X/ D g.X/, where g is a bounded and continuous nonnegative
function on R

d. The conclusion immediately follows from (10.9) and Lemma 10.4.
The last necessity result is implied by Lemma 10.5. To see this, assume that the

weights are nonnegative, and let g be a Borel measurable function on R
d such that

Ejg.X/j < 1. Take Y D r.X/ D jg.X/j. Then, by the triangle inequality,

ˇ̌
ˇ
ˇE
h nX

iD1
Wni.X/ jg.Xi/j

i
� E jg.X/j

ˇ̌
ˇ
ˇ � E

ˇ̌
ˇ
ˇ

nX

iD1
Wni.X/ jg.Xi/j � jg.X/j

ˇ̌
ˇ
ˇ:

This inequality and the universal L1-consistency of the estimate imply

lim sup
n!1

E

� nX

iD1
Wni.X/ jg.Xi/j


< 1:

Therefore, by Lemma 10.5,

E

� nX

iD1
Wni.X/ jg.Xi/j


� C E jg.X/j for all n � n0:

This inequality is true for all n � 1 (with a different constant) if condition .ii/ is
satisfied. ut

10.4 The nearest neighbor estimate

In this section, we apply Stone’s theorem 10.1 to the nearest neighbor regression
function estimate (10.3).

Theorem 10.2 (Universal Lp-consistency). Let .vn1; : : : ; vnn/ be a probability
weight vector such that vn1 � � � � � vnn for all n. Then the corresponding nearest
neighbor regression function estimate is universally Lp-consistent (p � 1) if and
only if there exists a sequence of integers fkg D fkng such that

.i/ k ! 1 and k=n ! 0I

.ii/
P

i>k vni ! 0I
.iii/ vn1 ! 0:

(10.10)
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Remark 10.2. Conditions .i/ and .ii/ of Theorem 10.2 may be replaced by the
following equivalent one: for all " > 0,

P
i>"n vni ! 0 (see Lemma 20.3 in the

Appendix for a proof of this equivalence result). ut
For the standard k-nearest neighbor estimate, vni D 1=k for 1 � i � k and vni D 0

otherwise, where fkg D fkng is a sequence of positive integers not exceeding n.

Corollary 10.3. The k-nearest neighbor regression function estimate is universally
Lp-consistent (p � 1) if and only if k ! 1 and k=n ! 0.

This is a nice result, since no condition on .X;Y/ other than EjYjp < 1 is
required. This type of distribution-free result is called universal. The concept of
universal consistency is important because the use of a nonparametric estimate
is usually a consequence of the partial or total lack of information regarding the
distribution of .X;Y/. Since in many situations we do not have any prior knowledge
about this distribution, it is therefore essential to design estimates that perform well
for all distributions.

The crucial results needed to prove Theorem 10.2 are gathered in the next two
lemmas. If x; x1; : : : ; xn are elements of Rd and .vn1; : : : ; vnn/ is a weight vector,
we let

Wni.xI x1; : : : ; xn/ D vnk; 1 � i � n;

whenever xi is the k-th nearest neighbor of x from among x1; : : : ; xn (distance ties
are broken by comparing indices).

Lemma 10.6. Let x; x1; : : : ; xn be vectors of R
d, and let .vn1; : : : ; vnn/ be a

probability weight vector such that vn1 � � � � � vnn for all n. Then

nX

iD1
Wni.xiI x1; : : : ; xi�1; x; xiC1; : : : ; xn/ � 2�d;

where �d is the minimal number of cones of angle �=12 that cover Rd.

Proof. By Theorem 20.15, there exists a finite collection of minimal cardinality
C1; : : : ;C�d of cones of angle �=12 , with different central directions, such that their
union covers Rd:

�d[

`D1
C` D R

d:

Similarly, for x 2 R
d,

�d[

`D1
.x C C`/ D R

d:

To facilitate the notation, we let C`.x/ D xCC`, and denote by C ?
` .x/ the translated

cone C`.x/ minus the point x. Introduce the set A D fi W 1 � i � n; xi D xg, and let
jAj be its cardinality.
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Let xi be a point falling in C ?
` .x/. The key observation is that if xi is the nearest

neighbor of x from among those x1; : : : ; xn that belong to C ?
` .x/, then x can be

the nearest neighbor of only xi—or, equivalently, it cannot be the nearest neighbor
of any other point xj in C ?

` .x/. To see this, just note that if kxi � xk > 0 and
kxi � xk � kxj � xk, then, by Lemma 20.5, kxi � xjk < kx � xjk.

By induction, we conclude that if xi is the .jAj C k/-th nearest neighbor of x
among those x1; : : : ; xn that belong to C`.x/, then x is at least the k-th nearest
neighbor of xi among fx; xj W j ¤ i and xj 2 C ?

` .x/g. So, using the monotonicity
condition on the vni’s, we have

X

iWxi2C ?
` .x/

Wni.xiI x1; : : : ; xi�1; x; xiC1; : : : ; xn/ �
n�jAjX

iD1
vni � 1:

Similarly,

X

i2A

Wni.xiI x1; : : : ; xi�1; x; xiC1; : : : ; xn/ D
jAjX

iD1
vni � 1:

Since there are �d cones, the lemma is proved. ut
Lemma 10.7 (Stone’s lemma). Let .vn1; : : : ; vnn/ be a probability weight vector
such that vn1 � � � � � vnn for all n. Then, for every Borel measurable function
g W Rd ! R such that Ejg.X/j < 1,

E

� nX

iD1
vni

ˇ
ˇg
�
X.i/.X/

�ˇˇ


� 2�dE jg.X/j ;

where �d is the minimal number of cones of angle �=12 that cover Rd.

Proof. Let g be a Borel measurable function on R
d such that Ejg.X/j < 1. Notice

that

E

� nX

iD1
vni

ˇ̌
g
�
X.i/.X/

�ˇ̌  D E

� nX

iD1
Wni.X/ jg.Xi/j


;

where, with the notation of Lemma 10.6, Wni.X/ D Wni.XI X1; : : : ;Xn/. Therefore,

E

� nX

iD1
vni

ˇ
ˇg
�
X.i/.X/

�ˇˇ


D E

� nX

iD1
Wni.XI X1; : : : ;Xn/ jg.Xi/j



D E

�
jg.X/j

nX

iD1
Wni.XiI X1; : : : ;Xi�1;X;XiC1; : : : ;Xn/



.by symmetrization/



10.4 The nearest neighbor estimate 127

and thus, by Lemma 10.6,

E

� nX

iD1
vni

ˇ̌
g
�
X.i/.X/

�ˇ̌  � 2�dE jg.X/j :

ut
Proof (Theorem 10.2).

The sufficiency. We proceed by checking the conditions of Corollary 10.1. The
weights Wni.X/ in Corollary 10.1 are obtained by putting

Wni.X/ D vn˙i ;

where .˙1; : : : ; ˙n/ is a permutation of .1; : : : ; n/ such that Xi is the ˙i-th nearest
neighbor of X for all i. Condition .iii/ is obvious according to (10.10).iii/. For
condition .ii/, take n so large that 1 � k < n (this is possible in view of the first
requirement of (10.10)), and observe that, for each a > 0,

E

� nX

iD1
Wni.X/1ŒkXi�Xk>a�


D E

� nX

iD1
vni1ŒkX.i/.X/�Xk>a�



D
Z

Rd
E

� nX

iD1
vni1ŒkX.i/.x/�xk>a�


�.dx/

�
Z

Rd
P
˚kX.k/.x/ � xk > a

�
�.dx/C

X

i>k

vni:

Thus, using (10.10).ii/, the second condition of Corollary 10.1 is satisfied when

Z

Rd
P
˚kX.k/.x/ � xk > a

�
�.dx/ ! 0:

But, by Lemma 2.2 and the Lebesgue dominated convergence theorem, this is
true for all a > 0 whenever k=n ! 0. Let us finally consider condition .i/ of
Corollary 10.1. We have to show that for any Borel measurable function g on R

d

such that Ejg.X/j < 1,

E

� nX

iD1
Wni.X/ jg.Xi/j


D E

� nX

iD1
vni

ˇ̌
g
�
X.i/.X/

�ˇ̌  � C E jg.X/j ;

for all n � 1 and some constant C. We have precisely proved in Lemma 10.7 that
this inequality always holds with C D 2�d. Thus, condition .i/ is verified.
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The necessity. By the necessity part of Stone’s theorem 10.1, we already know
that the requirement vn1 D maxi vni ! 0 is necessary. Thus, it remains to
show that conditions (10.10)(i) and (10.10)(ii) are necessary as well. According to
Remark 10.2, this is equivalent to proving that, for all " > 0,

P
i>"n vni ! 0.

Let X be uniform on Œ0; 1�, and let Y D X2. Take 0 < x < 1=2, and define
Zn D Pn

iD1 vni.X2.i/.x/ � x2/. Note that y2 � x2 D .y � x/2 C 2x.y � x/. Since
x � 1=2, EŒX.i/.x/ � x� � 0 (which we leave as an exercise). Thus,

E
�
X2.i/.x/ � x2

� � E
ˇ̌
X.i/.x/ � x

ˇ̌2
:

Now, for t > 0, t < x,

P
˚jX.i/.x/ � xj > t

� D P fBin.n; 2t/ < ig

and for t � x,

P
˚jX.i/.x/ � xj > t

� D PfX.i/.0/ > x C tg D P fBin.n; x C t/ < ig :

By the duality between the binomial and beta distributions (see Section 20.9 in the
Appendix),

P fBin.n; 2t/ < ig D P fBeta.i; n C 1 � i/ > 2tg ; 0 < t < x;

and

P fBin.n; x C t/ < ig D P fBeta.i; n C 1 � i/ > t C xg ; t � x:

In any case, for all t > 0,

P
˚jX.i/.x/ � xj > t

� � P fBeta.i; n C 1 � i/ > 2tg :

Recalling that EZ D R1
0

PfZ > tgdt for any nonnegative random variable Z, we
obtain

EjX.i/.x/ � xj2 � 1

4
E
�
Beta2.i; n C 1 � i/

�

D 1

4
� i.i C 1/

.n C 1/.n C 2/
:

Therefore,

EZn D
nX

iD1
vniE

h
X2.i/.x/ � x2

i
�

nX

iD1

�
vni � i.i C 1/

4.n C 1/.n C 2/


�

nX

iD1

i2vni

4.n C 2/2
:
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It suffices now to show that Zn0 cannot converge to zero in probability along a
subsequence n0 of n when for some " > 0, ı > 0,

X

i>"n0

vn0i � ı > 0

along this subsequence. Indeed,

n0X

iD1
i2vn0i �

X

i>"n0

i2vn0i � ."n0 C 1/2ı;

whence

EZn0 � ."n0 C 1/2ı

4.n0 C 2/2
:

Also,

P

	
Zn0 >

."n0 C 1/2ı

8.n0 C 2/2



� PfZn0 > EZn0=2g

� EZn0=2

� ."n0 C 1/2ı

8.n0 C 2/2
� ı"2

8
;

where the second inequality uses technical Lemma 10.8 below. Therefore, for all
" > 0,

P
i>"n vni ! 0 as n ! 1. ut

Lemma 10.8. If 0 � a � 1 and 0 < c are constants, then any Œ0; c�-valued random
variable Z satisfies

P fZ > aEZg � 1 � a

c
EZ:

Proof. Just note that

EZ D EŒZ1ŒZ�aEZ��C EŒZ1ŒZ>aEZ�� � aEZ C cPfZ > aEZg:

ut
Remark 10.3 (Nonmonotone weights). Devroye (1981a) proved the following the-
orem (notation uC means max.u; 0/):

Theorem 10.3. Let p � 1, and let .vn1; : : : ; vnn/ be a probability weight vector.
Assume that EŒjYjp logC jYj� < 1 and that there exists a sequence of integers fkg D
fkng such that
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.i/ k ! 1 and k=n ! 0I

.ii/ vni D 0 when i > kI

.iii/ supn.k maxi vni/ < 1:

(10.11)

Then the corresponding nearest neighbor regression function estimate is Lp-consis-
tent.

The condition put on Y in Theorem 10.3 is stricter than the condition EjYjp < 1
needed in Theorem 10.2. However, the conditions on the sequence of weights are not
strictly nested: the monotonicity constraint is absent in Theorem 10.3, but (10.11).ii/
is stricter than (10.10).ii/. ut



Chapter 11
Pointwise consistency

11.1 Weak pointwise consistency

Theorem 11.1 below is a slight extension of a theorem due to Devroye (1981a). It
offers sufficient conditions on the probability weight vector guaranteeing that the
(raw) nearest neighbor estimate (8.2) satisfies, for all p � 1,

E jrn.x/ � r.x/jp ! 0 at �-almost all x;

under the sole requirement that EjYjp < 1. Since convergence in L1 implies
convergence in probability, this theorem also shows that the nearest neighbor
estimate is universally weakly consistent at �-almost all x, provided EjYj < 1.

It is assumed throughout that vni � 0, 1 � i � n, and
Pn

iD1 vni D 1. As in the
previous chapters, we let � be the distribution of X.

Theorem 11.1 (Universal weak pointwise consistency). Let p � 1. Assume that
EjYjp < 1 and that there exists a sequence of integers fkg D fkng such that

.i/ k ! 1 and k=n ! 0I

.ii/ vni D 0 when i > kI

.iii/ supn.k maxi vni/ < 1:

(11.1)

Then the corresponding nearest neighbor regression function estimate rn satisfies

E jrn.x/ � r.x/jp ! 0 at �-almost all x 2 R
d:

In particular, the nearest neighbor estimate is universally weakly consistent at
�-almost all x, that is,

rn.x/ ! r.x/ in probability at �-almost all x 2 R
d

for all distributions of .X;Y/ with EjYj < 1.

© Springer International Publishing Switzerland 2015
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As an important by-product, Theorem 11.1 implies that the standard k-nearest
neighbor estimate (vni D 1=k for 1 � i � k and vni D 0 otherwise) is universally
weakly pointwise consistent at �-almost all x when k ! 1 and k=n ! 0. Other
examples are the triangular weight k-nearest neighbor estimate (vni D .k� iC1/=bn

for 1 � i � k and vni D 0 otherwise, where bn D k.k C 1/=2) and the quadratic
weight estimate (vni D .k2 � .i � 1/2/=bn for 1 � i � k and vni D 0 otherwise,
where bn D k.k C 1/.4k � 1/=6).

Corollary 11.1. If k ! 1 and k=n ! 0, then the k-nearest neighbor regression
function estimate is universally weakly consistent at �-almost all x 2 R

d.

The elementary result needed to prove Theorem 11.1 is Lemma 11.1 below.
When the distribution of X is continuous, the proof is easy. However, in the general
case, we have to take care of the messy problem of distance ties, which introduces
additional technical difficulties.

Lemma 11.1. Let p � 1, and let g W Rd ! R be a Borel measurable function such
that Ejg.X/jp < 1. Assume that there exists a sequence of integers fkg D fkng such
that

.i/ k=n ! 0I

.ii/ vni D 0 when i > kI

.iii/ supn.k maxi vni/ < 1:

Then

E

ˇ
ˇ̌
ˇ

nX

iD1
vnig

�
X.i/.x/

� � g.x/

ˇ
ˇ̌
ˇ

p

! 0 at �-almost all x 2 R
d:

Proof. Take x such that x 2 supp.�/, and that x satisfies

max

�
1

� .B.x; �//

Z

B.x;�/
jg.y/ � g.x/jp �.dy/;

1

� .Bı.x; �//

Z

Bı.x;�/
jg.y/ � g.x/jp �.dy/

�
! 0 as � # 0

(where Bı is the open ball). Since Ejg.X/jp < 1, we have by the generalized ver-
sion of the Lebesgue differentiation theorem (see Theorem 20.19 in the Appendix)
that �-almost all x satisfy this property. Fix " > 0 and choose ı > 0 such that the
maximum above is smaller than " for all 0 < � � ı.

Observe, by Jensen’s inequality (which is valid here since .vn1; : : : ; vnn/ is a
probability vector and p � 1) and conditions .ii/–.iii/, that for some constant ˛ > 0,

E

ˇ
ˇ̌
ˇ

nX

iD1
vnig

�
X.i/.x/

� � g.x/

ˇ
ˇ̌
ˇ

p

� ˛

k
E

� nX

jD1

ˇ̌
g.Xj/ � g.x/

ˇ̌p
1Œ˙j�k�


; (11.2)
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a6

1

d

k
n−1

2k
n−1

4k
n−1

8k
n−1

16k
n−1

512k
n−1

32k
n−1

64k
n−1

128k
n−1

256k
n−1

a0 a4 a5a1a2a3
a −1 = 0 a9a7 a8

Fig. 11.1 An example of function F and the associated ai’s.

where ˙j is the rank of Xj with respect to the distances to x if ties are broken by
index comparisons (see Chapter 8). The objective is to bound (11.2) and show that
it can be made as small as desired as n ! 1.

Define Z D kX � xk, and let F.z/ D PfZ � zg, F0.z/ D PfZ < zg, p.z/ D
F.z/ � F0.z/ D PfZ D zg. For u 2 Œ0; 1�, define

F�1.u/ D infft � 0 W F.t/ � ug:
Assume that n � 2 and let I D maxfi � 0 W 2ik

n�1 < 1g. The sequence of points of
interest to us are a�1 D 0 � a0 � a1 � a2 � � � � � aI , where

ai D F�1
�
2ik

n � 1
�
; i � 0

(see Figure 11.1 for an example).
For i � 0, we have

F0.ai/ � 2ik

n � 1 � F.ai/ D F0.ai/C p.ai/:

It is possible to have ai D aiC1 (because of possible atoms in F), and this causes the
principal technical problem. We address this by introducing the set of large atoms, A:

A D
n
z � 0 W p.z/ � 1

4
F.z/

o
:
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So, we have z 2 A if and only if F0.z/ � 3
4
F.z/. The range of z, Œ0;1/, is partitioned

as follows, for fixed ı > 0:

f0g[
[

i�0Wai2A;ai�ı
.ai�1; ai/[

[

i�0Wai…A;ai�ı
.ai�1; ai�[ .A \ .0; ı�/[ .ı;1/: (11.3)

We implicitly assume that ı > 0 is one of the ai’s—this is always possible for all n
large enough since k=n ! 0, as soon as x is not an isolated atom of �. (If x is an
isolated atom, we just write

Œ0;1/ D f0g [ .0; ı� [ .ı;1/;

and observe that, for ı small enough, PfkX � xk 2 .0; ı�g D 0. Thus, the analysis
is simpler in this case and left to the reader.)

We define

 .z/ D 1

� .@B.x; z//

Z

@B.x;z/
jg.y/ � g.x/jp �.dy/;

where @B.x; z/ is the boundary of the closed ball B.x; z/ centered at x of radius z:
@B.x; z/ D fy 2 R

d W ky � xk D zg. Note that F.z/ D �.B.x; z// and p.z/ D
�.@B.x; z//. Thus, if z 2 A, 0 < z � ı, we have

 .z/ � 1
1
4
� .B.x; z//

Z

B.x;z/
jg.y/ � g.x/jp �.dy/ � 4";

by choice of ı. Now, for each set B in the partition (11.3), we bound

h.B/
defD ˛

k
E

� nX

jD1

ˇ̌
g.Xj/ � g.x/

ˇ̌p
1Œ˙j�k�1ŒkXj�xk2B�


:

Clearly, h.f0g/ D 0. Assume next B D A \ .0; ı�. Then

h.B/ D
X

z2B

˛

k
E

� nX

jD1

ˇ
ˇg.Xj/ � g.x/

ˇ
ˇp 1Œ˙j�k�1ŒkXj�xkDz�



D
X

z2B

˛

k
 .z/E

� nX

jD1
1Œ˙j�k�1ŒkXj�xkDz�



.using our index-based distance tie-breaking convention/

� 4˛"

k
E

� nX

jD1
1Œ˙j�k�1ŒkXj�xk2B�
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� 4˛"

k
E

� nX

jD1
1Œ˙j�k�



D 4˛":

Consider now Bi D .ai�1; ai/, ai 2 A, ai � ı, i � 0. Clearly, by our way of
breaking distance ties,

h.Bi/ � ˛n

k
E
�jg.X1/ � g.x/jp 1Œ˙1�k�1ŒkX1�xk2Bi�

�
:

Thus, for i � 1, after conditioning on X1,

h.Bi/ � ˛n

k
E

h
jg.X/ � g.x/jp 1ŒkX�xk2Bi�1ŒBin.n � 1;F.ai�1//<k�

i

.where the binomial random variable is independent of X1/

� ˛n

k

Z

Bi

jg.y/ � g.x/jp �.dy/ � P

n
Bin

�
n � 1; 2i�1k

n�1
�
< k

o

.since F.ai�1/ � 2i�1k
n�1 /:

(Note that we use the notation
R

Bi
as a shortcut for

R
fyWky�xk2Big.) Similarly, for i D 0,

h.B0/ � ˛n

k

Z

B0

jg.y/ � g.x/jp �.dy/:

Now, by choice of ı, for i � 0,

Z

Bi

jg.y/ � g.x/jp �.dy/ �
Z

Bı.0;ai/

jg.y/ � g.x/jp �.dy/ (11.4)

� "�
�
Bı.0; ai/

�

� "
2ik

n � 1
.since F0.ai/ � 2ik

n�1 /:

Therefore, for i � 1,

h.Bi/ � 2i˛"
n

n � 1 � P

n
Bin

�
n � 1; 2i�1k

n�1
�
< k

o
;

and for i D 0,

h.B0/ � ˛"
n

n � 1 :
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Applying Chernoff’s bound (Theorem 20.5 in the Appendix), we have

P

n
Bin

�
n � 1; 2i�1k

n�1
�
< k

o
� exp.k � 2i�1k C k log 2i�1/

D exp
�
k
�
1C .i � 1/ log 2 � 2i�1�� :

Clearly, the exponent is nonpositive for all i � 1. Also,

1X

iD1
2i exp

�
k
�
1C .i � 1/ log 2 � 2i�1�� �

1X

iD1
exp.1 � log 2C 2i log 2 � 2i�1/

defD c < 1:

Hence,

X

i�0Wai2A;ai�ı
h.Bi/ � ˛"

n

n � 1.1C c/:

Consider Bi D .ai�1; ai�, ai … A, ai � ı, i � 0. Then the bounding is as above,
i.e., the binomial argument remains unchanged, and only the passage via (11.4)
requires a modification. Indeed,

Z

Bi

jg.y/ � g.x/jp �.dy/ �
Z

B.0;ai/

jg.y/ � g.x/jp

.where B is the closed ball/

� "� .B.0; ai//

� "
2ik

n � 1 � 4

3

.as noted earlier/:

The factor 4=3 carries through. So,

X

i�0Wai…A;ai�ı
h.Bi/ � ˛"

n

n � 1.1C c/ � 4

3
:

Collecting bounds, uniformly over all k � 1,

h .Œ0; ı�/ � ˛"
�
4C 7

3

n

n � 1.1C c/
�
;

which is as small as desired by choice of ".
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It remains to bound h..ı;1//. Observe the following:

h ..ı;1// � ˛n

k
E

h
jg.X/ � g.x/jp 1ŒkX�xk>ı�1ŒBin.n � 1;F.ı//<k�

i

.by conditioning on X1/

� ˛n

k
E jg.X/ � g.x/jp � P fBin.n � 1;F.ı// < kg

� ˛n

k
� 2p�1 .E jg.X/jp C jg.x/jp/

� exp

�
k � .n � 1/F.ı/ � k log

� k

.n � 1/F.ı/
��

.if k < .n � 1/F.ı/, which is valid for n large enough since k=n ! 0

and F.ı/ > 0/

D o.1/ as n ! 1;

because Ejg.X/jp < 1, and for all n large enough, the exponent in exp.�/ is smaller
than a negative constant times n in view of k=n ! 0 and F.ı/ > 0.

Therefore

h .Œ0;1// � ˛"
�
4C 14

3
.1C c/

�
C o.1/;

and the proof is complete. ut
Proof (Theorem 11.1). Because ja C bjp � 2p�1.jajp C jbjp/ for p � 1, we see that

E

ˇ̌
ˇ̌

nX

iD1
vniY.i/.x/ � r.x/

ˇ̌
ˇ̌
p

� 2p�1
E

ˇ̌
ˇ̌

nX

iD1
vni
�
Y.i/.x/ � r

�
X.i/.x/

��
ˇ̌
ˇ̌
p

C 2p�1
E

ˇ̌
ˇ
ˇ

nX

iD1
vnir

�
X.i/.x/

� � r.x/

ˇ̌
ˇ
ˇ

p

: (11.5)

We note that Ejr.X/jp < 1, by Jensen’s inequality. Thus, the second term on the
right-hand side of (11.5) tends to zero at �-almost all x by Lemma 11.1. We show
that the first term tends to zero at �-almost all x when p � 2. The case 1 � p < 2 is
then obtained through a truncation argument.

Conditional on X1; : : : ;Xn, the differences Y.i/.x/ � r.X.i/.x//, 1 � i � n, are
independent and centered (see Proposition 8.1). Theorem 20.13 in the Appendix
thus implies that for some positive constant Cp depending only upon p,

E

ˇ̌
ˇ̌

nX

iD1
vni
�
Y.i/.x/ � r

�
X.i/.x/

��
ˇ̌
ˇ̌
p

� Cp E

ˇ̌
ˇ̌

nX

iD1
v2ni

ˇ̌
Y.i/.x/ � r

�
X.i/.x/

�ˇ̌2
ˇ̌
ˇ̌
p=2

:
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Let ˙i be the rank of Xi in the reordering of the data according to increasing
values of kXi � xk. So, Xi receives weight vn˙i . Since

E

ˇ̌
ˇ
ˇ

nX

iD1
v2ni

ˇ̌
Y.i/.x/ � r

�
X.i/.x/

�ˇ̌2
ˇ̌
ˇ
ˇ

p=2

D E

ˇ̌
ˇ
ˇ

nX

iD1
v2n˙i

jYi � r.Xi/j2
ˇ̌
ˇ
ˇ

p=2

;

we have

E

ˇ̌
ˇ
ˇ

nX

iD1
vni
�
Y.i/.x/ � r

�
X.i/.x/

��
ˇ̌
ˇ
ˇ

p

� Cp.max
i
vni/

p=2
E

ˇ̌
ˇ
ˇ

nX

iD1
vn˙i jYi � r.Xi/j2

ˇ̌
ˇ
ˇ

p=2

� Cp.max
i
vni/

p=2
E

� nX

iD1
vn˙i jYi � r.Xi/jp


;

(11.6)

where we used Jensen’s inequality (which is valid here since p � 2). Next, letting
g.x/ D EŒjY � r.X/jp j X D x�, we have

E

� nX

iD1
vn˙i jYi � r.Xi/jp


D E

� nX

iD1
vn˙iE

h
jYi � r.Xi/jp

ˇ̌
ˇX1; : : : ;Xn

i 

D E

� nX

iD1
vn˙i g.Xi/


:

It follows that

E

ˇ
ˇ̌
ˇ

nX

iD1
vni
�
Y.i/.x/ � r

�
X.i/.x/

��
ˇ
ˇ̌
ˇ

p

� Cp.max
i
vni/

p=2
E

� nX

iD1
vnig

�
X.i/.x/

� 
:

Since Ejg.X/j < 1, the quantity EŒ
Pn

iD1 vnig.X.i/.x//� remains bounded for
�-almost all x by Lemma 11.1. Hence, using maxi vni ! 0 as n ! 1 (condition
.iii/), we conclude that the first term in (11.5) tends to zero at �-almost all x. Thus,
Theorem 11.1 is proved for p � 2.

Consider now the case 1 � p < 2. Define for integer M > 0, Y.M/ D Y1ŒjYj�M�,
Z.M/ D Y � Y.M/, r.M/.x/ D EŒY.M/jX D x� and s.M/.x/ D EŒZ.M/jX D x�. Then,
with obvious notation,

E

ˇ̌
ˇ
ˇ

nX

iD1
vni
�
Y.i/.x/ � r

�
X.i/.x/

��
ˇ̌
ˇ
ˇ

p

� 2p�1
E

ˇ̌
ˇ
ˇ

nX

iD1
vni

h
Y.M/.i/ .x/ � r.M/

�
X.i/.x/

�i
ˇ̌
ˇ
ˇ

p

C 2p�1
E

� nX

iD1
vni

ˇ̌
ˇZ.M/.i/ .x/ � s.M/

�
X.i/.x/

�ˇ̌
ˇ
p

;

(11.7)

where we used Jensen’s inequality again.
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Since Y.M/ is bounded, the first term of (11.7) tends to zero at �-almost all x. To
see this, it suffices to note that if Y is bounded, then to prove the result for all p � 1,
it is enough to show that it holds for p D 2. This has already been done in the first
part of the proof.

With respect to the last term of (11.7), we may write

E

� nX

iD1
vni

ˇ̌
ˇZ.M/.i/ .x/ � s.M/

�
X.i/.x/

�ˇ̌
ˇ
p


� 2p�1
E

� nX

iD1
vni

ˇ̌
ˇZ.M/.i/ .x/

ˇ̌
ˇ
p


C 2p�1
E

� nX

iD1
vni

ˇ̌
s.M/

�
X.i/.x/

�ˇ̌p

:

Thus, letting g.M/.x/ D EŒjZ.M/jp j X D x�,

E

� nX

iD1
vni

ˇ̌
ˇZ.M/.i/ .x/ � s.M/

�
X.i/.x/

�ˇ̌
ˇ
p


� 2p�1
E

� nX

iD1
vni

ˇ̌
ˇZ.M/.i/ .x/

ˇ̌
ˇ
p


C 2p�1
E

� nX

iD1
vni g.M/

�
X.i/.x/

� 
:

Next, as in the first part of the proof, we have

E

� nX

iD1
vni

ˇ̌
ˇZ.M/.i/ .x/

ˇ̌
ˇ
p


D E

� nX

iD1
vn˙i

ˇ̌
Z.M/i

ˇ̌p


D E

� nX

iD1
vn˙iE

hˇ̌
Z.M/i

ˇ̌p ˇ̌
ˇX1; : : : ;Xn

i 

D E

� nX

iD1
vn˙i g.M/.Xi/



D E

� nX

iD1
vnig

.M/
�
X.i/.x/

� 
:

Therefore, we conclude that the last term of (11.7) is not greater than

22p�1
E

� nX

iD1
vni g.M/

�
X.i/.x/

� 
:

Let AM be the set of all x for which the first term of (11.7) tends to zero and
the quantity EŒ

Pn
iD1 vnig.M/.X.i/.x//� tends to g.M/.x/ as n ! 1. We have already

shown (see Lemma 11.1) that, for each fixed M, �.AM/ D 1. Let B be the set of all
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x with g.M/.x/ ! 0 as M ! 1. Clearly, �.B/ D 1 because EŒg.M/.X/� ! 0 as
M ! 1 and g.M/ is monotone in M. For all x in B \ .\MAM/, we claim that (11.7)
tends to zero: first pick M large enough so that g.M/.x/ is small, and then let n grow
large. Since this set has �-measure 1, the theorem is proved. ut

We conclude this section with the following theorem, which states that the nearest
neighbor estimate is weakly pointwise consistent at �-almost all x for a broader
family of weights, with no condition on .X;Y/ other than the boundedness of Y . Its
proof is an easy adaptation of the proof of Theorem 11.1.

Theorem 11.2 (Weak pointwise consistency). Let p � 1. Assume that
kYk1 < 1 and that there exists a sequence of integers fkg D fkng such that

.i/ k ! 1 and k=n ! 0I

.ii/
P

i>k vni ! 0I
.iii/ supn.k maxi vni/ < 1:

(11.8)

Then the corresponding nearest neighbor regression function estimate rn satisfies

E jrn.x/ � r.x/jp ! 0 at �-almost all x 2 R
d:

In particular, if kYk1 < 1, then

rn.x/ ! r.x/ in probability at �-almost all x 2 R
d:

Remark 11.1. Conditions (11.8) in Theorem 11.2 may be replaced by the following
equivalent ones: there exists a positive constant ˛ such that

.i/
P

i>˛=maxi vni
vni ! 0I

.ii/
P

i>"n vni ! 0; all " > 0I
.iii/ maxi vni ! 0:

(See Lemma 20.4 in the Appendix for a proof of this equivalency.) An example of
weights that satisfy (11.8) includes the geometric choice

vni D pn.1 � pn/
i�1

1 � .1 � pn/n
; 1 � i � n;

with pn 2 .0; 1/, pn ! 0 and npn ! 1. ut
Proof (Theorem 11.2). When g is �-almost surely bounded, the replacement of
(11.1).ii/ by (11.8).ii/ does not upset the conclusion of Lemma 11.1. In the proof of
Theorem 11.1, take p D 2, and estimate (11.6) from above by c maxi vni for some
constant c. ut
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11.2 Concentration of measure and its consequences

Today, there are powerful tools for controlling the variation and stability of random
variables, and especially of functions of n independent random variables. The book
by Boucheron et al. (2013) summarizes this subject. The objective of this section,
by way of introduction, is to highlight the use of these tools for the nearest neighbor
regression function estimate

rn.x/ D
nX

iD1
vniY.i/.x/; x 2 R

d;

with mini vni � 0 and
Pn

iD1 vni D 1.
The first notion is that of a self-bounding function. One says that a function

g W Rn ! Œ0;1/ has the self-bounding property if there exist functions gi W Rn�1 !
Œ0;1/ such that, for all x1; : : : ; xn and all 1 � i � n,

0 � g.x1; : : : ; xn/ � gi.x1; : : : ; xi�1; xiC1; : : : ; xn/ � 1

and

nX

iD1
.g.x1; : : : ; xn/ � gi.x1; : : : ; xi�1; xiC1; : : : ; xn// � g.x1; : : : ; xn/:

For a self-bounding function g,

Vg.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/;

where X1; : : : ;Xn are independent real-valued random variables. This is an immedi-
ate corollary of the Efron-Stein inequality (see Theorem 20.10 in the Appendix).

Assume that kYk1 � 1. Write Y D YC � Y�, where YC D max.Y; 0/ and
Y� D � min.Y; 0/. Then

rn.x/ D rC
n .x/ � r�

n .x/;

with

rC
n .x/ D

nX

iD1
vniY

C
.i/.x/ and r�

n .x/ D
nX

iD1
vniY

�
.i/.x/:

Take

g D rC
n .x/

maxi vni
and gi D 1

maxi vni

X

j¤i

vnjY
C
.j/.x/:



142 11 Pointwise consistency

Clearly,

g � gi D vni

maxi vni
YC
.i/.x/;

so that we have a self-bounding function. Therefore,

V

�
rC

n .x/
maxi vni


� E

�
rC

n .x/
maxi vni


;

and so

VrC
n .x/ � .max

i
vni/ErC

n .x/ � max
i
vni:

Similarly,

Vr�
n .x/ � .max

i
vni/Er�

n .x/ � max
i
vni:

We have, without further work, using .a C b/2 � 2.a2 C b2/,

Vrn.x/ � 2
�
VrC

n .x/C Vr�
n .x/

� � 4max
i
vni:

Thus, if kYk1 � 1,

E jrn.x/ � r.x/j2 D Vrn.x/C .Ern.x/ � r.x//2 � 4max
i
vni C .Ern.x/ � r.x//2 :

The second term is the bias term, where we note that Ern.x/DPn
iD1 vnir.X.i/.x//.

By Lemma 11.1 and Lemma 20.4, the mere conditions
P

i>˛=maxi vni
for some ˛ > 0

and
P

i>"n vni ! 0 for all " > 0 (besides vni � 0,
Pn

iD1 vni D 1) imply that
the bias term tends to zero �-almost surely. The variance term tends to zero when
maxi vni ! 0. For the standard k-nearest neighbor estimate, k=n ! 0 is needed for
the bias, and k ! 1 is needed for the variance.

Of course, we already know from Theorem 11.2 that Ejrn.x/ � r.x/j2 ! 0 at
�-almost all x. The power of the concentration inequalities will be clear when we
can say something about

P fjrn.x/ � Ern.x/j � "g :

Indeed, we can do better than Chebyshev’s inequality,

P fjrn.x/ � Ern.x/j � "g � Vrn.x/
"2

� 4maxi vni

"2
:
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The following exponential inequality was proved by Boucheron et al. (2013, page
182) by the entropy method: for a self-bounding function g,

P fg.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/ � tg

� exp

�
�h

�
t

Eg.X1; : : : ;Xn/

�
Eg.X1; : : : ;Xn/

�
; t > 0;

and

P fg.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/ � �tg

� exp

�
�h

�
� t

Eg.X1; : : : ;Xn/

�
Eg.X1; : : : ;Xn/

�
; 0 < t � Eg.X1; : : : ;Xn/;

where h.u/ D .1C u/ log.1C u/� u, u � �1. Recalling h.u/ � u2=.2C 2u=3/ for
u � 0 and h.u/ � u2=2 for u � 0, we have

P fg.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/ � tg

� exp

�
� t2

2Eg.X1; : : : ;Xn/C 2t=3

�
; t > 0;

and

P fg.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/ � �tg

� exp

�
� t2

2Eg.X1; : : : ;Xn/

�
; 0 < t � Eg.X1; : : : ;Xn/:

Apply this to rC
n .x/=maxi vni, which is a self-bounding function when kYk1 � 1.

Then we obtain

P
˚
rC

n .x/ � ErC
n .x/ � "

� � exp

�
� "2

2C 2"=3
� 1

maxi vni

�
; " > 0;

and

P
˚
rC

n .x/ � ErC
n .x/ � �"� �

(
exp

�
� "2

2
� 1

maxi vni

�
for 0 < " � ErC

n .x/

0 for " > ErC
n .x/.

Therefore,

P
˚ˇˇrC

n .x/ � ErC
n .x/

ˇ
ˇ � "

� � 2 exp

�
� "2

2C 2"=3
� 1

maxi vni

�
; " > 0:
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Obviously, the same inequality is valid for r�
n .x/. Thus, summarizing, we have

proved the following interesting proposition:

Proposition 11.1. Assume that kYk1 � 1. Then, at all x 2 R
d, for all " > 0,

P fjrn.x/ � Ern.x/j � "g � 4 exp

�
� "2

8C 4"=3
� 1

maxi vni

�
:

Note that the right-hand side is summable in n for all " > 0 if

.log n/max
i
vni ! 0: (11.9)

Hence, by the Borel-Cantelli lemma,

rn.x/ � Ern.x/ ! 0 almost surely at all x;

if (11.9) holds. Observing that

jrn.x/ � r.x/j � jrn.x/ � Ern.x/j C jErn.x/ � r.x/j

and that the second term tends to zero at �-almost all x whenever
P

i>˛=maxi vni
for

some ˛ > 0 and
P

i>"n vni ! 0 for all " > 0, we conclude that

rn.x/ ! r.x/ almost surely at �-almost all x;

if, additionally, kYk1 � 1 and (11.9) holds. Almost sure (or strong) consistency of
rn.x/ towards r.x/ is the topic of the next section.

11.3 Strong pointwise consistency

In some applications, data arrive sequentially—these include internet data, mea-
surements from monitoring stations, and stock ticker data, for example. One can
construct a regression function estimate rn of r, and ask what happens to rn when
more data come in, as a function of n. In other words, the sequence fr1; r2; r3; : : :g
itself is of interest. If we know, for example, that rn.x/ ! r.x/ almost surely, then
jrn.x/ � r.x/j � " for all n greater than some n0, with probability one. The weak
consistency of rn.x/ to r.x/ does not offer such guarantees. One could in fact have
lim supn!1 jrn.x/ � r.x/j D 1 almost surely—a disaster in terms of sequential
applications—while jrn.x/ � r.x/j ! 0 in probability.

The next theorem (Devroye, 1982) establishes the strong pointwise consistency
of the nearest neighbor estimate. The requirements that are imposed on the sequence
of weights are similar to the ones of Theorem 11.2, except that the condition k ! 1
is now replaced by the slightly stronger one k= log n ! 1. For the proof, we refer
to the previous section.
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Theorem 11.3 (Strong pointwise consistency). Assume that kYk1 < 1 and that
there exists a sequence of integers fkg D fkng such that

.i/ k= log n ! 1 and k=n ! 0I

.ii/
P

i>k vni ! 0I
.iii/ supn.k maxi vni/ < 1:

(11.10)

Then the corresponding nearest neighbor regression function estimate rn satisfies

rn.x/ ! r.x/ almost surely at �-almost all x 2 R
d:

Remark 11.2. Conditions (11.10) in Theorem 11.3 may be replaced by the fol-
lowing equivalent ones (see Lemma 20.4 in the Appendix): there exists a positive
constant ˛ such that

.i/
P

i>˛=maxi vni
! 0I

.ii/
P

i>"n vni ! 0; all " > 0I
.iii/ supn ..log n/maxi vni/ ! 0:

ut
Theorem 11.3 is rephrased for the standard k-nearest neighbor estimate as

follows:

Corollary 11.2. Assume that kYk1 < 1. If k= log n ! 1 and k=n ! 0, then the
k-nearest neighbor regression function estimate is strongly consistent at �-almost
all x 2 R

d.

The condition k= log n ! 1 in the previous corollary is suboptimal. One can
show that under regularity assumptions on k, the conditions k= log log n ! 1 and
k=n ! 0 are necessary and sufficient for rn.x/ ! r.x/ almost surely at �-almost
all x. A similar result with .log log n/maxi vni replacing k= log log n ! 1 exists for
the general nearest neighbor estimate—see Devroye (1982).

Theorem 11.4 (Strong pointwise consistency of the k-nearest neighbor
estimate). Assume that kYk1 < 1. Assume, in addition, that the sequence
fkg D fkng is increasing and regularly varying, i.e., for all � 2 .0; 1�,
kd�ne=kn ! c > 0 for some finite c. Then, if k= log log n ! 1 and k=n ! 0, the
k-nearest neighbor regression function estimate is strongly consistent at �-almost
all x 2 R

d.

Remark 11.3. The regular variation condition implies that c D �� for some � � 0

(see Bingham et al., 1987). When � D 0, and thus c D 1, the sequence is called
slowly varying. ut
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Before embarking on the proof of Theorem 11.3, we make a short detour through
the theory of records. Consider i.i.d. uniform Œ0; 1� random variables U1; : : : ;Un and
define Zi D F�1.Ui/, where F is a distribution function on Œ0;1/ and

F�1.u/ D infft � 0 W F.t/ � ug; u 2 Œ0; 1�:
We define the rank Ri of Ui at the moment of its birth by

Ri D
iX

jD1
1ŒUj�Ui�:

Since ties happen with zero probability, the Ri’s are well defined. We cannot do the
same with the Zi’s because F may be atomic. Let us break ties by indices. So, Zi is
placed before Zj if Zi < Zj, or if Zi D Zj and i < j. The rank of Zi at the moment of
its birth is

R0
i D

iX

jD1
1ŒZj�Zi�:

Since Uj � Ui implies Zj � Zi (but not vice versa), we have, for the coupled
sequences, Ri � R0

i for all i.
It is well known that R1; : : : ;Rn are independent and Ri is uniformly distributed

on f1; : : : ; ig. In what follows, we need a tail bound for the quantity
nX

iDmC1
1ŒR0

i �k�;

where k � m < n are given parameters. We have, for u > 0,

P

	 nX

iDmC1
1ŒR0

i �k� � u



� P

	 nX

iDmC1
1ŒRi�k� � u




� P

	 nX

iDmC1
Ber

�
k
i

� � u




� P

	
Bin

�
n � m; k

m

� � u




� exp

 

u � n � m

m
k � u log

 
u

n�m
m k

!!

for u � n�m
m k, by Chernoff’s bound on binomials—see Theorem 20.5 in the

Appendix. Setting u D e � n�m
m k, we have

P

	 nX

iDmC1
1ŒR0

i �k� � e � n � m

m
k



� e� n�m

m k:

This inequality is the only probabilistic fact needed to prove Theorem 11.4.
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Proof (Theorem 11.4). Without loss of generality, it is assumed that kYk1 � 1.
The groundwork was laid in the previous theorem. We recall (see Lemma 11.1) that
Ern.x/ ! r.x/ at �-almost all x, so we take such x. We recall from Proposition 11.1
that

P fjrn.x/ � Ern.x/j � "g � 4e�˛kn

for some positive constant ˛ depending upon " only. Define

n` D bN.1C ı/`c; ` � 0;

where ı > 0 and N 2 N
? are fixed and to be determined. Let " > 0 be fixed and

arbitrary. Note that we can find N large enough (depending upon ") such that

1X

`D0
P fjrn` .x/ � Ern` .x/j � "g �

1X

`D0

1

log2 n`

�
1X

`D0

1

.�1C log N C ` log.1C ı//2

< 1:

Here we used the condition k= log log n ! 1. By the Borel-Cantelli lemma, we
conclude that

rn` .x/ ! r.x/ almost surely at �-almost all x;

when ` ! 1. The proof is complete if we can show that, as ` ! 1,

max
n`�1<j�n`

ˇ̌
rj.x/ � rn` .x/

ˇ̌ ! 0 almost surely at �-almost all x:

This “trick” of partitioning the integers into suitable intervals—in this case of
exponentially growing size—is standard in the literature on strong convergence.

Observe the following, for ` � 1:

n`�1
n`

� N.1C ı/`�1 � 1
N.1C ı/`

� 1

1C ı
� 1

N

� 1

1C 2ı
;

where the last inequality is valid for all N � 3C 2ıC 1
ı
. Similarly, for all N � 2=ı,

n`
n`�1

� 1C ı

2
:
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Hence, for all N � 3C 2ı C 2
ı
,

ı

2
� n` � n`�1

n`�1
� 2ı: (11.11)

Moreover, by regular variation of kn, we have

kn`�1

kn`

�
�

n`�1
n`

�c

� 1

.1C ı/c

for some c > 0 as ` ! 1. Thus,

kn` � kn`�1

kn`

! 1 � 1

.1C ı/c
as ` ! 1:

Because we are observing the regression function estimate over time, it is
necessary to introduce time as an index. Thus, the reordered data at time n are

�
X.1;n/.x/;Y.1;n/.x/

�
; : : : ;

�
X.n;n/.x/;Y.n;n/.x/

�
:

The rank of Xi among X1; : : : ;Xn after reordering is ˙i;n, the last index always
referring to time. Note that ˙i;n is increasing in n. We have

rn.x/ D 1

kn

nX

iD1
Yi1Œ˙i;n�kn� and rj.x/ D 1

kj

jX

iD1
Yi1Œ˙i;j�kj�:

Let n`�1 < j � n`. Define

r0
j.x/ D 1

kn`

jX

iD1
Yi1Œ˙i;j�kj�:

For such j, we have, with probability one,

ˇ̌
rj.x/ � r0

j.x/
ˇ̌ �

� 1
kj

� 1

kn`

� jX

iD1
jYij1Œ˙i;j�kj�

� 1 � kj

kn`

.since kYk1 � 1/

� kn` � kn`�1

kn`

! 1 � 1

.1C ı/c
as ` ! 1:
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We conclude that, with probability one,

ˇ̌
rj.x/ � rn` .x/

ˇ̌ � o.1/C
�
1 � 1

.1C ı/c

�
C ˇ̌

r0
j.x/ � rn` .x/

ˇ̌
:

Note that for n`�1 < i � j � n`, 1Œ˙i;j�kj� � 1Œ˙i;i�kn` �
. Thus, with probability one,

kn`

ˇ̌
r0

j.x/ � rn` .x/
ˇ̌ �

nX̀

iD1

ˇ̌
ˇ1Œ˙i;n`�kn` �

� 1Œ˙i;j�kj�

ˇ̌
ˇ

�
n`�1X

iD1

ˇ̌
ˇ1Œ˙i;n`�kn` �

� 1Œ˙i;j�kj�

ˇ̌
ˇC

nX̀

iDn`�1C1
1Œ˙i;i�kn` �

:

Now, ˙1;1; : : : ; ˙n`;n` are distributed like the local ranks R0
1; : : : ;R

0
n`

. We recall

P

	
1

kn`

nX̀

iDn`�1C1
1Œ˙i;i�kn` �

� e � n` � n`�1
n`�1



� e� n`�n`�1

n`�1
kn` ;

and thus, according to inequalities (11.11), for all N large enough,

P

	
1

kn`

nX̀

iDn`�1C1
1Œ˙i;i�kn` �

� e.2ı/



� e�kn` ı=2: (11.12)

Using k= log log n ! 1, and our definition of n`, this is summable in ` for all
ı > 0.

The proof is finished if we can show that

sup
n`�1<j�n`

1

kn`

n`�1X

iD1

ˇ̌
ˇ1Œ˙i;n`�kn` �

� 1Œ˙i;j�kj�

ˇ̌
ˇ ! 0 almost surely in `: (11.13)

To get rid of the dependence upon j, observe that

1Œ˙i;n`�kn`�1 �
� 1Œ˙i;j�kj� � 1Œ˙i;n`�1�kn` �

:

Thus, the supremum in (11.13) is not larger than

1

kn`

n`�1X

iD1

�
1Œ˙i;n`�kn` �

� 1Œ˙i;n`�kn`�1 �

�
C 1

kn`

n`�1X

iD1

�
1Œ˙i;n`�1�kn` �

� 1Œ˙i;n`�kn` �

�

� 1

kn`

n`�1X

iD1
1Œkn`�1<˙i;n`�kn` �

C 1

kn`

nX̀

iDn`�1C1
1Œ˙i;n`�kn` �
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� kn` � kn`�1

kn`

C 1

kn`

nX̀

iDn`�1C1
1Œ˙i;n`�kn` �

� o.1/C 1 � 1

.1C ı/c
C 1

kn`

nX̀

iDn`�1C1
1Œ˙i;i�kn` �

:

Calling the last term L`, recall from (11.12) that, for all N large enough,

P fL` � e.2ı/g � e�kn` ı=2:

Since ı was arbitrary, the proof is complete. ut
Remark 11.4.

.i/ Walk (2008) proved the strong pointwise consistency of the k-nearest neighbor
estimate under the sole condition EjYj < 1 (universal consistency). The
sequence fkng is assumed to be regularly varying with exponent ˇ 2 .0; 1�,
that is kn is of the form kn D nˇL.n/, where the function L W .0;1/ ! .0;1/

varies slowly at infinity, i.e.,

L.tx/

L.t/
! 1 as t ! 1;

for every x > 0. Examples include kn D bnˇc (0 < ˇ < 1) and kn D
bn= log.n C 1/c.

Theorem 11.5 (Walk, 2008). Assume that EjYj < 1 and that the sequence
fkg D fkng is increasing and regularly varying with exponent ˇ 2 .0; 1�. Then,
if k ! 1 and k=n ! 0, the k-nearest neighbor regression function estimate is
strongly consistent at �-almost all x 2 R

d.

.ii/ The k-nearest neighbor regression function estimate

rn.x/ D 1

k

kX

iD1
Y.i/.x/

can be regarded as the uniform kernel case of the more general estimate
defined by

sn.x/ D
Pn

iD1 K
�

x�XikX.k/.x/�xk
�

Yi

Pn
jD1 K

�
x�Xj

kX.k/.x/�xk
� ; (11.14)

which allows unequal weights to be given to the observations. In the spirit of
Moore and Yackel (1977a,b) results for density estimation, Collomb (1980,
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1981) provide some weak and strong pointwise consistency results for the
estimate (11.14). The proofs involve a general lemma, showing that the prop-
erties of this estimate are consequences of the same properties for the standard
Nadaraya-Watson estimate (kernel method). ut



Chapter 12
Uniform consistency

12.1 Uniform consistency

In the present chapter, we consider the uniform convergence of

rn.x/ D
nX

iD1
vniY.i/.x/; x 2 R

d;

where .vn1; : : : ; vnn/ is a vector of weights summing to one, and the sequence
.X.1/.x/;Y.1/.x//; : : : ; .X.n/.x/;Y.n/.x// is a reordering of the data according to
increasing Euclidean distances kXi � xk. We are focusing on the convergence to
zero of supx2S jrn.x/ � r.x/j for all distributions of .X;Y/ for which X 2 R

d has
compact support S, and with some conditions on the tails of Y .

The supremum creates two problems—first of all, by moving x about Rd, the
data ordering changes. We will count the number of possible data permutations in
the second section. Second, we need a uniform condition on the “noise” Y � r.X/ so
that the averaging done by the weights vni is strong enough. This is addressed in the
third section. In the fourth section, we prove our main theorem, which generalizes a
result from Devroye (1978):

Theorem 12.1 (Strong uniform consistency). Let X have distribution � of
compact support S on R

d, and let the regression function r be continuous on S.
Assume that the random variable Y � r.X/ given X D x satisfies the uniform noise
condition: there exists � > 0 such that

sup
x2Rd

E

h
e�jY�r.X/j j X D x

i
< 1:

Assume furthermore that, for all " > 0,

© Springer International Publishing Switzerland 2015
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X

i>"n

jvnij ! 0;

and that

nX

iD1
vni D 1; sup

n

nX

iD1
jvnij < 1;

and

.log n/
�

max
i

jvnij
� D o.1/:

Then the corresponding nearest neighbor regression function estimate rn satisfies

sup
x2S

jrn.x/ � r.x/j ! 0 almost surely:

Remark 12.1.

.i/ We allow weights that take negative values. As we will see later, there could
be a benefit from such a choice.

.ii/ For the standard k-nearest neighbor estimate, the conditions of Theorem 12.1
are equivalent to k=log n ! 1 and k=n ! 0.

.iii/ For the supremum norm convergence, it is possible to widen the class of noise
distributions at the expense of more restricted assumptions on k. For example,
if we have EjYjp < 1 for p > 0, then the condition k= log n ! 1 for the
k-nearest neighbor estimate rn should be replaced by k log n=n1=p ! 1. For
p D 2, this has been done, e.g., by Cheng (1984). The idea is as follows: since

EjYjp D
Z 1

0

P
˚jYj > t1=p

�
dt < 1;

we see that in the sequence Y1; : : : ;Yn, jYij > i1=p happens finitely often with
probability one. The Yi’s with jYij > i1=p are thus harmless. Then argue as in
the proof of Theorem 12.1, using explicit exponential bounds for the random
variable jYij1ŒjYij�i1=p�. ut

Finally, in the last section, we show by means of a simple example that the
conditions on k given above for the k-nearest neighbor estimate are necessary, even
if Y remains bounded and X is uniform on Œ0; 1�. In other words, the conditions of
Theorem 12.1 are optimal.
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12.2 The number of reorderings of the data

Let x1; : : : ; xn 2 R
d be vectors with possibly some duplicates. For fixed x 2 R

d,
reorder these vectors according to increasing values of kxi �xk, breaking, as always,
ties by considering indices. Let .�1; : : : ; �n/ be the permutation thus obtained:

kx�1 � xk � � � � � kx�n � xk:

The inverse is the rank ˙i, i.e.,

xi D x�˙i
; 1 � i � n:

Let

W D ˚
.˙1; : : : ; ˙n/ W x 2 R

d
�

be the set of all rank vectors one can observe by moving x around in space. Similarly,

S D ˚
.�1; : : : ; �n/ W x 2 R

d
�
:

Notation jW j (respectively jS j) stands for the cardinality of W (respectively S ).

Theorem 12.2. One has

jW j D jS j �
�
25

d

�d

n2d for all n � 2d:

Proof. The hyperplane kx � xik2 D kx � xjk2 generates a sign

pij.x/ D
8
<

:

1 if kx � xik2 > kx � xjk2
0 if kx � xik2 D kx � xjk2
�1 if kx � xik2 < kx � xjk2.

The collection of signs .pij.x/; 1 � i < j � n/, called the sign pattern, determines

the ordering of kx � xik2 and identifies all ties. There are 3.
n
2/ possible sign patterns,

but not all of them are possible in R
d.

For d D 1, it is easy to see that the number of sign patterns of N polynomials of
degree not exceeding D is at most 2NDC1. For larger dimensions, the Milnor-Thom
theorem (Petrovskiı̆ and Oleı̆nik, 1952; Milnor, 1964; Thom, 1965) states that the
maximal number of sign patterns of N polynomials of degree at most D in R

d is

�
50DN

d

�d

for all N � d � 2
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(see also Warren, 1968, and Pollack and Roy, 1993). Better bounds are known for
hyperplane arrangements (i.e., when D D 1), but they are still O.Nd/ for d fixed—
see the discussion in Matous̆ek (2002, Chapter 6), or in Grünbaum (1972). For our
example, D D 1, N D �n

2

�
, so that for any d � 1 and all n � 2d, the number of sign

patterns is not more than

�
25

d

�d

n2d: ut

12.3 A uniform exponential tail condition

In regression function estimation, the residual Y � r.X/ is sometimes called the
“noise.” It measures the departure from the regression function r. In this text, we
have several conditions on the noise, starting with the standard one, EjYjp < 1 for
some p > 0. In some places, we assume kYk1 < 1, where kYk1 is the essential
supremum of Y .

A practical assumption that captures many important applications is the uniform
exponential condition: there exists � > 0 such that

sup
x2Rd

E

h
e�jY�r.X/j j X D x

i
< 1:

This class contains all homoscedastic cases, i.e., cases in which Y � r.X/ given
X D x is distributed as Z with EZ D 0, and for which Ee�jZj < 1 for some � > 0.
Examples for Z include the Gaussian and exponential distributions, as well as all
bounded distributions.

Lemma 12.1. Let Z1;Z2; : : : be a sequence of independent zero-mean real-valued
random variables with

sup
n�1

Ee�jZnj � c < 1; (12.1)

for a given � > 0 and some constant c > 0. Let .vn1; : : : ; vnn/ be a weight vector,
with vn D maxi jvnij > 0. Let 
n D Pn

iD1 jvnij. Then, for all " > 0,

P

	 nX

iD1
vniZi � "



� exp

�
� "2�2

8c
nvn

�
; " � 
n

�
min.1; 2c/:

Similarly,
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P

	 nX

iD1
vniZi � �"



� exp

�
� "2�2

8c
nvn

�
; " � 
n

�
min.1; 2c/:

Proof. Fix � > 0 so that (12.1) holds. Then note that by Taylor series expansion
with remainder,

Ee˛Zn � 1C ˛EZn C ˛2

2
EZ2n C j˛j3

6
E

h
jZnj3ej˛Znji

� 1C ˛2

2
EZ2n C cj˛j3

6
EjZnj3; if j˛j � �:

Observe that

�2

2
EZ2n � Ee�jZnj � c:

So,

sup
n�1

EZ2n � 2c

�2
:

Similarly,

�3

6
EjZnj3 � Ee�jZnj � c;

and thus

sup
n�1

EjZnj3 � 6c

�3
:

We conclude that for j˛j � �,

Ee˛Zn � 1C c˛2

�2
C c2j˛j3

�3
:

By Chernoff’s bounding method (Theorem 20.5 in the Appendix), for " > 0,
� > 0,

P

	 nX

iD1
vniZi � "



� e��"

Ee�
Pn

iD1 vniZi

D e��"
nY

iD1
Ee� vniZi
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� e��"
nY

iD1

�
1C c�2v2ni

�2
C c2�3jvnij3

�3

�

.assuming � vn � �/

� exp

�
� �"C

nX

iD1

�c�2v2ni

�2
C c2�3jvnij3

�3

��

.since 1C u � eu for all u/

� exp

�
� �"C c�2
nvn

�2
C c2�3
nv

2
n

�3

�
:

Put � D "�2

2c
nvn
(which minimizes the sum of the first two terms in the exponent).

Then the bound is

exp

�
� "2�2

4c
nvn
C "3�3

8c
2
nvn

�
� exp

�
� "2�2

8c
nvn

�

if "�=
n � 1. Note also that � vn � � implies that we should have "�=
n � 2c.
ut

12.4 Proof of Theorem 12.1

We shall begin the proof of Theorem 12.1 with a few preliminary lemmas.

Lemma 12.2. Assume that the support S of � is compact. Then, for all " > 0,

inf
x2S
� .B.x; "// > 0:

Proof. Suppose that the result is false and that infx2S �.B.x; "// D 0 for some " > 0.
Then there exists a sequence fxig from S with �.B.xi; "// ! 0. Since S is compact,
the sequence fxig must have a cluster point y in S. Therefore, there exists a further
subsequence fx?i g such that

�.B.x?i ; "// ! 0 and kx?i � yk � "=2 for all i:

Thus, B.y; "=2/ is contained in the intersection of all the B.x?i ; "/. Hence

� .B.y; "=2// � lim inf
i!1 �

�
B.x?i ; "/

� D 0;

which contradicts the fact that y belongs to S. ut
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Lemma 12.3. Assume that the support S of � is compact and that the regression
function r is continuous on S. If, for all " > 0,

P
i>"n jvnij ! 0,

Pn
iD1 vni D 1 and

supn

Pn
iD1 jvnij < 1, then

sup
x2S

jQrn.x/ � r.x/j ! 0 almost surely;

where

Qrn.x/ D
nX

iD1
vnir

�
X.i/.x/

�
:

Proof. Let " > 0 be arbitrary, and find a ı > 0 such that jr.y/ � r.x/j � " for
all x; y 2 S such that ky � xk � ı (use the uniform continuity of r on S). Let
r? D krk1 supn

Pn
iD1 jvnij, let � 2 .0; 1=2� be arbitrary, and let An be the event

An D �kX.d�ne/.x/ � xk � ı for all x 2 S
�
:

Clearly,

P

n
sup
x2S

jQrn.x/ � r.x/j > 2"
o

� PfAc
ng C P

n
An; sup

x2S
jQrn.x/ � r.x/j > 2"

o

D PfAc
ng C P

	
An; sup

x2S

ˇ
ˇ̌
ˇ

d�neX

iD1
vni
�
r
�
X.i/.x/

� � r.x/
�
ˇ
ˇ̌
ˇC r?

X

i>d�ne
jvnij > 2"



:

Thus, for all n large enough,

P

n
sup
x2S

jQrn.x/ � r.x/j > 2"
o

� PfAc
ng

since, on the event An, jr.X.i/.x// � r.x/j � " for all x 2 S and 1 � i � d�ne, and
r?
P

i>d�ne jvnij � " for all n large enough by our assumption.
Next,

Ac
n �

h
�n .B.x; ı// <

d�ne
n

for some x 2 S
i

�
h
�n .B.x; ı// < 2� for some x 2 S

i

.for all n large enough, since � 2 .0; 1=2�/;
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where �n.B/ D 1
n

Pn
iD1 1ŒXi2B� is the empirical measure of a Borel set B with

X1; : : : ;Xn. From Lemma 12.2,

inf
x2S
� .B.x; ı=2// D c > 0:

Since S is compact, we can find a finite number N of points x1; : : : ; xN from S with
the property that, for every x in S, there exists an xi, 1 � i � N, with kx�xik � ı=2.
Thus,

P

n
sup
x2S

jQrn.x/ � r.x/j > 2"
o

� P

n
inf
x2S
�n .B.x; ı// < 2�

o

� P

	 N[

iD1

˚
�n .B.xi; ı=2// < 2�

�


� N sup
x2S

P
˚
�n .B.x; ı=2// < 2�

�

D N sup
x2S

P
˚
Bin.n; px/ < 2n�

�
;

where px D �.B.x; ı=2// > 0. Therefore, if � < c=4, then, by Chernoff’s bound
(Theorem 20.5 in the Appendix),

P

n
sup
x2S

jQrn.x/ � r.x/j > 2"
o

� N sup
x2S

P
˚
Bin.n; px/ < nc=2

�

� N sup
x2S

exp

�
nc

2
� npx � nc

2
log

� c

2px

��

� N exp
�
�nc

2
.1 � log 2/

�
;

where, in the last inequality, we used the fact that infp2Œc;1�.p C c
2

log. c
2p // D c C

c
2

log 1
2
. In conclusion, for all n large enough,

P

n
sup
x2S

jQrn.x/ � r.x/j > 2"
o

� Ne�˛n

for some ˛ > 0, and Lemma 12.3 now follows by the Borel-Cantelli lemma since
e�˛n is summable with respect to n. ut

We are now in a position to prove Theorem 12.1.

Proof (Theorem 12.1). In view of Lemma 12.3, we only need to show that

X

n�1
P

n
sup
x2S

jrn.x/ � Qrn.x/j > "
o
< 1
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for all " > 0, where we recall that

Qrn.x/ D
nX

iD1
vnir

�
X.i/.x/

�
:

Note that

rn.x/ � Qrn.x/ D
nX

iD1
vni
�
Y.i/.x/ � r

�
X.i/.x/

��
:

According to Proposition 8.1, conditional on X1; : : : ;Xn, the random variables
Y.1/.x/ � r.X.1/.x//; : : : ;Y.n/.x/ � r.X.n/.x// are independent with zero mean.
Moreover, they satisfy the uniform noise condition

sup
.x1;:::;xn/2Rdn

E

h
e�jY.i/.x/�r.X.i/.x//j ˇ̌ .X1; : : : ;Xn/ D .x1; : : : ; xn/

i
� c < 1

for some �; c > 0. By Lemma 12.1,

sup
.x1;:::;xn/2Rdn

P

( ˇ̌
ˇ̌

nX

iD1
vni

ˇ̌
Y.i/.x/ � r

�
X.i/.x/

�ˇ̌
ˇ̌
ˇ̌ > "

ˇ̌
ˇ .X1; : : : ;Xn/ D .x1; : : : ; xn/

)

� 2 exp

�
� "2�2

8c
nvn

�
; " � 
n

�
min.1; 2c/; (12.2)

where vn D maxi jvnij and 
n D Pn
iD1 jvnij.

While this inequality is true for all x, the supremum over x is under the
probability sign. Thus, letting

W D ˚
.�1; : : : ; �n/ W all permutations of .1; : : : ; n/ obtainable by moving x in R

d
�
;

we may write

P

n
sup
x2S

jrn.x/ � Qrn.x/j > "
ˇ̌
.X1; : : : ;Xn/ D .x1; : : : ; xn/

o

� P

(
[

.�1;:::;�n/2W

ˇ
ˇ̌
ˇ

nX

iD1
vni .Y�i � r.X�i//

ˇ
ˇ̌
ˇ > "

ˇ̌
ˇ .X1; : : : ;Xn/ D .x1; : : : ; xn/

)

�
X

.�1;:::;�n/2W
P

( ˇ̌
ˇ̌

nX

iD1
vni .Y�i � r.X�i//

ˇ̌
ˇ̌ > "

ˇ̌
ˇ .X1; : : : ;Xn/ D .x1; : : : ; xn/

)

�
�25

d

�d
n2d � 2 exp

�
� "2�2

8c
nvn

�
; " � 
n

�
min.1; 2c/;
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by combining Theorem 12.2 and (12.2). Observe that supn
n < 1 and that 
n �
jPn

iD1 vnij D 1. Thus, for all " > 0, the upper bound is summable in n when
.log n/vn ! 0. ut
Remark 12.2. The proof of Theorem 12.1 uses the Milnor-Thom theorem (see
Section 12.2). For the standard k-nearest neighbor estimate, what matters in the
proof is the number of ways of “grabbing” k points by balls B.x; �/, x 2 R

d, � � 0.
Since the k-nearest neighbor estimate can only use one of these sets, one needs an
upper bound for

ˇ̌
ˇ
˚fX1; : : : ;Xng \ B.x; �/ W x 2 R

d; � � 0
�ˇ̌
ˇ:

If A is a class of sets on R
d (such as all balls B.x; �/) then the shatter coefficient

of A is

S.A ; n/ D max
.x1;:::;xn/2Rdn

ˇ̌
ˇ
˚fx1; : : : ; xng \ A W A 2 A

�ˇ̌
ˇ:

It plays a crucial role in the work of Vapnik and Chervonenkis (Vapnik and
Chervonenkis, 1971—see also Devroye and Lugosi, 2001) for finding uniform
bounds for empirical processes.

For example, for all hyperplanes in R
d, we have

S.A ; n/ � 2nd C 2

(Devroye et al., 1996, page 223), and for the class of closed balls in R
d,

S.A ; n/ � 2ndC1 C 2:

The latter result suffices to prove Theorem 12.1 for the k-nearest neighbor estimate.
ut

12.5 The necessity of the conditions on k

Consider the standard k-nearest neighbor estimate when X has compact support,
jYj � 1, and r is uniformly continuous on the support of X. It is a simple exercise
to show that k=n ! 0 is necessary for weak uniform consistency, because it is
even necessary for weak pointwise consistency at one point of the support. The
necessity of k= log n ! 1 for supremum norm convergence can be shown by a
simple example on Œ0; 1�.

Let Y be independent of X and Rademacher, i.e., Y D ˙1 with equal probability,
and let X be uniform on Œ0; 1�. We have r.x/ D 0, and
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rn.x/ D 1

k

kX

iD1
Y.i/.x/

DD 1

k

�
2Bin

�
k; 1

2

� � k
�
;

for all x. Define

xj D 2jk

n
; 1 � j � n

2k
� 1;

where we assume without loss of generality that n is a multiple of 2k and n
2k � 2.

Then for " > 0, assume that Pfsupx2R jrn.x/j > "g ! 0. Define

A D
	

j 2
n
1; : : : ;

n

2k
� 1

o
W jX.k/.xj/ � xjj � k

n



:

Clearly, given A, the rn.xj/’s, j 2 A, are all independent because the k-neighborhoods
do not overlap, and thus different Yi’s are used in rn.xj/, j 2 A. Let N D jAj. Then
N is the number of components (among n

2k � 1) of a multinomial random vector
.N1; : : : ;N n

2k �1/ whose value is larger than or equal to k, where .N1; : : : ;N n
2k
/ has

parameters .n; 2k
n ; : : : ;

2k
n /. We have, conditioning on A,

P

n
sup
x2R

jrn.x/j � "
o

� E

h
P

N fjrn.x1/j � "g
i

defD EqN :

Thus,

EqN D E

� n
2k �1Y

jD1
q1ŒNj�k�


D E

� n
2k �1Y

jD1

�
q1ŒNj�k� C 1ŒNj<k�

� 

D E

� n
2k �1Y

jD1

�
1 � .1 � q/1ŒNj�k�

� 

� E

� n
2k �1Y

jD1

�
1 � .1 � q/j

� 
;

where 1; : : : ;  n
2k �1 are independent Bernoulli random variables with success

probability PfNj � kg. Here we used the negative association property of the
multinomial law—see Marshall and Olkin (1979), or Tong (1980). Next, by the
Chebyshev-Cantelli inequality (Theorem 20.11 in the Appendix),

PfNj � kg D P
˚
Bin

�
n; 2k

n

� � k
� � k

k C 2

defD p:
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Therefore,

EqN � .1 � .1 � q/p/
n
2k �1

� exp
�
�.1 � q/p

� n

2k
� 1

��

.since 1 � u � e�u for all u/

D exp

�
�.1 � q/

k

k C 2

� n

2k
� 1

��
:

By assumption, this term tends to one for every " > 0, and hence, the exponent must
tend to zero. Therefore .1 � q/ n

2k ! 0, or,

n

2k
� P fjrn.x1/j > "g ! 0:

But, for " 2 .0; 1/, this is

n

2k
� P

	 ˇ̌
ˇBin

�
k; 1

2

� � k

2

ˇ̌
ˇ >

"k

2



� n

2k
� P

	
Bin

�
k; 1

2

�
>

k

2
.1C "/




D n

2k
��

�
1p
k

�
�
�

1

.1C "/1C".1 � "/1�"
�k

;

by properties of the tail of the binomial, where �.1=
p

k/ denotes a factor sand-
wiched between c1=

p
k and c2=

p
k for 0 < c1 < c2 < 1.

Assume that k � ı log n for some 0 < ı < 1 along a subsequence. Then along
that subsequence, the lower bound is larger than

�

�
n

log3=2 n

�
�
�

1

.1C "/1C".1 � "/1�"
�ı log n

:

We can find " small enough such that this does not tend to zero along that
subsequence, and thus obtain a contradiction. Therefore, k= log n ! 1.



Chapter 13
Advanced properties of uniform order statistics

13.1 Moments

Various properties of U.1/; : : : ;U.n/, uniform Œ0; 1� order statistics, will be needed in
the analysis that follows. These are collected in the present chapter. The first group
of properties is directly related to U.i/ (1 � i � n), while the second group deals
with random linear combinations of them.

Recall (Corollary 1.1) that

�
U.1/; : : : ;U.n/

� DD
�

G1

GnC1
; : : : ;

Gn

GnC1

�
;

where Gi D Pi
jD1 Ej, 1 � i � n C 1, and E1; : : : ;EnC1 are independent

standard exponential random variables. In particular, Gi is Gamma.i/ and U.i/ is
Beta.i; n C 1 � i/ distributed, i.e., U.i/ has density

xi�1.1 � x/n�i

B.i; n C 1 � i/
; 0 � x � 1;

where

B.a; b/ D 	 .a/	 .b/

	 .a C b/
:

We start with the following simple lemmas.

Lemma 13.1. For ˛ > 0,

EU˛
.i/ D 	 .i C ˛/	 .n C 1/

	 .i/	 .n C 1C ˛/
: (13.1)
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Furthermore,

max
1�i�n

E

��
U.i/

i=n

�˛
� .1C ˛/1C˛:

Proof. The first statement follows by working out the moments of the beta
distribution (see Section 20.9 in the Appendix). Using Theorem 20.14, (13.1) is
not larger than

�
1C ˛

i

�i

�
1C ˛

nC1
�nC1 �

�
i C ˛

n C 1C ˛

�˛
�
r

i

i C ˛
�
r

n C 1C ˛

n C 1
:

Since .1C ˛
u /

u is increasing in u > 0, and 1 � i � n, this is not more than

�
1C ˛

2

�� i C ˛

n C 1C ˛

�˛
:

We conclude that

max
1�i�n

E

��
U.i/

i=n

�˛
�
�
1C ˛

2

�
max
1�i�n

�
i C ˛

i

�˛ � n

n C 1C ˛

�˛

�
�
1C ˛

2

�
.1C ˛/˛

� .1C ˛/1C˛: ut

Lemma 13.2. For ˛ > 0,

max
k�i�n

E

��
U.i/

i=n

�˛
�
�
1C ˛

k

�max.˛;1/

and, if k > ˛,

min
k�i�n

E

��
U.i/

i=n

�˛
�
�

n

n C 1

�˛
exp

�
�˛

k
� ˛2

2.k � ˛/
�
:

Thus,

max
k�i�n

ˇ̌
ˇ̌E
��

U.i/

i=n

�˛
� 1

ˇ̌
ˇ̌ D O

�
1

k

�
as k ! 1:

Proof. Fix i 2 fk; : : : ; ng. By Theorem 20.14,

EU˛
.i/ �

�
1C ˛

i

�i

�
1C ˛

nC1
�nC1 �

�
i C ˛

n C 1C ˛

�˛
� n C 1C ˛

n C 1
:
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Therefore,

E

��
U.i/

i=n

�˛
�
 
1C ˛

i

1C ˛
nC1

!˛ �
1C ˛

n C 1

�

D
�
1C ˛

i

�˛ �
1C ˛

n C 1

�1�˛

�
�
1C ˛

i

�max.˛;1/
:

For the lower bound, note that

EU˛
.i/ �

�
1C ˛

i

�i

�
1C ˛

nC1
�nC1 �

�
i C ˛

n C 1C ˛

�˛
� i

i C ˛
;

so that

E

��
U.i/

i=n

�˛
�
�

n

n C 1

�˛
e�˛ �1C ˛

i

�i
 
1C ˛

i

1C ˛
nC1

!˛
� 1

1C ˛
i

.since 1C u � eu for all u/

�
�

n

n C 1

�˛
e�˛ �1C ˛

k

�k�1

�
�

n

n C 1

�˛
exp

�
�˛

k
� ˛2

2.k � ˛/
�

.where we used log.1C u/ � u � u2

2.1�u/ for 0 < u < 1/: ut

13.2 Large deviations

We will need large deviation bounds for U.i/. These are easy to derive by Chernoff’s
bounding method applied to the gamma distribution (see Section 20.3.2 in the
Appendix). We first summarize the result:

Theorem 13.1. For ı 2 .0; 1=2�, define

'.ı/ D � ı
3

� log

�
1 � ı

3

�
:
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Then

max
1�i�n

 
P
˚
U.i/ � i

n .1C ı/
�

exp .�i'.ı//

!

� 2:

For ı 2 .0; 1/, define

 .ı/ D ı

2
� log

�
1C ı

2

�
:

Then

max
1�i�n

 
P
˚
U.i/ � i

n .1 � ı/�

exp .�i .ı//

!

� 2:

Recalling that U.i/
DD Gi=Gn, it is easy to be convinced that since Gn is close to n,

the tail behavior of U.i/ can be uniformly bounded in n. This is what Theorem 13.1
captures.

Proof (Theorem 13.1). The proof is based on Theorem 20.6 in the Appendix
(Chernoff’s bounding method for the gamma distribution). For ı 2 .0; 1=2�, we
have

P

	
U.i/ � i

n
.1C ı/



D P

	
Gi

Gn
� i

n
.1C ı/




� P

	
Gi � i

�
1C ı

2

�

C P

	
Gn � n

1C ı
2

1C ı




� P

	
Gi � i

�
1C ı

2

�

C P

	
Gn � n

�
1 � ı

3

�


.valid for 0 < ı � 1=2/

� exp

�
�i

�
ı

2
� log

�
1C ı

2

���

C exp

�
�n

�
� ı
3

� log
�
1 � ı

3

���

.by Theorem 20.6/

� 2 exp

�
�i

�
� ı
3

� log
�
1 � ı

3

���

.since ı
2

� log.1C ı
2
/ � � ı

3
� log.1 � ı

3
/ � 0 on .0; 1=2�/:
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Finally, for ı 2 .0; 1/,

P

	
U.i/ � i

n
.1 � ı/



� P

	
Gi � i

�
1 � ı

2

�

C P

	
Gn � n

1 � ı
2

1 � ı



� P

	
Gi � i

�
1 � ı

2

�

C P

	
Gn � n

�
1C ı

2

�


� exp

�
�i

�
� ı
2

� log
�
1 � ı

2

���

C exp

�
�n

�
ı

2
� log

�
1C ı

2

���

� 2 exp

�
�i

�
ı

2
� log

�
1C ı

2

���

.since � ı
2

� log.1 � ı
2
/ � ı

2
� log.1C ı

2
/ � 0 on .0; 1//: ut

13.3 Sums of functions of uniform order statistics

For fixed ˛ > 0, the quantities that will matter most to us come in the general form

1

k

kX

iD1
U˛
.i/Li;

where k depends upon n (1 � k � n), and L1; : : : ;Lk are i.i.d. random variables
independent of U.1/; : : : ;U.n/. Three special cases are of interest:

.i/ L1 
 1;
.ii/ EL1 D � > 0;
.iii/ EL1 D 0, VL1 D �2 > 0.

Clearly, .i/ and .ii/ can be handled together.

Theorem 13.2. Let k ! 1 as n ! 1. If EL1 D � < 1, then

E

"
1

k

kX

iD1

�
U.i/

k=n

�˛
Li

#

! �

1C ˛
:

Furthermore, if VL1 < 1,

1

k

kX

iD1

�
U.i/

k=n

�˛
Li ! �

1C ˛
in probability:
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Proof. The first part follows if we can show that

1

k

kX

iD1
E

��
U.i/

k=n

�˛
! 1

1C ˛
:

Let `k ! 1 be a sequence with 1 � `k < k and `k D o.k/. Then, by Lemma 13.1,

1

k

`kX

iD1
E

��
U.i/

k=n

�˛
� .1C ˛/1C˛

1

k

`kX

iD1

.i=n/˛

.k=n/˛

D O

 �
`k

k

�1C˛!
D o.1/:

Next,

1

k

kX

iD`kC1
E

��
U.i/

k=n

�˛
D 1

k

kX

iD`kC1
E

��
U.i/

i=n

�˛� i

k

�˛

D 1

k

kX

iD`kC1

�
1C O

�
1

`k

���
i

k

�˛

.where the “O” is uniform over i and n by Lemma 13.2/

D 1

k

kX

iD`kC1

�
i

k

�˛
.1C o.1//

� 1

k1C˛
� k1C˛ � `1C˛k

1C ˛

D 1C o.1/

1C ˛
:

This proves the first assertion of the theorem. The second one follows by analyzing
I C II, where

I D 1

k

kX

iD1

�
U.i/

k=n

�˛
.Li � �/ and II D �

k

kX

iD1

�
U.i/

k=n

�˛
:

Let U D .U.1/; : : : ;U.n//. Then, if �2 D VL1,

EŒI2 j U� D �2

k2

kX

iD1

�
U.i/

k=n

�2˛
:
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By Lemma 13.1,

EI2 � .1C 2˛/1C2˛
�2

k2

kX

iD1

�
i=n

k=n

�2˛
D O

�
1

k

�
;

so that by Chebyshev’s inequality, I ! 0 in probability. We conclude by showing
that

1

k

kX

iD1

�
U.i/

k=n

�˛
! 1

1C ˛
in probability:

Let `k D blog2 kc. For ı > 0 smaller than 1=2, define

A D
k[

iD`kC1

�ˇ̌
ˇ̌U.i/

i=n
� 1

ˇ̌
ˇ̌ > ı


:

By Theorem 13.1,

PfAg � 4

kX

iD`kC1
exp

� � i min .'.ı/;  .ı//
�
;

where ' and  are defined in Theorem 13.1. Clearly, for fixed ı > 0, PfAg D
o.1=k2/. If Ac occurs, then

1

k

kX

iD`kC1

�
i

k

�˛
.1 � ı/ � 1

k

kX

iD`kC1

�
U.i/

k=n

�˛
� 1

k

kX

iD`kC1

�
i

k

�˛
.1C ı/:

Since

1

k

kX

iD`kC1

�
i

k

�˛
! 1

1C ˛

and ı > 0 is arbitrary, it suffices to show that

1

k

`kX

iD1

�
U.i/

k=n

�˛
! 0 in probability:

The expected value of the left-hand side is not more than

.1C ˛/1C˛
1

k

`kX

iD1

�
i

k

�˛
D O

 �
`k

k

�1C˛!
D o.1/;

which is sufficient. ut
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Theorem 13.3. Let k ! 1 and k=n ! 0. If EL1 D 0 and 0 < VL1 D �2 < 1,
then

p
1C 2˛

�
� 1p

k

kX

iD1

�
U.i/

k=n

�˛
Li

D! N;

where N is a standard normal random variable.

Proof. We first observe that

p
1C 2˛

�
� 1p

k

kX

iD1

�
i

k

�˛
Li

D! N:

This follows from a particular version of Lindeberg’s central limit theorem (Linde-
berg, 1920; see, e.g., Petrov, 1975), which states that if X1; : : : ;Xk are independent
zero-mean random variables with finite variances, and �2k

defD Pk
iD1 VXi > 0, then

1

�k

kX

iD1
Xi

D! N

if, for every " > 0,

1

�2k

kX

iD1
EŒX2i 1ŒjXij>"�k �� ! 0 as k ! 1: (13.2)

Replacing Xi by i˛Li, we have

�2k D �2
kX

iD1
i2˛ � �2k1C2˛

1C 2˛
:

Also,

E
�
i2˛L2i 1Œji˛Lij>"�k �

� � k2˛E
h
L211ŒL21>"�k=k˛�

i
D o.k2˛/

since EL21 D �2 < 1 and

�k

k˛
� �

p
kp

1C 2˛
! 1:

Thus, Lindeberg’s condition (13.2) is satisfied, and therefore,

1

�k

kX

iD1
i˛Li

D! N;
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which is equivalent to

p
1C 2˛

�
� 1p

k

kX

iD1

�
i

k

�˛
Li

D! N:

Next, we show that

Wn
defD 1p

k

kX

iD1

��
U.i/

k=n

�˛
�
�

i=n

k=n

�˛�
Li ! 0 in probability:

This follows by proving that EW2
n D o.1/. Given U D .U.1/; : : : ;U.n//, we have

EŒW2
n j U� D �2

k

kX

iD1

��
U.i/

k=n

�˛
�
�

i=n

k=n

�˛�2
;

so that

EW2
n D �2

k

kX

iD1

1

.k=n/2˛
E

"�
U˛
.i/ �

�
i

n

�˛�2#

D �2

k

kX

iD1

�
i

k

�2˛
E

"��
U.i/

i=n

�˛
� 1

�2#

D �2

k

kX

iD1

�
i

k

�2˛  

E

"�
U.i/

i=n

�2˛#

C 1 � 2E
��

U.i/

i=n

�˛!

D �2

k

kX

iD1

�
i

k

�2˛ �
1C �

i
C 1 � 2

�
1C �

i

��
;

by Lemma 13.2, where � 2 Œ�c; c� is a constant taking different values whenever
used, and c is a universal constant. We conclude

EW2
n � �2

k

kX

iD1

�
i

k

�2˛
3c

i
D O

�
1

k

�
: ut



Chapter 14
Rates of convergence

14.1 The finer behavior of the nearest neighbor regression
function estimate

In this chapter, we study the local rate of convergence of rn.x/ to r.x/. We obtain
full information on the first asymptotic term of rn.x/ � r.x/, and are rewarded with
.i/ a central limit theorem for rn.x/� r.x/, and .ii/ a way of helping the user decide
how to choose the weights vni of the estimate.

While it is true that the best sequence .vn1; : : : ; vnn/ may depend upon x, it is
interesting that for sufficiently smooth problems (in a sense to be made precise in
this chapter), there is a universally good way of picking the vni’s.

To simplify the notation, it is assumed throughout that x D 0, without loss of
generality. Moreover, to keep all unnecessary distractions from the reader, we study
only the weak convergence properties of rn.0/�r.0/. We let the conditional variance
of Y be

�2.x/ D E

h
jY � r.X/j2 ˇ̌X D x

i
;

and assume the following:

(i) There exists a sequence of positive integers fkg D fkng with k ! 1, k=n ! 0,
and a positive constant c such that

jvnij �
	 c

k for 1 � i � k
0 otherwise.

It is stressed that the vni’s may have an arbitrary sign. However, as always, we
assume that

Pn
iD1 vni D 1.

(ii) The random variable X has a density f on R
d that is twice continuously

differentiable in a neighborhood of 0. Also, f .0/ > 0.

© Springer International Publishing Switzerland 2015
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(iii) The regression function r is twice continuously differentiable in a neighbor-
hood of 0.

(iv) One has kYk1 � 1. This condition can be weakened to either kY�r.X/k1 � 1

or even

sup
x2Rd

E

h
jY � r.X/j3 j X D x

i
< 1:

(v) The function � is continuous in a neighborhood of 0 and �2.0/ > 0.

The case of a continuous � and �.0/ D 0 requires additional scrutiny that has no
place in these lecture notes.

14.2 The projection to the halfline

For pointwise analysis of the nearest neighbor estimate, it is essential to understand
that from the vantage point of 0 2 R

d, the problem is one dimensional. To set this up,
we define the one-dimensional quantity Z D kXk, which has density g on Œ0;1/.
Observe that

g.0/ D lim
�#0

PfZ � �g
�

D lim
�#0

P fkXk � �g
�

:

Therefore, since PfkXk��g
Vd�d ! f .0/ by continuity,

g.0/ D
	
2f .0/ for d D 1

0 for d > 1.

Let G denote the distribution function of Z. Then, as z # 0,

G.z/ D P fkXk � zg D
Z

B.0;z/
f .y/dy � f .0/Vdzd:

We can reorder X1; : : : ;Xn by increasing values of kXik to obtain

Z.1/ D kX.1/k � � � � � Z.n/ D kX.n/k:

(For simplicity of notation, we drop the dependence upon the query point 0, and
write X.i/, Y.i/ and Z.i/ instead of X.i/.0/, Y.i/.0/ and Z.i/.0/.) If U.1/ � � � � � U.n/

are uniform Œ0; 1� order statistics, then we also have (see Chapter 1)

�
Z.1/; : : : ;Z.n/

� DD �
G�1.U.1//; : : : ;G

�1.U.n//
�
;
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where

G�1.u/ D infft � 0 W G.t/ � ug; u 2 Œ0; 1�:
Since

G�1.u/ D
�

u

Vdf .0/

�1=d

C  .u/;

where  .u/ D o.u1=d/ as u # 0, it will be convenient to replace Z.i/ by

Z.i/
DD
�

U.i/

Vdf .0/

�1=d

C  .U.i//: (14.1)

The second quantity we require is the projected regression function

m.z/
defD EŒY

ˇ̌ kXk D z� D EŒr.X/
ˇ̌ kXk D z�:

Note that m.0/ D r.0/. We will be using the variation/bias decomposition

Yi � r.0/ D .Yi � m.Zi//C .m.Zi/ � r.0//

instead of the d-dimensional and more standard decomposition

Yi � r.0/ D .Yi � r.Xi//C .r.Xi/ � r.0// :

These are different! In fact, we have

Yi � r.0/ D .Yi � r.Xi//C .r.Xi/ � m.Zi//C .m.Zi/ � r.0// :

The new middle term, r.Xi/ � m.Zi/, acts as some sort of noise in the projected
decomposition.

For our study, what matters is the local behavior of m, which can be obtained
via analytical methods. In the following analysis, we place ourselves in a small ball
B.0; "/ around 0 in which both f and r are twice continuously differentiable, and
assume furthermore that f .0/ > 0. We observe that

m.z/ D lim
ı#0

EŒr.X/1Œz�kXk�zCı��
Pfz � kXk � z C ıg : (14.2)

To compute this, we make use of the Taylor series expansions (Giaquinta and
Modica, 2009) of f and r about 0. For x D .x1; : : : ; xd/

> 2 R
d, we let

f 0.0/ D
�
@f

@x1
.0/; : : : ;

@f

@xd
.0/
�>

and f 00.0/ D
�

@2f

@xj@xj0
.0/
�

1�j;j0�d

;
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where > denotes transposition and vectors are in column format. Similarly,

r0.0/ D
�
@r

@x1
.0/; : : : ;

@r

@xd
.0/
�>

and r00.0/ D
�

@2r

@xj@xj0
.0/
�

1�j;j0�d

:

The symbol tr.
/ stands for the trace of the square matrix 
, and � denotes the
Lebesgue measure on R

d. We show the following proposition.

Proposition 14.1. Assume that f and r are twice continuously differentiable in a
neighborhood of 0, and f .0/ > 0. Then, as z # 0,

m.z/ D r.0/C ˛z2 C o.z2/;

where

˛
defD f .0/tr.r00.0//C 2r0.0/>f 0.0/

2df .0/
:

The following two lemmas are useful for proving the result.

Lemma 14.1. For the ball B.0; �/ � R
d and a d � d matrix A, we have

Z

B.0;�/
x>Ax dx D �2� .B.0; �//

d C 2
� tr.A/:

Proof. Note that if Y is uniform in B.0; �/, then

Y
DD �U1=dZ;

where U is uniform on Œ0; 1�, and Z is uniform on the unit surface and independent
of U. Thus,

1

� .B.0; �//

Z

B.0;�/
x>Ax dx D �2EU2=d � EŒZ>AZ�

D �2

1C 2
d

� E

2

4
X

j;j0

ZjZj0Ajj0

3

5 ;

where Ajj0 is the .j; j0/-th element of A and Zj is the j-th coordinate of Z. Therefore,

1

� .B.0; �//

Z

B.0;�/
x>Ax dx D �2d

d C 2

dX

jD1
AjjEZ2j D �2

d C 2
� tr.A/: ut
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Lemma 14.2. For z; ı > 0, let Bz;ı.0/
defD B.0; zCı/�B.0; z/. Then, for fixed z > 0,

1

� .Bz;ı.0//

Z

Bz;ı .0/
x>Ax dx ! z2

d
� tr.A/ as ı # 0:

Proof. We have

� .Bz;ı.0// D �
.z C ı/d � zd

�
Vd D dızd�1Vd C O.ı2/:

Also, by Lemma 14.1,

Z

Bz;ı .0/
x>Ax dx D .z C ı/dC2 � zdC2

d C 2
� Vd � tr.A/

D ızdC1Vd � tr.A/C O.ı2/;

and the limit follows. ut
Proof (Proposition 14.1). We use '.x/ and  .x/ to denote functions that are
o.kxk2/ as kxk # 0. By Lemma 14.2, if Bz;ı.0/

defD B.0; z C ı/ � B.0; z/, then for
fixed z, as ı # 0,

Pfz � kXk � z C ıg

D
Z

Bz;ı .0/

�
f .0/C f 0.0/>x C 1

2
x>f 00.0/x C '.x/

�
dx

D � .Bz;ı.0//
h
f .0/C z2

2d
tr.f 00.0// .1C o.1//

i
C
Z

Bz;ı .0/
'.x/dx;

and

EŒr.X/1ŒX2Bz;ı .0/��

D
Z

Bz;ı .0/

�
r.0/C r0.0/>x C 1

2
x>r00.0/x C  .x/

�

�
�

f .0/C f 0.0/>x C 1

2
x>f 00.0/x C '.x/

�
dx

D � .Bz;ı.0//
h
r.0/f .0/C z2

2d
tr
�
f .0/r00.0/C r.0/f 00.0/C 2r0.0/f 0.0/>

�

� .1C o.1//
i

C
Z

Bz;ı .0/
. .x/f .x/C '.x/r.x// dx:
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Consider the ratio in (14.2) and let ı # 0 to obtain

m.z/ D r.0/f .0/C z2

2d tr
�
f .0/r00.0/C r.0/f 00.0/C 2r0.0/f 0.0/>

�C o.z2/

f .0/C z2
2d tr.f 00.0//C o.z2/

D r.0/C z2

2df .0/

h
f .0/tr.r00.0//C 2tr

�
r0.0/f 0.0/>

�iC o.z2/;

valid as z # 0. The conclusion follows by observing that

tr
�
r0.0/f 0.0/>

� D r0.0/>f 0.0/: ut

Remark 14.1. We note that f 00.0/ is absent in the Taylor series expansion of
m. In fact, the expansion remains valid if f is just assumed to be continuously
differentiable. That refinement is implicit in the analysis by coupling methods given
in the next chapter. ut

Our study is split into two parts, that of the variation

Vn
defD

nX

iD1
vni
�
Y.i/ � m.Z.i//

�
;

and that of the bias

Bn
defD

nX

iD1
vni
�
m.Z.i// � m.0/

�
;

where we note that rn.0/ � r.0/ D Vn C Bn. Here, as before,

.X.1/;Y.1/;Z.1//; : : : ; .X.n/;Y.n/;Z.n//

is a reordering of .X1;Y1;Z1/; : : : ; .Xn;Yn;Zn/ according to increasing values of
Zi D kXik.

14.3 Study of the bias

Let U.1/ � � � � � U.n/ be the order statistics corresponding to a uniform Œ0; 1�

sample. The following quantity plays a central role in the study of the bias of the
nearest neighbor regression function estimate, and thus deserves a special treatment:

Wn D
nX

iD1
vniU

2=d
.i/ :

Recall that conditions .i/-.v/ are defined in Section 14.1.
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Proposition 14.2. Assume that condition .i/ is satisfied. Then

Wn D
�

k

n

�2=d
 

kX

iD1
vni

�
i

k

�2=d
!

.1C oP.1//C oP

 �
k

n

�2=d
!

:

Remark 14.2. There is in general no guarantee that the sequence
Pk

iD1 vni.i=k/2=d

has a limit as n ! 1. Note however that, in all cases,
Pk

iD1 vni.i=k/2=d � 1. Also,
for nonnegative weights,

0 <
1

2.2c/2=d
� lim inf

n!1

 
kX

iD1
vni

�
i

k

�2=d
!

� lim sup
n!1

 
kX

iD1
vni

�
i

k

�2=d
!

� 1:

Thus, for nonnegative weights, we can replace the result of Proposition 14.2 by

Wn

.k=n/2=d
Pk

iD1 vni.i=k/2=d
! 1 in probability: ut

An example of sequence that satisfies condition .i/ and has
Pk

iD1 vnii2=d D 0 is
as follows. Let fkg D fkng be a sequence of multiples of 4, with k 2 f1; : : : ; ng,
k ! 1, and k=n ! 0. Set

vni D

8
ˆ̂̂
<

ˆ̂
:̂

0 for 1 � i � k
2

ck
i2=d � k2=d

k for k
2
< i � 3k

4

� ck
i2=d � k2=d

k for 3k
4
< i � k

0 for k < i � n,

where ck is a constant depending upon k. Obviously,
Pk

iD1 vnii2=d D 0. Also, if we
adjust ck to ensure

Pn
iD1 vni D 1, we obtain for d > 2,

lim
k!1 ck D

d�2
d

2
�
3
4

�1� 2
d � �

1
2

�1� 2
d � 1

;

so that .i/ holds. For d D 2, we find limk!1 ck D 1
log.9=8/ , and for d D 1,

limk!1 ck D 3.

Proof (Proposition 14.2). From Corollary 1.1, we recall that

�
U.1/; : : : ;U.n/

� DD
�

G1

GnC1
; : : : ;

Gn

GnC1

�
;

where Gi D Pi
jD1 Ej, 1 � i � n C 1, and E1; : : : ;EnC1 are independent standard

exponential random variables. Therefore, we rewrite Wn in the form

Wn
DD

kX

iD1
vni

�
Gi

GnC1

�2=d

D
kX

iD1
vni

�
Gi

k

�2=d � k

n

�2=d � n

GnC1

�2=d

:
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By the law of large numbers, GnC1=n ! 1 in probability. Thus,

�n

k

�2=d
Wn D

kX

iD1
vni

�
Gi

k

�2=d

.1C oP.1// :

Note that, for " > 0,

ˇ̌
ˇ̌

kX

iD1
vni

�
Gi

k

�2=d

�
kX

iD1
vni

�
i

k

�2=d ˇ̌
ˇ̌

� c

k

kX

iD1

ˇ̌
ˇ̌
�

Gi

k

�2=d

�
�

i

k

�2=d ˇ̌
ˇ̌

� c"C c

k

kX

iD1

ˇ̌
ˇ̌
�

Gi

k

�2=d

�
�

i

k

�2=d ˇ̌
ˇ̌1Œj.Gi=k/2=d�.i=k/2=d j>"�

� c"C 1:1ŒGk>2k� C c22=d

k

kX

iD1
1Œj.Gi=k/2=d�.i=k/2=d j>"�:

Choose " so small that the first term is small. Observe that the second term vanishes
if Gk � 2k, an event that happens with probability going to one. Finally, the last
term is oP.1/ as k ! 1. To see this, just note that

E

"
1

k

kX

iD1
1Œj.Gi=k/2=d�.i=k/2=d j>"�

#

D 1

k

kX

iD1
P

( ˇ
ˇ̌
ˇ

�
Gi

k

�2=d

�
�

i

k

�2=d ˇˇ̌
ˇ > "

)

� 1

k

kX

iD1
P

( ˇ̌
ˇ̌
�

Gi

i

�2=d

� 1
ˇ̌
ˇ̌ > "

)

:

This is a Cesàro mean, which tends to zero since Gn=n ! 1 in probability
as n ! 1.

The proposition follows from what we just showed, i.e., that

kX

iD1
vni

�
Gi

k

�2=d

�
kX

iD1
vni

�
i

k

�2=d

! 0 in probability: ut

We are now ready for the bias term Bn.

Theorem 14.1. Assume that conditions .i/, .ii/, and .iii/ are satisfied. Then

Bn D ˇ

�
k

n

�2=d
 

kX

iD1
vni

�
i

k

�2=d
!

.1C oP.1//C oP

 �
k

n

�2=d
!

;
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where

ˇ
defD f .0/tr.r00.0//C 2r0.0/>f 0.0/

2dV2=d
d f 1C2=d.0/

:

Proof. By Proposition 14.1, where ˛ is defined, we have

Bn D
nX

iD1
vni
�
m.Z.i// � m.0/

� D ˛

nX

iD1
vniZ

2
.i/ C

nX

iD1
vni'.Z.i//

.where '.z/ D o.z2/ as z # 0/
defD I C II:

Clearly,

jIIj �
nX

iD1
jvnij sup

0<z�Z.k/

j'.z/j �
nX

iD1
jvnijZ2.k/ sup

0<z�Z.k/

ˇ̌
ˇ̌'.z/

z2

ˇ̌
ˇ̌

� c Z2.k/ sup
0<z�Z.k/

ˇ̌
ˇ
ˇ
'.z/

z2

ˇ̌
ˇ
ˇ

D oP.Z
2
.k//

since Z.k/ ! 0 in probability (by Lemma 2.2 and the fact that 0 belongs to the
support of X—see condition .ii/).

Next, recall the decomposition (14.1)

Z.i/
DD
�

U.i/

Vdf .0/

�1=d

C  .U.i//;

where  .u/ D o.u1=d/ as u # 0. Thus,

I
DD ˇ

nX

iD1
vniU

2=d
.i/ C 2˛

nX

iD1
vni

�
U.i/

Vdf .0/

�1=d

 .U.i//C
nX

iD1
vni 

2.U.i//;

where ˇ D ˛

V
2=d
d f 2=d.0/

. Using the fact that U.k/ ! 0 in probability and jvnij � c=k

for 1 � i � k, it is easy to see that

I
DD ˇ

nX

iD1
vniU

2=d
.i/ C oP.U

2=d
.k/ / D ˇ

nX

iD1
vniU

2=d
.i/ C oP

 �
k

n

�2=d
!

;

by the well-known fact (Theorem 1.4) that U.k/ D OP.k=n/. Combining this result
with Proposition 14.2 proves the theorem. ut
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14.4 Study of the variation

The conditional variance of Y is defined by

�2.x/ D E

h
jY � r.X/j2 ˇˇX D x

i
;

but in our analysis, after the projection to the halfline, we must work with

�2.z/ D E

h
jY � m.z/j2 ˇ̌ kXk D z

i
; z � 0:

The relationship between these quantities is

�2.z/ D E

h
jr.X/ � m.z/j2 C �2.X/

ˇ̌ kXk D z
i
:

In any case, if kYk1 � 1 (condition .iv/), then r and m are similarly bounded, and
thus, �2 � 4 and �2 � 4 �-almost surely.

Conditional on Z1; : : : ;Zn, the variation term

Vn D
nX

iD1
vni
�
Y.i/ � m.Z.i//

�

is a weighted sum of independent zero-mean random variables (Proposition 8.1)
bounded by 2 in absolute value with probability one. Let ˙i be the rank of Zi in the
reordering of the data according to increasing values of Zi D kXik. So, Zi receives
weight vn˙i and

Vn D
nX

iD1
vn˙i .Yi � m.Zi// :

The conditional variance of Vn is given by

VŒVn j Z1; : : : ;Zn� D
nX

iD1

v2n˙i
E

h
jYi � m.Zi/j2

ˇ̌
Z1; : : : ;Zn

i

D
nX

iD1

v2n˙i
E

h
jYi � m.Zi/j2

ˇ̌
Zi

i

.by independence between .Zi;Yi/ and Z1; : : : ;Zi�1;ZiC1; : : : ;Zn/

D
nX

iD1

v2n˙i
�2.Zi/

D
nX

iD1

v2ni�
2.Z.i//:
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Since �2 � 4, we see that, with probability one,

EŒV2
n j Z1; : : : ;Zn� � 4

nX

iD1
v2ni � 4c2

k
:

This can be used as a means of getting rough upper bounds on the rate of
convergence to zero of rn.0/ � r.0/. However, EV2

n may be much smaller than
O.1=k/—this all depends upon the behavior of �2, and thus �2, near 0. Note that
�.0/ D �.0/ and that � too is continuous in a neighborhood of 0 under condition .v/.
Lemma 11.1 shows that

VŒVn j Z1; : : : ;Zn�

�2.0/
Pn

iD1 v2ni

D
Pn

iD1 v2ni�
2.Z.i//

�2.0/
Pn

iD1 v2ni

! 1 in probability:

However, Vn satisfies a central limit result, given by the following theorem:

Theorem 14.2. Assume that conditions .i/, .iv/, and .v/ are satisfied. Then

Vn

�.0/
qPn

iD1 v2ni

D! N;

where N is a standard normal random variable.

Thus, evoking Lemma 20.1 in the Appendix, we may write

Vn
DD �.0/

vuut
nX

iD1
v2ni .N C oP.1// :

The asymptotic normality of the nearest neighbor regression function estimate has
first been established by Royall (1966). Later, Mack (1981) (see also Lai, 1977)
derived the rate of convergence for the bias and variance, as well as the asymptotic
normality, for estimates of the form

sn.x/ D
Pn

iD1 K
�

x�XikX.k/.x/�xk
�

Yi

Pn
jD1 K

�
x�Xj

kX.k/.x/�xk
� ;

where K is a bounded density (kernel) satisfying K.x/ D 0 for all x 2 R
d with

kxk > 1. This class of estimates incorporates the features of both the kernel and
the k-nearest neighbor methods (see also Stute, 1984, who studies the asymptotic
normality of a smoothed nearest neighbor-type estimate).
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Proof (Theorem 14.2). It is useful to recall the Berry-Esseen inequality (see Berry,
1941, Esseen, 1942, or the book by Petrov, 1975) for sums of independent random
variables W1; : : : ;Wn such that EWi D 0,

Pn
iD1 EW2

i > 0, and EjWij3 < 1:

sup
t2R

ˇ̌
ˇ̌
ˇ̌
ˇ
P

8
<̂

:̂

Pn
iD1 WiqPn
iD1 EW2

i

� t

9
>=

>;
� PfN � tg

ˇ̌
ˇ̌
ˇ̌
ˇ

� �
Pn

iD1 EjWij3
�Pn

iD1 EW2
i

�3=2 ; (14.3)

for some universal constant � > 0.
We apply this inequality with the formal replacement

Wi
defD vni

�
Y.i/ � m.Z.i//

�
;

conditional on Z1; : : : ;Zn. Since, conditional on Z1; : : : ;Zn,

EW2
i D v2ni�

2.Z.i// and EjWij3 � 8c

k
v2ni;

the bound in (14.3) becomes

8c�
Pn

iD1 v2ni

k
�Pn

iD1 v2ni�
2.Z.i//

�3=2 � 8c�

k
qPn

iD1 v2ni � min3=2
�
�2.Z.1//; : : : ; �2.Z.k//

�

� 8c�

k1=2min3=2
�
�2.Z.1//; : : : ; �2.Z.k//

�

.since
Pn

iD1 v2ni � 1
k , by the Cauchy-Schwarz inequality/:

Observe that

Pn
iD1 vni

�
Y.i/ � m.Z.i//

�

�.0/

qPn
iD1 v2ni

D
Pn

iD1 vni
�
Y.i/ � m.Z.i//

�

qPn
iD1 v2ni�

2.Z.i//
�
qPn

iD1 v2ni�
2.Z.i//

�.0/

qPn
iD1 v2ni

defD I � II:

Now II ! 1 in probability as noted earlier. For I, we have

sup
t2R

ˇ̌
PfI � t j Z1; : : : ;Zng � PfN � tgˇ̌ D O.1=

p
k/

min3=2
�
�2.Z.1//; : : : ; �2.Z.k//

� :
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Hence,

sup
t2R

ˇ̌
PfI � tg � PfN � tgˇ̌

D sup
t2R

ˇ
ˇEPfI � t j Z1; : : : ;Zng � PfN � tgˇˇ

� O.1=
p

k/

�3.0/
C P

	
min

�
�2.Z.1//; : : : ; �

2.Z.k//
�
<
�2.0/

2



:

The latter probability tends to zero since �.0/ > 0, � is continuous at 0, and Z.k/ ! 0

in probability. Thus, I
D! N, so that I � II

D! N. ut

14.5 Combining all results

Merging Theorem 14.1 and Theorem 14.2 leads to the main result of the chapter.

Theorem 14.3 (Pointwise rate of convergence). Assume that conditions .i/-.v/
are satisfied. Then the corresponding nearest neighbor regression function estimate
rn satisfies

rn.0/ � r.0/
DD �.0/

vuut
nX

iD1
v2ni .N C oP.1//

C ˇ

�
k

n

�2=d
 

kX

iD1
vni

�
i

k

�2=d
!

.1C oP.1//C oP

 �
k

n

�2=d
!

; (14.4)

where N is a standard normal random variable and

ˇ
defD f .0/tr.r00.0//C 2r0.0/>f 0.0/

2dV2=d
d f 1C2=d.0/

:

For the standard k-nearest neighbor estimate, one has

vni D
	
1
k for 1 � i � k
0 for k < i � n,

where fkg D fkng is a sequence of integers such that 1 � k � n. In this case,

nX

iD1
v2ni D 1

k
and

kX

iD1
vni

�
i

k

�2=d

D d

d C 2
.1C o.1// :
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Corollary 14.1. Assume that conditions .ii/-.v/ are satisfied. If k ! 1 and
k=n ! 0, then the k-nearest neighbor regression function estimate rn satisfies

rn.0/ � r.0/
DD �.0/p

k
N C 

�
k

n

�2=d

C oP

 
1p
k

C
�

k

n

�2=d
!

;

where N is a standard normal random variable and


defD f .0/tr.r00.0//C 2r0.0/>f 0.0/

2.d C 2/V2=d
d f 1C2=d.0/

:

The result of Theorem 14.3 can form the basis of a further discussion regarding
the choice of the weights. We essentially have two categories of weights, one in
which we are not restricting vni to be nonnegative, and one in which vni � 0 for
all i. If we choose

kX

iD1
vnii

2=d D 0; (14.5)

a choice discussed earlier, then, in view of the fact that 1k � Pn
iD1 v2ni � c2

k , we have
the following:

Theorem 14.4. Assume that conditions .i/-.v/ are satisfied and, in addition,
that (14.5) holds. Then there exists a sequence fkg D fkng with the property that

k

n
4

dC4

! 1;
k

n
! 0;

such that

rn.0/ � r.0/ D oP

�
n� 2

dC4
�
:

The trouble with this result is that we cannot specify the choice of k. To do so
would require an analysis of the next term in the bias. But knowledge of that next
term comes only at the expense of higher order derivative conditions on f and r, and
under the new conditions, one can push things further and get even better rates than
those of Theorem 14.4.

If, on the other hand, we introduce the additional requirement infi vni � 0 for all

n, then the rate of convergence of rn.0/ � r.0/ is limited to n� 2
dC4 . The only good

thing in that case is that one can optimize both k and the shape of the weight vector
based on Theorem 14.3. Besides, the best shape of .vn1; : : : ; vnn/ and the choice of k
can be determined separately and universally for all regression estimation problems
satisfying .i/-.v/.
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If we set k D Kn
4

dC4 for some constant K > 0, then (14.4) can be recast as
follows:

rn.0/ � r.0/

n
2

dC4

DD �.0/p
K

vuutk
nX

iD1
v2ni N Cˇ

 
kX

iD1
vni

�
i

k

�2=d
!

K2=d C oP.1/: (14.6)

Several points of view may be taken now. As noted earlier, both expressions
involving the weights are bounded away from 0 and 1 for nonnegative weights.

Since
Pk

iD1 vni
�

i
k

�2=d
is minimal for monotonically decreasing vni, and since

rearrangements of indices do not alter
Pn

iD1 v2ni, it suffices to consider only
monotonically decreasing weights in (14.6).

If we take the expected value of the square of the last term in (14.6)—thus
ignoring the oP.1/ term—then we have

lim inf
n!1

E jrn.0/ � r.0/j2
n

4
dC4

> 0:

Doing this, and putting

V D k
kX

iD1
v2ni; B D

 
kX

iD1
vni

�
i

k

�2=d
!2

;

leads us to minimize the quantity

�2.0/
K

V C ˇ2BK4=d: (14.7)

The optimal choice for K is

K? D
�

d�2.0/V
4ˇ2B

� d
dC4

:

With that choice, (14.7) becomes

"�
4

d

� d
dC4

C
�

d

4

� 4
dC4

#
�
�2.0/

� 4
dC4 ˇ

2d
dC4 V

4
dC4 B

d
dC4 : (14.8)

Interestingly, the optimization of (14.8) leads to the problem of finding the best
vector vni � 0, i.e., the one that minimizes V4Bd:

V4Bd D
 

k
kX

iD1
v2ni

!4  kX

iD1
vni

�
i

k

�2=d
!d

: (14.9)
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For any vni � 0 satisfying .iv/, the expression in (14.9) is sandwiched between
two strictly positive constants, uniformly over all k. The actual best form of
vn1 � � � � � vnk with

Pk
iD1 vni D 1 that minimizes (14.9) is unknown to us, except

for d D 1. In this case, the literature on kernel density estimation (see, e.g.,
Devroye, 1987, or Tsybakov, 2008) permits one to show that (14.9) is asymptotically
minimized by the Epanechnikov kernel, i.e.,

vni D ck

k

 

1 �
�

i

k

�2!

; 1 � i � k;

where limk!1 ck D 4=3.

14.6 Supplement: L2 rates of convergence

This chapter has focused on pointwise rates of convergence of the nearest neighbor
estimate. Of course, it is also possible to study rates of convergence for integrated
criteria, such as the mean integrated squared error Ejrn.X/ � r.X/j2. This topic
is sketched hereafter. To simplify the analysis, we focus on rates of convergence
results for the class of smooth distributions of .X;Y/ such that X takes values in
Œ0; 1�d, EY2 < 1, the regression function r is Lipschitz, and the conditional variance
function �2.x/ D EŒjY � r.X/j2 j X D x� is uniformly bounded on R

d (for L2 rates
of convergence under more general conditions, see Kohler et al., 2006).

Theorem 14.5 (L2 rates of convergence). Let rn.x/ D Pn
iD1 vniY.i/.x/ be the

nearest neighbor regression function estimate, where .vn1; : : : ; vnn/ is a probability
weight vector. Assume that X takes values in Œ0; 1�d. Assume, in addition, that for all
x and x0 2 R

d,
ˇ̌
r.x/ � r.x0/

ˇ̌ � Lkx � x0k
and

sup
x2Rd

�2.x/ � �2;

for some positive constants L and �2. Then

(i) For d D 1,

E jrn.X/ � r.X/j2 � �2
nX

iD1
v2ni C 8L2

nX

iD1
vni

i

n
:

(ii) For d � 2,

E jrn.X/ � r.X/j2 � �2
nX

iD1
v2ni C c0

dL2
nX

iD1
vni

�
i

n

�2=d

;
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where

c0
d D 23C 2

d .1C p
d/2

V2=d
d

:

For the standard k-nearest neighbor estimate, we have the following corollary:

Corollary 14.2. Let rn be the k-nearest neighbor regression function estimate.
Then, under the conditions of Theorem 14.5,

(i) For d D 1, there exists a sequence fkg D fkng with k �
q

�2

L2
n such that

E jrn.X/ � r.X/j2 � �1

s
�2L2

n
;

for some positive universal constant �1.

(ii) For d � 2, there exists a sequence fkg D fkng with k � . �
2

L2
/

d
dC2 n

2
dC2 such that

E jrn.X/ � r.X/j2 � �d

�
�2Ld

n

� 2
dC2

;

for some positive universal constant �d.

The explicit bounds of Corollary 14.2 are valid for all finite sample sizes. On
the other hand, the estimates with the optimal rate of convergence depend upon
the unknown distribution of .X;Y/—it is to correct this situation that we present
adaptation results in Chapter 16. Also, we encounter here the phenomenon called
the curse of dimensionality: in order to achieve the error Ejrn.X/ � r.X/j2 � ", we
need a sample of size n � .1="/1C d

2 , which is exponentially large in d. Thus, to
get good error rates, the number of data points should grow exponentially with the
number of components of X. A possible route to address this shortcoming is feature
selection—see Chapter 16.

Proof (Theorem 14.5). The proof of Theorem 14.5 relies on Theorem 2.4, which
bounds the expected square distance between X and its i-th nearest neighbor. Letting

Qrn.x/ D
nX

iD1
vnir

�
X.i/.x/

�
;

we start with the variance/bias decomposition

E jrn.X/ � r.X/j2 D E jrn.X/ � Qrn.X/j2 C E jQrn.X/ � r.X/j2 :
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To bound the first term, note that

E jrn.X/ � Qrn.X/j2 D E

ˇ
ˇ̌
ˇ

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ
ˇ̌
ˇ

2

;

where Wni.X/ D vn˙i and .˙1; : : : ; ˙n/ is a permutation of .1; : : : ; n/ such that Xi

is the˙i-th nearest neighbor of X for all i. But we have already shown in (10.4) that

E

ˇ̌
ˇ
ˇ

nX

iD1
Wni.X/ .Yi � r.Xi//

ˇ̌
ˇ
ˇ

2

D E

� nX

iD1
W2

ni.X/�
2.Xi/


;

so that

E jrn.X/ � Qrn.X/j2 � �2
nX

iD1
v2ni:

Finally,

E jQrn.X/ � r.X/j2 D E

ˇ
ˇ̌
ˇ

nX

iD1
vni
�
r
�
X.i/.X/

� � r.X/
�
ˇ
ˇ̌
ˇ

2

� E

�� nX

iD1
vni

ˇ̌
r
�
X.i/.X/

� � r.X/
ˇ̌ �2

� L2 E

�� nX

iD1
vni

�
�X.i/.X/ � X

�
�
�2

� L2
� nX

iD1
vni EkX.i/.X/ � Xk2

�

(by Jensen’s inequality):

The conclusion follows by applying Theorem 2.4. ut



Chapter 15
Regression: the noiseless case

15.1 Noiseless estimation

Classical function estimation deals with the estimation of a function r on R
d from a

finite number of points x1; : : : ; xn. Some applications are concerned with Lp errors
with respect to the Lebesgue measure on compacts. Others use it for Monte Carlo
purposes, wanting to estimate

R
A r.x/dx over a compact set A. The model we study

here takes a sample X1; : : : ;Xn of i.i.d. random vectors with a density f on A that is
not known. We observe

Yi D r.Xi/; 1 � i � n;

and study nearest neighbor-style estimates of r. If X.i/.x/ is the i-th nearest neighbor
of x among X1; : : : ;Xn, and Y.i/.x/ D r.X.i/.x//, then the general estimate is

rn.x/ D
nX

iD1
vniY.i/.x/ D

nX

iD1
vnir

�
X.i/.x/

�
;

where .vn1; : : : ; vnn/ is a weight vector summing to one. To simplify the analysis,
we set vni D 1

k1Œ1�i�k�, where fkg D fkng is a sequence of integers between 1 and n.
Thus, in this chapter,

rn.x/ D 1

k

kX

iD1
r
�
X.i/.x/

�
: (15.1)

The knee-jerk reaction in this noiseless situation is to take k D 1. Indeed, how
can one do better than taking the nearest neighbor? However, as we will see below,
one can in fact outperform the 1-nearest neighbor in dimensions 2 and above. That
point will be made by a careful analysis of the pointwise error rn.x/ � r.x/.
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15.2 A local limit law

Since we consider the local behavior at x, we assume that x D 0. Throughout, for
simplicity of notation, we drop the dependence upon the query point 0, and write
X.i/ and Y.i/ instead of X.i/.0/ and Y.i/.0/. The objective of this introductory section
is to study the limit behavior in R

dk of the vector .X.1/; : : : ;X.k//when k is constant.
These limit laws will be used later in the chapter to study the asymptotic behavior
of rn.0/ � r.0/, first when k is constant, and next when k ! 1 while k=n ! 0.

We assume that 0 is a Lebesgue point of f and f .0/ > 0, but no other conditions
are necessary for the main result of this section. As always, we denote by � the
common distribution of the Xi’s.

Let E1; : : : ;EnC1 be independent standard exponential random variables. We
know (Corollary 1.1) that the order statistics for n uniform points in Œ0; 1�, denoted
by U.1/ � � � � � U.n/, are distributed as follows:

�
U.1/; : : : ;U.n/

� DD
�

G1

GnC1
; : : : ;

Gn

GnC1

�
; (15.2)

where Gi D Pi
jD1 Ej, 1 � i � n C 1. Since

�
�
�
B.0; kX.1/k/

�
; : : : ; �

�
B.0; kX.n/k/

� � DD �
U.1/; : : : ;U.n/

�
; (15.3)

and �.B.0; �// � f .0/Vd�
d as � # 0 (because 0 is a Lebesgue point), it is immediate

(and a corollary of a stronger statement proved below) that for fixed k,

f .0/Vdn
�kX.1/kd; : : : ; kX.k/kd

� D! .G1; : : : ;Gk/:

The following theorem, proved by coupling, is thus not surprising.

Theorem 15.1. Assume that 0 is a Lebesgue point of f , f .0/ > 0, and k is fixed.
Then

.f .0/Vdn/1=d.X.1/; : : : ;X.k//
D! �

Z1G
1=d
1 ; : : : ;ZkG1=d

k

�
;

where G1; : : : ;Gk are as above, and Z1; : : : ;Zk are independent random vectors
uniformly distributed on the surface of B.0; 1/.

Proof. Let K be a positive constant to be chosen later. Consider a density gK;n related
to f as follows: let

p D
Z

B
�

0; K
n1=d

� f .z/dz;
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and set

gK;n.x/ D

8
<̂

:̂

f .0/ for x 2 B
�

0; K
n1=d

�

f .x/
�
1�f .0/Vd

Kd
n

1�p

�
otherwise,

which is a proper density (i.e., nonnegative and integrating to one) for all n large
enough. We assume that n is indeed large enough for this to happen. Note that

Z

Rd
jgK;n.x/ � f .x/j dx D

Z

B
�

0; K
n1=d

� jf .0/ � f .x/j dx

C
Z

Bc
�

0; K
n1=d

� f .x/

ˇ̌
ˇ̌1 � f .0/Vd�

d

1 � p
� 1

ˇ̌
ˇ̌ dx

D
Z

B
�

0; K
n1=d

� jf .0/ � f .x/j dx C
ˇ̌
ˇp � f .0/Vd

Kd

n

ˇ̌
ˇ

� 2

Z

B
�

0; K
n1=d

� jf .0/ � f .x/j dx

D o
�1

n

�

.since 0 is a Lebesgue point of f /:

Therefore, by Doeblin’s coupling method (Doeblin, 1937; see, e.g., Rachev and
Rüschendorf, 1998), there exist random variables X and Y with density f and gK;n,
respectively, such that

PfY ¤ Xg D 1

2

Z

Rd
jgK;n.x/ � f .x/j dx D o

�1
n

�
:

Repeating this n times, we create two coupled samples of random variables that are
i.i.d. within the sample. The sample X1; : : : ;Xn is drawn from the distribution of X,
and the sample Y1; : : : ;Yn is drawn from the distribution of Y.

Recall that the total variation distance between two random vectors W;W0 2 R
d

is defined by

dTV.W;W0/ D sup
A2B

ˇ̌
PfW 2 Ag � PfW0 2 Agˇ̌ ;

where B denotes the Borel sets of Rd. Let kY.1/k � � � � � kY.n/k and kX.1/k �
� � � � kX.n/k be the reordered samples. Then
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dTV
�
.Y.1/; : : : ;Y.k//; .X.1/; : : : ;X.k//

� � dTV
�
.Y1; : : : ;Yn/; .X1; : : : ;Xn/

�

�
nX

iD1
PfYi ¤ Xig

� n � o
�1

n

�

D o.1/ as n ! 1:

Define

U.i/ D �
�
B.0; kY.i/k/

�
;

where � is the probability measure of Y. We recall that U.1/; : : : ;U.n/ are uniform
order statistics, and thus

n
�
U.1/; : : : ;U.k/

� D! �
G1; : : : ;Gk

�

(see Corollary 1.1). In fact, this convergence is also in the dTV sense. Also, if
kY.k/k � K=n1=d, then

U.i/ D f .0/VdkY.i/kd:

Thus,

dTV

��kY.1/k; : : : ; kY.k/k
�
;

�� U.1/

f .0/Vd

�1=d
; : : : ;

� U.k/

f .0/Vd

�1=d
��

� P

n
kY.k/k > K

n1=d

o

D P

n
Bin

�
n; f .0/Vd

Kd

n

�
< k

o

D P

n
Poisson.f .0/VdKd/ < k

o
C o.1/ .as n ! 1/

� "C o.1/

for all K large enough, depending upon ".
Let Z1; : : : ;Zk be i.i.d. random vectors uniformly distributed on the surface of

B.0; 1/. Then

dTV

�
.f .0/Vdn/1=d.X.1/; : : : ;X.k//; .Z1G

1=d
1 ; : : : ;ZkG1=d

k /
�

� dTV
�
.X.1/; : : : ;X.k//; .Y.1/; : : : ;Y.k//

�

C dTV

�
.f .0/Vdn/1=d.Y.1/; : : : ;Y.k//; .Z1G

1=d
1 ; : : : ;ZkG1=d

k /
�
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� o.1/C dTV
�
.Y.1/; : : : ;Y.k//; .Z1kY.1/k; : : : ;ZkkY.k/k/

�

C dTV

�
.f .0/Vdn/1=d.Z1kY.1/k; : : : ;ZkkY.k/k/; .Z1G1=d

1 ; : : : ;ZkG1=d
k /

�

� o.1/C P

n
kY.k/k > K

n1=d

o

C dTV

��kY.1/k; : : : ; kY.k/k
�
;
�� U.1/

f .0/Vd

�1=d
; : : : ;

� U.k/

f .0/Vd

�1=d��

C dTV
�
n1=d.Z1U

1=d
.1/ ; : : : ;ZkU1=d

.k/ /; .Z1G
1=d
1 ; : : : ;ZkG1=d

k /
�

since on ŒkYk � K=n1=d�, Y has a radially symmetric distribution. Therefore,

dTV

�
.f .0/Vdn/1=d.X.1/; : : : ;X.k//; .Z1G

1=d
1 ; : : : ;ZkG1=d

k /
�

� o.1/C 2"C dTV
�
n.U.1/; : : : ;U.k//; .G1; : : : ;Gk/

�

D o.1/C 2":

This concludes the proof. ut
Writing Zi D .Zi;1; : : : ;Zi;d/, we have the following corollary:

Corollary 15.1. Assume that 0 is a Lebesgue point of f , f .0/ > 0, and k is fixed.
Then

f .0/Vdn
�kX.1/kd; : : : ; kX.k/kd

� D! .G1; : : : ;Gk/:

Also, if a1; : : : ; ad are real numbers, then, writing X.i/ D .X.i;1/; : : : ;X.i;d//,

.f .0/Vdn/1=d

0

@
dX

jD1
ajX.1;j/; : : : ;

dX

jD1
ajX.k;j/

1

A

D!
0

@G1=d
1

dX

jD1
ajZ1;j; : : : ;G

1=d
k

dX

jD1
ajZk;j

1

A :

15.3 Analysis for fixed k

In this section, we still assume that k is held fixed and study the asymptotic behavior
of rn.0/ � r.0/, where rn is the k-nearest neighbor estimate (15.1). The standing
conditions for this section are the following ones:

(1) 0 is a Lebesgue point of the density f and f .0/ > 0.
(2) The regression function r is continuously differentiable in a neighborhood of 0.
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Recall the notation X.i/ D .X.i;1/; : : : ;X.i;d//, Zi D .Zi;1; : : : ;Zi;d/ (Z1; : : : ;Zk are
independent random vectors uniformly distributed on the surface of B.0; 1/), and let
r0.0/ D .r0

1.0/; : : : ; r
0
d.0//, with r0

j.0/ D @r
@xj
.0/, 1 � j � d. Then, by a Taylor series

approximation,

rn.0/ � r.0/ D 1

k

kX

iD1

�
r.X.i// � r.0/

�

D 1

k

kX

iD1

0

@
dX

jD1
r0

j.0/X.i;j/ C  .X.i//

1

A

(where  .x/ D o.kxk/ as kxk # 0). Observe that

1
k

Pk
iD1  .X.i//

kX.k/k ! 0 in probability

if kX.k/k ! 0 in probability. But, by Corollary 15.1, kX.k/k D OP..
k
n /
1=d/, and

therefore,

1

k

kX

iD1
 .X.i// D oP

 �
k

n

�1=d
!

:

Still by Corollary 15.1,

.f .0/Vdn/1=d

0

@
dX

jD1
r0

j.0/X.1;j/; : : : ;
dX

jD1
r0

j.0/X.k;j/

1

A

D!
0

@G1=d
1

dX

jD1
r0

j.0/Z1;j; : : : ;G
1=d
k

dX

jD1
r0

j.0/Zk;j

1

A ;

so that

.f .0/Vdn/1=d

0

@1
k

kX

iD1

dX

jD1
r0

j.0/X.i;j/

1

A D! 1

k

kX

iD1
G1=d

i

0

@
dX

jD1
r0

j.0/Zi;j

1

A :

In particular, for k D 1, the limit law is E1=d
Pd

jD1 r0
j.0/Z1;j, where E denotes a

standard exponential random variable. By radial symmetry,

dX

jD1
r0

j.0/Z1;j
DD kr0.0/kZ1;1;
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where kr0.0/k2 D Pd
jD1 r0

j
2
.0/. Thus, for k D 1, we have

rn.0/ � r.0/
DD kr0.0/k
.f .0/Vdn/1=d

E1=dZ1;1 C oP

�
1

n1=d

�

D
8
<

:

oP

�
1

n1=d

�
if kr0.0/k D 0

OP

�
1

n1=d

�
if kr0.0/k > 0.

Note that for d D 1, EZ1;1 has the Laplace distribution with density 1
2
e�jxj, x 2 R.

Remark 15.1. It is easy to see that if N1; : : : ;Nd are i.i.d. standard Gaussian random
variables, then, with N D .N1; : : : ;Nd/, the normalized random vector N=kNk is
uniformly distributed on the surface of B.0; 1/. Hence,

Zi;1
DD N1

kNk D N1qPd
jD1 N2

j

:

Therefore, for d > 1,

Z2i;1
DD N2

1Pd
jD1 N2

j

DD G1=2

G1=2 C G.d�1/=2
;

where G1=2 is Gamma.1=2/ and G.d�1/=2 is Gamma. d�1
2
/ and independent of G1=2

(see Section 20.9 in the Appendix). Thus, by Lemma 20.9,

Z2i;1
DD Beta

�
1
2
; d�1

2

�
;

so that Zi;1 has density

	
�

d
2

�

p
�	

�
d�1
2

� .1 � z2/
d�3
2 ; jzj � 1:

We recover the well-known fact that Zi;1 is uniform on Œ�1; 1� for d D 3. ut
Summarizing all of the above, we conclude:

Theorem 15.2. Assume that conditions .1/ and .2/ are satisfied. Then, for the fixed
k-nearest neighbor regression function estimate rn,

.f .0/Vdn/1=d .rn.0/ � r.0//
D! Lkkr0.0/k;

where

Lk
defD 1

k

kX

iD1
G1=d

i Zi;1:
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Analysis of Lk suggests that

rn.0/ � r.0/ D OP

 
1p
k

�
k

n

�1=d
!

: (15.4)

To see this we note below that, as k ! 1,

EL2k � k
2
d �1

d C 2
:

Combined with Theorem 15.2, one may be tempted to conclude (15.4). This is an
erroneous reasoning because Theorem 15.2 does not permit k ! 1. A more careful

analysis shows that (15.4) is indeed true if k D O.n
2

dC2 /, under conditions that are
stricter than .1/ and .2/—see the next section.

Let us return to the computation of EL2k . We have

EŒL2k j G1; : : : ;Gk� D 1

k2

kX

iD1
G2=d

i EZ2i;1 D EZ21;1 � 1

k2

kX

iD1
G2=d

i :

Thus, since EZ21;1 D EkZ1k2
d D 1=d,

EL2k D 1

dk2

kX

iD1
EG2=d

i D 1

dk2

kX

iD1

	
�
i C 2

d

�

	 .i/
� k

2
d �1

d C 2
:

For the latter equivalence, we used the fact that

	
�
i C 2

d

�

	 .i/
D i2=d

�
1C O

�1
i

��
;

which is implied by Theorem 20.14 in the Appendix. The quantity EL2k is minimal
for k D 1 when d D 1. It is basically invariant under the choice of k for d D 2, but,
surprisingly, for d > 2, EL2k is minimized for k D n. Of course, this argument fails
because the delicate limit law we derived fails to hold. However, this motivates the
study of rn.0/ � r.0/ in R

d, d > 2, with k depending upon n such that k ! 1.

15.4 Analysis for diverging k

Most of the arguments used in the previous sections for finite k do not carry over to
the case k ! 1. It is nevertheless possible to extend the coupling argument to this
situation. The standing conditions are as follows:
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(i) rn.0/ D 1
k

Pk
iD1 r.X.i//, with k= log n ! 1 and k=n ! 0.

(ii) The density f is continuously differentiable in a neighborhood of 0 and
f .0/ > 0.

(iii) The regression function r is twice continuously differentiable in a neighbor-
hood of 0.

(iv) The function r is bounded.

For x D .x1; : : : ; xd/
> 2 R

d, we let

f 0.0/ D
�
@f

@x1
.0/; : : : ;

@f

@xd
.0/
�>

; r0.0/ D
�
@r

@x1
.0/; : : : ;

@r

@xd
.0/
�>

;

and

r00.0/ D
�

@2r

@xj@xj0
.0/
�

1�j;j0�d

:

Theorem 15.3 (Noiseless rate of convergence). Assume that conditions .i/-.iv/
are satisfied. Then the k-nearest neighbor regression function estimate rn satisfies

rn.0/ � r.0/
DD �p

k

�
k

n

�1=d

N C 

�
k

n

�2=d

C oP

 
1p
k

�
k

n

�1=d

C
�

k

n

�2=d
!

;

where N is a standard normal random variable,

�
defD kr0.0/kp

d C 2 .Vdf .0//1=d
;

and


defD f .0/tr.r00.0//C 2r0.0/>f .0/

2.d C 2/V2=d
d f 1C2=d.0/

:

Theorem 15.3 can be used to determine the best choice of k. If we take the sum
of the expected values of the squares of the main terms on the right-hand side of the
limit theorem as a yardstick, then the best k would minimize

�2

k

�
k

n

�2=d

C 2
�

k

n

�4=d

: (15.5)

For d D 1, the value k D 1 is best. The case of constant k was dealt with in the
previous sections and is well understood. Besides, Theorem 15.3 requires k ! 1
to be valid. For d D 2, (15.5) is

�2

n
C 2

�
k

n

�2
;



202 15 Regression: the noiseless case

Table 15.1 Optimal rates of convergence of
rn.0/ � r.0/ for the k-nearest neighbor regres-
sion function estimate in the noisy and noise-
less cases.

Noisy estimation Noiseless case

d D 1 �.n�2=5/ �.n�1/

d D 2 �.n�1=3/ �.n�1=2/

d > 2 �.n�

2
dC4 / �.n�

2
dC2 /

which is also minimal for k D 1, although any choice k D o.
p

n/ will do almost as
well. At d D 2, there is a phase transition, since for d > 2, (15.5) is minimized for

a sequence k that grows with n roughly as n
2

dC2 :

k �
�
�2

2
� d � 2

4

� d
dC2

n
2

dC2 :

With that choice, (15.5) becomes

n� 4
dC2

"�
d � 2
4

� 4
dC2

C
�

d � 2
4

� 2�d
2Cd

#

.�2/
4

dC2 .2/
d�2
dC2 :

The influence of the local behavior of f and r is plainly visible in the multiplicative
constant. It is perhaps worthwhile to juxtapose the results regarding optimal rates
for the k-nearest neighbor estimate in the noisy and noiseless cases, as in Table 15.1.
Here � stands for a rate “in probability” as described in Theorem 15.3. For every
dimension d, the noiseless rate of convergence is, unsurprisingly, better, although
the difference tends to decrease as the dimension increases.

Remark 15.2. We note that under our conditions, it is possible that one or both
of � and  are zero, in which case there is a choice of k that makes rn.0/ � r.0/ D
oP.n

� 2
dC2 /. So as to keep the notation and argument transparent, we did not consider

the weighted nearest neighbor estimate here, but with appropriate weights, under the

conditions of Theorem 15.3, one should be able to obtain rn.0/�r.0/ D oP.n
� 2

dC2 /.
ut

Proof (Theorem 15.3). Theorem 15.3 is proved by using a coupling argument. We
create two coupled samples of random variables that are i.i.d. within the sample.
The sample X1; : : : ;Xn is drawn from the distribution of X, which has density f .
The sample Y1; : : : ;Yn is drawn from the distribution of Y, which has density g�
described below—g� is nearly uniform on the ball B.0; �/ and matches f up to a
multiplicative constant outside B.0; �/:

g�.x/ D
(

f .0/C f 0.0/>x for x 2 B.0; �/

f .x/
�

1�f .0/Vd�
d

1�RB.0;�/ f .z/dz

�
otherwise.
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Here, as elsewhere, vectors are column vectors and > denotes transposition.
The radius is � D K.k=n/1=d, where K D K."/ is picked so large that
PfkX.k/k > �g � ". This can be done since

kX.k/k D OP

 �
k

n

�1=d
!

(by (15.2), (15.3), and the fact that 0 is a Lebesgue point of f with f .0/ > 0—
see condition .ii/). Since � # 0, g� is a proper density for all n large enough (in
particular, for � so small that kf 0.0/k� � f .0/).

We compare

rn.0/ D 1

k

kX

iD1
r.X.i// with sn.0/ D 1

k

kX

iD1
r.Y.i//;

and prove that

rn.0/ � sn.0/ D oP

 �
k

n

�2=d
!

: (15.6)

This is so small that it cannot possibly asymptotically dominate the last term shown
in Theorem 15.3. So, we will establish Theorem 15.3 for sn.0/.

The Taylor series expansion of r about 0 is

r.x/ D r.0/C r0.0/>x C 1

2
x>r00.0/x C kxk2w.x/;

where w.x/ D o.1/ as kxk # 0. Thus,

sn.0/ � s.0/ D r0.0/>
1

k

kX

iD1
Y.i/ C 1

2k

kX

iD1
Y>
.i/r

00.0/Y.i/

C 1

k

kX

iD1
kY.i/k2w.Y.i//

defD I C II C III:

We show that

III D oP

 �
k

n

�2=d
!

; (15.7)
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so that it too has no influence in the asymptotic statement of Theorem 15.3.
Terms I and II will be related, by appropriate probabilistic representations, to
sums of uniform order statistics dealt with in Chapter 13, and this will establish
Theorem 15.3. The four items, (15.6), (15.7), I and II, are treated in the next few
paragraphs.

Proof of (15.6). Letting

p D
Z

B.0;�/
f .z/dz;

we have
Z

Rd

ˇ̌
g�.x/ � f .x/

ˇ̌
dx D

Z

B.0;�/

ˇ̌
g�.x/ � f .x/

ˇ̌
dx

C
Z

Bc.0;�/
f .x/

ˇ̌
ˇ̌1 � f .0/Vd�

d

1 � p
� 1

ˇ̌
ˇ̌ dx

D
Z

B.0;�/

ˇ̌
g�.x/ � f .x/

ˇ̌
dx C

ˇ̌
ˇp � f .0/Vd�

d
ˇ̌
ˇ

� 2

Z

B.0;�/

ˇ̌
g�.x/ � f .x/

ˇ̌
dx:

By Doeblin’s coupling lemma (Doeblin, 1937; Rachev and Rüschendorf, 1998),
there exist random variables X and Y with density f and g�, respectively, such that

PfY ¤ Xg D 1

2

Z

Rd

ˇ̌
g�.x/ � f .x/

ˇ̌
dx

�
Z

B.0;�/

ˇ
ˇg�.x/ � f .x/

ˇ
ˇ dx

D 2

Z

B.0;�/
jf .x/ � f .0/ � f 0.0/>xjdx

D �dC1�.�/;

where �.�/ D o.1/ as � # 0, by the Taylor series expansion of f about 0.
Let .Xi;Yi/, 1 � i � n, be independently drawn from the distribution of .X;Y/.

Then,

jrn.0/ � sn.0/j1ŒkX.k/k���1ŒkY.k/k���

� 1

k

� nX

iD1
1ŒXi¤Yi� sup

x;y2B.0;�/
jr.x/ � r.y/j

�
1ŒkX.k/k���1ŒkY.k/k���
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� 2

k

nX

iD1
1ŒXi¤Yi� sup

x2B.0;�/
jr.x/ � r.0/j

D O.�/

k
� OP

�
n
Z

Rd

ˇ̌
g�.x/ � f .x/

ˇ̌
dx
�

since
Pn

iD1 1ŒXi¤Yi� is Bin.n; 1
2

R
Rd jg�.x/ � f .x/jdx/. Therefore,

jrn.0/ � sn.0/j1ŒkX.k/k���1ŒkY.k/k��� D OP

�
�dC2�.�/n

k

�
D oP

 �
k

n

�2=d
!

:

Finally,

Tn
defD jrn.0/ � sn.0/j .1ŒkX.k/k>�� C 1ŒkY.k/k>��/

� 2krk1.1ŒkX.k/k>�� C 1ŒkY.k/k>��/:

By Chernoff’s bound (Theorem 20.5), for some constants c; c0 > 0,

P
˚kX.k/k > �

� D P
˚
Bin.n; p/ < k

�

� e�cnp � e�c0n�d D e�c0Kdk

if k � np=2 (which is the case for K large enough). A similar argument applies
to kY.k/k, and therefore, ETn � e�c00k for some positive constant c00. By Markov’s
inequality,

Tn D OP

�
e�c000k

�

for another constant c000 > 0. Thus,

jrn.0/ � sn.0/j D oP

 �
k

n

�2=d
!

C OP

�
e�C000k

� D oP

 �
k

n

�2=d
!

;

since k= log n ! 1.

Proof of (15.7). We have

III � kY.k/k2 sup
y2B.0;kY.k/k/

w.y/:

The result follows from

kY.k/k D OP

 �
k

n

�1=d
!

:
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Study of I and II. We describe a random variable distributed as Y. Let U, W be
i.i.d. uniform Œ0; 1� random variables, and let Z be uniformly distributed on fz 2
R

d W kzk D 1g, the surface of B.0; 1/, where Z is independent of U and W. Define

Y D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

distributed as X conditional on kXk > �, if U > f .0/Vd�
d

�
U

f .0/Vd

�1=d
Z, if U � f .0/Vd�

d and W >

��f 0.0/>
�

U
f .0/Vd

�1=d
Z

f .0/

�C

�
�

U
f .0/Vd

�1=d
Z, if U � f .0/Vd�

d and W �
��f 0.0/>

�
U

f .0/Vd

�1=d
Z

f .0/

�C
,

and the coupled random variable

Y? D
8
<

:

distributed as X conditional on kXk > �, if U > f .0/Vd�
d

�
U

f .0/Vd

�1=d
Z; otherwise.

But, for x 2 B.0; �/,

PfY D x j Y? D xg D 1 �
��f 0.0/>x

f .0/

�C
;

and

PfY D x j Y? D �xg D
�

f 0.0/>x
f .0/

�C
:

Therefore, the density of Y on B.0; �/ is

f .0/

 

1 �
��f 0.0/>x

f .0/

�C
C
�

f 0.0/>x
f .0/

�C!
D f .0/C f 0.0/>x:

Consider first a quadratic form of Y for a d � d matrix A. We have, for kYk � �,

Y>AY D
�

U

f .0/Vd

�2=d

Z>AZ

0

B
@1 � 21h

W�
�

�f 0.0/>
�

U
f .0/Vd

�1=d
Z

f .0/

�
C

i

1

C
A

2

D
�

U

f .0/Vd

�2=d

Z>AZ:

In other words, the bias introduced by the “W trick” cancels out. For a linear form
with vector a 2 R

d, for kYk � �,

a>Y D
�

U

f .0/Vd

�1=d

a>Z � 2
�

U

f .0/Vd

�1=d

a>Z1h
W�
�

�f 0.0/>
�

U
f .0/Vd

�1=d
Z

f .0/

�
C

i:
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In preparation for the finale, we note that if Z D .Z1; : : : ;Zd/
>,

EŒZ>AZ� D
dX

jD1
AjjEZ2j D EŒZ>Z�

d
� tr.A/ D tr.A/

d
;

where the elements of A are denoted by Ajj0 . Here we used the fact that

EZ21 D � � � D EZ2d D EŒZ21 C � � � C Z2d �

d
D 1

d
:

Also note that jZ>AZj � d2 maxj;j0 jAjj0 j. Next, for a D .a1; : : : ; ad/
>, EŒa>Z� D 0,

and

E
�
.a>Z/2

� D EŒa>ZZ>a� D a>
EŒZZ>�a D a>a

d
D kak2

d
:

Finally, if kf 0.0/k. U
f .0/Vd

/1=d � f .0/,

E

2

6
4a>Z1h

W�
�

�f 0.0/>
�

U
f .0/Vd

�1=d
Z

f .0/

�
C

i
ˇ̌
ˇU

3

7
5

D E

2

6
6
4a>Z

0

B
@

�f 0.0/>
�

U
f .0/Vd

�1=d
Z

f .0/

1

C
A

C
ˇ̌
ˇU

3

7
7
5

D
�
�

U
f .0/Vd

�1=d

f .0/
� E

�
a>Zf 0.0/>Z1Œf 0.0/>Z<0�

�

D
�
�

U
f .0/Vd

�1=d

2f .0/
� E

�
a>Zf 0.0/>Z

�
:

Therefore, if kf 0.0/k. U
f .0/Vd

/1=d � f .0/,

E

2

6
4a>Z1h

W�
�

�f 0.0/>
�

U
f .0/Vd

�1=d
Z

f .0/

�
C

i
ˇ̌
ˇU

3

7
5 D

�
�

U
f .0/Vd

�1=d

2f .0/
� E

�
a>ZZ>f 0.0/

�

D
�
�

U
f .0/Vd

�1=d

2df .0/
� a>f 0.0/: (15.8)
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A last coupling will tame the analysis into submission. We consider a sample
of i.i.d. random variables .U1;W1;Z1/; : : : ; .Un;Wn;Zn/ that are distributed as
.U;W;Z/ in the definition of Y. Define

Y?? D

8
ˆ̂<

ˆ̂:

�
U

f .0/Vd

�1=d
Z if W >

��f 0.0/>
�

U
f .0/Vd

�1=d
Z

f .0/

�C

�
�

U
f .0/Vd

�1=d
Z otherwise.

Couple Y and Y?? by using the same values of .U;W;Z/. Draw i.i.d. samples
.Y1;Y??

1 /; : : : ; .Yn;Y??
n / from this coupled distribution, and look at

sn.0/ D 1

k

kX

iD1
r.Y.i// and s??n .0/ D 1

k

kX

iD1
r.Y??

.i/ /;

where, as usual, Y.1/; : : : ;Y.n/ and Y??
.1/; : : : ;Y

??
.n/ are reordered by increasing values

of kYik, respectively kY??
i k. In this case, this means that the U.i/ values are

increasing. In particular, if .
U.k/

f .0/Vd
/1=d � �, we have

.Y.1/; : : : ;Y.k//D.Y??
.1/; : : : ;Y

??
.k//;

and therefore,

P
˚
sn.0/ ¤ s??n .0/

� � PfU.k/ > f .0/Vd�
dg: (15.9)

In the definition of � D K.k=n/1=d, using Chernoff’s bound we can choose K so
large that the probability (15.9) is smaller than e�ck for some constant c > 0. Thus,
we only need to look at s??n .0/.

We have, on Œsn.0/ D s??n .0/�,

I C II D r0.0/>
1

k

kX

iD1
Y??
.i/ C 1

2k

kX

iD1
Y??T
.i/ r00.0/Y??

.i/

D 1

k

kX

iD1

�
U.i/

Vdf .0/

�1=d

r0.0/>Z.i/ C 1

2k

kX

iD1

�
U.i/

Vdf .0/

�2=d

Z>
.i/r

00.0/Z.i/

� 2

k

kX

iD1

�
U.i/

Vdf .0/

�1=d

r0.0/>Z.i/1h
W.i/�

�
�f 0.0/>

�
U.i/

f .0/Vd

�1=d
Z.i/

f .0/

�
C

i

defD T1 C T2 C T3:

By Theorem 13.3, if

�2 D E

h�
r0.0/>Z

�2i D kr0.0/k2
d

;
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then

T1
DD 1p

k

�
k

n

�1=d
�

q
1C 2

d

� 1

.Vdf .0//1=d
.N C oP.1//

D 1p
k

�
k

n

�1=d kr0.0/kp
d C 2

� 1

.Vdf .0//1=d
.N C oP.1// :

By Theorem 13.2 , with � D EŒZ>r00.0/Z� D tr.r00.0//
d ,

T2D
�

k

n

�2=d
�

2.1C 2
d /

� 1

.Vdf .0//2=d
.1C oP.1//

D
�

k

n

�2=d tr.r00.0//
2.d C 2/

� 1

.Vdf .0//2=d
.1C oP.1// :

Again by Theorem 13.2, using (15.8), using a small additional argument, and putting
all the pieces together,

T3D
�

k

n

�2=d r0.0/>f 0.0/
df .0/

� 1

1C 2
d

� 1

.Vdf .0//2=d
.1C oP.1//

D
�

k

n

�2=d r0.0/>f 0.0/
.d C 2/f .0/

� 1

.Vdf .0//2=d
.1C oP.1// :

This finishes the proof of the theorem. ut
Remark 15.3. In the noisy case, we have

rn.0/ � r.0/ D 1

k

kX

iD1
Y.i/ � r.0/

D 1

k

kX

iD1

�
Y.i/ � r.X.i//

�C 1

k

kX

iD1
r.X.i// � r.0/; (15.10)

where now Y.1/; : : : ;Y.n/ are as in Chapter 14. We already covered the last term
of (15.10) in Theorem 15.3. By virtue of Theorem 14.2, the first term on the right
in (15.10) is asymptotically distributed as

�.0/p
k
.N C oP.1// ; (15.11)
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where �.x/ D VŒYjX D x�. The only conditions needed for this are that �.0/ > 0,
that Y is almost surely bounded (a condition that can be relaxed), k ! 1, k=n ! 0,
and that � is continuous at 0. Adding (15.11) to the expression in Theorem 15.3
makes the 1p

k
. k

n /
1=d term asymptotically irrelevant. In other words, we basically

rediscover Corollary 14.1. The readers have two very different proofs of the same
result—one more analytic and classical, and a coupling proof that explains each
term in the asymptotic behavior. ut



Chapter 16
The choice of a nearest neighbor estimate

16.1 Parameter selection

Selecting the estimate within a class of estimates that is optimal in a certain sense
is perhaps the ultimate goal of nonparametric estimation. It assumes that the class
of estimates is sufficiently rich within the universe of all possible estimates. That
the nearest neighbor regression function estimate is rich as a class follows not only
from the universality, but also from the fact that it achieves rates of convergence for
various criteria that are close to the best possible over certain classes of distributions
on .X;Y/, a property that is studied in minimax theory (Stone, 1980, 1982).

In this chapter, we take a class of nearest neighbor estimates. Examples
include:

(i) The k-nearest neighbor estimate:

vni D
	
1
k for 1 � i � k
0 otherwise.

This class is parametrized by k 2 f1; : : : ; ng.
(ii) The monotone weight estimate:

vn1 � vn2 � � � � � vnn � 0;

nX

iD1
vni D 1:

(iii) The discretized weight estimate:

vni D ˛.i; n/

ˇ.n/
; 1 � i � n;
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where ˇ.n/ is a fixed positive integer sequence, and ˛.i; n/ is an integer
between �Bˇ.n/ and Bˇ.n/, with B > 0 another fixed integer. Also, the
requirement

Pn
iD1 vni D 1 implies that

Pn
iD1 ˛.i; n/ D ˇ.n/. This class of

estimates is discrete and has not more than .2Bˇ.n/C 1/n members.
(iv) The kernel-weighted estimate: let K be a fixed real-valued function defined

on Œ0; 1� with
R 1
0

K.x/dx D 1, which we call the kernel; the family of estimates
is parametrized by k 2 f1; : : : ; ng, and uses

vni D
8
<

:

Z i=k

.i�1/=k
K.x/dx for 1 � i � k

0 otherwise,

so that, automatically,
Pn

iD1 vni D R 1
0

K.x/dx D 1.

Taking these classes as examples, we will set out to study data-dependent choices
of the best estimates within each class.

16.2 Oracle inequality

The first simplification comes from data splitting, a technique that affords us
valuable independence for making our choices. In particular, we assume that
the (training) data are .X1;Y1/; : : : ; .Xn;Yn/, as before, and that we have test
data .X0

1;Y
0
1/; : : : ; .X

0
m;Y

0
m/, which are independent of the data and consist of

independent pairs all distributed as .X1;Y1/. In many cases—illustrated below—
one can get away with the choice m D o.n/, requiring only m D �.n˛/ for some
0 < ˛ < 1.

Now, we need to settle on the criterion. The most natural one in the regression
function setting is the L2 criterion

E jrn.X/ � r.X/j2 ; (16.1)

where, as usual, rn denotes the estimate of r and .X;Y/ denotes an independent pair,
distributed as .X1;Y1/. We recall (Chapter 10) that

E jY � rn.X/j2 D E jrn.X/ � r.X/j2 C E jY � r.X/j2 ; (16.2)

where the last term does not depend upon the estimate or the data. Thus, minimiz-
ing (16.1) is equivalent to minimizing (16.2) and even (16.3):

EŒr2n.X/ � 2rn.X/Y� D E jY � rn.X/j2 � EY2: (16.3)
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Assume that the estimates are parametrized by a parameter � 2 A , with jA j < 1.
For example, for the k-nearest neighbor estimate, � D k and A D f1; : : : ; ng. We
make the dependence of rn.x/ on � explicit when we write rn;� .x/. Define

Ln;� D E

h
jrn;� .X/ � r.X/j2 ˇˇX1;Y1; : : : ;Xn;Yn

i
; (16.4)

and

L?n D min
�2A Ln;� ; �? 2 arg min

�2A
Ln;� :

Thus, �? is the best parameter for the given data. Let the estimate of (16.4) based
on the test data be

OLn;� D 1

m

mX

jD1

�
r2n;� .X

0
j/ � 2rn;� .X0

j/Y
0
j

�
: (16.5)

We choose O�? so as to minimize OLn;� :

OLn; O�? D min
�2A

OLn;� ; O�? 2 arg min
�2A

OLn;� :

Ties are broken in a canonical manner. Since A is finite, we can map A to the
integers f1; : : : ; jA jg, and break ties by choosing the parameter of smallest integer
value. Therefore, “arg min” returns a unique � 2 A . It should also be noted that O�?
depends on both the training data and the test data.

What matters to us is the difference Ln; O�? � L?n . In fact, the relative difference is
of primary interest. This leads one naturally to oracle inequalities, such as the one
presented in the next theorem.

Theorem 16.1. Assume that 1 < jA j < 1 and kYk1 < 1. Then

EŒLn; O�? j X1;Y1; : : : ;Xn;Yn� � L?n C Mp
m

�p
2 log jA j C 1

p
2 log jA j

�
;

where

M D kYk21
�
1C

nX

iD1
jvnij

�2
:

For a related discussion, see Györfi et al. (2002, Theorem 7.1). For classi-
fication—a special case of regression—data splitting was similarly analyzed by
Devroye (1988).
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Proof (Theorem 16.1). Let Dn D ..X1;Y1/; : : : ; .Xn;Yn//. Using the independence
between .X;Y/ and Dn, it is easy to see that

Ln;� D E
�
r2n;� .X/ � 2rn;� .X/Y C r2.X/ jDn

�
:

We apply Hoeffding’s inequality (Theorem 20.7 in the Appendix) to the sum

1

m

mX

jD1

� �
r2n;� .X

0
j/ � 2rn;� .X0

j/Y
0
j C r2.X0

j/
�

� E
�
r2n;� .X/ � 2rn;� .X/Y C r2.X/ jDn

� �

D QLn;� � Ln;� ;

where QLn;� D OLn;�C 1
m

Pm
jD1 r2.X0

j/. To do so, note that jrn;� .x/j � kYk1
Pn

iD1 jvnij,
and thus that

ˇ̌
r2n;� .X/ � 2rn;� .X/Y C r2.X/

ˇ̌ � kYk21
 � nX

iD1
jvnij

�2
C 2

nX

iD1
jvnij C 1

!

DkYk21
�
1C

nX

iD1
jvnij

�2

defD M:

Thus, by Hoeffding’s inequality, for t > 0,

PfLn;� � QLn;� � t jDng � exp

�
� mt2

2M2

�
: (16.6)

Since EŒ QLn;�? jDn� D L?n , we only need to show that

EŒLn; O�? � QLn; O�? jDn� � Mp
m

�p
2 log jA j C 1

p
2 log jA j

�
: (16.7)

Fix t > 0. Then, clearly, by (16.6),

PfLn; O�? � QLn; O�? � t jDng � P

	
max
�2A .Ln;� � QLn;� / � t jDn




�
X

�2A
exp

�
� mt2

2M2

�
:
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Setting ı? D
q

2M2

m log jA j, it follows that

EŒLn; O�? � QLn; O�? jDn� �
Z 1

0

PfLn; O�? � QLn; O�? � t jDngdt

� ı? C
Z 1

ı?
jA j exp

�
� mt2

2M2

�
dt

� ı? C M2

mı?

D Mp
m

�p
2 log jA j C 1

p
2 log jA j

�
:

Thus, (16.7) is verified, and the theorem is proved. ut

16.3 Examples

The oracle inequality of Theorem 16.1 permits the user to obtain asymptotically
optimal estimates. For example, if r is Lipschitz and X and Y are both bounded
random variables in R

d .d � 2/ and R, respectively, then any k-nearest neighbor
regression estimate Ejrn.X/ � r.X/j2 can be made to converge to zero at the

rate O.n� 2
dC2 / (Corollary 14.2) if we know that .X;Y/ satisfies these general

conditions. This rate of convergence is best possible within that class of estimates
and distributions (Stone, 1982).

If we select k 2 f1; : : : ; ng (so, jA j D n) by the data splitting method, then
Theorem 16.1 above guarantees that if we take

log n

m
D o

�
n� 4

dC2
�

(i.e., m � n
4

dC2 log n), then

EŒLn; O�? j X1;Y1; : : : ;Xn;Yn� � L?n .1C o.1// ;

and therefore do we not only have an error that is O.n� 2
dC2 /, but we even have the

correct asymptotic coefficient in the rate of convergence, i.e.,

Ln; O�?
L?n

! 1 in probability:

In addition, this optimality property carries over to many other classes of distribu-
tions.
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Györfi et al. (2002, Chapter 7) use Bernstein’s inequality (Theorem 20.8 in
the Appendix) instead of Hoeffding’s to obtain an improved version of the oracle
inequality of Theorem 16.1, for O�? defined as in (16.5). For fixed ı > 0, and

.ı/
defD kYk21

�16
ı

C 35C 19ı
�
;

they show that

EŒLn; O�? j X1;Y1; : : : ;Xn;Yn� � .1C ı/L?n C .ı/ .1C log jA j/
m

:

This inequality improves on Theorem 16.1 when L?n is small, but only if one can
“guess” the approximate value of L?n so as to pick ı optimally.

There are other ways of selecting the best parameter within a class of parameters.
The most celebrated among these is the leave-one-out or cross-validation method.
Here EŒr2n.X/� 2rn.X/Y� is estimated by using the data set itself. If rn.i; x/ denotes
rn.x/ but with .Xi;Yi/ removed from the data, then one hopes that

1

n

nX

iD1

�
r2n.i;Xi/ � 2rn.i;Xi/Yi

�

is a good approximation of EŒr2n.X/�2rn.X/r.X/� (D E jrn.X/ � r.X/j2�Er2.X/).

16.4 Feature selection

Feature selection, also known as variable selection, is the process of choosing
relevant components of the vector X for use in model construction. There are
many potential benefits of such an operation: facilitating data visualization and
data understanding, reducing the measurement and storage requirements, decreasing
training and utilization times, and defying the curse of dimensionality to improve
prediction performance. In addition, it is often the case that finding a correct subset
of variables is an important problem in its own right. For example, physicians may
make a decision based on the selected features whether a dangerous surgery is
necessary for treatment or not.

Feature selection has been an active research area in the statistics, machine
learning, and data mining communities. Many attempts have been made to develop
efficient algorithms for selecting the “best” (depending on the context) subset of
components—for an overview of the problem, see, e.g., Guyon and Elisseeff, 2003,
and the monograph by Hastie et al., 2009. General recipes are hard to give as the
solutions depend on the specific problem, and some methods put more emphasis
on one aspect than another. However, there are some rules of thumb that should be
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followed. One such rule is that noisy measurements, that is, components that are
independent of Y , should be avoided. Also, adding a component that is a function of
other components is useless.

In selecting subsets of variables, a sensible objective is to make the mean
integrated squared error Ejrn.X/�r.X/j2 as small as possible. This depends on many
things, such as the joint distribution of the selected components of X and the answer
Y , the sample size, and the regression estimate rn itself. To make things a bit simpler,
we first investigate the residual variance corresponding to the selected components.
This approach makes sense since, in view of (16.2), the residual variance is the
theoretical limit of the L2 performance EjY � rn.X/j2 of any regression method.

In this data-independent context, we may formulate the feature selection problem
as follows. Let X D .X1; : : : ;Xd/ represent d measurements. For a set A �
f1; : : : ; dg of indices, let XA denote the jAj-dimensional random vector whose
components are the Xj’s with j 2 A (in the order of increasing indices). Define

L?.A/ D E jY � EŒYjXA�j2 ;

that is, the minimum risk that can be achieved using the features in A as explanatory
variables. Obviously, L?.A/ � L?.B/ whenever B � A, L?.f1; : : : ; dg/ D L? D
EjY � r.X/j2, and L?.;/ D VY . Thus, the problem is to find an efficient way of
selecting an index set A with jAj D p, whose corresponding error is the smallest.
Here p � d is a fixed integer. Exhaustive evaluation over all variable subsets of size
p is often computationally prohibitive, as the number of subsets to be considered
grows very rapidly with the number of features—for example,

�
12
6

�
is 924, while�

24
12

�
is 2,704,156. A wide range of search strategies can be used, including best-first,

branch and bound, simulated annealing, and genetic algorithms (see Kohavi and
John, 1997, or Kumar and Minz, 2014, for reviews).

It is easy to see that the best p individual features—that is, components
corresponding to the p smallest values of L?.fjg/—do not necessarily constitute
the best p-dimensional vector. Indeed, the following simple example shows that a
combination of “good” single features may lead to a larger risk than a combination
of “worse” features. Let X D .X1;X2;X3/> be jointly Gaussian with nonsingular
variance-covariance matrix˙ , and let Y D a>X for some a 2 R

3 to be chosen later.
For A � f1; 2; 3g, we have by the elementary properties of the multivariate normal
distribution

L?.A/ D a>˙a � a>˙P>.P˙P>/�1P˙a;

where P D P.A/ consists of the rows of the 3 � 3 identity matrix with row labels
in A. Take

˙ D
0

@
1 �0:7 0

�0:7 1 �0:7
0 �0:7 1

1

A and a D
0

@
2

2:5

1

1

A ;
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to obtain the following ordering of minimum risks:

L? .f1g/ D 11

16
> L? .f2g/ D 59

100
> L? .f3g/ D 3

16

and

L? .f1; 2g/ D 2

51
< L? .f1; 3g/ D 1

8
< L? .f2; 3g/ D 8

51
:

Thus, the (individually) best two components (X2 and X3) become the worst two-
dimensional ones, whereas the worst two single components (X1 and X2) jointly
represent the best feature pair.

Remark 16.1. Antos et al. (1999) (see also Devroye et al., 2003) proved that for
any sequence f�ng of estimates and any sequence fang of positive real numbers
converging to zero, there exists a distribution of .X;Y/ such that Ej�n � L?j � an

infinitely often. Thus, any estimate of L? is doomed to converge arbitrarily slowly
for some distribution of .X;Y/, and no method can guarantee universally good
performance. Error bounds or confidence bands for L? can only be constructed under
additional assumptions on the distribution of the data. ut

The following theorem says that every feature selection algorithm that finds the
best p-element subset has to search exhaustively through all

�d
p

�
subsets for some

distributions—any other method is condemned to failure, no matter how many
simulations are performed and no matter how large the sample sizes are.

Theorem 16.2. For every 1 � p � d, let rank.A/ be the desired rank of A �
f1; : : : ; dg, jAj D p, in the ordering of fL?.A/ W jAj D pg. [Thus, 1 � rank.A/ �� d

jAj
�
.] Then there exists a distribution of the random variable .X;Y/ 2 R

d � R for
which these ranks can be achieved.

Proof. The distribution of X is uniform on the hypercube f�1; 1gd, while Y D g.X/,
where

g.x/ D
X

B

˛B

Y

j2B

xj;

B � f1; : : : ; dg, and ˛B � 0 are given numbers to be determined later. We note first
that if xA D .xj1 ; : : : ; xjp/ for x D .x1; : : : ; xd/ and A D fj1; : : : ; jpg, then

g.xA/
defD
Z

g.x/
Y

j…A

dxj

D EŒg.X/ j XA D xA�

D
X

BWB�A

˛B

Y

j2B

xj:
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Observe that if A D ;, then g.x;/ D Eg.X/ D 0, and that if A D f1; : : : ; dg, then
g.xA/ D g.x/. One can also see that

g.x/ � g.xA/ D
X

B

˛B

Y

j2B

xj �
X

BWB�A

˛B

Y

j2B

xj;

and, since EŒ
Q

j2B Xj
Q

j2B0

Xj� D 1ŒBDB0�, that

Eg2.X/ D
X

B

˛2B

and

Eg2.XA/ D
X

BWB�A

˛2B D E Œg.X/g.XA/� :

Therefore,

L?.A/ D E jg.X/ � g.XA/j2 D
X

B

˛2B �
X

BWB�A

˛2B

defD
X

B

˛2B � '.A/:

One can find values of f˛A W A � f1; : : : ; dgg that give an ordering of L?.A/ (and
thus '.A/) that is consistent with any given ordering within the subsets of equal
cardinality. This can be done incrementally for all sets fA W jAj D pg as p increases
from 1 to d.

We explain the inductive step that fills in the values of ˛A, jAj D p. Define

�p�1 D 1C
X

AWjAj<p

˛2A:

Then, for jAj D p, define

˛A D
q

rank.A/ � �p�1:

To show that this suffices, take jAj D jA0j D p, with rank.A/ < rank.A0/. Then

'.A/ D
X

BWB�A

˛2B D
X

BWB¨A

˛2B C ˛2A

� �p�1 � 1C .rank.A/ � �p�1/;

while

'.A0/ � ˛2A0

D rank.A0/ � �p�1;
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so that '.A/ < '.A0/ if and only if rank.A/ < rank.A0/. Finally, we verify the
nesting property: if jAj D p, jA0j < p, then

'.A/ � rank.A/ � �p�1 � �p�1

>
X

BWjBj<p

˛2B � '.A0/: ut

The previous negative result parallels a similar negative result for pattern
recognition by Cover and Van Campenhout (1977) (see also Devroye et al., 1996,
Chapter 32), where Y 2 f0; 1g,

L? D inf
gWRd!f0;1g

E jY � g.X/j2

and thus

L?.A/ D inf
gAWRjAj!f0;1g

E
ˇ̌
Y � gA.Xj W j 2 A/

ˇ̌2
:

Of course, in practice, the real measure of the goodness of the selected feature
set is the mean integrated squared error Ejrn.X/� r.X/j2 of the regression estimate
designed by using training data. If we know what estimate will be used after feature
selection, then the best strategy is to select a set of coordinates based on comparing
estimates of the error. This can typically be achieved by using the data splitting
technique discussed in the previous sections. Assuming for example that rn is the
k-nearest neighbor estimate and that the set of candidate features is described by a
collection A1; : : : ;Aq of subsets of f1; : : : ; dg, then we may simultaneously select
both the best parameter k in A1 D f1; : : : ; ng and the best component subset A in
A2 D fA1; : : : ;Aqg. To do this, we let � D .k;A/ 2 A D A1 � A2, and minimize
in � over A

OLn;� D 1

m

mX

jD1

�
r2n;� .X

0
j/ � 2rn;� .X0

j/Y
0
j

�

via the test data .X0
1;Y

0
1/; : : : ; .X

0
m;Y

0
m/, where rn;� is the k-nearest neighbor estimate

with parameter k in the space of variables described by the set A. If O�?n denotes
the minimum over A of the above quantity, then, according to Theorem 16.1, we
conclude that

EŒLn; O�? j X1;Y1; : : : ;Xn;Yn� � min
�D.k;A/ Ln;� C O

 r
log.nq/

m

!

:



Part III
Supervised classification



Chapter 17
Basics of classification

17.1 Introduction

Supervised classification (also called pattern recognition, discrimination, or class
prediction) is a specific regression problem, where the observation X takes values in
R

d and the random response Y takes values in f0; 1g. Given X, one has to guess the
value of Y (also termed the label or class), and this guess is called a decision. Pattern
recognition is important in different scientific disciplines, such as medicine, biology,
finance, and meteorology. In medicine, for example, one needs to evaluate patients
according to their disease risk, and the typical questions for classification are: “Is
this person infected?,” “Will this patient respond to the treatment?,” or “Will this
patient have serious side effects from using the drug?”—in all these cases, a yes/no
or 0=1 decision has to be made.

Mathematically, the decision is a Borel measurable function g W R
d ! f0; 1g,

called a classifier. An error occurs if g.X/ ¤ Y , and the error probability for a
classifier g is

L.g/ D Pfg.X/ ¤ Yg:
Of particular interest is the Bayes decision function

g?.x/ D
	
1 if PfY D 1jX D xg > PfY D 0jX D xg
0 otherwise,

which minimizes the error probability (ties are broken, by convention, in favor of
class 0).

Lemma 17.1. For any decision function g W Rd ! R, one has

L.g?/ � L.g/;

that is, g? is the optimal decision.

© Springer International Publishing Switzerland 2015
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Proof. Let g W Rd ! f0; 1g be an arbitrary Borel measurable function. Then

Pfg.X/ ¤ Yg D 1 � Pfg.X/ D Yg:

Thus,

Pfg.X/ ¤ Yg � Pfg?.X/ ¤ Yg D P fg?.X/ D Yg � P fg.X/ D Yg
D E ŒPfg?.X/ D YjXg � Pfg.X/ D YjXg�
� 0;

since, by definition of g?,

Pfg?.X/ D YjXg D Pfg?.X/ D 1;Y D 1jXg C Pfg?.X/ D 0;Y D 0jXg
D 1Œg?.X/D1�PfY D 1jXg C 1Œg?.X/D0�PfY D 0jXg
D max .PfY D 0jXg;PfY D 1jXg/ : ut

The error L?
defD L.g?/ is referred to as the Bayes probability of error (or Bayes

error):

L? D inf
gWRd!f0;1g

Pfg.X/ ¤ Yg:

We stress that L? D 0 if and only if Y D g?.X/ with probability one, i.e., Y is a
Borel measurable function of X. In the design of classifiers, the probabilities PfY D
0jX D xg and PfY D 1jX D xg are called the a posteriori probabilities. Observe
that

PfY D 1jX D xg D EŒYjX D x� D r.x/;

so that the Bayes decision function also takes the form

g?.x/ D
	
1 if r.x/ > 1=2
0 otherwise.

(17.1)

Remark 17.1. Clearly,

L.g/ D 1 � Pfg.X/ D Yg D 1 � E ŒPfg.X/ D YjXg�
D 1 � E

�
1Œg.X/D1�r.X/C 1Œg.X/D0� .1 � r.X//

�
:

Therefore,

L? D 1 � E
�
1Œr.X/>1=2�r.X/C 1Œr.X/�1=2� .1 � r.X//

�
:
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This may be rewritten as

L? D E Œmin .r.X/; 1 � r.X//� D 1

2
� 1

2
Ej2r.X/ � 1j:

In some special cases, we may obtain other helpful forms. For example, if X has a
density f with respect to the Lebesgue measure on R

d, then

L? D
Z

Rd
min .r.x/; 1 � r.x// f .x/dx

D
Z

Rd
min ..1 � p/f0.x/; pf1.x// dx;

where p D PfY D 1g and fi is the density of X given that Y D i. The probabilities
p and 1 � p are called the class probabilities, and f0 and f1 are the class-conditional
densities. If f0 and f1 are nonoverlapping, that is,

R
Rd f0.x/f1.x/dx D 0, then

obviously L? D 0. Besides, assuming that p D 1=2, we have

L? D 1

2

Z

Rd
min .f0.x/; f1.x// dx

D 1

2
� 1

4

Z

Rd
jf0.x/ � f1.x/j dx

(since min.a; b/ D aCb
2

� ja�bj
2

). Thus, the Bayes error is directly related to the L1

distances between the densities. ut
Most of the time, the distribution of .X;Y/ is unknown, so that the optimal

decision g? is unknown too. We do not consult an expert to try to reconstruct g?, but
have access to a database Dn D ..X1;Y1/; : : : ; .Xn;Yn// of i.i.d. copies of .X;Y/,
observed in the past. We assume that Dn and .X;Y/ are independent. A classifier,
or classification rule, gn.xIDn/ is a Borel measurable function of x and Dn that
attempts to estimate Y from x and Dn. For simplicity, we omit Dn in the notation
and write gn.x/ instead of gn.xIDn/. The process of constructing gn is sometimes
called learning, supervised learning, or learning with a teacher.

The error probability of a given classifier gn is the random variable

L.gn/ D Pfgn.X/ ¤ YjDng:

So, L.gn/ averages over the distribution of .X;Y/, but the data set is held fixed. It
measures the future performance of the rule with the given data.
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17.2 Weak, strong, and universal consistency

Generally, we cannot hope to design a function that achieves the Bayes error
probability L?, but it is possible that the limit behavior of L.gn/ compares favorably
to L?. This idea is encapsulated in the notion of consistency:

Definition 17.1 (Weak and strong consistency). A classification rule gn is
(weakly) consistent (or asymptotically Bayes-risk efficient) for a certain distribution
of .X;Y/ if

EL.gn/ D Pfgn.X/ ¤ Yg ! L? as n ! 1;

and strongly consistent if

L.gn/ ! L? almost surely:

Remark 17.2. Noting that L.gn/ � L?, consistency may alternatively be defined as
the convergence in L1 of L.gn/, that is, EjL.gn/�L?j ! 0. Since the random variable
L.gn/ is bounded, this convergence is equivalent to the convergence of L.gn/ to L?

in probability, which means that, for all " > 0,

P fjL.gn/ � L?j > "g ! 0 as n ! 1:

Moreover, since almost sure convergence always implies convergence in probability
(see the Appendix), strong consistency implies consistency. ut

A consistent rule guarantees that by increasing the amount of data, the probability
that the error probability is within a small distance of the optimal achievable gets
arbitrarily close to one. Strong consistency means that by using more data, the error
probability gets arbitrarily close to the optimum for every training sequence, except
for a set of sequences that has zero probability altogether.

If the statistician has a fair amount of a priori knowledge about the distribution
of .X;Y/, then he may be able to construct a parametric model for this distribution,
determine the parameters in the model that best fit the data, and use this particular
version of the model with X to obtain an estimate of Y . However, if the model
is not exact, then it is usually impossible to design an asymptotically optimal
discrimination rule in this manner. Thus, in the absence of sufficient knowledge
about the distribution of .X;Y/, is it still possible to set up a (nonparametric)
asymptotically optimal classification rule? The answer is affirmative. Besides, since
in many situations we definitely do not have any prior information, it is clearly
essential to have a rule that gives good performance for all distributions of .X;Y/.
This strong requirement of universal goodness is formulated as follows:

Definition 17.2 (Universal consistency). A classification rule is called universally
(strongly) consistent if it is (strongly) consistent for any distribution of .X;Y/.
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Universal consistency was the driving theme of the monograph by Devroye et al.
(1996), and we try in the present introductory chapter as much as possible to adhere
to the style and notation of that textbook.

17.3 Classification and regression estimation

We show in this section how consistent classification rules can be deduced from
consistent regression function estimates. Indeed, a natural approach to classification
is to first assess the regression function r.x/ D EŒYjX D x� from the training data
Dn by some regression estimate rn, and then use the plug-in rule

gn.x/ D
	
1 if rn.x/ > 1=2
0 otherwise.

(17.2)

The next theorem (see, e.g., Van Ryzin, 1966; Wolverton and Wagner, 1969; Glick,
1973; Csibi, 1975; Györfi, 1976, 1978; Devroye, 1982; Devroye and Györfi, 1985)
states that if rn is close to the true regression function r in an Lp sense, then the error
probability of the associated decision gn is close to the Bayes probability of error.
As in the preceding chapters, we denote by � the distribution of X.

Theorem 17.1 (Classification and regression). Let rn be a regression function
estimate of r, and let gn be the corresponding plug-in classification rule. Then

0 � L.gn/ � L? � 2

Z

Rd
jrn.x/ � r.x/j�.dx/:

In particular, for all p � 1,

0 � L.gn/ � L? � 2

�Z

Rd
jrn.x/ � r.x/jp �.dx/

�1=p

;

and

0 � EL.gn/ � L? � 2E1=p jrn.X/ � r.X/jp :

Proof. Proceeding as in the proof of Lemma 17.1, we may write

Pfgn.X/ ¤ YjX;Dng
D 1 � Pfgn.X/ D YjX;Dng
D 1 � .Pfgn.X/ D 1;Y D 1jX;Dng C Pfgn.X/ D 0;Y D 0jX;Dng/
D 1 � �

1Œgn.X/D1�PfY D 1jX;Dng C 1Œgn.X/D0�PfY D 0jX;Dng�

D 1 � �
1Œgn.X/D1�r.X/C 1Œgn.X/D0� .1 � r.X//

�
;
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where, in the last equality, we used the independence of .X;Y/ and Dn. Similarly,

Pfg?.X/ ¤ YjXg D 1 � �
1Œg?.X/D1�r.X/C 1Œg?.X/D0� .1 � r.X//

�
:

Therefore

Pfgn.X/ ¤ YjX;Dng � Pfg?.X/ ¤ YjXg
D r.X/

�
1Œg?.X/D1� � 1Œgn.X/D1�

�C .1 � r.X//
�
1Œg?.X/D0� � 1Œgn.X/D0�

�

D .2r.X/ � 1/ �1Œg?.X/D1� � 1Œgn.X/D1�
�

D j2r.X/ � 1j1Œgn.X/¤g?.X/�:

Thus,

Pfgn.X/ ¤ YjDng � L? D 2

Z

Rd
jr.x/ � 1=2j1Œgn.x/¤g?.x/��.dx/

� 2

Z

Rd
jrn.x/ � r.x/j�.dx/;

since gn.x/ ¤ g?.x/ implies jrn.x/ � r.x/j � jr.x/ � 1=2j. The other assertions
follow from Hölder’s and Jensen’s inequality, respectively. ut

Theorem 17.1 implies that a regression function estimate rn with small Lp error
automatically leads to a decision gn with small misclassification probability. In
particular, the mere existence of a regression estimate rn for which

Z

Rd
jrn.x/ � r.x/j2 �.dx/ ! 0 (17.3)

in probability or almost surely implies that the corresponding plug-in decision gn is
consistent or strongly consistent, respectively. The standard consistency proof for a
classification rule based on rn usually involves showing (17.3), or its L1 version.

Remark 17.3.

(i) If the bounds of Theorem 17.1 are useful for proving consistency, they are
not tight and almost useless when it comes to studying rates of convergence.
For (17.2) to be a good approximation of (17.1), it is not important that
rn.x/ be close to r.x/ everywhere. What is critical is that rn.x/ should be
on the same side of the decision boundary as r.x/, i.e., that rn.x/ > 1=2

whenever r.x/ > 1=2 and rn.x/ � 1=2 whenever r.x/ � 1=2. It is proved
in Devroye et al. (1996, Theorem 6.5) that for consistent rules, rates of
convergence of EL.gn/ to L? are always orders of magnitude better than rates
of convergence of E1=2jrn.X/� r.X/j2 to zero. Pattern recognition is thus easier
than regression function estimation, in the sense that, to achieve acceptable
results in classification, we can do more with smaller sample sizes than in
regression estimation. This is a consequence of the fact that less is required
in pattern recognition.
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(ii) The behavior of r.x/ at those x’s where r.x/ � 1=2 is sometimes expressed by
a so-called margin condition, which takes the form

P fjr.X/ � 1=2j � tg � C t˛;

for some positive constants C and ˛, and all 0 < t � t?, where t? � 1=2

(see, e.g., Tsybakov, 2004; Massart and Nédélec, 2006; Audibert and Tsybakov,
2007; Kohler and Krzyżak, 2007; Samworth, 2012; Gada et al., 2014). This
assumption offers a useful characterization of the behavior of the regression
function r in the vicinity of the boundary set fx 2 R

d W r.x/ D 1=2g. ut
Stone’s theorem 10.1 provides us with conditions ensuring universal Lp-consistency
of local averaging regression function estimates. Thus, by virtue of Theorem 17.1,
the same theorem allows us to deduce universal consistency of the corresponding
plug-in rules.

Recall that a local averaging estimate of the regression function takes the form

rn.x/ D
nX

iD1
Wni.x/Yi;

where .Wn1.x/; : : : ;Wnn.x// is a weight vector, and each Wni.x/ is a Borel mea-
surable function of x and X1; : : : ;Xn (not Y1; : : : ;Yn). Equivalently, in our binary
classification setting,

rn.x/ D
nX

iD1
Wni.x/1ŒYiD1�:

The companion plug-in classification rule is defined as

gn.x/ D
	
1 if

Pn
iD1 Wni.x/Yi > 1=2

0 otherwise,

or, equivalently, whenever
Pn

iD1 Wni.x/ D 1,

gn.x/ D
	
1 if

Pn
iD1 Wni.x/1ŒYiD1� >

Pn
iD1 Wni.x/1ŒYiD0�

0 otherwise.

As in the regression setting, it is clear that the pairs .Xi;Yi/ such that Xi is “close”
to x should provide more information about r.x/ than those “far” from x. Thus,
the weights are typically larger in the neighborhood of x. Examples of such rules
include the histogram, kernel, and nearest neighbor rules. Theorem 17.2 below
follows directly from Theorem 17.1 and Stone’s theorem 10.1.
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Theorem 17.2 (Stone’s theorem for classification). Assume that for any distri-
bution of X, the weights satisfy the following four conditions:

(i) There is a constant C such that, for every Borel measurable function
h W Rd ! R,

E

"
nX

iD1
jWni.X/j jh.Xi/j

#

� C E jh.X/j for all n � 1:

(ii) There is a constant D � 1 such that

P

(
nX

iD1
jWni.X/j � D

)

D 1 for all n � 1:

(iii) For all a > 0,

nX

iD1
jWni.X/j1ŒkXi�Xk>a� ! 0 in probability:

(iv) One has

nX

iD1
Wni.X/ ! 1 in probability:

(v) One has

max
1�i�n

jWni.X/j ! 0 in probability:

Then the corresponding plug-in classification rule gn is universally consistent,
that is,

EL.gn/ ! L?

for all distributions of .X;Y/.

17.4 Supplement: multi-label classification

The supervised classification theory can be generalized without difficulty from the
binary case to the multi-label case, where Y takes M � 2 distinct values, say
f1; : : : ;Mg. The Bayes decision function can be computed via the a posteriori
probabilities rj.x/ D PfY D jjX D xg, 1 � j � M:

g?.x/ 2 arg max
1�j�M

rj.x/;
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where, by convention, ties are broken in favor of smaller indices. As in the binary
case, the performance with a certain discrimination rule gn is measured by its
probability of error L.gn/ D Pfgn.X/ ¤ YjDng and, in any case, L.gn/ cannot
be smaller than the Bayes error

L? D L.g?/ D inf
gWRd!f1;:::;Mg

Pfg.X/ ¤ Yg:

Observing that

rj.x/ D EŒ1ŒYDj�jX D x�; 1 � j � M;

the unknown rj.x/’s can be approximated by estimates rnj.x/ constructed from the
data sets

Dnj D �
.X1;1ŒY1Dj�/; : : : ; .Xn;1ŒYnDj�/

�
;

and the plug-in estimate is

gn.x/ 2 arg max
1�j�M

rnj.x/: (17.4)

A generalized version of Theorem 17.1 asserts that

0 � L.gn/ � L? � 2

MX

jD1

Z

Rd

ˇ
ˇrnj.x/ � r.x/

ˇ
ˇ�.dx/

� 2

MX

jD1

�Z

Rd

ˇ̌
rnj.x/ � r.x/

ˇ̌p
�.dx/

�1=p

;

for all p � 1. Thus, if the estimates rnj are close to the a posteriori probabilities rj,
then again the error of the plug-in estimate (17.4) is close to the optimal error.



Chapter 18
The nearest neighbor rule: fixed k

18.1 Introduction

In this chapter, .X;Y/ 2 R
d � f0; 1g, and .X1;Y1/; : : : ; .Xn;Yn/ are reordered

according to increasing values of kXi � xk. Ties are broken as for regression.
The reordered sequence is denoted by .X.1/.x/;Y.1/.x//; : : : ; .X.n/.x/;Y.n/.x//.
As usual, we let r.x/ D EŒYjX D x� and recall, since Y 2 f0; 1g, that
r.x/ D PfY D 1jX D xg.

Definition 18.1. Let .vn1; : : : ; vnn/ be a given weight vector summing to one. The
nearest neighbor classification rule (or nearest neighbor classifier) is defined for
x 2 R

d by

gn.x/ D
	
1 if

Pn
iD1 vniY.i/.x/ > 1=2

0 otherwise,

or, equivalently,

gn.x/ D
	
1 if

Pn
iD1 vni1ŒY.i/.x/D1� >

Pn
iD1 vni1ŒY.i/.x/D0�

0 otherwise.

In other words, gn.x/ takes a weighted vote among the labels of the nearest
neighbors of x. For the particular choice .vn1; : : : ; vnn/ D .1=k; : : : ; 1=k; 0; : : : ; 0/,
we obtain the standard k-nearest neighbor rule (Fix and Hodges, 1951, 1991a, 1952,
1991b; Cover and Hart, 1967; Stone, 1977), which corresponds to a majority vote:

gn.x/ D
	
1 if 1

k

Pk
iD1 1ŒY.i/.x/D1� > 1

k

Pk
iD1 1ŒY.i/.x/D0�

0 otherwise,
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or more simply, observing that the 1=k terms do not play a role in the decision,

gn.x/ D
	
1 if

Pk
iD1 1ŒY.i/.x/D1� >

Pk
iD1 1ŒY.i/.x/D0�

0 otherwise.

As an appetizer, and in the spirit of Chapter 9, we will be concerned in this
chapter with convergence issues for the k-nearest neighbor rule when k does not
change with n. In particular, we will see that for all distributions, the expected error
probability EL.gn/ tends to a limit LkNN that is in general close to but larger than L?.
The methodology for obtaining this result is based on Stone’s lemma 10.7 and is
interesting in its own right. The expression for LkNN is then worked out, and several
inequalities such as LkNN � L? C 1=

p
ke are discussed. For surveys of various

aspects of the nearest neighbor or related methods, see Devijver (1980), Devroye
and Wagner (1982), Dasarathy (1991), and Devroye et al. (1996).

18.2 Behavior for fixed k

The main result of the chapter is Theorem 18.1 below. Under various regularity
conditions (X has a density f , and both f and r are almost everywhere continuous),
it is due to Cover and Hart (1967). In the present generality, the theorem essentially
appears in Stone (1977)—see also Fritz (1975) and Devroye (1981b).

Theorem 18.1. Let k 2 f1; : : : ; ng be odd and fixed. Let gn be the k-nearest
neighbor classification rule. Then, for all distributions of .X;Y/,

EL.gn/ ! LkNN as n ! 1;

where

LkNN

defD E

� kX

jD0

 
k

j

!

r.X/j .1 � r.X//k�j �r.X/1Œj<k=2� C .1 � r.X//1Œj>k=2�
� 
:

In particular, for k D 1,

EL.gn/ ! L1NN

defD 2E Œr.X/ .1 � r.X//� ;

and L? � L1NN � 2L?.1 � L?/ � 2L?.

Thus, whenever k D 1, the theorem says that the 1-nearest neighbor classification
rule is asymptotically at most twice as bad as the Bayes rule—especially for small
L?, this property should be useful. It is noteworthy that this convergence is universal,
in the sense that it happens for any distribution of .X;Y/. On the other hand,
recalling that L? D EŒmin.r.X/; 1 � r.X//�, we see that the 1-nearest neighbor
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classifier is consistent (that is, EL.gn/ ! L?) if r.X/ 2 f0; 1=2; 1g with probability
one. The noiseless case occurs when r.X/ 2 f0; 1g. The independent case occurs
when r.X/ D 1=2 (since Y is a random coin flip independent of X then). Thus,
logically, in the next chapter we will allow k to grow with n in order to obtain
universally good consistency properties.

To prove Theorem 18.1, we first need the following lemma, which generalizes
Lemma 9.2.

Lemma 18.1. Let h W R
d ! R be a Borel measurable function such that

Ejh.X/j < 1. If k=n ! 0, then

1

k

kX

iD1
E
ˇ̌
h
�
X.i/.X/

� � h.X/
ˇ̌ ! 0 and

1

k

kX

iD1
E
ˇ̌
h
�
X.i/.X/

�ˇ̌ ! E jh.X/j :

Proof. We only need to prove the first assertion, since the second one follows by
the triangle inequality. Given " > 0, find a uniformly continuous function h" with
compact support such that Ejh.X/�h".X/j � " (this is possible by Theorem 20.17 in
the Appendix). Then there is a ı > 0, depending upon " only, such that ky � xk � ı

implies jh".y/ � h".x/j � ". Thus, if �d denotes a constant depending upon d only,

1

k

kX

iD1
E
ˇ̌
h
�
X.i/.X/

� � h.X/
ˇ̌

� 1

k

kX

iD1
E
ˇ̌
h
�
X.i/.X/

� � h"
�
X.i/.X/

�ˇ̌C 1

k

kX

iD1
E
ˇ̌
h"
�
X.i/.X/

� � h".X/
ˇ̌

C E jh".X/ � h.X/j
� .2�d C 1/E jh.X/ � h".X/j C "C 2kh"k1 � P

˚kX.k/.X/ � Xk > ı�

.by Stone’s lemma 10.7, with .vn1; : : : ; vnn/ D .1=k; : : : ; 1=k; 0; : : : ; 0//

� 2.�d C 1/"C kh"k1 � P
˚kX.k/.X/ � Xk > ı� :

By the Lebesgue dominated convergence theorem and Lemma 2.2, the probability
on the right-hand side vanishes as n tends to infinity, so that

1

k

kX

iD1
E
ˇ̌
h
�
X.i/.X/

� � h.X/
ˇ̌ ! 0: ut

Proof (Theorem 18.1). Assume that we are given i.i.d. pairs .X1;U1/; : : : ; .Xn;Un/,
all distributed as .X;U/, where X is as before, and U is uniformly distributed on
Œ0; 1� and independent of X. For fixed x 2 R

d, we define, for all 1 � i � n,

Yi D 1ŒUi�r.Xi/� and Y 0
i .x/ D 1ŒUi�r.x/�:
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Observe that .X1;Y1/; : : : ; .Xn;Yn/ is an i.i.d. sequence with each of the n pairs
distributed as our prototype .X;Y/. We now have an i.i.d. sequence with i-th vector
given by Xi, Yi, Y 0

i .x/, Ui. Reordering the data sequence according to increasing
values of kXi � xk yields a new sequence with the i-th vector denoted by X.i/.x/,
Y.i/.x/, Y 0

.i/.x/, and U.i/.x/. Studying the k-nearest neighbor classification rule gn

turns out to be almost equivalent to studying the approximate rule g0
n:

g0
n.x/ D

(
1 if

Pn
iD1 Y 0

.i/.x/ > k=2

0 otherwise.

The latter classifier is of no practical value because it requires the knowledge of r.x/.
Interestingly however, it is easier to study, as Y 0

.1/.x/; : : : ;Y
0
.n/.x/ are i.i.d., whereas

Y.1/.x/; : : : ;Y.n/.x/ are not. In particular, we have that

P
˚
gn.X/ ¤ g0

n.X/
� �

kX

iD1
E
ˇ̌
r
�
X.i/.X/

� � r.X/
ˇ̌
: (18.1)

To prove (18.1), observe that for fixed x 2 R
d, we have

P
˚
gn.x/ ¤ g0

n.x/
�

� P

	 nX

iD1
Y.i/.x/ ¤

nX

iD1
Y 0
.i/.x/




� P

	�
Y.1/.x/; : : : ;Y.n/.x/

�
¤
�

Y 0
.1/.x/; : : : ;Y

0
.n/.x/

�


� P

	 k[

iD1

h
r
�
X.i/.x/

�
< U.i/.x/ � r.x/

i
[

k[

iD1

h
r.x/ < U.i/.x/ � r

�
X.i/.x/

� i

:

Inequality (18.1) follows by the union bound and the fact that the U.i/.x/’s are
uniform on Œ0; 1�, independent of the X.i/.x/’s.

Next, let D 0
n D ..X1;Y1;U1/; : : : ; .Xn;Yn;Un// be the i.i.d. data augmented by

the uniform random variables U1; : : : ;Un, as described above. For the decision gn

based on Dn, we have the probability of error

L.gn/ D Pfgn.X/ ¤ YjDng D Pfgn.X/ ¤ YjD 0
ng;

whereas for g0
n we have

L.g0
n/ D Pfg0

n.X/ ¤ YjD 0
ng:

Clearly,

E
ˇ̌
L.gn/ � L.g0

n/
ˇ̌ � P

˚
gn.X/ ¤ g0

n.X/
� D o.1/;
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by inequality (18.1) and Lemma 18.1. We have just shown that EL.gn/ �
EL.g0

n/ ! 0. Thus, to prove the result, it is enough to establish that EL.g0
n/ ! LkNN,

where the rule g0
n is defined by

g0
n.x/ D

	
1 if

Pk
iD1 Zi > k=2

0 otherwise,

for Z1; : : : ;Zk independent Bernoulli random variables with success probability
r.x/. But, for every n,

EL.g0
n/ D P

n
Z1 C � � � C Zk >

k

2
;Y D 0

o
C P

n
Z1 C � � � C Zk <

k

2
;Y D 1

o

D P

n
Z1 C � � � C Zk >

k

2
;Z0 D 0

o
C P

n
Z1 C � � � C Zk <

k

2
;Z0 D 1

o

.Z0; : : : ;Zk are i.i.d. Ber.�.x///;

which leads directly to the first part of the theorem. To prove the second point,
observe that for all p 2 Œ0; 1�, 2p.1 � p/ � min.p; 1 � p/ as 2max.p; 1 � p/ � 1.
Thus, recalling that L? D EA.X/, where A.X/ D min.r.X/; 1� r.X//, we conclude
that

L? � L1NN D 2E Œr.X/ .1 � r.X//�

D 2E ŒA.X/ .1 � A.X//�

D 2E ŒA.X/�E Œ1 � A.X/� � 2VA.X/

� 2L?.1 � L?/ � 2L?: ut

The limit result in Theorem 18.1 is distribution-free, and the limit LkNN depends
upon r.X/ only. The continuity or lack of smoothness of r is irrelevant—it only
matters for the speed with which EL.gn/ approaches the limit LkNN. Until now we
assumed throughout that k was odd, so that voting ties were avoided. Extensions
to even k and to more general weighted nearest neighbor rules are available in the
literature—see, e.g., Bailey and Jain (1978), Devijver (1978), and Devroye et al.
(1996, Chapter 5).

Returning to the case where k is odd, several useful representations of LkNN may
be obtained. For example, we have

LkNN D E

�
r.X/P

n
Bin.k; r.X// <

k

2

ˇ̌
X
o

C E

�
.1 � r.X//P

n
Bin.k; r.X// >

k

2

ˇ
ˇX
o

D E Œmin .r.X/; 1 � r.X//�

C E

��
1 � 2min .r.X/; 1 � r.X//

�
P

n
Bin

�
k;min .r.X/; 1 � r.X//

�
>

k

2

ˇ
ˇX
o
:



238 18 The nearest neighbor rule: fixed k

Put differently,

LkNN D E Œ˛k .r.X//� ;

where, for all p 2 Œ0; 1�,

˛k.p/ D min.p; 1 � p/C j2p � 1jP
n
Bin.k;min.p; 1 � p// >

k

2

o
:

Since L? D E Œmin .r.X/; 1 � r.X//�, this expression may be exploited to obtain a
host of inequalities on LkNN�L?. For example, using Hoeffding’s bound on binomials
(Corollary 20.1 in the Appendix), we may write

LkNN � L? � sup
0�p�1=2

.1 � 2p/P
n
Bin.k; p/ >

k

2

o

� sup
0�p�1=2

.1 � 2p/P
n
Bin.k; p/ � kp > k

�1
2

� p
�o

� sup
0�p�1=2

.1 � 2p/e�2k.1=2�p/2 :

Therefore,

LkNN � L? � sup
0�u�1

ue�ku2=2 � 1p
ke
:

Bounds of this type have been obtained by Györfi and Györfi (1978), Devijver
(1979), and Devroye (1981c). A sharp version, due to Devroye (1981c), asserts that
for all distributions and all odd k � 3,

LkNN � L?
�
1C �p

k

�
1C O.k�1=6/

��
;

where � D supt>0 2tPfN > tg D 0:33994241 : : :, N is standard normal, and O.�/
refers to k ! 1.

Let us finally mention that it is also instructive to look at the behavior of LkNN

when L? is zero or, at least, small. Devroye et al. (1996, Theorem 5.4) show that,
for all distributions,

L? � � � � � L.2kC1/NN � L.2k�1/NN � � � � � L3NN � L1NN � 2L?:

We retain from this inequality that if L? D 0, then LkNN D 0 for all odd k.
Remarkably, then, for every fixed k, the k-nearest neighbor rule is consistent. To
analyze the behavior of LkNN when L? is small, recall that
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LkNN D E

� kX

jD0

 
k

j

!

r.X/j .1 � r.X//k�j �r.X/1Œj<k=2� C .1 � r.X//1Œj>k=2�
� 

D E

� X

j<k=2

 
k

j

!

r.X/jC1 .1 � r.X//k�j C
X

j>k=2

 
k

j

!

r.X/j .1 � r.X//k�jC1


D
X

j<k=2

 
k

j

!

E

��
r.X/ .1 � r.X//

�jC1 �
.1 � r.X//k�2j�1 C r.X/k�2j�1�


:

As pa C .1� p/a is a function of p.1� p/ for integer a, this may be further reduced
to simplified forms such as

L1NN D 2E Œr.X/ .1 � r.X//�

L3NN D E Œr.X/ .1 � r.X//�C 4E
�
.r.X/ .1 � r.X///2

�

L5NN D E Œr.X/ .1 � r.X//�C E
�
.r.X/ .1 � r.X///2

�C 12E
�
.r.X/ .1 � r.X///3

�
;

and so on. The behavior of ˛k.p/ as p approaches zero is very informative. Indeed,
as p # 0, we have

˛1.p/ D 2p.1 � p/ � 2p

˛3.p/ D p.1 � p/ .1C 4p.1 � p// � p C 3p2

˛5.p/ D p.1 � p/
�
1C p.1 � p/C 12p2.1 � p/2

� � p C 10p3;

while for the Bayes error, L? D EŒmin.r.X/; 1 � r.X//� D EŒ˛1.r.X//�, where
˛1 D min.p; 1 � p/ � p as p # 0. Assuming, for example, that r.x/ D p at all x,
we conclude that, as p # 0,

L1NN � 2L? and L3NN � L?:

Moreover, L1NN � L? � L?, L3NN � L? � 3L?2. Assume that L? D p D 0:01. Then
L1NN � L? � 0:01, whereas L3NN � L? � 0:0003. Thus, for all practical purposes, the
3-nearest neighbor rule is virtually perfect. For this reason, the 3-nearest neighbor
rule is highly recommended. Little is gained by considering the 5-nearest neighbor
rule when p is small, as L5NN � L? � 0:00001.



Chapter 19
The nearest neighbor rule: variable k

19.1 Universal consistency

Given weights .vn1; : : : ; vnn/ satisfying
Pn

iD1 vni D 1, the nearest neighbor classifier
is defined for x 2 R

d by

gn.x/ D
	
1 if

Pn
iD1 vniY.i/.x/ > 1=2

0 otherwise.

The next theorem provides necessary and sufficient conditions on the weight
sequence for this rule to be universally consistent, i.e., EL.gn/ ! L? for all
distributions of .X;Y/. It starts with the observation that the nearest neighbor rule is
a local averaging classifier, where the weights Wni.x/ are obtained by putting

Wni.x/ D vn˙i ;

where .˙1; : : : ; ˙n/ is a permutation of .1; : : : ; n/ such that Xi is the ˙i-th nearest
neighbor of x for all i. Thus, this decision rule falls within the scope of Stone’s
theorem 17.2 for classification, so that we just need to check the conditions of that
theorem. This has already been done in Chapter 10, in the context of regression
estimation.

Theorem 19.1 (Universal consistency). Let .vn1; : : : ; vnn/ be a probability weight
vector such that vn1 � � � � � vnn for all n. Then the corresponding nearest neighbor
classification rule is universally consistent if and only if there exists a sequence of
integers fkg D fkng such that

.i/ k ! 1 and k=n ! 0I

.ii/
P

i>k vni ! 0I
.iii/ vn1 ! 0:

(19.1)

© Springer International Publishing Switzerland 2015
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For the k-nearest neighbor classifier, we set vni D 1=k for 1 � i � k and
vni D 0 otherwise, where k is a positive integer not exceeding n. The following
corollary, which appeared in Stone’s 1997 paper (with a different distance tie-
breaking strategy), was the first universal consistency result for any rule.

Corollary 19.1. The k-nearest neighbor classification rule is universally consistent
if and only if k ! 1 and k=n ! 0.

For the proof of Theorem 19.1, we first need a lemma.

Lemma 19.1. Let c be a positive constant. Then any Œ�c; c�-valued random
variable Z satisfies, for all t > EZ,

PfZ � tg � t � EZ

c C t
:

Proof. Just note that

EZ D EŒZ1Œ�c�Z�t��C EŒZ1Œt<Z�c�� � �cPfZ � tg C tPfZ > tg;
so that

.c C t/PfZ � tg � t � EZ: ut

Proof (Theorem 19.1). We only need to prove the necessity part. We start by proving
that if gn is universally consistent, then the requirement vn1 D maxi vni ! 0 is
necessary. Letting Y? D 2Y � 1 and Y?i D 2Yi � 1, it is more convenient to consider
the distribution of .X;Y?/ 2 R

d � f�1; 1g, and rewrite the nearest neighbor rule as

gn.x/ D
(
1 if

Pn
iD1 vniY?.i/.x/ > 0

0 otherwise.

We take X 
 0, Y? D 1 with probability p 2 .1=2; 1/, and Y? D �1 with
probability 1 � p. If .iii/ does not hold, there exists ı > 0 and a subsequence fn`g
such that

vn`1 � ı > 0; ` � 1:

Note that for all x, rn.x/ D Pn
iD1 vniY?i by our way of breaking ties.

Observe that L? D 1 � p, and that

EL.gn/ D pP

	 nX

iD1
vniY

?
i � 0



C .1 � p/P

	 nX

iD1
vniY

?
i > 0



:

Thus EL.gn/ � L? ! 0 implies

.2p � 1/P
	 nX

iD1
vniY

?
i � 0



! 0;
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and therefore,

P

	 nX

iD1
vniY

?
i � 0



! 0:

Writing n D n` to avoid an extra level of indexing, we see that

P

	 nX

iD1
vniY

?
i � 0



� pP

	 nX

iD2
vniY

?
i � vn1



:

Note that if we set Z D Pn
iD2 vniY?i , then

EZ D .2p � 1/
nX

iD2
vni D .2p � 1/.1 � vn1/:

Also, jZj � 1. Therefore, by Lemma 19.1,

P

	 nX

iD1
vniY

?
i � 0



� p � vn1 � .2p � 1/.1 � vn1/

1C vn1
;

provided that .2p � 1/.1 � vn1/ � vn1, i.e., that 2p � 1 � 2pvn1 (since vn1 � ı, it
suffices to take p so close to 1=2 that 2p�1

2p < ı). In conclusion,

P

	 nX

iD1
vniY

?
i � 0



� p � 2pvn1 � .2p � 1/

1C vn1

� p .2pı � .2p � 1//
> 0:

Thus, along the subsequence fn`g, we cannot have

P

	 nX

iD1
vn`iY

?
i � 0



! 0;

which provides us with a contradiction.
To complete the proof, it remains to show that conditions (i) and (ii) are necessary

as well. Following Remark 10.2, this is equivalent to proving that, for all " > 0,P
i>"n vni ! 0. By making all components of X zero except one, it is easy to see

that we can restrict our counterexample to d D 1. So, to argue by contradiction, we
assume that there exists a pair " > 0, ı > 0 such that along a subsequence fn`g,

X

i�"n
vni � ı; n 2 fn1; n2; : : :g:
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Take n D n` for any ` in this subsequence. Consider the triatomic distribution
given by

.X;Y/ D
8
<

:

.0; 1/ w.p. ".1Cı/
2

.0; 0/ w.p. ".1�ı/
2

.1; 0/ w.p. 1 � ".

Note that L? D ".1�ı/
2

. Also, letting N D Pn
iD1 1ŒXiD0� and Zi

DD Ber. 1Cı
2
/,

EL.gn/ � P

n
X D 0;Y D 1;

NX

iD1
vniZi � 1=2

o
C P

n
X D 0;Y D 0;

NX

iD1
vniZi > 1=2

o

D ".1C ı/

2
� P

	 NX

iD1
vniZi � 1=2



C ".1 � ı/

2
� P

	 NX

iD1
vniZi > 1=2



:

Thus,

EL.gn/ � L? � "ı � P

	 NX

iD1
vniZi � 1=2



:

Since EL.gn/ � L? ! 0, we must have

P

	 NX

iD1
vniZi � 1=2



! 0:

Observe that

P

	 NX

iD1
vniZi � 1=2



� P

˚
N < "n

� � P

	X

i<"n

vniZi � 1=2




.by the positivity of the vni’s/

D P
˚
Bin.n; "/ < "n

� � P

	X

i<"n

vniZi � 1=2




D .1=2C o.1//P

	X

i<"n

vniZi � 1=2



:

Thus,

P

	X

i<"n

vniZi � 1=2



! 0:
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Now, set Z D P
i<"n vniZi, and note that

EZ D 1C ı

2

X

i<"n

vni � .1C ı/.1 � ı/
2

D 1 � ı2
2

;

and

VZ D .1C ı/.1 � ı/
4

X

i<"n

v2ni � .1 � ı2/.1 � ı/
4

;

and so, by the Chebyshev-Cantelli inequality (see Theorem 20.11 in the Appendix),

PfZ > 1=2g D PfZ � EZ > 1=2 � EZg
� PfZ � EZ � ı2=2g

� VZ

VZ C ı4=4
:

We conclude

PfZ � 1=2g � ı4=4

VZ C ı4=4
� ı4

ı4 C .1 � ı2/.1 � ı/ > 0;

which is a contradiction, since this cannot tend to zero. ut
Remark 19.1. The monotonicity condition on the vni’s is in fact not needed in the
necessity part. Moreover, we leave it as an exercise that without requiring vni � 0,
but with supn

Pn
iD1 jvnij � c < 1, then conditions (19.1) can be shown to be

necessary. ut

19.2 An exponential inequality

This section is devoted to the proof of Theorem 19.2, which offers a beautiful
exponential inequality on the difference L.gn/ � L? for the nearest neighbor
classification rule gn. We assume the existence of a density for � (the distribution
of X), so that we can avoid messy technicalities necessary to handle distance
ties. It is stressed that, by the Borel-Cantelli lemma, Theorem 19.2 implies strong
consistency of the k-nearest neighbor rule whenever X has an absolutely continuous
distribution, provided k ! 1 and k=n ! 0. Earlier versions of this result appeared
in Beck (1979), Devroye and Györfi (1985), and Zhao (1987). In its present form,
our theorem is an extension of Devroye et al. (1994, Theorem 1), who proved a
density-free version under an appropriate distance tie-breaking strategy (different
from ours).
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Theorem 19.2 (Strong consistency). Let .vn1; : : : ; vnn/ be a probability weight
vector such that vn1 � � � � � vnn for all n, and let gn be the corresponding nearest
neighbor classification rule. Assume that � is absolutely continuous with respect to
the Lebesgue measure on R

d. Assume, in addition, that there exists a sequence of
integers fkg D fkng such that

.i/ k ! 1 and k=n ! 0I

.ii/ vni D 0 when i > kI

.iii/ supn.kvn1/ � ˛; ˛ > 0:

Then, for every " > 0, there is a positive integer n0 such that, for all n � n0,

PfL.gn/ � L? � "g � 4e�n"2=.50˛2�2d /;

where �d D C�=6 (see Theorem 20.15) depends only upon d. Thus, the nearest
neighbor classification rule is strongly consistent.

The basic result that will be needed in the proof of Theorem 19.2 is the following
one:

Lemma 19.2. For a � 0, let

Sa.x/ D ˚
x0 2 R

d W ��B.x0; kx � x0k/� � a
�
:

Then, for all x 2 R
d,

� .Sa.x// � �da:

Proof. Let C1.x/; : : : ;C�d .x/ be a collection of cones of angle �=6 covering R
d, all

centered at x but with different central directions (such a covering is possible by
Theorem 20.15). Then

� .Sa.x// �
�dX

`D1
�
�
C`.x/ \ Sa.x/

�
:

Let x0 2 C`.x/ \ Sa.x/. Then, by the geometrical property of cones shown in
Lemma 20.5, we have

�
�
C`.x/ \ B.x; kx0 � xk/ \ Sa.x/

� � �
�
B.x0; kx � x0k/� � a;

where we used the fact that x0 2 Sa.x/. Since x0 was arbitrary,

�
�
C`.x/ \ Sa.x/

� � a: ut



19.2 An exponential inequality 247

Proof (Theorem 19.2). We are now ready to prove the theorem. The decision rule
gn may be rewritten as

gn.x/ D
	
1 if rn.x/ > 1=2
0 otherwise,

where rn is the companion regression function estimate, that is,

rn.x/ D
nX

iD1
vniY.i/.x/;

or, equivalently,

rn.x/ D
nX

iD1
Wni.x/Yi;

where Wni.x/ D vn˙i and .˙1; : : : ; ˙n/ is a permutation of .1; : : : ; n/ such that Xi

is the ˙i-th nearest neighbor of x for all i (note, since x has a density, that distance
ties do not matter). Thus, by Theorem 17.1, the statement follows if we show that
for sufficiently large n,

P

	Z

Rd
jrn.x/ � r.x/j�.dx/ � "

2



� 4e�n"2=.50˛2�2d /:

Set �n.x/ to satisfy

�
�
B .x; �n.x//

� D k

n
:

Notice that the solution always exists, by the absolute continuity of �. (This is the
only point in the proof where we use this assumption.) Also define

r?n .x/ D
nX

iD1
Wni.x/Yi1ŒXi2B.x;�n.x//�:

The basis of the proof is the decomposition

jrn.x/ � r.x/j � ˇ
ˇr?n .x/ � rn.x/

ˇ
ˇC ˇ

ˇr?n .x/ � r.x/
ˇ
ˇ : (19.2)

For the second term on the right-hand side, set R.k/.x/ D kX.k/.x/� xk and observe
that, by conditions .ii/ and .iii/,
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ˇ̌
r?n .x/ � rn.x/

ˇ̌ D
ˇ
ˇ̌
ˇ

nX

iD1
Wni.x/Yi1ŒXi2B.x;�n.x//� �

nX

iD1
Wni.x/Yi1ŒXi2B.x;R.k/.x//�

ˇ
ˇ̌
ˇ

� ˛

k

nX

iD1

ˇ
ˇ̌
1ŒXi2B.x;�n.x//� � 1ŒXi2B.x;R.k/.x//�

ˇ
ˇ̌

� ˛

k

ˇ̌
ˇn�n

�
B .x; �n.x//

� � k
ˇ̌
ˇ

D ˛n

k

ˇ̌
ˇ�n

�
B .x; �n.x//

� � ��B .x; �n.x//
�ˇ̌
ˇ

defD Zn.x/;

where �n is the empirical measure. Note that

EZn.x/ � ˛n

k

q
V�n

�
B .x; �n.x//

�

D ˛n

k

s
k

n

�
1 � k

n

�
1

n

� ˛p
k
;

uniformly over x. Also, since Ejrn.X/ � r.X/j D o.1/ (Theorem 10.2), we have

E
ˇ̌
r?n .X/ � r.X/

ˇ̌ � ˛p
k

C o.1/ <
�

20

for all n large enough. Thus, by (19.2),

P

	Z

Rd
jrn.x/ � r.x/j�.dx/ � "

2




� P

	 ˇ̌
ˇ̌
Z

Rd
Zn.x/�.dx/ � E

Z

Rd
Zn.x/�.dx/

ˇ̌
ˇ̌ � "

5




C P

	 ˇ̌
ˇ
ˇ

Z

Rd

ˇ̌
r?n .x/ � r.x/

ˇ̌
�.dx/ � E

Z

Rd

ˇ̌
r?n .x/ � r.x/

ˇ̌
�.dx/

ˇ̌
ˇ
ˇ � "

5



:

(19.3)

To begin with, we get an exponential bound for the second probability on the
right-hand side of (19.3) by the bounded difference inequality (Theorem 20.9 in the
Appendix). Fix the data and replace .xi; yi/ by .Oxi; Oyi/, changing the value of r?n .x/
to r?ni.x/. Then

ˇ̌
ˇ̌
Z

Rd

ˇ̌
r?n .x/ � r.x/

ˇ̌
�.dx/ �

Z

Rd

ˇ̌
r?ni.x/ � r.x/

ˇ̌
�.dx/

ˇ̌
ˇ̌ �

Z

Rd

ˇ̌
r?n .x/ � r?ni.x/

ˇ̌
�.dx/:
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But jr?n .x/ � r?ni.x/j is bounded by ˛=k and can differ from zero only if xi 2
B.x; �n.x// or Oxi 2 B.x; �n.x//. Observe that xi 2 B.x; �n.x// if and only if

�
�
B.x; kxi � xk/� � k

n
:

However, the measure of such x’s is bounded by �dk=n by Lemma 19.2. Therefore,

sup
x1;y1;:::;xn;yn;Oxi;Oyi

Z

Rd

ˇ
ˇr?n .x/ � r?ni.x/

ˇ
ˇ�.dx/ � ˛

k
� 2�dk

n
D 2˛�d

n
;

and, by the bounded difference inequality,

P

	 ˇ̌
ˇ̌
Z

Rd

ˇ̌
r?n .x/ � r.x/

ˇ̌
�.dx/ � E

Z

Rd

ˇ̌
r?n .x/ � r.x/

ˇ̌
�.dx/

ˇ̌
ˇ̌ � "

5



� 2e�n"2=.50˛2�2d /:

Finally, we need a bound for the first term on the right-hand side of (19.3). This
probability may be bounded by the bounded difference inequality in exactly the
same way as for the first one, obtaining

P

	 ˇ̌
ˇ̌
Z

Rd
Zn.x/�.dx/ � E

Z

Rd
Zn.x/�.dx/

ˇ̌
ˇ̌ � "

5



� 2e�n"2=.50˛2�2d /;

and the proof is complete. ut



Chapter 20
Appendix

20.1 Some basic concepts

For any real-valued function g, define gC D max.g; 0/ and g� D � min.g; 0/. These
are called the positive and negative parts of g, respectively, and satisfy the relations

gC; g� � 0; jgj D gC C g�; and g D gC � g�:

We recall that a real-valued random variable X is said to be integrable if EjXj < 1,
or, equivalently, if EXC < 1 and EX� < 1. In that case, EX D EXC � EX�. We
use kXk1 to denote the essential supremum of X:

kXk1 D inf
˚
t � 0 W P fjXj > tg D 0

�
:

There are several notions of convergence for random variables, summarized
below.

Definition 20.1. Let fXng be a sequence of real-valued random variables.

(i) We say that

Xn ! X in probability

if, for all " > 0,

P fjXn � Xj > "g ! 0 as n ! 1:

(ii) We say that

Xn ! X almost surely

if

P
˚

lim
n!1 Xn D X

� D 1:
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(iii) Let p > 0. We say that

Xn ! X in Lp

if

EjXn � Xjp ! 0 as n ! 1:

Almost sure convergence implies convergence in probability. Moreover, conver-
gence in Lp implies convergence in probability, and none of these implications is an
equivalence.

For any sequence of events fAng, the event ŒAn i.o.� (“i.o.” stands for “infinitely
often”) is defined by

ŒAn i.o.� D lim sup
n!1

An
defD

1\

nD1

1[

mDn

Am:

The Borel-Cantelli lemma states that if
X

n�1
PfAng < 1;

then

PfAn i.o.g D 0:

In particular, if
X

n�1
P fjXn � Xj > "g < 1 (20.1)

holds for all " > 0 small enough, then

P

n
jXn � Xj > " i.o.

o
D P

n
lim sup

n!1
jXn � Xj > "

o
D 0:

Thus, with probability one, limn!1 jXn � Xj D 0, i.e., Xn ! X almost surely. In
other words, condition (20.1) is sufficient for almost sure convergence.

Definition 20.2. Let fung be a sequence of real numbers.

(i) We say that fXng is oP.un/ as n ! 1 if Xn=un ! 0 in probability.
(ii) We say that fXng is OP.un/ if, for all " > 0, there exists a finite M > 0 such

that, for all n large enough,

P fjXn=unj > Mg � ":

In particular, fXng is oP.1/ if Xn ! 0 in probability, and it is OP.1/ if the
sequence is bounded in probability.

The concept of convergence in distribution is central in modern statistics.
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Definition 20.3. The real-valued sequence fXng converges in distribution to X

(written Xn
D! X) if

PfXn � xg ! PfX � xg

for all x 2 R at which F.x/ D PfX � xg is continuous.

A sequence fXng is asymptotically (standard) normal if for all x,

PfXn � xg ! �.x/
defD PfN � xg;

where N denotes a standard normal random variable, and

�.x/ D 1p
2�

Z x

�1
e�t2=2dt

is the normal distribution function. If X1;X2; : : : are i.i.d. with finite mean �, then
the law of large numbers (respectively the strong law of large numbers) asserts that

1

n

nX

iD1
Xi ! � in probability (respectively almost surely):

Moreover, if the Xi’s have finite variance �2 > 0, then the central limit theorem
states that

p
n
1
n

Pn
iD1 Xi � �
�

D! N:

Notice that this implies that . 1n
Pn

iD1 Xi � �/=� D OP.1=
p

n/.
The reader should keep in mind the following equivalence:

Lemma 20.1. We have Xn
D! X if and only if there exists a sequence of random

variables fYng such that

Yn ! 0 in probability and Xn
DD X C Yn: (20.2)

This is an easy implication of Skorohod’s representation theorem (see

Billingsley, 1995). We write Xn
DD X C oP.1/ and stress that Yn in (20.2) is

generally dependent on X. Let us finally mention the following result, which is
frequently encountered in consistency proofs.

Theorem 20.1 (Slutsky’s theorem). Let fXng, fYng, and X be real-valued random

variables. Assume that Xn
D! X and that Yn ! y in probability for some y 2 R.

Then XnYn
D! Xy and Xn=Yn

D! X=y if y ¤ 0.
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20.2 Convergence theorems

The following two convergence theorems are central in measure and integration
theory. They are used at various places in the book.

Theorem 20.2 (Fatou’s lemma). Let .˝;A ; �/ be a measure space, and let gn W
˝ ! Œ0;1/ be a sequence of nonnegative measurable functions. Then

Z

˝

lim inf
n!1 gn d� � lim inf

n!1

Z

˝

gn d�:

(Reverse Fatou’s lemma). In addition, if supn gn � g �-almost everywhere andR
˝

jgjd� < 1, then

lim sup
n!1

Z

˝

gn d� �
Z

˝

lim sup
n!1

gn d�:

Theorem 20.3 (The Lebesgue dominated convergence theorem). Let .˝;A ; �/

be a measure space, and let gn W ˝ ! Œ0;1/ be a sequence of measurable
functions. Assume that gn ! g �-almost everywhere and that supn jgnj � h �-
almost everywhere, with

R
˝

jhjd� < 1. Then
R
˝

jgjd� < 1 and

Z

˝

jgn � gjd� ! 0:

In particular,
Z

˝

gn d� !
Z

˝

g d�:

The next theorem is an extension of the Lebesgue dominated convergence
theorem tailored to random variables.

Theorem 20.4. Let fXng be a sequence of real-valued random variables. Assume
that

sup
n

E
�jXnj1ŒjXnj>K�

� ! 0 as K ! 1: (20.3)

If Xn
D! X, then EjXj < 1 and EXn ! EX. If Xn ! X in probability, then

EjXj < 1 and EjXn � Xj ! 0. Conversely, if EjXj < 1 and EjXn � Xj ! 0, then
Xn!X in probability and (20.3) is satisfied.

A sequence fXng of random variables verifying condition (20.3) is called
uniformly integrable. This property is satisfied, for example, if supn jXnj � Z almost
surely with EjZj < 1, or if supn EjXnj1C" < 1 for some " > 0. In the same spirit,
we have the following lemma:
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Lemma 20.2 (A generalized Lebesgue dominated convergence theorem). Let
fXng, fYng, X, Y and Z be nonnegative real-valued random variables. Assume that

Xn ! X in probability, that supn Xn � Z with probability one, that Yn
D! Y, that

.X;Z/ and Yn are independent for all n large enough, and that EZ < 1. Assume
furthermore that

sup
n

EŒYn1ŒYn>K�� ! 0 as K ! 1: (20.4)

Then EX < 1, EY < 1, and EŒXnYn� ! EXEY.

Proof. For " > 0, ı > 0,

EŒXnYn� � E Œ.X C "/Yn�C EŒZYn1ŒXn>XC"��

� EŒX C "�EYn C K EŒZ1ŒXn>XC"��C EŒZYn1ŒYn>K��

.for arbitrary positive K/

D .EX C "/ .EY C o.1//C o.1/C EZ EŒYn1ŒYn>K��

since EYn ! EY by (20.4), and by the Lebesgue dominated convergence theorem
for the middle term. Therefore, for all n large enough,

EŒXnYn� < EXEY C ı

by choice of " and K. A matching lower bound is obtained in a similar fashion. ut

20.3 Chernoff’s bounds

20.3.1 Binomial random variables

The following theorem offers bounds for the upper and lower tail probabilities of
a binomial random variable. It is due to Chernoff (1952) (see also Karp, 1988, and
Hagerup and Rüb, 1990).

Theorem 20.5 (Chernoff, 1952). Let Z be a binomial random variable with
parameters n � 1 and p 2 .0; 1�.
(i) Let

 .t/ D
�np

t

�t
�

n.1 � p/

n � t

�n�t

; 0 < t < n:

Then

PfZ � tg �  .t/ for np � t < n
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and

PfZ � tg �  .t/ for 0 < t < np:

(ii) Let '.t/ D t � np � t log.t=np/. Then

PfZ � tg � e'.t/ for t � np

and

PfZ � tg � e'.t/ for 0 < t � np:

Proof. We only show the upper tail bounds and use the so-called Chernoff’s
bounding method. By Markov’s inequality, for � � 0,

PfZ � tg � EŒe�Z��t� D .1 � p C pe�/ne��t:

Minimizing the upper bound with respect to � yields the following equation for the
optimal �?:

npe�
?

1 � p C pe�?
D t; or e�

?

p.n � t/ D .1 � p/t:

The Chernoff’s bound becomes
 

npe�
?

t

!n

e��?t D
�np

t

�n
�
.1 � p/t

p.n � t/

�n�t

D nnpt.1 � p/n�t

tt.n � t/n�t
:

This proves the first statement. The proof of .ii/ is similar—just note that, in view
of 1C u � eu, u 2 R,

PfZ � tg � enp.e��1/��t;

and set �? D log.t=np/. The lower tail bound is obtained in the same way. ut
The second set of inequalities of Theorem 20.5, though less sharp, are more

tractable than the first ones. In any case, they are more than sufficient for the purpose
of the book. The next corollary provides us with useful exponential bounds. It is
but a special form of a more general result for sums of bounded random variables,
due to Hoeffding (1963) (see Theorem 20.7 in the next section). Note, however,
that our proof is interesting in its own right since it is tailored to binomial random
variables. By construction, the bounds of Theorem 20.5.i) are sharper than the
bounds of Corollary 20.1. We leave it as an exercise to prove that the bounds of
Theorem 20.5.ii/ are better whenever p � 1=4.
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Corollary 20.1. Let Z be a binomial random variable with parameters n � 1 and
p 2 Œ0; 1�. Then, for all t > 0,

PfZ � np � tg � e�2t2=n

and

PfZ � np � �tg � e�2t2=n:

In particular,

P fjZ � npj � tg � 2e�2t2=n:

Proof. We only show the upper tail bound, and assume that p 2 .0; 1/ and
t < n.1 � p/, for otherwise the proof is trivial. According to statement .i/ of
Theorem 20.5, for all t > 0,

PfZ � np � tg � e�h.t/;

where

h.t/ D .np C t/ log

�
1C t

np

�
C .n.1 � p/ � t/ log

�
1 � t

n.1 � p/

�
:

Note that

h0.t/ D log

�
1C t

np

�
� log

�
1 � t

n.1 � p/

�

and

h00.t/ D 1

np C t
C 1

n.1 � p/ � t
:

Since h.0/ D h0.0/ D 0, a Taylor series expansion shows that, for some � 2 Œ0; 1�,

h.t/ D t2

2

�
1

np C t�
C 1

n.1 � p/ � t�

�
D t2

2
.t�/;

where

.s/
defD 1

np C s
C 1

n.1 � p/ � s
D n

.np C s/ .n.1 � p/ � s/

D n

n2p.1 � p/C sn.1 � 2p/ � s2
; s � 0:

Since t < n.1 � p/ and min0�s�t .s/ � 4=n, we conclude h.t/ � 2t2=n. ut
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20.3.2 Gamma random variables

Theorem 20.6. Let Gn be a gamma random variable with parameter n > 0. Then,
for all t > 0,

P fGn � n.1C t/g � exp
� � n Œt � log.1C t/�

�

and, for all t 2 .0; 1/,
P fGn � n.1 � t/g � exp

� � n Œ�t � log.1 � t/�
�
:

Proof. We employ Chernoff’s bounding method applied to the gamma density. For
general n, we have, if t > 0 and � 2 Œ0; 1/,

P fGn � n.1C t/g � E Œexp.�Gn � �n � �nt/� D
�

1

1 � �
�n

e��n.1Ct/:

The upper bound is minimized for � D t
1Ct , and then

P fGn � n.1C t/g � .1C t/ne�nt D exp
� � n Œt � log.1C t/�

�
:

Similarly, for t 2 .0; 1/, � � 0,

P fGn � n.1 � t/g � E Œexp.��Gn C �n � �nt/� D
�

1

1C �

�n

e�n.1�t/:

Since the upper bound is minimized for � D t
1�t , we obtain

P fGn � n.1 � t/g � .1 � t/nent D exp
� � n Œ�t � log.1 � t/�

�
: ut

Example 20.1. Let U.1/; : : : ;U.n/ be uniform Œ0; 1� order statistics, and let E be a
standard exponential random variable. Clearly, Ej log. 1E /j < 1 and, since U.1/ is
Beta.1; n/, Ej log. 1

nU.1/
/j < 1: Notice that � D E log. 1E / D � R1

0
e�t log t dt D

0:577215664901532 : : : is the Euler-Mascheroni constant. Similarly, for q 2 .0; 1/,
Ej 1E jq < 1 and Ej 1

nU.1/
jq < 1. Let us show, by way of example, that

E log

�
1

nU.1/

�
! E log

�
1

E

�
(20.5)

and that, for q 2 .0; 1/,

E

ˇ̌
ˇ̌
�

1

nU.1/

�q

�
�
1

E

�q ˇ̌
ˇ̌ ! 0: (20.6)

(Note that, by Theorem 20.4, consistency (20.6) implies the uniform integrability of
the sequence f. 1

nU.1/
/qg.)
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Recall (Corollary 1.1) that

U.1/
DD E1

GnC1
;

where GnC1 D PnC1
iD1 Ei and E1; : : : ;EnC1 are independent standard exponential

random variables. Therefore,

1

nU.1/

DD GnC1
nE1

:

Thus, in view of

log

�
GnC1
nE1

�
D log

�
GnC1

n

�
C log

�
1

E1

�
;

identity (20.5) follows if E log.GnC1

n / ! 0. On the one hand, by Jensen’s inequality,

lim sup
n!1

E log

�
GnC1

n

�
� lim sup

n!1
logE

�
GnC1

n

�
D 0:

So, we only need to show that

lim sup
n!1

E log

�
n

GnC1

�
� 0: (20.7)

But, letting Gn D Pn
iD1 Ei, we see that

E log

�
n

GnC1

�
� E log

�
n

Gn

�

�
Z 1

0

P

	
log

�
n

Gn

�
> t



dt

D
Z 1

0

P
˚
Gn < ne�t

�
dt:

Recalling that Gn is Gamma.n/ distributed, and evoking Theorem 20.6, we conclude
that

E log

�
n

GnC1

�
�
Z 1

0

e�n.e�tCt�1/dt:

Since
R1
0

e�.e�tCt�1/dt < 1, (20.7) follows by the Lebesgue dominated conver-
gence theorem.
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The proof of (20.6) starts from the observation that, by the cr-inequality
(Proposition 20.1),

�
1

E1

�q �Sn

n

�q

�
�

GnC1
nE1

�q

� 1

nq
C
�
1

E1

�q �Sn

n

�q

;

where Sn D PnC1
iD2 Ei. Since Sn is independent of E1, we only need to show that

Ej. Sn
n /

q � 1j ! 0. This is achieved by following what we did for the log. We leave
it to the reader to play with the arguments above and prove, for example, that

E log2.nU.1// ! E log2 E and E log2.nU.2// ! E log2 G2: ut

20.4 Inequalities for independent random variables

In this section, we collect without proofs some of the classical inequalities for
tail probabilities of sums of independent real-valued random variables. For more
advanced material, the reader is referred to the textbooks by Massart (2007) and
Boucheron et al. (2013).

Theorem 20.7 (Hoeffding, 1963). Let X1; : : : ;Xn be independent real-valued
random variables. Assume that each Xi takes its values in Œai; bi� (ai < bi) with
probability one, 1 � i � n. Then, for all t > 0,

P

	 nX

iD1
.Xi � EXi/ � t



� exp

�
� 2t2
Pn

iD1.bi � ai/2

�

and

P

	 nX

iD1
.Xi � EXi/ � �t



� exp

�
� 2t2
Pn

iD1.bi � ai/2

�
:

In particular,

P

	 ˇ̌
ˇ

nX

iD1
.Xi � EXi/

ˇ̌
ˇ � t



� 2 exp

�
� 2t2
Pn

iD1.bi � ai/2

�
:

Consider the special case in which all Xi’s take values in Œ�c; c� .c > 0/. Then
Hoeffding’s inequality states that

P

	 ˇ̌
ˇ

nX

iD1
.Xi � EXi/

ˇ̌
ˇ � t



� 2 exp

�
� t2

2nc2

�
:
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This bound, while useful for t larger than c
p

n, ignores variance information. When
EX2i 	 c2, it is indeed possible to outperform Hoeffding’s inequality. Bennett’s and
Bernstein’s inequalities provide such improvements.

Theorem 20.8 (Bennett, 1962; Bernstein, 1946). Let X1; : : : ;Xn be independent
real-valued random variables with finite variance. Assume that Xi � c with
probability one for some c > 0, 1 � i � n. Let

s2 D
nX

iD1
EX2i :

Then, for all t > 0,

P

	 nX

iD1
.Xi � EXi/ � t



� exp

�
� t

c

��
1C s2

ct

�
log

�
1C ct

s2

�
� 1

�

(Bennett, 1962), and

P

	 nX

iD1
.Xi � EXi/ � t



� exp

�
� t2

2.s2 C ct=3/

�

(Bernstein, 1946).

For t � s2=c, Bernstein’s inequality losses a logarithmic factor in the exponent
with respect to Bennett’s inequality. On the other hand, if s2 is the dominant term
in the denominator of the exponent, Bennett’s and Bernstein’s inequalities are
almost equivalent. We also note that Bernstein’s inequality is typically better than
Hoeffding’s inequality when s2 	 nc2.

The next result, due to McDiarmid (1989), is called the bounded difference
inequality. It generalizes Hoeffding’s inequality to functions of independent random
variables that are more complicated than simple sums, and that are relatively robust
to individual changes in the values of the variables. It has found many applications
in combinatorics as well as in nonparametric statistics (see, e.g., Devroye, 1991a,
for a survey).

Theorem 20.9 (McDiarmid, 1989). Let X1; : : : ;Xn be independent real-valued
random variables taking values in a set A. Assume that g W An ! R is Borel
measurable and satisfies

sup
.x1;:::;xn/2An

x0

i 2A

ˇ
ˇg.x1; : : : ; xi�1; x0

i; xiC1; : : : ; xn/
ˇ
ˇ � ci; 1 � i � n;

for some positive constants c1; : : : ; cn. Then, for all t > 0,

P
˚
g.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/ � t

� � e�2t2=
Pn

iD1 c2i
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and

P
˚
g.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/ � �t

� � e�2t2=
Pn

iD1 c2i :

In particular,

P
˚ jg.X1; : : : ;Xn/ � Eg.X1; : : : ;Xn/j � t

� � 2e�2t2=
Pn

iD1 c2i :

We end this section with the Efron-Stein inequality (Efron and Stein, 1981;
Steele, 1986), a powerful tool for deriving a bound for the variance of a general
square-integrable function of independent random variables.

Theorem 20.10 (Efron and Stein, 1981; Steele, 1986). Let X1; : : : ;Xn be inde-
pendent random variables, and let g.X1; : : : ;Xn/ be a square-integrable function of
X1; : : : ;Xn. Then, if X0

1; : : : ;X
0
n are independent copies of X1; : : : ;Xn,

Vg.X1; : : : ;Xn/ � 1

2

nX

iD1
E
ˇ̌
g.X1; : : : ;Xi; : : : ;Xn/ � g.X1; : : : ;X

0
i ; : : : ;Xn/

ˇ̌2
:

Also,

Vg.X1; : : : ;Xn/ � inf
Zi

nX

iD1
E jg.X1; : : : ;Xn/ � Zij2 ;

where the infimum is taken over the class of all .X1; : : : ;Xi�1;XiC1; : : : ;Xn/-measu-
rable and square-integrable random variables Zi, 1 � i � n.

20.5 Some useful inequalities

Proposition 20.1 (cr-inequality). Let r > 0 and let a1; : : : ; ap be real numbers.
Then

ˇ̌
ˇ
ˇ

pX

iD1
ai

ˇ̌
ˇ
ˇ

r

� cr

pX

iD1
jaijr;

where cr D pr�1 for r � 1 and cr D 1 for 0 < r < 1.

Proof. For r � 1, the inequality is implied by the convexity of the function x 7! jxjr
on R. For 0 < r < 1, note that for x; y � 0,

jx C yjr � jxjr D
Z xCy

x
rtr�1dt D

Z y

0

r.x C s/r�1ds

�
Z y

0

rsr�1ds D jyjr:

Since jx C yjr � j jxj C jyj jr, the inequality still holds for x and y of arbitrary sign.
The conclusion follows by induction on p. ut
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Chebyshev’s inequality states that if X is a real-valued random variable with
EX2 < 1, then, for all t > 0,

P fjX � EXj � tg � VX

t2
:

The following theorem is a one-sided improved version of this inequality:

Theorem 20.11 (Chebyshev-Cantelli inequality). Let X be a real-valued random
variable such that EX2 < 1. Then, for all t > 0,

PfX � EX � tg � VX

VX C t2
:

Proof. Assume, without loss of generality, that EX D 0. Write t D EŒt � X� �
EŒ.t � X/1ŒX<t��, and apply the Cauchy-Schwarz inequality. ut
Theorem 20.12 (Jensen’s inequality). Let X be a real-valued random variable
such that EjXj < 1, and let g W R ! R be a convex function such that
Ejg.X/j < 1. Then

g.EX/ � Eg.X/:

Proof. By convexity, there exists a 2 R such that, for all x,

g.x/ � a.x � EX/C g.EX/:

Thus,

Eg.X/ � E Œa.X � EX/C g.EX/� D g.EX/: ut

Theorem 20.13 (Marcinkiewicz and Zygmund, 1937). Let X1; : : : ;Xn be inde-
pendent zero-mean real-valued random variables, and let p � 1. Assume that
EjXijp < 1, 1 � i � n. Then

E

ˇ̌
ˇ
ˇ

nX

iD1
Xi

ˇ̌
ˇ
ˇ

p

� Cp E

ˇ̌
ˇ
ˇ

nX

iD1
X2i

ˇ̌
ˇ
ˇ

p=2

;

where Cp is a positive constant depending only upon p.

Proof. We recall that cosh.x/ � exp.x2=2/, which follows easily by a comparison
of Taylor series. Let "1; : : : ; "n be independent Rademacher random variables, each
taking the values C1 and �1 with equal probability. Then, for x 2 R,

Eex"1 D 1

2
.ex C e�x/ D cosh.x/ � ex2=2:
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Thus, for y1; : : : ; yn � 0 fixed and � > 0,

E

h
e�

Pn
iD1 "iyi

i
D E

� nY

iD1
e�"iyi


D

nY

iD1
Ee�"iyi

�
nY

iD1
e�

2y2i =2 D e�
2
Pn

iD1 y2i =2:

For x � 0, we have by an easy maximization

xpe��x �
� p

�e

�p
:

Therefore, if one of the yi’s is not 0,

E

ˇ̌
ˇ
ˇ

nX

iD1
"iyi

ˇ̌
ˇ
ˇ

p

�
� p

�e

�p
E

h
e�jPn

iD1 "iyij
i

�
� p

�e

�p �
E

h
e�

Pn
iD1 "iyi

i
C E

h
e��Pn

iD1 "iyi

i�

� 2
� p

�e

�p
e�

2
Pn

iD1 y2i =2

D 2

�
p

e

nX

iD1
y2i

�p=2

by choosing � D
q

p=
Pn

iD1 y2i . Clearly, the inequality remains true if all yi’s are
equal to 0.

Now, let X0
1; : : : ;X

0
n be independent of, and distributed as X1; : : : ;Xn. Assume

that "1; : : : ; "n are independent of X1;X0
1; : : : ;Xn;X0

n. Then,

E

ˇ̌
ˇ̌

nX

iD1
Xi

ˇ̌
ˇ̌
p

D E

ˇ̌
ˇ̌E
� nX

iD1
.Xi � X0

i/
ˇ̌
X1; : : : ;Xn

ˇ̌
ˇ̌
p

� E

ˇ
ˇ̌
ˇ

nX

iD1
.Xi � X0

i/

ˇ
ˇ̌
ˇ

p

.by Jensen’s inequality, valid for p � 1/

D E

ˇ
ˇ̌
ˇ

nX

iD1
"iYi

ˇ
ˇ̌
ˇ

p

.where Yi D jXi � X0
i j/

� 2
�p

e

�p=2
E

ˇ̌
ˇ
ˇ

nX

iD1
Y2i

ˇ̌
ˇ
ˇ

p=2

:
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However,

E

ˇ̌
ˇ̌

nX

iD1
Y2i

ˇ̌
ˇ̌
p=2

� E

ˇ̌
ˇ̌2

nX

iD1
X2i C 2

nX

iD1
X0

i
2

ˇ̌
ˇ̌
p=2

� cp

�
E

ˇ̌
ˇ̌2

nX

iD1
X2i

ˇ̌
ˇ̌
p=2

C E

ˇ̌
ˇ̌2

nX

iD1
X0

i
2

ˇ̌
ˇ̌
p=2�

D 21C
p
2 cp E

ˇ̌
ˇ̌

nX

iD1
X2i

ˇ̌
ˇ̌
p=2

;

where we used the cr-inequality (Proposition 20.1), with cp D 2
p
2�1 if p � 2 and

cp D 1 if 1 � p < 2. Therefore, for p � 1,

E

ˇ̌
ˇ̌

nX

iD1
Xi

ˇ̌
ˇ̌
p

� 22C
p
2 cp

�p

e

�p=2
E

ˇ̌
ˇ̌

nX

iD1
X2i

ˇ̌
ˇ̌
p=2

:

The desired result follows with

Cp D 22C
p
2 cp

�p

e

�p=2
: ut

Observing that, by Jensen’s inequality, for p � 2,

ˇ
ˇ̌
ˇ

nX

iD1
X2i

ˇ
ˇ̌
ˇ

p=2

� n
p
2�1

nX

iD1
jXijp;

we deduce the following corollary:

Corollary 20.2. Let X1; : : : ;Xn be i.i.d. zero-mean real-valued random variables,
and let p � 2. Assume that EjXijp < 1, 1 � i � n. Then

E

ˇ̌
ˇ̌

nX

iD1
Xi

ˇ̌
ˇ̌
p

� Cp np=2
EjX1jp:

Theorem 20.14. The gamma function

	 .x/ D
Z 1

0

tx�1e�tdt

satisfies

1 <
	 .x/

�
x
e

�x
q

2�
x

� e; x � 1:
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Furthermore, for x � y � 1,

ey�xxx

yy

�y

x

�
� 	 .x/

	 .y/
� ey�xxx

yy

r
y

x
:

Proof. The first inequality is due to Mortici and Chen (2011), while the second one
is due to Kečkić and Vasić (1971). ut

20.6 Equivalence inequalities for weights

Lemma 20.3. Let .vn1; : : : ; vnn/ be a probability weight vector. The following
conditions are equivalent:

(I) There exists a sequence of integers fkg D fkng such that

.i/ k ! 1 and k=n ! 0I

.ii/
P

i>k vni ! 0:

(II) For all " > 0,

X

i>"n

vni ! 0:

Proof. .I/ implies .II/ since for each " > 0, and all n large enough, k � "n. .II/
implies .I/ by construction. Let fnjgj�1 be a strictly increasing sequence of integers
such that n1 D 1, j=nj ! 0 as j ! 1, and

X

i>n=j

vni <
1

j
for all n � nj:

Let k D n=j on Œnj; njC1/. Clearly, k ! 1 and k=n ! 0. Also,
P

i>k vni ! 0 as
n ! 1. ut
Lemma 20.4. Let .vn1; : : : ; vnn/ be a probability weight vector. The following
conditions are equivalent:

(I) There exists a sequence of integers fkg D fkng such that

.i/ k ! 1 and k=n ! 0I

.ii/
P

i>k vni ! 0I
.iii/ supn.k maxi vni/ < 1:
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(II) There exists a positive constant ˛ such that

.iv/
P

i>˛=maxi vni
! 0I

.v/
P

i>"n vni ! 0; all " > 0I
.vi/ maxi vni ! 0:

Moreover, the same result is true when condition .i/ is replaced by

.i/ k= log n ! 1 and k=n ! 0

and condition .vi/ is replaced by

.vi/ supn ..log n/maxi vni/ ! 0:

Proof. Let us first assume that .I/ is true. Then, clearly, .i/ and .iii/ imply .vi/.
Besides, .i/ and .ii/ imply .v/ since for each " > 0, and all n large enough, k � "n.
Finally, denoting by ˛ a positive constant in .iii/ such that k � ˛=maxi vni, we see
that .ii/ implies .iv/.

Conversely, assume that .II/ holds, and set k D b˛=maxi vnic. Then .iii/ is true
and, clearly, .vi/ implies k ! 1 and .iv/ implies .ii/. The second statement of .I/
is valid because for all " > 0, "n maxi vni � P

i�"n vni ! 1 as n ! 1.
The last assertion is proved in a similar fashion. ut

20.7 Covering R
d with cones

A cone C .z; �/ for z 2 R
d � f0g, 0 < � � �=2, is defined by

C .z; �/ D fy 2 R
d W y D 0 or angle.z; y/ � �g;

where

angle.z; y/ D arccos

 Pd
jD1 zjyj

kzk kyk

!

;

kzk2 D Pd
jD1 z2j , kyk2 D Pd

jD1 y2j . Equivalently, in vector notation,

z>y
kzk kyk � cos �;

where > denotes transposition and vectors are in column format. The set xCC .z; �/
is the translation of C .z; �/ by x (change of origin).

Let

C� D min
n
n � 1 W 9 z1; : : : ; zn 2 R

d � f0g such that
n[

iD1
C .zi; �/ D R

d
o
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be the minimal number of cones needed to cover Rd. For d D 1, we can take z1 D 1,
z2 D �1 for any 0 < � � �=2, and cover R, so C� D 2. In R

2, we can take

zi D �
cos.2� i/; sin.2� i/

�
; 1 � i � d�=�e;

and verify that

d�=�e[

iD1
C .zi; �/ D R

2:

In particular, C� � d�=�e, and C�=6 � 6. In fact, one can easily see that C� � �=� ,
and thus, we have C� D d�=�e.

For general d, a simple covering argument of a compact set permits one to show
that C� < 1 for all 0 < � � �=2. We first give a simple but suboptimal bound.

Theorem 20.15. For all dimensions d � 1 and all 0 < � � �=2,

C� �
 

2

� p
d

1 � cos �

�
C 1

!d

:

Proof. Consider the grid G D fj=N W �N � j � Ngd, where N � p
d will be chosen

later. We claim that
S

z2G nf0g C .z; �/ D R
d. To see this, take y D .y1; : : : ; yd/ 2

R
d �f0g, and let kyk denote its Euclidean norm. Similarly, we write z D .z1; : : : ; zd/

and kzk. We associate with yj � 0 the value 1
N b yj

kyk Nc, and with yj < 0 the value

� 1
N b yj

kyk Nc, where the values are clearly in G . Call the vector of these values z, and
observe that 0 < kzk � 1 by the truncations towards the origin. Next,

ˇ̌
ˇ̌
ˇ̌

dX

jD1
zjyj �

dX

jD1

y2j
kyk

ˇ̌
ˇ̌
ˇ̌ � 1

N

dX

jD1
jyjj �

p
d

N
kyk

by the Cauchy-Schwarz inequality. Therefore, since zjyj � 0, for z ¤ 0,

cos .angle.z; y// D
Pd

jD1 zjyj

kzk kyk � 1

kyk
dX

jD1
zjyj

�
dX

jD1

y2j
kyk2 �

p
d

N

D 1 �
p

d

N
:
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We have cos.angle.z; y// � cos � , and thus angle.z; y/ � � , if 1 �
p

d
N � cos � .

Therefore, it suffices to take

N �
p

d

1 � cos �
:

The proof follows since jG j D .2N C 1/d. ut
Böröczky, Jr. and Wintsche (2003) (see also Böröczky, Jr., 2004) showed the

following:

Theorem 20.16. For all dimensions d � 2 and all 0 < � � arccos.1=
p
3/,

C� � ˛ � cos �

sind �
� d3=2 log.1C d cos2 �/;

where ˛ is a positive universal constant independent of d.

This theorem implies immediately that for every " > 0, there exists a universal
constant ˛."/ such that, for all d � 2,

C�=6 � ˛."/.2C "/d:

Our next lemma states an interesting geometrical property of cones of angle less
than or equal to �=6 (see Figure 20.1 for an illustration in dimension 2).

Lemma 20.5. Let C .z; �/ be a cone of angle 0 < � � �=6. If � < �=6, then
for y1; y2 2 C .z; �=6/, ky1k > 0 and ky1k � ky2k, one has ky1 � y2k < ky2k.
If � D �=6, then for y1; y2 2 C .z; �=6/, ky1k > 0 and ky1k < ky2k, one has
ky1 � y2k < ky2k.

Proof. Take � D �=6 and note that

ky1 � y2k2 D ky1k2 C ky2k2 � 2ky1k ky2k y1>y2
ky1k ky2k

� ky1k2 C ky2k2 � 2ky1k ky2k cos.2�/

D ky2k2
�
1C ky1k2

ky2k2 � ky1k
ky2k

�

< ky2k2:

The proof is similar for 0 < � < �=6. ut
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‖y1‖

0

y1

‖y1 − y2‖

y2

‖y2‖

Fig. 20.1 The geometrical property of a cone of angle 0 < � � �=6 (in dimension 2).

An elegant combinatorial implication of Lemma 20.5 is the following one:

Lemma 20.6. Let x; x1; : : : ; xn be distinct vectors of Rd. Then, for all 0 < � < �=6,

nX

iD1
1Œx is the nearest neighbor of xi in fx1; : : : ; xi�1; x; xiC1; : : : ; xng� � C�

(distance ties are broken by comparing indices). In addition, if all distances kxi�xk,
1 � i � n, are different, then

nX

iD1
1Œx is the nearest neighbor of xi in fx1; : : : ; xi�1; x; xiC1; : : : ; xng� � C�=6:

Proof. Fix 0 < � < �=6 and cover Rd by C� cones xCC .z`; �/, 1 � ` � C� .
In each cone, mark the xi nearest to x, if such an xi exists. If xi belongs to x C
C .z`; �/ and is not marked, then, by the first statement of Lemma 20.5, x cannot
be the nearest neighbor of xi in fx1; : : : ; xi�1; x; xiC1; : : : ; xng. This shows the first
inequality. The case � D �=6 is proved by a similar argument, via the second
statement of Lemma 20.5. ut
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An interesting geometrical consequence of this lemma is that if X;X1; : : : ;Xn are
random variables drawn according to a common absolutely continuous distribution,
then, with probability one, X can be the nearest neighbor of at most C�=6 points.

20.8 Some results from real analysis

Theorem 20.17 (A denseness result). Let p � 1. For any probability measure �
on R

d, the set of continuous functions of bounded support is dense in Lp.�/. In other
words, for any g 2 Lp.�/ and " > 0, there is a continuous function g" with compact
support such that

Z

Rd
jg.x/ � g".x/jp �.dx/ � ":

Proof. See, e.g., Györfi et al. (2002, Theorem A.1). ut
We provide in the remainder of this section some results concerning differen-

tiation of integrals. Good general references are Stein (1970), de Guzmán (1975),
Wheeden and Zygmund (1977), and Györfi et al. (2002, Chapter 24). In the sequel,
notation B�.x/, � � 0, means indifferently the family of cubes with center x and
edge length �, the family of closed balls centered at x of radius �, or the family of
open balls centered at x of radius �. As always, � denotes the Lebesgue measure
on R

d.

Theorem 20.18 (The Lebesgue differentiation theorem). Let g W Rd ! R be a
locally integrable function. Then, at �-almost all x 2 R

d,

1

�
�
B�.x/

�
Z

B�.x/
jg.y/ � g.x/j dy ! 0 as � # 0:

A point x at which this statement is valid is called a Lebesgue point of g. In
particular,

1

�
�
B�.x/

�
Z

B�.x/
g.y/dy ! g.x/ as � # 0:

Remark 20.1. Theorem 20.18 does not hold when the family fB�.x/g shrinks to x
without any restriction on the behavior of the sets. In this more general framework,
the slight additional condition

R
Rd jg.y/j logC jg.y/jdy < 1 is required (it is true,

in particular, if
R
Rd jg.y/jpdy < 1 for some p > 1). Valuable ideas and statistical

comments are presented in Devroye and Krzyżak (2002) and Biau et al. (2015). ut
The Lebesgue differentiation theorem generalizes to measures other than the

Lebesgue measure on R
d. Throughout, we let �1 and �2 be two � -finite Borel

measures that are finite on the bounded Borel sets of Rd.



272 20 Appendix

Theorem 20.19 (The generalized Lebesgue differentiation theorem). Let p �
1, and let g W R

d ! R be such that jgjp is locally integrable with respect to �1.
Then, at �1-almost all x 2 R

d,

1

�1
�
B�.x/

�
Z

B�.x/
jg.y/ � g.x/jp �1.dy/ ! 0 as � # 0:

In particular,

1

�1
�
B�.x/

�
Z

B�.x/
g.y/�1.dy/ ! g.x/ as � # 0:

Remark 20.2. Theorem 20.19 is usually proved for p D 1. Since for a; b � 0 and
p � 1, ja � bjp � jap � bpj, the result is true if g � 0. For general g, split g into its
positive and negative parts, and note that jg.y/� g.x/jp � 2p�1.jgC.y/� gC.x/jp C
jg�.y/ � g�.x/jp/. ut

Whenever the measure �2 is absolutely continuous with respect to �1, with
a density f , then Theorem 20.19 states that the ratio �2.B�.x//

�1.B�.x//
shrinks �1-almost

everywhere towards the value of f at the point x. The most general differentiation
theorem clarifies the local behavior of �2.B�.x//

�1.B�.x//
without assuming that �2 is abso-

lutely continuous with respect to �1. Before continuing, recall that the Lebesgue
decomposition theorem states that there exists a unique decomposition of �2 into an
absolutely continuous part and a singular part with respect to �1. For any Borel set
A � R

d,

�2.A/ D
Z

A
f .y/�1.dy/C �.A/;

where f is a nonnegative function, integrable with respect to �1, and the measure �
is supported on a set of �1-measure zero.

Theorem 20.20. If �2.A/ D R
A f d�1 C �.A/ is the decomposition of �2 into parts

that are absolutely continuous and singular with respect to �1, then, at �1-almost
all x 2 R

d,

�2
�
B�.x/

�

�1
�
B�.x/

� ! f .x/ as � # 0:

In particular, if �1 and �2 are mutually singular, then, at �1-almost all x 2 R
d,

�2
�
B�.x/

�

�1
�
B�.x/

� ! 0 as � # 0:

The useful lemma below estimates the size of the maximal ratio �2.B�.x//
�1.B�.x//

.
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Lemma 20.7 (Fefferman and Stein, 1971). There exists a constant c, depending
only upon d, such that, for all t > 0,

�1

 (

x 2 R
d W sup

�>0

 
�2
�
B�.x/

�

�1
�
B�.x/

�

!

> t

)!

� c

t
�2.R

d/:

Moreover, for any Borel set A � R
d,

�1

 (

x 2 A W sup
�>0

 
�2
�
B�.x/

�

�1
�
B�.x/

�

!

> t

)!

� c

t
�2.A/:

When �1 is the Lebesgue measure � and �2 is a probability measure that is
absolutely continuous with respect to �, with a density f , then Lemma 20.7 states
that

�
�˚

x 2 R
d W f ?.x/ > t

�� � c

t
;

where

f ?.x/ D sup
�>0

 
1

�
�
B�.x/

�
Z

B�.x/
f .y/dy

!

:

The function f ? is called the Hardy-Littlewood maximal function of f . It should be
understood as a gauge of the size of the averages of f around x (note that f .x/ �
f ?.x/ at �-almost all x).

If
R
Rd f p.x/dx < 1 for some p > 1, then

R
Rd f ?p.x/dx < 1 as well. On the

other hand, it is not true that
R
Rd f .x/dx < 1 implies

R
Rd f ?.x/dx < 1 (just

take for f the uniform density on Œ0; 1� and note that
R
R

f ?.x/dx D 1). In fact,
f ? is never integrable on all Rd. This can be seen by making the observation that
f ?.x/ � ckxk�d, for kxk � 1. Moreover, even if we limit our considerations to any
bounded subset of Rd, then the integrability of f ? requires stronger conditions than
the integrability of f . For example,

R
Rd f ?.x/dx < 1 as soon as

R
Rd f .x/ log.f .x/C

1/dx < 1 and f is supported on a compact set (Stein, 1970, Chapter 1). The
following lemma states this more formally.

Lemma 20.8. Let f W Rd ! R be a density. Assume that f has compact support and
that

R
Rd f .x/ log.f .x/C1/dx < 1. Then

R
Rd f .x/ log.f ?.x/C1/dx < 1. Similarly,R

Rd f .x/ log2.f .x/C 1/dx < 1 implies
R
Rd f .x/ log2.f ?.x/C 1/dx < 1.

Proof. We prove the first assertion only and leave the second one as a small exercise.
Observe that
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Z

Rd
f .x/ log.f ?.x/C 1/dx

D
Z 1

0

�
�˚

x 2 R
d W f .x/ log.f ?.x/C 1/ > t

��
dt

�
Z 1

0

�
�
�n

x 2 R
d W f .x/ >

t

log.t C 1/

o�
C �

�n
x 2 R

d W f ?.x/ > t
o�

dt:

Now,

Z 1

0

�
�˚

x 2 R
d W f ?.x/ > t

��
dt D

Z 1

0

f ?.x/dx;

and this integral is finite by Stein’s result (Stein, 1970) mentioned above.
Finally, one easily verifies that for t larger than some positive t?, the inequality
f .x/ log.f .x/C 1/ � t=2 implies f .x/ � t

log.tC1/ . So,

Z 1

0

�
�n

x 2 R
d W f .x/ >

t

log.t C 1/

o�
dt

�
Z t?

0

�
�n

x 2 R
d W f .x/ >

t

log.t C 1/

o�
dt

C
Z 1

t?
�
�˚

x 2 R
d W f .x/ log.f .x/C 1/ > t=2

��
dt

�
Z 1

0

�
�˚

x 2 R
d W f .x/ log.t? C 1/ > t

��
dt

C 2

Z 1

0

�
�˚

x 2 R
d W f .x/ log.f .x/C 1/ > t

��
dt

D log.t? C 1/

Z

Rd
f .x/dx C 2

Z

Rd
f .x/ log.f .x/C 1/dx < 1: ut

20.9 Some useful probability distributions

Bernoulli distribution

Definition. A random variable X has the Bernoulli distribution with parameter p 2
Œ0; 1� if PfX D 1g D p and PfX D 0g D 1 � p.

Notation. Ber.p/.

Moments. EX D p and VX D p.1 � p/.
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Binomial distribution

Definition. A random variable X has the binomial distribution with parameters n 2
N � f0g and p 2 Œ0; 1� if

PfX D jg D
 

n

j

!

pj.1 � p/n�j; 0 � j � n:

In particular, X
DD Pn

iD1 Xi, where X1; : : : ;Xn are independent Ber.p/ random
variables.

Notation. Bin.n; p/.

Moments. EX D np and VX D np.1 � p/.

Poisson distribution

Definition. A random variable X has the Poisson distribution with parameter
� > 0 if

PfX D jg D e���j

jŠ
; j 2 N:

Notation. Poisson.�/.

Moments. EX D � and VX D �.

If npn ! � > 0 as n ! 1, then Bin.n; pn/
D! Poisson.�/.

Rademacher distribution

Definition. A random variable X has the Rademacher distribution if PfX D �1g D
PfX D C1g D 1=2.

Moments. EX D 0 and VX D 1.

Uniform distribution

Definition. A random variable X has the uniform distribution on Œ0; 1� if it has
density f .x/ D 1, 0 � x � 1.

Moments. EX D 1=2 and VX D 1=12.
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Normal distribution

Definition. A random variable X has the normal (or Gaussian) distribution with
parameters � 2 R and �2 > 0 if it has density

f .x/ D 1p
2��2

e� .x��/2

2�2 ; x 2 R:

If � D 0 and �2 D 1, the distribution is called the standard normal distribution.

Moments. EX D � and VX D �2.

Exponential distribution

Definition. A random variable X has the exponential distribution with parameter
� > 0 if it has density f .x/ D �e��x, x � 0. If � D 1, the distribution is called the
standard exponential distribution.

Moments. For all q > �1,

EXq D 	 .q C 1/

�q
:

In particular, EX D 1=� and VX D 1=�2. For q � �1, EXq D 1.

Beta distribution

Definition. A random variable X has the beta distribution with (shape) parameters
˛ > 0 and ˇ > 0 if it has density

f .x/ D x˛�1.1 � x/ˇ�1

B.˛; ˇ/
; 0 � x � 1;

where

B.˛; ˇ/ D
Z 1

0

x˛�1.1 � x/ˇ�1dx D 	 .˛/	 .ˇ/

	 .˛ C ˇ/
:

Notation. Beta.˛; ˇ/.

Moments. For all q > �˛,

EXq D B.˛ C q; ˇ/

B.˛; ˇ/
D 	 .˛ C q/	 .˛ C ˇ/

	 .˛/	 .˛ C ˇ C q/
:
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In particular,

EX D ˛

˛ C ˇ
and VX D ˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/
:

Assume that ˛ and ˇ are positive integers. Then, for all p 2 Œ0; 1�,
PfBeta.˛; ˇ/ � pg D PfBin.˛ C ˇ � 1; p/ � ˛g. This is called the binomial-
beta duality (see, e.g., Terrell, 1999, Chapter 9).

Gamma distribution

Definition. A random variable X has the gamma distribution with parameter ˛ > 0
if it has density

f .x/ D x˛�1e�x

	 .˛/
; x � 0:

Notation. Gamma.˛/.

Moments. For all q > �˛,

EXq D 	 .˛ C q/

	 .˛/
:

In particular, EX D VX D ˛.

The Gamma.1/ corresponds to a standard exponential. If N is standard normal,

then 2Gamma.1=2/
DD N2. The random variable N2 is also called a chi-square with

one degree of freedom. In general, 2Gamma.n=2/
DD Pn

iD1 N2
i , where N1; : : : ;Nn

are independent standard normal random variables. It is called a chi-square with n
degrees of freedom.

The following lemma is left as an exercise.

Lemma 20.9. If G˛ and Gˇ are independent Gamma.˛/ and Gamma.ˇ/ random
variables, then G˛

G˛CGˇ
and G˛CGˇ are independent Beta.˛; ˇ/ and Gamma.˛ C ˇ/

random variables.

Thus, in particular, for E1; : : : ;En independent standard exponential random

variables, the sum
Pn

iD1 Ei
DD Gamma.n/. Et donc voilà.
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Index

Symbols
1-nearest neighbor regression function estimate

consistency, 105
definition, 105
mean integrated squared error, 106

cr-inequality, 262
k-nearest neighbor classification rule

asymptotic error probability for fixed k,
234, 237, 238

consistency, 242
definition, 233
strong consistency, 246

k-nearest neighbor density estimate
asymptotic normality, 58, 62, 63
bias elimination, 59
choice of k, 59, 62
definition, 28
integrability, 29
linear combinations, 43
mean squared error, 64
nonlinear, 68, 71
pointwise consistency, 31
rates of convergence, 58, 59, 62
uniform consistency, 37, 51

k-nearest neighbor regression function estimate
Lp-consistency, 125
affine invariance, 98
asymptotic normality, 188
choice of k, 201, 215, 220
data splitting, 215
definition, 98
feature selection, 220
fixed k, 197, 199
limit law in the noiseless case, 199, 201
noiseless case, 193

oracle inequality, 215, 220
pointwise consistency, 132, 145
rates of convergence, 188, 191, 202, 215
uniform consistency, 154

A
affine invariance, 98

B
Bayes

classifier (or rule), 223
error, 224, 225

Bennett’s inequality, 261
Bernoulli distribution, 274
Bernstein’s inequality, 216, 261
beta distribution

binomial duality, 277
density, 276
moments, 276
relations with the gamma distribution, 277

big OP and small oP notation, 252
binomial distribution, 275
binomial-beta duality, 277
Borel-Cantelli lemma, 252
bounded difference inequality, 248, 249, 261

C
central limit theorem, 253
Chebyshev-Cantelli inequality, 163, 245, 263
Chernoff’s bounding method, 9, 11, 15, 35, 38,

44, 45, 47, 48, 61, 136, 146, 157, 160,
205, 208, 238, 255, 257

for the gamma distribution, 167, 168, 258
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Chernoff’s inequality, 256
classification

and regression estimation, 227, 228
definition, 223
label, 223
margin condition, 229
multi-label, 230

classifier (or rule)
definition, 223, 225
plug-in, 229

concentration of measure, 141
cone

covering, 106, 125, 268
definition, 267

consistency
strong, 27, 99, 226
universal, 125, 226
weak, 27, 99, 226

coupling, 195, 204, 208
covering R

d with cones, 268, 269
covering R

d with cones, 106, 125
curse of dimensionality, 191, 216

D
data splitting, 212
denseness in Lp, 271
density

L1 distance, 26
Lp distance, 27
definition, 25
differential entropy, 75
essential supremum, 33
estimation, 25
Hellinger distance, 27
Kullback-Leibler divergence, 27
modulus of continuity, 37
Rényi’s entropy, 76
Taylor series expansion, 54
total variation, 26
uniform continuity, 36

differential entropy
definition, 75
Kozachenko-Leonenko estimate, 77

distance tie-breaking, 100, 132

E
Efron-Stein inequality, 83, 91, 141, 262
empirical risk minimization, 213
error probability, 225
exponential distribution

density, 276
moments, 276

F
Fatou’s lemma, 254
feature selection, 216, 217

G
gamma

function, 17
integral, 20

gamma distribution
density, 277
moments, 277
relations with the beta distribution, 277

H
Hoeffding’s inequality, 214, 238, 257, 260
hyperspherical coordinates, 30, 31

I
inequality

cr-, 262
Bennett’s, 261
Bernstein’s, 216, 261
bounded difference, 248, 249, 261
Chebyshev-Cantelli, 163, 245, 263
Chernoff’s, 256
Efron-Stein, 83, 91, 141, 262
Hoeffding’s, 214, 238, 257, 260
Jensen’s, 263
Kečkić-Vasić, 166, 200, 265
Marcinkiewicz-Zygmund, 137, 263, 265
maximal, 82, 273
oracle, 212, 213

J
Jensen’s inequality, 263

K
kernel

-type k-nearest neighbor estimate, 150, 185
density estimate, 28
regression function estimate, 112

Kečkić-Vasić inequality, 166, 200, 265
Kozachenko-Leonenko entropy estimate

bias, 85, 86
consistency, 80
definition, 77
rates of convergence, 86
variance, 83
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L
Lagrange inversion of polynomials, 65
law of large numbers, 253
Lebesgue decomposition theorem, 272
Lebesgue differentiation theorem, 271, 272
Lebesgue dominated convergence theorem,

254, 255
local averaging estimate

definition, 112
in classification, 229, 230
universal Lp-consistency, 113, 115

M
Marcinkiewicz-Zygmund inequality, 137, 263,

265
maximal

function, 81, 90, 273
inequality, 82, 273

Milnor-Thom theorem, 155, 162

N
nearest neighbor classification rule

consistency, 241
definition, 233
exponential inequality, 246
properties of weights, 266
strong consistency, 246

nearest neighbor regression function estimate
Lp-consistency, 124
affine invariance, 98
asymptotic normality, 185, 187
bias, 180, 182
choice of the weights, 188, 190
definition, 98
exponential inequality, 144
noiseless case, 193
pointwise consistency, 131, 140, 144, 145
properties of weights, 266
rates of convergence, 187–190
uniform consistency, 153
variation, 180, 185

nearest neighbors
conditional expectation properties, 102
distance consistency, 14, 15
limit law, 194, 197
rates of convergence, 17, 19, 22

noiseless estimation, 193
normal (or Gaussian) distribution, 276

O
oracle inequality, 212, 213

order statistics
definition, 3
distribution, 3, 7
expectation, 8
large deviations, 167
law of large numbers, 9
linear combinations, 169, 172
maximum, 7
median, 7
moments, 165, 166
strong law of large numbers, 9, 10
variance, 8

P
pattern recognition, 223
Poisson distribution, 275
probability integral transform, 7

Q
quadratic entropy, 76

R
Rademacher distribution, 275
random variable

almost sure convergence, 251
asymptotic normality, 253
convergence in Lp, 252
convergence in distribution, 253
convergence in probability, 251
essential supremum, 251
integrability, 251
positive and negative parts, 251
support, 13
uniform integrability, 254

records, 146
regression function

L2 optimality, 96
Lp distance, 99
definition, 95
estimation, 96
projection to the halfline, 177, 178
Taylor series expansion, 179, 180
uniform deviation, 99

reordering of the sample, 8
residual variance, 105
reverse Fatou’s lemma, 254
Rényi’s entropy

definition, 76
estimation, 89, 90
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S
self-bounding function, 141
shatter coefficient, 162
sign pattern, 155
Slutsky’s theorem, 253
small oP and big OP notation, 252
spacings

definition, 4
distribution, 4, 5

Stone’s lemma, 106, 125, 126
Stone’s theorem, 113, 230
support

definition, 13
properties, 13

T
Taylor series expansion, 54, 177
total variation distance, 26, 195

U
uniform distribution, 275
uniform exponential tail, 156

V
Vandermonde matrix, 67, 72
variance of the residual, 105
volume of the unit ball, 17

W
weighted k-nearest neighbor density estimate

bias elimination, 59, 62, 65
choice of the weights, 60, 61
definition, 43
pointwise consistency, 44, 48
rates of convergence, 59, 63
uniform consistency, 50
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