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Preface

Children learn effortlessly by example and exhibit a remarkable capacity of
generalization. The field of machine learning, on the other hand, stumbles along
clumsily in search of algorithms and methods, but nothing available today comes
even close to an average two-year-old toddler. So, modestly, we present some results
on one of the main paradigms in machine learning—nearest neighbor methods.

Rummaging through old data for the closest match seems like a sensible thing
to do, and that primitive idea can be formalized and made rigorous. In the field of
nonparametric statistics, where one is concerned with the estimation of densities,
distribution functions, regression functions, and functionals, the nearest neighbor
family of methods was in the limelight from the very beginning and has achieved
some level of maturity.

We do not wish to survey the literature, but we think that it is important to bring
the key statistical, probabilistic, combinatorial, and geometric ideas required in the
analysis together under one umbrella. Our initial intent was to write chapters that
roughly correspond each to a 90-minute lecture, but we were not disciplined enough
to carry that through successfully.

The authors were influenced by many others who came before them and thank
many colleagues and coauthors for their insight and help. We are particularly
grateful to Laszl6 Gyorfi.

The book was written in Montreal during Gérard’s visits between 2013 and 2015.
Bea was very supportive and deserves a special nod. And so do Marie France and
Bernard. We also thank Montreal’s best patissiere, Birgit.

Gérard Biau
Luc Devroye
Montreal, February 2015
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Part I
Density estimation



Chapter 1
Order statistics and nearest neighbors

1.1 Uniform order statistics

We start with some basic properties of uniform order statistics. For a general
introduction to probability, see Grimmett and Stirzaker (2001). Some of the
properties of order statistics presented in this chapter are covered by Rényi (1970);
Galambos (1978), and Devroye (1986).

If Uy,..., U, are i.i.d. uniform [0, 1] random variables, then the order statistics
for this sample are Ui ), . . ., U(nn), where

U(l,n) <. = U(n,n)

and (Uq ..., Upy) is a permutation of (Uy,..., U,). Ties occur with zero
probability and may be broken arbitrarily, e.g., by declaring that U; is smaller than
U; whenever U; = Ujand i < j. To simplify the notation, we omit the double indices
when no confusion is possible and write Uy, ..., Uy, instead of U1y, . .., Upp)-
By definition, the vector (U, ..., U,) is uniformly distributed in the unit cube
[0, 1]". It follows that (U(yy, . . ., Ugy) is also uniformly distributed in the simplex

Ay ={(x1,....,x) eR":0<x; <--- <x, <1}.

Throughout the book, 14 stands for the indicator function of the set A.
Theorem 1.1. The joint density of (Uq), ..., Uw) is

f(-xlw--,xn) = n!]lAn(X1,...,xn)-
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4 1 Order statistics and nearest neighbors

Proof. We denote by (01, ..., 0,) the permutation of (1, ..., n) such that Uy = Uy,
for all i. Let A be an arbitrary Borel set of R?. We have

P {(U(]), PN U(,,)) (S A}

= > P{(Uy,.....Uy) €A, (01,....0,) = (T1.....Ty)}

all permutations
(T1eesTn) Of (1,....m)

= P{(U,.....U) €A, (01,....00) = (1,....n)}

(since all orderings have the same probability)
= n! / Ta,(xr, .o xp)dxy ... dxy.
A

The result follows by the arbitrariness of A. O

Next, let Uy, ..., U, be i.i.d. uniform [0, 1] random variables with order statistics
Uqy < -+ < Ugy. The statistics S; defined by

S,’ZU(,')—U(,'_U, 1<i<n+1,

where, by convention, Uy = 0 and U,41) = 1 are called the uniform spacings.

Theorem 1.2. The vector (S, ..., S,) is uniformly distributed in the simplex
n
B, = {(}C], .. .,)C,,) e R” X = O,ZX,‘ < 1},
i=1

and the vector (S, ..., Sy+1) is uniformly distributed in

n+1
{()C],. .. ,Xn+1) € Rn+1 X > O,in = 1}

i=1

Proof. We know from Theorem 1.1 that (U, ..., U,)) is uniformly distributed in
the simplex A,,. The transformation

S1 = Uy
§2 = Uy — Uy

Sp = Up — Up—1
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has as inverse

upy =5
U =51+ 5

Uy =81+ 82+ -+ S,

and the Jacobian, i.e., the determinant of the matrix formed by - is 1. This shows
that the density of (S,...,S,) is uniform on the set B,. The second statement is
clear. O

Proofs of this sort can often be obtained without the cumbersome transforma-
tions. For example, when U has the uniform density on a set A C R4 and T is
a nonsingular linear transformation from R? to R?, then Z = TU is uniformly
distributed in 7A, as can be seen from the following argument: for any Borel set
BCRY,

P{Z € B =P{TUe B} =P{Ue T 'B}

/ dx / dx
__ J(T7B)NA __ JBN(TA)

/ dx / dx
A TA

Theorem 1.3. The vector (S, ..., Sy+1) is distributed as
E, Ept1
Zn-ﬁ-l E o Zn-i—l E
where Ey, ..., E, 4+ are independent standard exponential random variables.

The proof of Theorem 1.3 is based upon Lemma 1.1:

Lemma 1.1. For any sequence of nonnegative real numbers x, . .., X,41, we have

n+1 n
P{Sl >x1,...,Sn+1 >x,,+1} = |:max (1 —in,())] .
i=1

Proof. Assume, without loss of generality, that Z;’:ll x; < 1 (for otherwise the
lemma is obviously true). In the notation of Theorem 1.2, we start from the fact that
(S1,...,Sy) is uniformly distributed in B,,. Our probability is equal to

P{Sl >)C1,...,S,1 >xn,1—ZS,- >)Cn+1},
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that is,

n+1

P{x1<51,.~ xn<Sn’Z(S x’)<1_z }

i=1

This is the probability of a set B}, that is a simplex just as B, except that its top is not
at (0,...,0) but rather at (xg, . ..,x,), and that its sides are not of length 1 but rather
of length 1 — Z"+l x;. For unlform distributions, probabilities can be calculated as
ratios of areas. In this case, we have

[ o I

I—Zx,
fdx

Proof (Theorem 1.3). Let G = G, be the random variable Z”H E;. Note that we
only need to show that the vector

E, E,

R

is uniformly distributed in B,,. The last component is taken care of by noting
that it equals 1 minus the sum of the first n components Let us use the symbols e;,
y, x; for the running variables corresponding to E;, G, Z. We first compute the joint
density of (Ey,...,E,, G):

n+l

n
fler .. eny) =[] e ™™ " Uimin ez Lz 57, o)
i=1

= € Limin 201 Ly=37 o-

Here we used the fact that the joint density is the product of the first n variables and
the density of G given E, = ey,...,E, = e,. Next, by the simple transformation

of variables x; = “7] e Xy = ej’ ,y =y, it is easily seen that the joint density of
E E, M
E‘,...,E,G)IS

V@, Xy, y) = Y'e s lp, (X1, ..., X)),

Finally, the density of (£, ..., E—é‘) is achieved by integrating the last density with
respect to dy, which gives us

o0
/ Yie Ydylg, (x1,...,x,) =n!lp (x1,...,x,). O
0

We end this section by two useful corollaries of Theorem 1.3.
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Corollary 1.1. The vector (U, ..., Ugy) is distributed as

E, E1+E2 Ey+---+E,
Zn-l—l E Zn+l 0 Z?:ll El‘ ’

where E, . .., E,+1 are independent standard exponential random variables.

Corollary 1.2. The i-th order statistic Uy has the beta density with parameters i
andn + 1 —i. Its density is

n! 1 .
= 1—x)"" 0<x<lIl.
e F T R =t=
Proof. From Corollary 1.1, we deduce that
2 G;
Vo =i
Gl + Gn+1—z

where G; and G,+1—; are independent gamma random variables with parameters
i and n + 1 — i, respectively. The conclusion follows from Lemma 20.9 in the

Appendix. O
Of particular importance is the distribution of Uy = max(Ui, ..., U,), with
density nx"~! on [0, 1]. Another important order statistic is the median. The median
of Uy,..., Uyy1is Uy Its density is the symmetric beta,
2 1
=200y, 0sxst

1.2 The probability integral transform
and the k-th order statistic

Throughout the book, the vector space R4 of all d-tuples x = (x1,...,x4) is
equipped with the Euclidean norm ||x| = (x7 + -+ + x3)/2. For p > 0, we denote
by B(x, p) the closed ball in R centered at x of radius p, i.e., B(x,p) = {y € R :
lly — x|| < p}. Similarly, we define B°(x, p) as the open ball centered at x of radius
p.ie,Bx,p) ={y e R?: |y — x|l < p}.

The probability integral transform states that if U is uniform [0, 1] and the real-
valued random variable X has continuous distribution function F, then

Fx) 2

Now, let X be a R?-valued random variable with distribution U, and let x be a fixed
point in R?. When p has a density f with respect to the Lebesgue measure, then
the random variable | X — x|| is continuous, and the probability integral transform
implies that
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n(B, X =x])) £ U.

If Xy, ..., X, are i.i.d. with common distribution u, and if Uy, ..., U, are i.i.d. uni-
form [0, 1], then

2
(1B IX = xID). ... (B NX, = x1D)) Z (Vs Uy,
and using reordered samples with

X)) —x[| <---

IA

Xy x) =]
and
Up <+ < Up,
we have
(r(B&.1X0) 00 =xDD). .. k(B Xy (x) =x1D)) Z (Vg U) -

The study of p(B(X, || Xx) (x) —x||)) is thus the study of Ug,.

At numerous places in the book, the index k is allowed to vary with n. In this
case, we continue to use the notation & (instead of k,) and implicitly assume that
1 < k < n. Observe that

k
EUy = —,
(k) n+ 1
since, by Corollary 1.2, U, is Beta(k, n 4 1 — k). Similarly (see Section 20.9 in the
Appendix),

k(n+1—k)

VU = —— %
® = i+ D2 +2)

where the symbol V denotes variance. Therefore, by Chebyshev’s inequality, for
5 >0,

P ‘U k ’> Sk < VU(k)
O 01T a1 T Gk/(n+ )2
_ 1 Xn—l—l—k
T 8% n+2
1
< —.
= 5%

Thus, we immediately have the law of large numbers:
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Theorem 1.4. Ifk — o0, then

U
B 1 n probability.
k/n

The strong law of large numbers can be shown using tail inequalities for U, . In
particular, for § > 0,

P{U(k) > UJFTS)]‘} - ]P’{Bin(n, W) < k}

k
< k—(14 8k —kl —_—
<o (x 1+ k= k1oe (755 )
(by Chernoff’s bound—see Theorem 20.5 in the Appendix)

= exp ([log(1 + 8) — 8]k)

and, for § € (0,1),

]P’{U(k) 4 _’15)]‘} = P {Bin(n, 152%) = k|

k
< exp (k— (1 —=38)k —klog ((1 — S)k))
= exp ( [6 4+ log(1 — 8)] k).

Both upper bounds are of the form ¢~*f for some a > 0, and thus, by the Borel-
Cantelli lemma:

Theorem 1.5. If k — oo such that, for all @ > 0,

Ze—“k < o0, (1.1)
n>1
then
Uy
—— — 1 almost surely.
k/n

We note that k/ log n — oo is sufficient for (1.1). It is a fun exercise to show that
if k is monotonically increasing, then (1.1) implies k/ logn — oo as well.

Theorem 1.5 implies the strong law of large numbers. However, something gets
lost in the Borel-Cantelli argument. We offer the following “improved” strong law
of large numbers, which is roughly equivalent to a result by Kiefer (1972).
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Theorem 1.6. If k — oo such that, for alln,m > 1,

lfk”k—:"'fw(%), (12)

where > 1 is an increasing function with limg o ¥ (8) = 1, and ifk/(loglogn) —
oo, then

Y
k/n

— 1 almost surely.

We note that the smoothness condition (1.2) is satisfied for most monotone
choices. In particular, it holds if k, = [n®] for any & > 0, or if k, = [log® n]
for any 8 > 0 (|-] is the floor function). Because the proof requires only minimal
effort, and introduces a well-known sequencing trick, we offer it here.

Proof (Theorem 1.6). We partition the integers into sections defined by the
thresholds

ne=[(1+8".

where £ = 1,2,..., and § is a positive constant to be selected later. For all n large
enough and

ng <n=ng4p,

we have, using the fact that Uy ) is increasing in k (for fixed n) and decreasing in n
(for fixed k),

L& Uk, +1.1041) - Uk, ) - Utk me+1) at
kngypo/(ne +1) = ko/n T kyg1/net

By the Borel-Cantelli lemma, we are done if we can show that, for all € > 0,

Ry.

ZP{R[>1—|—8}<OO

=1
and, for all ¢ € (0, 1),

ZP{LZ <l—¢g} <o0.

>1

We show the part involving R;, and leave the other part as a small exercise.
Observe that

1+ &)k,
]P){Rg > 1 + 8} = P{U(kn[+],ng+l) > M}

n+1

_ . (1+8)kn‘+1
= P{Bln(l’l( + 1’T+f> < k"é-H} .
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Since

1 1+ 8¢t 1
ne + (1+8)2(+)(+8): +8’
ng41 (1 + 8! 1+34

then, for § < &, by Chernoff’s bound (Theorem 20.5),

P{R, > 1+ ¢}
ne + 1 kn nyg41 1
=P (knéle T (1 Mot = Ky, log (k l: ) ne + 1 “1+e))
ng
Using
ne+1_ (14 8)* _ 1 M knz+1>1
nerr — (+HF 148 me+1 77 ke
and

kﬂ4+1 < (”l+1 —ng—1

o )51&(5),

kng+l -

we bound the last expression by

1
exp (knm [ws) - Y@ logll + s)D .

The quantity in the square brackets tends to log(1 + &) —e < 0 as § | 0. So, choose
& > 0 such that its value is —« for some « > 0. Thus,

P{R; > 1 + &} < ¢ %nt1,
For all n large enough, we have k, > % log log n. Therefore, for all £ large enough,
P{R; > 1 + &} < exp (—2loglog(n; + 1))
. 1
- log*(ne + 1)

S S
= 2log?(1 + §)

so that

ZP{R@ > 14 ¢} < oo,
e>1

as required. O



Chapter 2
The nearest neighbor distance

2.1 Consistency

Let X be a random variable taking values in R4, and let X;,...,X, be an
i.i.d. sample drawn from X. For fixed x € R?, we denote by X(1)(x), ..., X (X)
a reordering of X, ..., X, according to increasing values of ||X; — x|, that is,

Xy () =x[| < -+ < [ Xy (x) — x].

If X; and X are equidistant from x, i.e., if ||X; —x|| = [|X; —x|| for some i # j, then
we have a distance tie. By convention, ties are broken by comparing indices, that is,
by declaring that X; is closer to x than X; whenever i < j.

Let k be an integer comprised between 1 and n. A natural concern is to know
whether the distance || X (X) — X]| approaches zero in some probabilistic sense
when the sample size tends to infinity and k may possibly vary with n. To answer
this question, denote by u the distribution of X, and recall that the support of X
(or support of w) is defined by

supp(p) = {X eR?: u(B(x, p)) > 0forall p > 0} .

Its properties are well known (see, e.g., Kallenberg, 2002):

(i) supp(p) is a closed set.
(if) supp(u) is the smallest closed subset of R? of y-measure one.
(iii) One has P{X € supp(p)} = 1.

A density is an equivalence class. For fixed f, its equivalence class consists of
all g for which [, g(x)dx = [, f(x)dx for all Borel sets A. In particular, if f = g
Lebesgue-almost everywhere, then g is in the equivalence class of f. Define

© Springer International Publishing Switzerland 2015 13
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14 2 The nearest neighbor distance

f(y)dy /B ( )f (y)dy
X,p

— liminf 2250 Fx) = limsup 252
100 = T e T IR T

where B(x, p) is the closed ball centered at x of radius p, and A denotes the Lebesgue
measure on R?. Both f and f are equivalent to f since f = f = f at A-almost all x by
the Lebesgue differentiation theorem (see Theorem 20.18 in the Appendix). If the
probability measure u has density f, it is in general not true that

supp(p) = {x € R’ : f(x) > 0},

where A is the closure of the set A. However, we have the following:

Lemma 2.1. Let the probability measure p have a density f. If A = {x € R? :
f(x) > 0}, then supp(u) = A.

Proof. If x € A, then p(B(x, p)) > 0 for all p > 0, and thus A € supp(u). Since

supp(u) is closed, A C supp(p).
Next, we take x € supp(u). We construct a sequence {x,} € A with x, — X,

which shows that x € A, and thus supp(u) < A. Since x € supp(u), we have
w(B(x, 1/n)) > 0 for all n. For fixed n, find x,, in B(x, 1/n) such that

/ f(y)dy / f(y)dy
- B(x,1/n) _ B(x,1/n) -0
~ A(B(x,1/n)) A (B(x,1/n)) ’

J(xn)

sox, € A, and ||x, —x|| < 1/n. |

The support of the probability measure p plays an important role in nearest
neighbor analysis because of Lemma 2.2 below.

Lemma 2.2. Forx € RY, set

px = inf{[ly — x| :y € supp(p)} .

Ifk/n — 0, then | Xy (X) — X|| = px almost surely. In particular, if X € supp(i)
and k/n — 0, then | X (X) — x| — 0 almost surely.

Proof. First note, since supp(ut) is a closed set, that py = 0 if and only if x belongs
to supp(u). Moreover, by definition of the support, X (x) falls in supp(u) with
probability one. Therefore, with probability one, || X (x) —x|| > px. Now, lete > 0
be arbitrary, and let

px=P{X—x|| e+ p} =pn(B(x e+ py) > 0.



2.1 Consistency 15

Then, for all n large enough,

P {1 X@ (x) = x| = px > &} = P{|[ X (X) — x| > & + px}
= P {Bin(n, px) < k}

<P {Bin(n,px) —npx < _n§x} .

Thus, by Markov’s inequality and Corollary 20.2 in the Appendix,

E|Bin(n, px) — npx|*
(npx/2)*
< C”2E|Ber(l?x) _px|4

(an/2)4
16¢

<> 2.1
< i 2.1)

P {1 X (x) — x|| — px > &} <

where c is a positive constant. These probabilities are summable in n for all ¢ > 0.
Therefore, || X (x) —X|| = px almost surely. The second assertion of the lemma is
clear. o

Remark 2.1. We leave it as an exercise to show, using Chernoff’s bound
(Theorem 20.5 in the Appendix), that for k/n — 0 and all n large enough,

P{IXw(®) =Xl — px > e} < e

for some o > 0 (depending upon x and ¢). O

Since the support of X is of p-measure one, we conclude from Lemma 2.2 that,
at p-almost all x, || Xy (x) — x| — 0 almost surely whenever k/n — 0. In the
same vein, we have the following lemma, which answers the question asked at the
beginning of the chapter.

Lemma 2.3. Assume that X is independent of the data Xy, ...,X,. If k/n — 0,
then || X (X) — X|| — 0 almost surely.

Proof. By independence of X and X1, ..., X, we have, for all ¢ > 0,

IE”{||X(k)(X) -X]| > s} = /RdIP’{HX(k)(x) —x|| > s} ©(dx).

This last term converges to zero by Lemma 2.2 and the Lebesgue dominated
convergence theorem. This shows the convergence in probability towards zero of
I X#) (X) — X||. To establish the almost sure convergence, we use the more precise
notation X, (X) = X (X) and prove that the sequence {sup,,..,, | X m)(X) —
X||}n>1 tends to zero in probability. If k£ does not change with n, then_||X(k,m) X=X
is monotonically decreasing, so that
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sup ”X(k,m) (X) - X” = ”X(k.n) (X) - X“

m>n

and the lemma is proved. If & is allowed to vary with n such that k/n — 0, then,
according to (2.1), at p-almost all x, for some positive C and all n large enough,

1
P J sup || Xm (%) — x| > e§ <Y P{Xam®) —x[| > e} <C > —

m=>n m>n m=>n

This shows that sup,,~, [|X.m) (X) — x|| tends to zero in probability (as n — oo) at
p-almost all x, and thus, by dominated convergence, that sup,,-.,, [ X.m) (X) — X||
tends to zero in probability. O

2.2 Rates of convergence

As in the preceding section, we let X, X, ..., X, be i.i.d. random vectors of R4,
and let X(1)(X), ..., X (X) be a reordering of Xj, ..., X, according to increasing
values of | X; — X]|. For various applications and approximations, we will require
information on the size of

EIX1(X) — X2, (2.2)

and, more generally, of E||X()(X) — X||, for k an integer between 1 and n. This
(2008a); Penrose and Yukich (2011)—see also Bickel and Breiman (1983). Nearest
neighbor distances play a significant role in residual variance estimation (Devroye
et al., 2003; Liitidinen et al., 2007, 2008b, 2010), entropy estimation (Kozachenko
and Leonenko, 1987; Leonenko et al., 2008; see also Chapter 7), and convergence
analysis of estimates (Kulkarni and Posner, 1995; Kohler et al., 2006; Biau et al.,
2010; see also Chapter 14).

By symmetry, (2.2) is the same as E|Xq.1) — Xi||>, where Xi,..., X, are
i.i.d. random vectors, and X(; 1) is the nearest neighbor of X; among X, ..., X, .
Denoting by X{; 1y the nearest neighbor of X; among X, ..., X;—1, X;11,..., X4,
this is also the same as

n+1

1
— ) E|Xun - X% 2.3
n—i—l; X =Xl 23)

The quantity (2.2) can be infinite—just on the real line, note that it is at least
#]E|X(,,) —X(,,+])|2 if X(1) < -+ < X(u41) are the order statistics for Xi, ..., X,41,
because Xy, is the nearest neighbor of X, 1). It is easy to construct long-tailed

distributions with E|X(,) — X(,41)|> = o0.
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However, given that X; € [0, l]d, there are universal (i.e., distribution-free)
bounds for (2.2). This remarkable fact is captured in Theorem 2.1 below. Through-
out, we let V,; be the volume of the unit Euclidean ball in R¢, and recall that

/2

V:—a
T+

where I'(-) stands for the gamma function, defined for x > 0 by I'(x) =
Jo e dt.

Theorem 2.1. Let X takes values in [0, 117, Then, for d > 2,

1 2/d
E|I X (X) - X|* < :
X0 = XI7 <o ()

where

_ 40+ Vd)?

Ca
v/

Ford =1, we have

2
EIXHX) = X|? < —.
X1y (X) [ e ——

Remark 2.2. The set [0, 1]¢ is chosen for simplicity of the analysis. We leave it
to the reader to adapt the results to the case where X takes values in an arbitrary
compact subset of RY. O

Proof (Theorem 2.1). For the proof, it is convenient to consider form (2.3). Let
R = |Xun — Xill. Let B; = {x € R? : |x — X;|| < R;/2}. Note that when
R; = 0, then B; = @. Clearly, the B;’s are disjoint. Since R; < Jd, we see that
urtlB; [—“/TE, 1+ ‘/73]‘1 . Therefore, if A is the Lebesgue measure,

n+1
A (U Bi) < (1 + Va)".

i=1

Hence,

n+1 R d
D Va (5) < (1+ V. 24)
i=1
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Now, ford > 2,

s /2 |
R? < R¢
(by Jensen’s inequality)

1 de(1+¢3)d
“n+1 Vd '

The theorem follows immediately for d > 2. For d = 1, we only have

1 n+1 1 n+1
R’ < R R;
n—i—l; ’_<n+1; )Xlggﬁ-l
2
“n+1

Remark 2.3. Tt is a good exercise to show that, up to multiplicative constants
possibly depending upon d, these bounds are best possible, in the sense that

—2_— ford > 2
sup EX()(X) - X = { w7 =
all distributions of X on [0, 1]¢ s ford =1,
for constants «,. For d = 1, consider the distribution
1 1
P X=0}=—-, PX=1}=1-—-.
n n
Then
EXyX) —XP?>PX=0,X, =--- =X, = 1}
1 ( 1)” 1
=—-|1-=) ~— asn— oo
n n en

For d > 2, it suffices to consider the uniform distribution on [0, l]d and recall
that u(B(X, || X1)(X) — X)) 2 Uy, where U(j) < -+ < Uy, are uniform [0, 1]
order statistics (Chapter 1). Clearly, for this distribution, w(B(X, || X1)(X)—=X])) <
V4l X1)(X) — X||4. The conclusion follows by recalling that Uy is Beta(1, n) and
by working out the moments of the beta law (see Section 20.9 in the Appendix). O

For singular distributions (with respect to the Lebesgue measure), the behavior
of (2.2) is better than predicted by the bounds.
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Theorem 2.2. If X is singular and takes values in [0, 1]¢, then
n"?X1y(X) = X|| = 0 in probability.

(This theorem is valid for all d > 1.)

Proof. By Theorem 20.20 in the Appendix, if u is the singular probability measure
of X, and B(x, p) is the closed ball of radius p centered at x, then, at p-almost all x,

u (B(x, p))

v —o00 asp 0. (2.5)
I

We show that for any ¢ > 0,

&
P {1X0)(X) = X|| > = { — 0.

We have

&

timsup P {[X0)(X) = X|| > 7} = limsupE[ (1 - 1 (B(X. -77)))']

n—>o00
<& imn (11 (5(x ;75))) |

(by Fatou’s lemma)

<E [liﬂnligp exp (—nps (B (X. ﬁ)))}

(since 1 —u < e~ for all u)
=E [exp (— liminf nu (B (X, li)))]
n—00 n /d
=0
since p is singular—see (2.5). O
Thus, finally, we consider absolutely continuous X with density f on [0, 1]%.

(Note that in this case, by Holder’s inequality, flo.l]df'_z/d(x)dx < ooford >2)

Theorem 2.3. Let X have a density f on [0, 1]%. Then, for d > 2,

rG+1) _
! E|X 1) (X) = X|* —> (d—/[ ]ifl 2/4(x)dx.
0,1]4

2/d
Vd
Ford =1,
1 d
liminf 2’E[ X, (X) — X||* > —/ = >
n—>00 2 Jpapypso f(x)
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For d = 2, we have, for all densities f,

1 4
—+ o(1) < nE[Xn(X) — X|? < ;(1 + v2)2.

Remark 2.4. This theorem points out the special status of R!. On the real line, for
absolutely continuous X, |X(1)(X) — X|? converges at a rate above 1/n*. We recall
that if X is singular, then |X()(X) — X|> = op(1/n?). Therefore, |X()(X) — X|?
can be used to distinguish between a purely singular distribution and an absolutely
continuous distribution. O

Proof (Theorem 2.3). We will repeatedly make use of the gamma integral
® ri+1
/ e P = # . p > 0.
0 ple
We have

o0
M&ME—XW=A P (X0 (X) — X|P > 1} dr

_ /Oo E[(1-n (B VD))" ar

0

(where w is the distribution of X)

o [T o )

By the Lebesgue differentiation theorem (Theorem 20.18 in the Appendix), at
Lebesgue-almost all x, as p | 0,

w (B(x, p))
— 0 > ().
Vap
At such x, therefore, we have for fixed ¢, as n — o0,

(1 — U (B (x, nl%))) — exp(—f (x)Var?/?).

Fatou’s lemma implies

liminf n?/“E[X ) (X) — X|)?
n—>oo

%

/[0 14 /:o exp(—f (%) Vat"'*)f (x)drdx

2 f(®)
- 1 — d
(d+ )A@mﬁo«@nwﬂdx
F (% + 1) 1—2/d
=4 dx.
Vj/d /[;),l]d:f>0f (x)dx
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This shows the second assertion of the theorem, as well as the lower bound for
the first and third statements. To establish the upper bound for d > 2, we take an
arbitrary large constant R and note that

n*E|[X 1) (X) — X|* = n*/'E [||X(1)(X) - X||2]1[||xm(X)—x||5R/n1/d]]
+ n*“E [||X(1)(X) - X”2]l[||X(1)(X)—X||>R/n1/d]:I
def

=I+1IL

By Fatou’s lemma, we have

lim sup n*/“E [IIXm(X) - X||2]1[||x(1>(x>—x||sR/n1/d1]

n—>oo
RZ
5/ / exp(—f(x)thd/z)dtdx
[0.1¢ Jo

r+i1 B
< (dz/d ) / fl 2/d(x)dx
vV, [0,1)

Next, IT is small by choice of R. To see this, note again that, by (2.3),

nz/d n+1 5
Il = E (D 1Xan = Xl Ty —x, 1o/ | -
i=1

T n+1

Using R; for || X(; 1) — X;||, we already observed in (2.4) that

%m o, w20+ VD
P> dg — .
i=1 Vd

Set K = 27:11 Lig,~g/misa), and note that, necessarily, K < nay/R?. Then, by
Jensen’s inequality, whenever K > 0,

1 R aq
(E ZRz‘z]l[Ri>R/nl/d]) =< X ZR?]I[Ri>R/n1/d] =< X

i=1 i=1

Thus,

I’lz/d n+1
Il = n+ IE |:]l[1<>o] ZRiz]l[RpR/nl/d]:|

i=1

n agq 2/d
<" E|lkx (—) 1
= |: K [K>O]:|
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a
< _d
~ RY

which is as small as desired by choice of R when d > 2.
Finally, for d = 2, by (2.4),

n+1
7Y R <41+ V22

i=1

Since

n+1
n
E[|XH(X) - X|? = —E R? |,
nEIXo) (X) = X|* = —— [2:,}

i=1
the upper bound follows. O

We conclude this section by providing an extension of Theorem 2.1 to the
k-nearest neighbor (1 < k < n).

Theorem 2.4. Let X takes values in [0, 1]%. Then, for d > 2,

k 2/d
El X X) - X|* < ) (;) :
where

23+§ (1 + \/3)2

2/d

/

c, =

d
vy

Ford = 1, we have
8k
E| X (%)~ X|* < —.

Proof. The problem can be reduced to the nearest-neighbor inequality covered in
Theorem 2.1. First, notice that E| X (X) — X||* < d. But, recalling that V; < 6 for

all d > 1, we have, for 2k > n,
K\ 24
inf ¢/, (—) >d

n

and % > 1. Thus, the bounds are trivial for 2k > n, so we assume that 2k < n.
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Partition the set {Xj, ..., X,} into 2k sets of sizes n1, . .., ny, with

2k
Zn-zn and L£J<n~<tij+l.
=" 2kd = L2k

Let X(*l)(j) be the nearest neighbor of X among all X;’s in the j-th group. Observe
that, deterministically,

2k
1 .
X X) = XI| < 2 > IXG,6) = X|
j=1
and, similarly,

X (X) — X]|?

IA

|2
2 2 X80 =X,
j=1
because at least k of these nearest neighbors have values that are at least
I X# (X) — X]|. Apply Theorem 2.1 for d > 2 to obtain
2k

1 2/d
C
— d("ﬂrl)

j=

1
E| X0 (X) — X| <
k

2 2/d
1 2k
(%)

J=1

2/d
= 21+%C¢1 E .
n

For d = 1, we argue similarly and get the upper bound

2

2

Jj=1

~

1=

2%k

2 1 4k 8k
<-Y —=—. O

+1_k;n n

nj



Chapter 3
The k-nearest neighbor density estimate

3.1 Nonparametric density estimation

A random vector X taking values in R has a (probability) density f with respect to
the Lebesgue measure if, for all Borel sets A € RY, P{X € A} = [ [ f(x)dx. In other
words, if A is a small ball about x, the probability that X falls in A is about f(x)
times the volume of A. It thus serves as a tool for computing probabilities of sets
and, as a function that reveals the local concentration of probability mass, it may be
used to visualize distributions of random variables.

The purpose of density estimation is to estimate an unknown density f from an
i.i.d. sample drawn according to f. The view we take in this book is nonparametric,
thereby assuming that f is largely unknown and that no assumptions can be made
about its properties. Nonparametric estimation is particularly important when the
common parametric forms—often unimodal—are suspect. For example, pattern
recognition problems frequently involve densities that are multimodal and, even in
the unimodal situation, there is rarely enough information available to warrant any
parametric assumption. Thus, in the nonparametric context, a density estimate f;, is
a Borel measurable function of x and the data X, ..., X,:

fn(x) :ﬁl(X;le cee vXn)~

Often, but not always, f, is itself a density in X, i.e., it is Lebesgue-almost everywhere
nonnegative and integrates to one. The choice of a density estimate is governed
by a number of factors, like consistency (as the number of observations grows),
smoothness, ease of computation, interpretability, and optimality for certain criteria.

The problem of nonparametric density estimation has a long and rich history,
dating back to the pioneering works of Fix and Hodges (1951, 1952)—see also Fix
and Hodges (1991a,b)—, Akaike (1954); Rosenblatt (1956); Whittle (1958); Parzen
(1962); Watson and Leadbetter (1963), and Cacoullos (1966) in the late 50s and
early 60s of the 20th century. The application scope is vast, as density estimates

© Springer International Publishing Switzerland 2015 25
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are routinely employed across the entire and diverse range of applied statistics,
including problems in exploratory data analysis, machine condition monitoring,
pattern recognition, clustering, simulation, detection, medical diagnoses, financial
investments, marketing, and econometrics. There are too many references to be
included here, but the monographs by Rao (1983); Devroye and Gyorfi (1985);
Silverman (1986); Devroye (1987); Scott (1992), and Tsybakov (2008) will provide
the reader with introductions to the general subject area, both from a practical and
theoretical perspective.

3.2 Distances between densities

The quality of a density estimate is measured by how well it performs the task at
hand, estimating probabilities. In this respect, denoting by % the Borel sets of R¢,
the total variation criterion dyv (f,,,f) is a natural distance:

//; fu®)dx — /A f(x)dx

It should be noted that whenever f; is a density, 0 < dry(f,,f) < 1. When drv(f,,,f)
is smaller than ¢, then we know that for any Borel set A, the probability assigned to
it by f differs at most by ¢ from the probability assigned to it by the estimate f,,. In
other words, drv (f;,f) is a practical easy-to-understand quantity.

Suppose now we look for an estimate f,, for which dry(f,,f) — 0 in some
probabilistic sense (e.g., almost surely, in probability, or in expectation) as n — oo.
We see that this property will follow whenever

dry (fu.f) = sup
A

[ 1h0 — et ax — 0
Rd
in the same probabilistic sense. Indeed,
drvthef) = sup [ 1660~ el ax < [ 0 -9 ax
A€B JA R4

and, if f,, is itself a density,

vt = 5 [ 10—l ox

(see, e.g., Devroye and Gyorfi, 1985). This shows the importance of [, [f(x) —
f(x)|dx for the study of the uniform convergence properties of the corresponding
probability measures.
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As might be expected, there are other possible global measures to assess the
proximity between the estimate f;, and the target density f. First and foremost, there
is the L” distance

1/p
L (fnf) = ( fR o(%) — ()" dx) for 0 < p < 00
€8S SUPyeRrd lfn (X) _f(X)| forp = 00,

where the essential supremum is with respect to the Lebesgue measure. The entropy-
related Kullback-Leibler divergence is defined by

f(x) :
K(f.f,) = /l;df(x)log (f,,(x))dx if f < fy,
00

otherwise,

where f < f, means that [, f(x)dx = 0 for every set A for which [, f,(x)dx = 0.
For p > 0, the Hellinger distance takes the form

1/p
H (fu.f) = (/Rd 1P (x) — 7P ()| dx) .

Clearly, H' is the standard L' distance. For an account on the various properties and
relationships between these and other global proximity measures, we refer to the
introductory chapter of Devroye (1987).

The k-nearest neighbor density estimate that is discussed in this chapter has
Jra [fa(X)] dx = oo (Proposition 3.1 below), so that it is not suited for applications
where one wants [p, [f,(X) — f(X)|dx to converge to zero as n tends to infinity.
Thus, for this or other reasons, we may also be interested in estimates f;, for which
f2(x) = f(x) in some probabilistic sense at Lebesgue-almost all x. We say that f;, is
a weakly (strongly) pointwise consistent estimate of f on A if

f(x) > f(x) in probability (almost surely) for all x € A.

3.3 The k-nearest neighbor estimate

Our goal in this and the next few chapters is to investigate the properties of the
k-nearest neighbor density estimate, which is defined below. Let X,...,X, be a
sequence of i.i.d. random vectors taking values in R, and assume that the common
probability measure p of the sequence is absolutely continuous with respect to the
Lebesgue measure A, with a density f.



28 3 The k-nearest neighbor density estimate

By the Lebesgue differentiation theorem (Theorem 20.18 in the Appendix), we

have, at A-almost all x,

1 (B(x, p))

f(x) = lim ———=.

plo A (B(x,p))
In view of this relation, one can estimate f(x) by the following method. Let k be an
integer such that 1 < k < n, let Ry)(x) be the distance from x to the k-th nearest
neighbor in the data sequence, and let u, be the empirical distribution, i.e., for any
Borel set A € R,

1 n
Hn(A) = - Z Tix;ea-
i=1

The k-nearest neighbor density estimate is

tn (B(X, Rty (x)))
A (B(x, Ry (x)))

which, by construction, can also be written as follows:

k
na (B(X,R(k) (X))) .

It was first introduced by Fix and Hodges (1951)—see also Fix and Hodges
(1991a)—in the context of nonparametric discrimination, and further worked out by
Loftsgaarden and Quesenberry (1965). The basic difference between this estimate
and the kernel estimate of Akaike (1954); Rosenblatt (1956), and Parzen (1962)
is that here a specific number of observations k is given and the distance to the
k-th closest from x is measured. On the other hand, in the kernel approach, one
counts the number of observations falling within a specified distance /# from x.
Thus, the nearest neighbor and the kernel methods are somehow dual, the latter
being equivalent to fix R (x) and then determine k. A major practical advantage of
the k-nearest neighbor estimate is that it is particularly easy to compute.

Let X(;(x) be the i-th nearest neighbor of x among Xj,...,X,. (Note that in
this density context, distance ties happen with zero probability and may be broken
arbitrarily.) Thus, |X1)(x) —x|| < -+ < || X (x) —X||. Denoting by V, the volume
of the unit ball in (R?, || - ||), and observing that

Ja(%) =

fu(x) =

A (B(x. Ry (X)) = Va[ Xy (x) — x[|,
we have the following definition:

Definition 3.1. For 1 < k < n, the k-nearest neighbor density estimate is defined by

k
nVal X (x) = x[|°

x € R4,

fn(X) =



3.4 First properties 29

Adopting the convention 1/0 = oo, we note once and for all that, for fixed
X, f»(x) is positive and finite with probability one. Similarly, for fixed values of
X1, ..., Xy, fu(x) is positive and finite at A-almost all x. We also recall that in the
d-dimensional Euclidean space,

72

Vi= ——.
CTET

where I"(-) is the gamma function.

3.4 First properties

The following proposition states some trivial properties of the k-nearest neighbor
estimate.

Proposition 3.1. Let f, be the k-nearest neighbor density estimate. Then, for
0<p=1

/ fP(x)dx = oo.
R4
On the other hand, for p > 1, with probability one,

/ fPx)dx =00 ifk =1
Rd

/ fAx)dx < oo ifk> 1.
R4
In addition, still with probability one,

{ eSS SUPyepafn(X) = 00 ifk =1

€SS SUPyepafn(X) < 00 ifk > 1,

where the essential supremum is with respect to the Lebesgue measure.

Proof. Set

Zn = max ”Xl”
1<i<n

Clearly, for fixed x € R¢, by the triangle inequality,

X (x) —x|| < [IX]| + Z,.
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Thus,

kP 1
fP(x)dx = / dx
/]Rd nVy Jra X (x) — x|l
kP 1
7 i dx.
nVa Jrd (x]| + Zy)

Using a hyperspherical coordinate change of variables (see, e.g., Miller, 1964,
Chapter 1), we obtain

1 27Td/2 o0 rd—l
[ wm e,
®e ([Ix]| + Z,)" r()Jo (r+zy

and the last integral is easily seen to be infinite whenever 0 < p < 1.
Assume now that p > 1. Let

Si={xeR: Xy(x) =X},

and observe that X; belongs to the interior of S; with probability one. For k = 1,
we have

1
fu(x) > mﬂ[xesl]-
Thus,
/f,{’(x)dxz lp/ ! dx
Rd vy Js 1X1 — x|l
- / LI,
Vi Js—x, Ixlpd
where

ST — X, ={X—X1 ZXES]}.

Using once again a hyperspherical coordinate change of variables, we see that the
integral on the right-hand side is infinite for p > 1.
Ifk>1,let,forl <i<n,

Si={xeR: Xpx) =X;}.

It is easy to see that, on the event E, = [X; # X;,j # {], the sets Sy,...,S, form a
partition of RY. Thus, on the event E,,,

k + 1
)= 3 e,
Ja (%) ”Vdizzl X, — xS
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and therefore,

2 - 1
P X dX = — T dX
/Rdf"( = v ;/S 1X; — x[

= npvp Z[ Xl |X||[)d

On E,, each X; belongs to the interior of the complement of S; and thus, by a
hyperspherical coordinate change of variables, we obtain

1
—— dx < o0.
/s[—x[ [Ix[|P

The conclusion follows by observing that the event E, has probability one. The
assertion with the supremum uses similar arguments and is therefore omitted. O

Proposition 3.1 implies that it is impossible to study the k-nearest neighbor
estimate properties in L' or, equivalently, that the k-nearest neighbor estimate is
not attractive for applications where one wants [, |f,(x) — f(x)|dx to converge to
zero in some probabilistic sense as n tends to infinity. Thus, in the remainder of the
chapter, we focus on pointwise consistency properties of the estimate f;,.

3.5 Weak and strong pointwise consistency

Theorem 3.1 below summarizes results obtained by Loftsgaarden and Quesenberry
(1965); Wagner (1973), and Moore and Yackel (1977a). However, our proof
approach is different and relies on the results of Chapter 1 on uniform order
statistics. It is stressed that it holds whenever x is a Lebesgue point of f, that is,
an x for which

d
p ) Juen™

Wi T
B(x,p)

As f is a density, we know that A-almost all x satisfy this property (see Theorem
20.18 in the Appendix).

Theorem 3.1 (Pointwise consistency). Let f; be the k-nearest neighbor density
estimate. If k/n — 0, then, for A-almost all x € R,

(i) f,(x) = f(x) in probability when k — 0o,
(i) fu(x) = f(x) almost surely when k/logn — oo;
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(iii) f,(x) — f(X) almost surely when k/loglogn — oo and there exists an
increasing function W > 1 with limg o ¥ (8) = 1, such that

15%5“%), nom> 1. 3.1)

Proof. Set Ry)(x) = || X% (x) — x||. Recall (Chapter 1) that

w (B (x. Riy(®))) Z Uy,

where Uy is the k-th order statistic for a uniform sample. The k-nearest neighbor
estimate can be written as

_ k/n
00 =75 (B (x, Ry (%)))
_ HBERy™)) k/n
A(B(x.Rw(x))  p(B(x.Rp(x))

def

gn(X) X hy(X).

Assume that x is a Lebesgue point of f. When x is not in the support of u, then
f(x) = 0 (since x is a Lebesgue point) and there exists px > 0 such that || X)(x) —
x|| > px with probability one. Therefore, in this case,

k/n

fu(x) < Vapd

—0 ask/n—0.

So, assume that x is in the support of ©. We note that, for fixed ¢ > 0,

lgn(x) —f(X)| < &

if Ry (x) < p(x, €), for some positive p(x, €). Thus,

[/ (%) = f(X)] < |8n(X) = F(X)] hn(X) + f(x) |n(x) — 1]
< ehy(x) 4 00 1Ry 0> p(x.e)] . (X) A (X) — 1]
< (8 +f(X)) |hn(x) - 1| +e&+ OO-IL[R(;()(X)>p(x,s)]-

According to Theorem 1.4, the first term on the right-hand side tends to zero in
probability if f(x) < co and k — oco. By Theorem 1.5, it tends to zero almost surely
if f(x) < oo and k/ logn — oo. Besides, it tends to zero almost surely if f(x) < oo,
k/loglogn — oo and k satisfies (3.1), by Theorem 1.6. The second term is small
by choice of ¢. The third term tends to zero almost surely if x is in the support of
(which we assume) by Lemma 2.2. The proof is finished by noting that A-almost all
x have f(x) < oo and are Lebesgue points of f. O



Chapter 4
Uniform consistency

4.1 Bounded densities

This chapter is devoted to the study of the uniform consistency properties of the
k-nearest neighbor density estimate f,. Before embarking on the supremum norm
convergence, it is useful to understand the behavior of f, on bounded densities. We
denote the essential supremum (with respect to the Lebesgue measure A) of the
density f by

Iflloo = inf{r > 0: A{|f| > 1} = O}

Theorem 4.1. Assume that ||f|lcoc < o0. If k/logn — oo, then the k-nearest
neighbor density estimate f, satisfies

Sop] sup i > 27 e <o

n>1 x€RI
In particular, with probability one, for all n large enough,

sup £,(x) < 27|/ oo

x€R4
Also, with probability one, for all n large enough,
1 1 1/d
XLHH{d X (x) — x| = 5 (m) .

Before proving the theorem, we observe the following:
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Lemma 4.1. If ¢ is a nonnegative convex increasing function, ¢(0) = 0, and
X1,X2, ... are nonnegative real numbers with x; < x for some x > 0, then

Zgo(x,-) < @ Z.Xi.
i=1 i=1

Proof. By convexity, note that ¢(x;) < ¢(x)x;/x. O

Proof (Theorem 4.1). The proof uses an infinite grid. Given a radius p, we place the
centers of the grid at

g =7

Vd

where Z¢ is the space of all integer-valued vectors in R, and p/+/d is a scale factor.
Fory € ¢, define py = u(B(y,2p)), where u is the distribution associated with f.
Let X, ..., X, be ni.i.d. points drawn from p on R4, and let

M, = max |B(x, p)|,
x€R4

where
n
def
|B(X7 p)l = Z ]l[X;EB(x,p)]~
i=1

For each x € R, there exists y € ¢ with ||y — x|| < p. Take such ay. Then

|B(x, p)| = |B(y.2p)].
since B(x, p) € B(y, 2p). Therefore,

M, < max |B(y.2p)|.
Note also that

< V;(20)¢ )
max py = 120)|f Il oo

Finally, Zyeg Py is bounded from above by the maximal overlap among the balls
B(y,2p), y € ¢. But a square cell of dimensions 4p x --- X 4p contains at most
(4\/3 + 1)? points from ¢, and thus, the overlap is bounded by that number too.
Therefore,

Y py = @Vd+ 1)

yEY
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Consider the function ¢(u) = e “u*. It is easy to verify that ¢ is convex on
[0, k — +/k] and that ¢(0) = 0. Thus, if

nVa(20) Iflloo < = < k—k

N

(this is possible for all n large enough since, by our assumption, k — oo as n — 00)
we have, by Lemma 4.1,

B B k k—1
Semap) = (5) Lo,

yEY yeY
AL
<2 (E) (4d + 1)n.
With the preliminaries out of the way, we note that

inf || X (x) —x|| <p

xR
implies that

maxyeps [B(X, p)| = k.,
and thus that

maxyey |B(y,2p)| > k.

Now, choose p such that

k
Vo) If oo = 5.

which implies that maxyeq npy < k/2. Then
P{ inf X0 () — x|l < p}
x€R4

<Y P{B(y.20)| = k}

yEY
< Y P{Bin(n.py) >k}
YEY :py>0
k
< Z exp | k —npy —klog | —
YEY :py>0 Py

(by Chernoff’s bound—see Theorem 20.5 in the Appendix).
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It follows that

Pl int X000 —x1 < o} = () Y eyt

ye¥4
k—1
< (4\/;1+ 1)dn (%)ke_k/z (g)
— a2n (e ¢
= (4Vd+ 1) 7(7) .

Since k/ logn — oo, we have
k
S (i) < oo.
2
n>1
Therefore, by the Borel-Cantelli lemma, with probability one, for all n large enough,

| L 1/d
inf [[Xg®x) —xlzp={>+-7—) -
nf [Xw(x) —x] = p 2(2an|lf||oo)

This shows the second statement of the theorem. The first one follows by observing
that

Pl s £ > 201l =P inf X9 —xl <.

xERd

Remark 4.1. We leave it as a good exercise to show that the coefficient 27*! in the
theorem can be replaced by (1 + ¢) for any ¢ > 0. O

4.2 Uniformly continuous densities

Since a continuity point of f is also a Lebesgue point, the proof of Theorem 3.1
reveals that |f,(x) — f(x)| — 0 almost surely on the continuity set of f, provided
k/logn — oo and k/n — 0. Thus, if f is uniformly continuous, one is tempted to
believe that supycpa [f(X) —f(x)| — 0 almost surely, under the same conditions on
k. For d = 1, Moore and Henrichon (1969) showed that

sup |f»(x) —f(x)] = 0 in probability

x€R

if f is uniformly continuous and positive on R, if k/ logn — oo and if, additionally,
k/n — 0. Kim and Van Ryzin (1975), also for d = 1, proved the same result
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for a slightly different type of estimate under essentially the same conditions. In
the remainder of the section we prove the following theorem, due to Devroye and
Wagner (1977), yet with a different approach.

Theorem 4.2 (Strong uniform consistency). Assume that f is uniformly continu-
ous. If k/ logn — oo and k/n — 0, then the k-nearest neighbor density estimate f;,
is strongly uniformly consistent, that is,

sup |[fp(x) —f(X)| = 0 almost surely.

xERd

Notice that supyepe |/ (X) —f(x)| is indeed a random variable if f is continuous,
since it is possible to replace the supremum over R? by the supremum over a
countable dense subset of R? in view of the continuity of f and the shape of f,,
which is piecewise constant.

The proof of Theorem 4.2 begins with a lemma. As a prerequisite, we leave it as
an exercise to show that the uniformly continuous density f is bounded and vanishes
as ||x|| tends to infinity.

Lemma 4.2. Assume that f is uniformly continuous and that ¢ > 0 is fixed. If
k — oo and k/n — 0, then there exist a positive integer ny and o > 0 such that

sup P{|f,(x) —f(x)| = &} < e foralln > ny.

x€Rd

Proof. We introduce the modulus of continuity w(z) of f:

w(r) = sup |f(y) =f()],

ly—xll=t

and note that w(z) | Oas ¢ | 0. If B(x, p) is the closed ball centered at x of radius p,
then

(Fx) — w(p)) Vap < /B Y = (0 + 0lp) Vap'
X.p

Recall that
k
(X)) = ————,
nVaR{, (%)
where

Ry (x) = X (x) — x|

We have, for fixed ¢ > 0,

P{f(x) > f(x) + &} = P{Ryy(x) <1},
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with

i 1/d
= (nvd<f<x) n s)) '
Thus,

P{f,(0 = f(x) + e} = P {Bin(n. [y, , /9)dy) = k]
{Bln (f(x) + (1)) Vd) }

(n.
{Bm( [f@Fo@ o z) k}
)24

T T e
)1/ d) < % for all n > ny. Then we have a further

P
<P
P

<P

BNk

f(x)+e

/
s 22020

k
nVgae

Let ny be so large that a)((
upper bound of

P {Bin(n, L2 x £) > k} < P {Bin(n, Yol  £) > ]

P f)+e * o+

< e Pk

by Chernoff’s bound (Theorem 20.5), for §; depending upon ||f||c and & only.
Similarly, for f(x) > e,

P{fu(x) < f(x) — &} = P {Rgy(x) > 1} (4.1)

where now t = (m)l/ ‘ Expression (4.1) is bounded from above by

P {Bin(n, f(y)dy) < k% .
B(x,r)

Define t* = (#ﬁ)l/d. Let g be so large that w(r*) < 5 for all n > no. For f(x) >

2¢e, we have t < t*, and so

P{Bin( Socen f(y)dy) < k} P Bm( o) 5) < k}

fx)—e

= P{Bin(n, 2852 x £) < |
<P {Bln( lloo—e/2 k) < k}
" illoo—e n) —
< e Pk

by Chernoff’s bound, where 8, depends upon ||f]|so and &.
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For ¢ < f(x) < 2¢, we have

Py (x) —fux) = 26} = 0

and thus, combining both results,

sup P {f(x) —f(x) > 2¢} < e

x€Rd
for all n > ny. O
Proof (Theorem 4.2). According to Lemma 4.2, for every ¢ > 0, there exist ny and

o > 0 such that

sup P{|f,(x) —f(x)| > &} < e forall n > ny.

xERd

This is quite powerful, but the supremum is, unfortunately, outside the probability.
If G = {x1,...,X,q} is a fixed set of n4 points, then the union bound implies

IE”{ max Ifn(xi) —f(x)] > 8} < n?e™*  forall n > ny. 4.2)
<i<n

This is summable in n when k/ logn — c0. The proof is completed by relating our
supremum to this discrete maximum.

Using the uniform continuity of f, we first find a constant ¢ > 0 (and set A =
[—a,a]?,A* = [-a—1,a + 1]%) such that

£ 1 £
i;,l:f(X) = Sat1 and (2a)? < SaHT
Let
f(x) ifx ¢ A
X) = .
g() ﬁ[\f(y)dy if x € A.
Note that ||g|loc < &/2¢7!, by construction. Also, if X;,...,X, are i.i.d., drawn
from f, and Z,,...,Z, are i.i.d., drawn from the uniform law on A, then the
following sample Yy, ..., Y, is an i.i.d. sample drawn from g:

v - | X ifX; ¢ A
" Z; ifX; € A.

The verification is left to the reader. Note that

sup (/%) ~,00) = 3UpS(X) = .

X¢EA*
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and
sup (f,(x) —f(x)) < sup fu(x)
XEA* XEA*
< max ( sup fu(x), sup fn(x)> ,
X¢A*SR(k)(X)21 X¢A*ZR(k)(X)<1
where
Ry (x) = [ X (x) — x]|.
Therefore,
k
sup /() — (%)) < max | . sup g,
XEA* X¢EA*
where g,(x) is the k-nearest neighbor estimate for Yy,...,Y, (since, for x ¢ A*,

fu(X) = gu(x) if Ryy(x) < 1). By Theorem 4.1 for bounded densities, it follows
that, with probability one and for all n large enough,

k k
sup (£, () f(x))<max( 2 glloe )fmax(n_w’s)'

XEA*

Since k/n — 0, we see that with probability one, for all n large enough,

sup [fu(x) —f(x)| < e.

XEA*
Next, partition A* = [-a — 1,a + 1] into n? equal squares of volume (24t2)?
each. Denote these squares by C;, 1 < i < n?, and let G = {xi,...,X,q} be the
collection of their centers. We recall that, by inequality (4.2), with probability one,

max [f,(x;) —f(x)| < ¢

1<i<nd

for all n large enough. Define

Ay = max sup |f,(x) —fu(xi)] and  A; = max sup |f(x) —f(x)].

1<i<n? xe(; 1<i<n? xe(;

By the triangle inequality, we have with probability one and for all n large enough,

sup [fu(x) —f(X)| <&+ A1 + As.
XEA*
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Since (2a + 2)/n — 0, it is clear that A, — 0 by uniform continuity. Define

R, = inf R
i = Inf Re (x),

and recall from Theorem 4.1 that with probability one, for all n large enough,

o o 1 k 1/d
=P avillfle)

Note that for any £, X, y, we have

Ry (%) — Ry (¥)| < lIx—yl.

Thus,

sup |Ray(x) — Ry (y)| < sup [Ix —y||
x.yeCi X.y€C;

= diameter(C;)

2(a+ 1)vd

In particular,

sup R(k)(X) < sup |R(k)(X) —R,‘| + R <y +R.
xX€C; x€C;

Also, for x € C;,

k 1 1
lfn(X) _fn(xi)| = n_vd (mind (R(k)(x),R(k)(Xi)) - max? (R(k)(x)aR(k)(Xi))

so that, with probability one, for all n large enough,
k

1 1
nVq lr<nigd (R_ﬁi S+ Ri)d)

Ay

IA

A

k (]_ 1 )
ALY (I+y/p)

(since R; > p with probability one, for all n large enough)

k
= 1
wVapd o(1)

)

41
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(since y/p — 0)

=2 f oo x 0(1)

— 0 asn— oo.

This completes the proof. O

Remark 4.2. For d = 1, using empirical process techniques, Mack (1983) provides
almost sure rates of convergence for the quantity sup,c; |f,(x) — f(x)|, where J is
some suitably chosen interval. O



Chapter 5
Weighted k-nearest neighbor density estimates

5.1 Linear combinations

There are different ways to weigh or smooth the k-nearest neighbor density estimate.
Some key ideas are surveyed in this chapter. For some of them, consistency theorems
are stated.

Let f,x denote the k-nearest neighbor estimate, where we temporarily make the
dependence upon k explicit. One could consider linear combinations in a number of
ways. If (vy1,...,v4) is a probability weight vector (i.e., each v,; is nonnegative
and Z;Ll vy = 1), then a simple linear combination could be envisaged,

n

S = Z vnjﬁy-

J=1

Sufficient conditions for pointwise and uniform consistency can be derived almost
effortlessly from the results of the preceding chapters.

There are, of course, many other ways of combining k-nearest neighbor estimates
(see, e.g., Breiman et al., 1977; Moore and Yackel, 1977b; Rodriguez and Van
Ryzin, 1985, 1986; Rodriguez, 1986, 2001; Biau et al., 2011). One of particular
interest is the inverse average:

Jn =1 fnj .
In general, for p € R, p # 0, we may consider

(fn)p = Z Unj(fnj)p
=1
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as a way of averaging. All of these are consistent under modest conditions on
(Vnts - - - Upy). It provides a bottomless source of student exercises. For simplicity,
we only deal with the case p = 1.

5.2 Weak consistency

For now, we set

n

fn= Z vnjﬂzj»

j=1

where (vp, ..., Uy,) is a probability weight vector (by convention, we let v,; = 0
for j > n). As in the previous chapters, the distribution of the target density f is
denoted by w. Our first result concerns the weak consistency of f;,. ([-] is the ceiling
function.)

Theorem 5.1. Assume that, for all ¢ > 0,

E Vi + E vy >0 asn — oo.

j=[1/e] Jj=len]

(Or; equivalently, that there exist Sequences {k} = {k,} and {£} = {€,} withk < {,
such that k — oo, £/n — 0, and Zj:k vy — 1.) Then, for A-almost all x € R¢,

fn(X) = f(X) in probability
and indeed, if additionally v,; = v,y = 0, then, still for A-almost all x € RY,

Efa(x) —f(x)| = 0.

The proof of Theorem 5.1 starts with two lemmas.

Lemma 5.1. Ifx € R? is a Lebesgue point of f, then, for all ¢ € (0, 1),

liminf || X(1zn1)(X) —X|| > O with probability one.
n—>oo

Proof. If x is not in the support of 1, then with probability one || X(zn7) (X) —X|| > px
for some positive constant py, and the result follows. So, let us assume that x belongs
to the support of . In this case, for § > 0, u(B(x, §)) > 0 and

P{IX o (%) — x| < 8} = P{Bin(n. s (B(x.6))) > [en]}.

which tends to zero exponentially quickly in n by Chernoff’s bound (see Theo-
rem 20.5 in the Appendix) whenever w(B(x,8)) < &. But, since x is a Lebesgue
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point of £, w(B(x,8))/(Vs8?) — f(x) as § | 0 by the Lebesgue differentiation
theorem (Theorem 20.18). Thus, such a choice of § exists and we conclude the
proof by the Borel-Cantelli lemma. O

Lemma 5.2. Foranyx € R? and any ¢ € (0, 1),

lim sup || X(fen7)(X) — X|| < 0o with probability one.
n—>oo

Proof. For 0 < K < o0,
P{IX ety (%) — x| > K} = P{Bin(n. 12 (B(x. K))) < [en}.

which tends to zero exponentially quickly in n by Chernoff’s bound whenever
w(B(x,K)) > ¢+ % As K 1 oo, u(B(x,K)) 1 1, and thus, for all n large enough,
it is possible to choose such a K. We conclude by the Borel-Cantelli lemma. O

Proof (Theorem 5.1). We leave the proof of the last part to the interested reader. Let
us note only that it requires at all Lebesgue points x of f,

sup max [Ef,;(x) < oo.
n>1 1<j=n

For the first part, let x be a Lebesgue point of f. Define

B
Hipp= s | Bxsy /@)

and recall that H(p) — 0 as p | 0. We write R((x) = || X (x) — x|/, and define
Ug = (B (xR () -
We have, for any ¢ € (0, 1/2),

n

D o) —f)| < [ D v (%) — f(%)

j=1 j<[en]
+ ( Z vnj) (f(x) + max f,y-(x))
j=Ten szl
SI+1IL

By assumption, the first factor of I is o(1). The second factor of II is not more than

T VaR {77 )
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By Lemma 5.1,

lim sup

< oo with probability one.
noo Rif) (X) P ’

Therefore, II — 0 almost surely. Next, using the representation

(B Ry(X) j/n

0 =5 B (x Re)) ~ U

[0 + 08 (R 0) | % 222 12 = en
(V)]

where ® from here on represents an arbitrary random variable with |&| < 1, we see
that

I<f(x) Z vnj(jU/—(]’:—l) + H (R(fen)) (%)) Z (vnjx Z—U”))

j<[en] j=[en]

Recall from Lemma 5.2 that limsup,,_, o, H(R([zn)(X)) < oo with probability one.
Inspection of that proof shows that if f(x) > 0, then

lim sup H (R(fen)) (X)) < K. < 0o with probability one,
n—>oo

where K, is any constant strictly larger than H(§), with & the solution of

n(B(x,§)) = 2e.

If x belongs to the support of w, then, clearly, K, is as small as desired by choice
of &. On the other hand, if x is not in the support of u, then f(x) = 0 (since x is
a Lebesgue point) and R1)(x) > px for some positive constant py, with probability
one, and we have

J
nVapd

Joj(X) <

Thus, in this case,
e+1/n
I= Upj, n(X) < s
Z ifnj Vdp,’f

j=[en]

which again is as small as desired by choice of ¢.
Therefore, the proof is complete if

n

ifn
> (vn,- x U—U)) = Op(1) (5.1)

J=1
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and if
>y in _ 1’ = op(1). (5.2)
= 1o
We treat (5.1) first, bounding it by
j/n
max —.
t=i=n Ug)

For fixed t > 1, we have

<Y exp (j—J; —jlogt)
=1

(by Chernoff’s bound)
o0
<Y e,
j=1

where p = 1/1 + logt — 1, which is positive for r > 1. Hence,

i —p
P{ max J/—n >ty < ¢ ,
1<j<n U(]') 1—e"
and therefore

n

> (vnj x Z—U")) = Op(1).

j=1
Finally, we turn to (5.2), which is bounded from above by

(1+max ]/_n) Z Upj + max ]/—n—l
1<j<n U(/-) j<T1/8] j=11/8] U(/-)

def

=M1+ 1V,

where § > 0 will be chosen later. Now, by identity (5.1), one has III=op(1) since
Zisfl/zﬂ v, = o(1) for any fixed § > 0. Finally, for ¢t > 0 arbitrary small,
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PAV>r< ) (P{UV’ B n(1J+ »g “P{U@ i n(lj— t>})'

j=[1/81

Applying Chernoff’s bound to both probabilities on the right, we have

PAV > < Y (P +e7),

j=[1/8]
where
1 A
B =——+1log(l+1)—1 (whichis > 0)
I+t
and
1 S
y = 1 +log(l —#)—1 (whichis > 0).
So,
~p/5 o V/8
P{IV > 1} < )
¢ }_l—e_ﬁ+1—e_y
which is as small as desired by choice of §. This concludes the proof. O

5.3 Strong consistency

Strong pointwise and uniform consistency of weighted estimates can be problematic
if too much weight is attached to the misbehaving members in the family. We offer
a strong convergence theorem that takes care of this in a minimal manner—the most
worrisome f,;’s are of course those with small values of j. The technical condition
imposed is that for all fixed § > 0,

n=1 J=1(1/8)logn]

An example of (Vpi, ..., Uy) satisfying (5.3) is one in which v,; = 1/k forj < k,
where k/ log> n — oco. Another example has vy = 0 forj < k, and k/ logn — oo.
Theorem 5.2. If in addition to the conditions of Theorem 5.1, we have (5.3), then,
for A-almost all x € R4,

fu®X) = f(x) almost surely.
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Proof. The proof is as that of the previous theorem, in which the only modification
needed is in (5.1)—(5.2), which have to be replaced by

Z (v,l_,- X Jlj—n) = 0O(1) almost surely, 5.4)

Jj=1
and

j=1 ()

— 1‘ — 0 almost surely. (5.9)

This is achieved by replacing 1/§ in the proof throughout by (1/§) log n. We bound
(5.4) by

(. max ]U/—n) Z Uy +  max Z—ngV+VI.
J=(1/8)1ogn] Uy i<[(1/3)logn] J=1(1/8)logn] U

Now, note that forz > 1,

PVI>tp< > e,
j=[(1/8)logn]

where p = 1/t + logt — 1. Thus,

n—r/8

1—er

P{VI > 1} <

3

which is summable in 7 as soon as ¢ is so large that p > §. Therefore, with
probability one, for all n large enough, VI < 1.
Next, for ¢/ > 1,

j 1 ’

]P’% max ]/_n > t’} < lrﬂ—‘ e ",
j=l/8)1ogn] U §

where p° = 1/ 4+ logt — 1, and theretore, since p° > log(t' /e),

here p' = 1/¢' + log# — 1, and therefore, since p" > log(t'/e)

1
=L

J=[(1/8)logn]

Set

, t

= —
ngm/a logn] Unji
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and note, since

1
Z Upj =0 (logn) (5.6)

J=[(1/8)logn]
by condition (5.3), that ' > 1 for all n large enough. Then
PV > 1 < 2 3 1
— vy | logn.
BEAY i) o8
J=[(1/8)logn]

By condition (5.3), this is summable in n. Thus, with probability one, for all n large
enough,

V + VI < 2,

and ¢ was arbitrary. Finally, we deal with (5.5) as we did with (5.2):

n . .
j/n Jj/n
> |1 5(”531"”7) 2w
= 0 PO j<101/8) logn
j/n
max —_— =
j=1/8)1ognl | Ugy

def

= VII + VIIL

Using (5.4) and (5.6), we see that VII = o(1) with probability one. For arbitrary
small r > 0,

e~ (B/®)logn o= (y/8)logn
P{VIII > 1} <

1—er + 1—e7

using the same f and y introduced in the previous proof. This is summable in n if
8 < min(B, y). Thus, for such §, with probability one and for all n large enough,

VII + VIII < 2r.
Again, t was arbitrary, and therefore,
VII 4+ VIII — 0 almost surely

for all £ > 0 small enough. This concludes the proof. O

We conclude this section with the following simple theorem:
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Theorem 5.3. Assume that f is uniformly continuous. If there exist sequences {k} =
{kn} and {€} = {£,,} suchthatk < {, k/logn — oo, £/n — 0, and v,; = 0 forj < k
orj > {, then

sup |fu(x) —f(x)| = 0 almost surely.

x€ERd

Proof. Verify the proof for the standard k-nearest neighbor estimate (Theorem 4.2),
and note that for any y > 0, ¢ > 0,

> w7 | max 1@{ sup [foy(x) —f(x)| > s} < 0. (5.7)
n>1 k=j=<t xeR4
The theorem then follows by the union bound without further work. O

By (5.7), we also have the following result, which permits us to select the value
of k in the k-nearest neighbor estimate depending upon the data.

Proposition 5.1. Let K, = K,(X,...,X,) be a random variable such that almost
surely, K, /logn — oo and K,,/n — 0. Then, if f is uniformly continuous,

sup |f,(x) —f(x)| = O almost surely,

xR
where f, is the k-nearest neighbor density estimate with k = K,,.

Proof. Note that there exist sequences {k} and {¢} such that k < ¢, k/logn — oo,
{/n — 0, and with probability one, k < K,, < £. Thus, for & > 0, writing f,; for the
k-nearest neighbor estimate,

P sup |fuk,(X) —f(X)] > ¢ i.o.} <P{K, < kio.} +P{K, > {i.o.}

x€R4
—HP’{ max sup |f,;j(X) —f(x)| > e1.0.¢.
k<j<t yeRrd

The first two probabilities are zero. The last one is zero by the Borel-Cantelli
lemma if

Z]P’% maxlZ suR;:] i (X) —f(x)| > s} < 00.

=1 ksj<t xe
But the sum is bounded by

2 (e 01 ] ) <

n>1

which is finite in view of (5.7). O



Chapter 6
Local behavior

6.1 The set-up

No study of a density estimate is complete without a discussion of the local behavior
of it. That is, given a certain amount of smoothness at x, how fast does f,,(x) tend to
f(x)?Itis clear that for any sequence of density estimates, and any sequence a, |, 0,
however slow, there exists a density f with x a Lebesgue point of f, such that

fim sup /2™ =S O

n—>oo al’l
We will not show this, but just point to a similar theorem for the total variation error

in density estimation (Devroye, 1987). However, under smoothness conditions, there
is hope to get useful rates of convergence.

Let us begin by noting that to estimate f(x) using only || X; — x|, ..., [| X, — x||,
we might as well focus on the estimation of the density g of Y £ |IX — x| at 0. So,
the data are Y1, ..., Y, with ¥; = ||X; — x]||¢, where the exponent d is chosen for a

reason that will become apparent below. For d = 1, we have

gy) =fx+y) +fx—y), y=0,

and then, g(0) = 2f(x). For general d, if x is a Lebesgue point of f,

PAIX — x4 < B(x. p\/d
2(0) = lim UX x| < o} _ 1imM — Vf(x),
P40 1Y P40 Y

where u is the probability measure for f.
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6 Local behavior

The most essential tool in our study is Taylor series expansion, which states that
if g has £ > 0 continuous derivatives g (0), ..., ¢®¥(0) at 0, then

t L0 A
¢ =2 0y ouh. Lo
Jj=0 ’

If f is a smooth density on R, d > 1, then there is a multivariate Taylor series of
f around x (see, e.g., Giaquinta and Modica, 2009), which translates into a different

but related expansion for g. For d = 1, if f has £ continuous derivatives at x, then,
in view of

gy) =flx+y) +fx—y),

we have

2f®(x) for £ even
O (0) =
£ {0 for £ odd,

so all odd terms are absent. For d > 1 and £ = 2, the correspondence is as follows.
Letx = (xl,...,xd)T € R4, set

9 9 T
£ = (3—£(x>,...,a—i(x>) ,

and let /" (x) be the d x d Hessian matrix of partial derivatives

i _ aZf
£/ = (ax, 5 (x)) o

where T denotes transposition and vectors are in column format. Then the multi-
variate Taylor series of order two at x is given by

1
fE+y) =f®) +7®Ty + Eny"(X)y +o(lyl®). Iyl ¥ o.

Now, g(p) is the derivative with respect to p of

PAX M s} = [ pooays [ oTvay
P

B(0.p'/4)

1
+ 5/ ny”(X)yder/ o([lyll*)dy
B(0.p!/4) B(0.p/d)

\%
= FVap + 0+ —°

dy
v (X)y—— + o(p'T¥%).
B(0,p/d) Vap
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The remaining integral can be written as

LBV Y],

where Y is uniformly distributed inside B(0, p'/¢). By rescaling, this is

V,plt2/d
~ BT (02,

where Z is uniform in B(0, 1). It is a straightforward exercise to show that

7 2 Ul/dX (va'-~aNd),
V2 i N

Ny, are i.i.d. standard normal random variables, and U is uniform
[0, 1] and independent of the N;’s. Clearly,

S
LN Lo

where Ny, ...,

Therefore,
Vdp1+2/d _ Vdp1+2/ 2a
———EZ'/" (2] = == — xEU xZ 2()
j=1
Vpl+2/d .
= X X tr X
Tz <)

d

Vi
tr(f" 1+2/d
IR O

where tr(A) stands for the trace (i.e., the sum of the elements on the main diagonal)

of the square matrix A. We conclude that for general d, if f is twice continuously
differentiable in a neighborhood of x, and y | 0

g0) = |:f(X)Vd))+tr(f”(X))2 T '+2/"]+o(yz/")

= FOOVa o+ 003437 + 07,

These expressions are our points of departure. Although g is univariate, notice the
dependence upon d in the expansion about 0
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6.2 The first example: univariate case

In this section, we discuss the estimation of g(0) when d = 1, assuming that f (and
thus g) has two continuous derivatives in a neighborhood of x. Since, for y | 0,

50) =20 + 22 o).

we have

o "
w(B(x, p)) = fo g()dy = g(O)p + == ( ) P>+ p’w(p).

where w(p) = o(1) as p | 0. Four cases can be considered according to whether
g(0) =0, g(0) # 0, combined with g”(0) = 0, g”(0) # 0. The most important one

is g(0) # 0, 8"(0) # 0.
As in the previous chapters, we define X(;(x), 1 < i < n, by reordering the
IX; — x||’s, so that

Xy (o) —xll < -+ < (1 Xy () — x|
We write simply Y(j) < --+ < Yy, with
Yo = [Xp () =]

Recall from Chapter 1 that

(u (B(.Y). ... i (BGx, Y(,l)))) Z (Ugy.....Uw) .

where Uy, ..., U, are i.i.d. uniform [0, 1] random variables. Thus, in particular, we
have

2 g"(0)
Uw = g0)Yu + o Yoo + Zi.

where Z; =Y, (3k)w(Y (k). When g(0) # 0, inversion of this formula yields

2 Uy  g'(0)

®7 20)  6g*(0)

ng) + U(Sk)E(U(k))s

where €(p) = o(1) as p | 0is a given function. We write W = (k)e(U(k ).
The ordinary k-nearest neighbor estimate of g(0) is
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Thus,
L _Yog 1 Uy 80 Uy W
8.(0)  k/n g(0) k/n  6g*(0) k/n ~ k/n
and
! _;z;(@_l)_ g0 Yy Wi
8.(0)  g(0) g(0) \ k/n 6g*(0) k/n ~ k/n
S I+ 10+ I
We recall that, by Theorem 1.4,
U
W 51 in probability when k — oco.
k/n
Thus,
II g"(0)
— in probability.
U/n? ~ egt@ P Y
Recall also (Lemma 2.2) that as k/n — 0, Uy — 0 almost surely, and thus,
W,
—* 50 almost surely,
(k/n)?
so that
1t 0 almost 1
—_— almost surely.
(k/n)? Y
Finally, we turn to I and recall (Corollary 1.1) that
o Ei+---+E
Uw = ;
Ey+ -+ Bt
where Ei,...,E,+; are independent standard exponential random variables.

Decompose I as

E +---+E —k

( n _1)E1+"'+Ek+
Ei+ -+ Eyp 8(0)k

g(0)k

By an application of the central limit theorem and the delta method (see, e.g., van der

Vaart, 1998),

n 1
S WY (.
Ey 4+ Eiq P(\/ﬁ)

In addition, by the law of large numbers,

E\+---+E
k

— 1 in probability if k — oo.
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Next, the central limit theorem and Lemma 20.1 in the Appendix yield

Ei+-+E—-k g 1
Z (N + op(1)),
. \/%( + op(1))

where op(1) is a random variable tending to O in probability as k — oo, and N is a
standard normal random variable possibly dependent on the op(1) term.
Combining all terms, we obtain, if kK — co and k/n — 0,

cn+mZ N L)_ 80 k2+ kY’
2 ot () ww ) e (G) )

Using inversions and simple manipulations of Op and op terms, we finally conclude:

Lemma 6.1. Let g,(0) be the k-nearest neighbor density estimate of g(0). If
g(0) #0, k — oo and k/n — 0, then

g0) 2 N g0 (k) 1 k>
w0 Tk g0 (E) or (ﬁ i (Z) )

where N is a standard normal random variable. Moreover,

@O0 2 N g0 (kY (kY
20 & e (n) +°“’<ﬁ+(n) )

This lemma suggests the following definition:

Definition 6.1. When g(0) # 0, we say that the rate of convergence of the k-nearest
neighbor density estimate g, (0) of g(0) is a,, if

@0 g

(0) 2) W
an

for some random variable W that is not identically O with probability one.

For example, if k ~ yn%, 0 < o < 1, y > 0, then Lemma 6.1 implies that

@O _|

2
¢ N i 4
Uy if0<a<z
&n(0)
-1 2 0z
20 g’ .2 o4
o 830) ifz <a<l
gn(0)
1 9 7
2(0) N g’ 2 - __ 4
peri ﬁ+6g3(0)y ifa = z-
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Thus, if g”(0) # 0, the best possible rate for the k-nearest neighbor estimate is
n~2/3, which is achieved for k such that k ~ y n*/>, y > 0.1f g”(0) = 0, then there
exists a sequence {k} = {k,} such that the rate o(n~%/°) is achievable. However,
without further conditions on g, one cannot precisely determine the best possible
rate.

This leaves us with the choice of y. There are several possibilities, all dependent
upon how one interprets the limit random variable

_ N g//(()) 2

77 6g )

One can opt to minimize P{|W| > ¢} for constant ¢, or minimize E|W|? for suitable
B. For example, minimizing

1 Z 0 2
EW2 = — + §"(0) vt
Yy 36g°(0)

with respect to y yields the choice

_ (9g6<o>)”5
V= g//(())z >

whence k ~ y n*/>. Note that the quantity |§;’((g))‘

“difficulty” of the estimation problem at hand.

4/5

is scale-invariant and measures the

6.3 Bias elimination in weighted k-nearest neighbor estimates

Still for d = 1, consider the weighted estimate

1 o l—«

= + s 6.1
2 ©® g " 2 D

where o € R is a weight and g, is the k-nearest neighbor estimate of g(0) (it is
implicitly assumed that 1 < k < n/2). We can also consider

gn(o) = O5gnk(0) + (1 - a)gn,Zk(O)’ (62)

but the conclusions will be the same and are thus left to the reader.

Theorem 6.1. Assume that g has two continuous derivatives in a neighborhood of
0 and g(0) # 0. Then, if we take o = 4/3, there exists a choice of k = k,, such that
the rate of convergence of the weighted nearest neighbor density estimates (6.1)
and (6.2) is o(n"3/?).
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Without further conditions on g, we cannot pin down the rate of convergence. On
the other hand, with additional smoothness assumptions on g, we could determine
that better rate, but are then faced with the fact that there exists another weighted
estimate with an even better (but undetermined) rate of convergence.

Proof (Theorem 6.1). As in the proof of the previous section, we obtain
0 g U U,

g()—lﬁa W)+ —a) (22—

£,(0) k/n 2k/n

”(0) k\? 2k\? k\?
~o0) [“ (2) +a=o(3) } e ((Z) )

=I+1I+ 1L

We can make II = O by setting o + 4(1 —«) = 0, i.e., « = 4/3. This leaves L. It is
clear that I = Op(1/+/k) by the central limit theorem, thereby establishing that

I+ II+1III=Op (%) + op ((5)2) )

if k — oo and k/n — 0. This concludes the proof. O

Remark 6.1. 1t is easy to verify that

2L[N+1_—Q(N+N’)}+o (L)
LT T2 \

where N, N’ are independent standard normal random variables. This can be

rewritten as
1 /1+a2 ( 1 )
— N+4op|—]).
Vk 2 AW/

For a # 4/3, if we set k ~ y n*/°, y > 0, and optimize y as in the previous section
(where EW? in the limit was minimized), then EW? is a function of o« times the

quantity
g// (0)2 /5
( §%(0) ) '

The function of « is a constant times

I

[N

I

(1 + 012)4/5|4 _ 3Ol|2/5,
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which is minimal on [0, 1] for &« = (8 — 4/19)/15. However, the overall minimum
on R is at @ = 4/3. This implies that ordinary convex combinations (¢ € [0, 1]) are
not as powerful as general combinations (¢ € R). O

Remark 6.2. We leave it to the reader to find the best form of the weights v,;, 1 <
Jj < n, in the weighted estimate

n
U,,j

1
gn(o) - j=1 gnj(o)

that jointly makes the bias 0 and minimizes the variance term (the I in the proof).
O

Remark 6.3. The weighted estimate with o = 4/3 satisfies

LY 3Yew _ 8Ye — Yo
2.(0)  k/n  2k/n 6k/n

This is negative if 8Y() < Y(or). However, for any x (in the support of u or not), if
k/n — 0, then there exist no(x) > 0 and p(x) > 0 such that

P{SY(k) — Y(Zk) < 0} < E_p(x)k, n>= no(x).

This can be shown using the Chernoff’s bound on binomials (Theorem 20.5) and is
left as an exercise as well. O

6.4 Rates of convergence in R?

We have seen in Section 6.1 that if f is twice continuously differentiable in a
neighborhood of x, then ¥ = |X — x||¢ has density g on [0, 00) given by the
expansion

g = g(0) + cy’?  +00¥Y), ylo,

where c is a function of d and the trace of the Hessian:
Va
= tr(F" 4
¢ = u(f" (%)) 35
Averaging as for the case d = 1, we have

2 c 1+2/d
U(k) = g(O)Y(k) + — Y(k) / + Z,
1+ 7
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with Z;, = o(Y(lk')H/d). Thus, if g(0) # 0, by inversion,

2 Ug ¢ 1+2/d

= ——— + W,
O 750 (14 2)g22d0) @

with W, = o(U(lsz/ d). The k-nearest neighbor estimate of g(0) is

k/n

n 0) = -

2x(0) Yoo

and so,
142/d
£(0) —12(%—1)— ¢ U We
8(0) k/n (1 + 2) g1+2/d(0) k/n  k/n
S14+ 10+ I

Arguing as for d = 1, one easily obtains

gh(o) N \/E (] + 3)814-2/(1(0) n op \/]—C p

and

B0 2 2 () (e ()
8(0) -V (1+ %)g”z/d(O) n P N/ . .

When we set k ~ y nﬁ, y > 0, the right-hand side is W + OP(n_%H), where

2/d
NN PETOM ] '

Whenever ¢ # 0, minimizing EW? yields the following choice for y:

_2 | N c
W=n a4 |:—+

L (g2d+4(0)(d+2)2d)d-i-4

4dc2d gd

We conclude that the rate of convergence for the k-nearest neighbor estimate is

2 . . 2 ..
n 44 if ¢ # 0, and is o(n~ a+4) if ¢ = 0.
As in the case d = 1, combining two estimates to eliminate the bias is possible.

Define, for o € R,

L _ o 1o 6.3)
gn(o) B gnk(o) gn,Zk(Oy ‘
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or
gn(o) = Olgnk(o) + (1 - a)gn,zk(o)- (64)
Then note that the bias term for (6.3) becomes

1+2/d 1+2/d

U U

(k) (2k)
by PR :
[“ TR Ty }

where

C
(1 4 %)g1+2/d(0)'

2/d 2/d
A (E) [0+ (1 —)2%] + op <(E) ) .
n n

The main contribution to this bias term is O when

A=-—

This term is

41/d

=i T

Theorem 6.2. Assume that f is twice continuously differentiable in a neighborhood
of x and f(x) # 0. Then, if we take

41/d

YTy

there exists a choice of k = k, such that the rate of convergence of the weighted
2
nearest neighbor density estimates (6.3) and (6.4) is o(n™ +4%).

Remark 6.4. 1If we consider the standard k-nearest neighbor density estimate f;,,
then our results show that whenever f is twice continuously differentiable in a
neighborhood of x and f(x) # 0, then

0= 7

Y

provided k — oo and ,,4/<++4) — 0. This is precisely the asymptotic normality result
of Moore and Yackel (1977a) (see also Mack, 1980, and Berlinet and Levallois,
2000). Note however that the condition W’jﬂ) — 0 1is less severe than the condition
,@/T]{Jrn — 0 that is imposed by these authors, yet with a less stringent smoothness
assumption on f.
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Following Biau et al. (2011), it is also possible to analyze the mean squared error
development of f,, and show that if k — oo and k/n — 0, then

2L (R
Bl 0P =2+ B (5 o2+ (5) ).

where

(' (x))

T2+ 2V

For further references, see Mack and Rosenblatt (1979) and Hall (1983). Thus, for
such x, assuming that ¢, # 0, and for the choice

([ (225259 2] ).
4cZ

Elf,(x) —f(X)|* = &n~

we have

1114 + O(n_ﬁ)’

where

d

B d\ (4x)E\ T
we () ()

6.5 Behavior of f near x

The preceding discussions show the importance of the behavior of f near x. We can
in general imagine that

g = g0) + 4" +0o0"), ylo,

where 8 > 0, A # 0. Of course, other behaviors are possible as well, such as

A 1
SO =8O+ Ch iy O (mgf’(l/y))

or

g(y) = g(0) + e 4 o(e_l/yﬁ),
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and, indeed, many other situations can occur. A case-by-case study is clearly not
productive—what one needs is a manner of adjusting k locally based on the data, so
that one adapts automatically to the local smoothness.

Classically, one considers Taylor series expansions and assumes that the last
term is continuous. Suppose, to simplify, that d = 1 and that f has 2¢ continuous
derivatives at x, £ > 1. Then g has the Taylor series expansion

£ o) .
gy) =y g(z,-;) YW+, ylo.
j=0

Arguing as in the previous sections, it is easy to see that the rate of convergence of
. . . . —_2m
the ordinary k-nearest neighbor estimate is n~ #+1, where

m=inf {1 <j<£:¢%(0) #0},

assuming at least one of the coefficients in the Taylor series expansion is nonzero.
It g?)(0) = 0, 1 < j < £, then the rate is o(n~ 71).

Most often, m = 1, and we rediscover the n~2/° rate. However, given that we
know that 2¢ continuous derivatives exist, even if all coefficients in the Taylor
series are nonzero, we can define a weighted k-nearest neighbor estimate with rate

o(n_ﬁ), where, once again, the precise rate is impossible to pin down without
further knowledge of the behavior of g near 0. It is a straightforward exercise to
derive such weighted estimates. Indeed, we combine as follows, using £ + 1 fixed
weights vy, ..., V4!

{+1
1 Uj

8n0) ~ & gui(0)

If Kk > oo, k/n — 0, and Zf:ll v; = 1, then a slight adaptation of Theorem 5.1
shows that this estimate is weakly consistent at 0, even if some weights are negative.
On the other hand, for 1 < j < £, we want the bias terms to disappear. A sketch of
how this is done is as follows. Define

Loy
g*@)ZZ(§j+(1))!y2]+l’

Jj=0

and note that

— 0(y25+1), y \L O

y
gm—Ag@a

Then, by Lagrange inversion of polynomials, there exists a function % on [0, co)
with
¢

h()—zm 2L L (20T 10
Z_A0(2j+1)!z < , < s
=
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such that locally, as y | 0, since g* is invertible in a small enough neighborhood of
0, g*(y) = zif and only if z = h(y). The coefficients in the Taylor series expansion
of i depend upon those of g. We thus have for Uy, 1 <j < £ + 1, jointly,

7 «
Uy = 8" (Yi) + oY),
and therefore,

2
Yoo = h(Ugy) + o(Uge™).

1

The bias term in the expansion of —= e (0) — 20 18

041 ¢ (20) (l72l+1 )
1 h 0 : {+1)k
E vy —( ) UZI-H \ + —( )

Jk/n = @i+ 1)1 "0 k/n

_ Xf: @) (0) %v U(2]lk';'1 tor (E)%
; Qi+ D= 7 jk/n n '

Using

Ugy ( 1 )
=14+0p ,
Jjk/n Vk

14 h*(Zi)(O) £+1 o k 2i 1 k 20
2 @i J;”f’ (Z) (1+Op(ﬁ)) +°“”((E) )
l

*(21)(0) 2i {+1 1 k 2¢
-2 (2z+1)'() Z” +OP(7<)+°P (Z) |

this is

The first term dlsappears ifforall 1 <i </, Z +] v;i* = 0. Therefore, the rate of

convergence is o(n”~ 44+1) if this constraint holds together with ZHIL v; = 1. That
leaves a linear system of £ + 1 equations with £ + 1 unknowns, and we can provide
a general way of combining k-nearest neighbor estimates:
—1
) 1 1 - 1 1
1% 12 22 (Z~|—1)2 0

Vet 126220 (0 + 1) 0
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The central matrix is a Vandermonde matrix of the form

11 --- 1

AL Ay oo Agg
V= A%%"‘%H ,

TR

where A; = j2, 1 <j < £ + 1. A simple form of the inverse matrix V™! is described
in terms of UL, where U is an upper triangular matrix and I a lower triangular
matrix (see, e.g., Turner, 1966). The explicit forms of U and LL are

0 ifi >j
1. ifi=j=1
wi =9 1
otherwise,
E Ai = g
ki
and
0 ifi <j
Li=11 ifi=j
f,‘_1_j_| — E,-_w)&i_l otherwise,

with the convention £;, = 0. In more pedestrian terms,

1 1

' 7= oo
0 —! 1
Ary—=A1 (A2—A1)(A2—A3)
U= o o0 —1L ..
(A3—A1)(A3—22)
and
1 0 0 0---
-4 1 0 0
L=| A —(A1 + 12) 1 0---
—AAoAs LA+ AA3 4+ Ay —(A + A+ A3) 1 -
It is noted that the last line of I does not depend on Ay4{ but only on Ay, ..., A

Elementary matrix operations show that

L+ 2 [0 A T 7k | =1

V; = . i . .
J Zf;rjl I:(_l)l_lkl .. 'Ai—l H;}i;l ﬁ] if 1 <J= {4+ 1,
J
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that is,

L+ 2 [ 6= D Ty ] i =1
S EDT G- 0Pl 2| <=t
k#j

Finally, using some manipulations on the gamma function that are left to the reader,
we conclude that

2D+ DI G- -2)
VT T e D=1

It is noteworthy that the proof does not require any knowledge of the actual
coefficients of the inverse function h. There may be better combinations if one
allows more than £ + 1 component estimates. This added freedom can be used to
minimize the variance term, which is proportional to

I1<j=<{+1.

in case of £ + 1 terms, and to

in case of L > £ 4 1 terms. However, such optimization does not alter the rate of
convergence.

Remark 6.5. To conclude this section, we would like to point out the need to
develop weighted k-nearest neighbor rules that adapt nicely to analytic densities,
i.e., densities f (or g) that are completely determined by their (infinite) Taylor series
expansions, and thus attain a rate of convergence equal to, or at least close to, 1/ /7.

a

6.6 A nonlinear k-nearest neighbor estimate

The situation we are considering, by way of example, is that of the estimation of a
density f on R that has 2¢ continuous derivatives in a neighborhood of x for £ > 1,
and f(x) > 0. We know that the density g of Y = || X — x|| only has even-numbered
terms in its Taylor series:

t L@ _
gy) =y g(zjg(!)) YW +00%), ylo.

Jj=0
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According to the previous section, by a linear combination of the £ + 1 k-nearest
neighbor estimates, one can achieve a rate of convergence that is o(n_%). The
computations of the Lagrange inverse of a polynomial are cumbersome. Here we
present a logical and simple nonlinear approach for bias elimination that has the
same rate.

As before, we write Y(1) < --- < Yy for the order statistics of the data. We also
know that

2
(/L (B(x, Y(l))) seees W (B()C, Y(n)))) = (U(l), ey U(,,)) B
a vector of uniform [0, 1] order statistics. Integrating g, we thus have, jointly for all
1<i<n,

0
Uiy = 2(2 +(1))| Yo+ v (),

where ¥ (y) = o(y**!) wheny | 0. Let us consider once again £+ 1 order statistics,
Y(k), Y(Zk), Ceey Y((g.:,_l)k), where k = k,, — oo and k/n — 0. Observe that Y((g.H)k) =
Op(k/n) as n — oo. Thus, we have

) 2!
max | (Y| = op (( ) )
I<i<{+1

In matrix notation,

1 3 2041 ()
Yl(k) Y3(k) e Y(QH (21) !(0) U(k)
Y (21<) Y, (2k) tt Y(Zk) gT 2 U
1 3 . 20+1 (25 0
Y((e+1)k) Y((e+1)k) Y((Z+1)k) —(gwr(]))! Ue+n
1
K\ 20+1 1
+or (45"
1

Note that Uy;) is close to i/n. More precisely, we recall (Chapter 1) that
—— — 1 inprobability,1 <i<4{+ 1,
and that

—N+OIF’(1) I1<i<{+1,
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where N is a standard normal random variable. The exponential representation of
order statistics (Corollary 1.1) implies the following, if we use G (i) to denote
independent Gamma(k) random variables, 1 <i </{ + 1:

(U Uaky = Uys - -+ Uty — Uiy

9 1
=——— (Gi(),...,Gr(£ + 1
El+"‘+En+l( k() k( ))
14+ Op(1
= M(Gk(l), LG+ 1)
1+ Op(1
4 M (k + VEN, + op(VE), ... .k + VkNey1 + oP(ﬁ)) ,
where Ny, ..., Ny4; are i.i.d. standard normal random variables. Thus, setting up a

matrix representation, we have

U k+ VN
U('2k) 2 H_Oi(ﬁ) 2%k + ﬁgvl + M) o (ﬁ) 1
U (4 Dk+ VRN -+ + Newr) 1
and thus,
Ugy—k/n
U(zk;[ka/n N M
ooz T (e () ree)
U((z+1)k)—:(f+l)k/n Ny +-- + Negy 1
Jk

We note that Op(v/k/n?) = op(1/n). We jointly estimate g3 (0), 0 < j < £,
by estimates ey;, 0 < j < £, by mimicking the matrix representation of the Ugy,’s,
replacing Uy, by its central value, ik/n. Thus,

1 3 2041 k
o Yoo T V0
ez
Y(2k) Y(2k) Y(Zk) 3! def n
- N e (C+ 1)k
Yiernm Yiesnw -+ Yiernn/ \@er "

Call the Y-matrix just Y. Then
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e k
1! n
(%} 2k
3! —
} =Y™! . (6.5)
ey +1k
2e+1)! n

Theorem 6.3. Assume that f has 24 continuous derivatives in a neighborhood of x,
for fixed £ > 1, and f(x) > 0. Let g be the density of | X — x||. If g(0) is estimated by
eo, which is defined by (6.5) in terms of the k-th, 2k-th, . .., and (£ 4+ 1)-th nearest

_ 2
neighbor, then the rate of convergence of ey towards g(0) is o(n™ #+T1),

Proof. Note that the errors, jointly, are represented as follows:

20 _ e

Ay Ui = 1
870 e Unpr — 2 |

Z (2k) ¢
o e e (BT |
£00) ek '
(gze+(1))! - % U((£+1)1<) P 1

Our representation for the Uy)-vector then yields

Error 2 Y~! C
N, 1 1
oyt N +op (ﬁ) o ((’5)2”‘) :
Ny + + Nit1 1 1
The error g(0)—e is a linear combination of the entries of C = (Cy, ..., Cy11)".

It is easy to see that

% K\ 26
max |C;| = Op (i) + op ((—) .
I<i<t+1 n n

Note that Y~! consists of signed minors divided by det(Y). In particular, the
elements of the first row of Y~! are signed minors, each of which is in absolute
value smaller than

(+1)2—1
0 Y(245+1)+(21£—1)+~~+3 — 0 Y(z+1)2—1 =0 k o
R (ZR) IR ((Z 3115 E W '
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On the other hand, we have

1 ny (+1)?
det(Y)' = o (<E) ) ©0

(to be shown). Combined with the previous statement, this leads to

18(0) — eol = 0z (7) [OP (%’2) +op ((S)NH)} :
60 — ol = 0s (=) + 00 ((’5)”) .

_ 2 .
This identity shows that the rate of convergence is o(n~ #*+1). Thus, we are done if
we can prove (6.6).
Writing a; = Y (i), we note that

that is,

LB 2t

a a 1
1 2041
az a ) az

fN W

Y =

1 3 2041
Apyy Gpqq m0 " Apg

Its determinant is

2 20
I aj ale
2 2
I a; a,
aip...ag4 det . )
2 20
Lag,, - apy,

where the latter matrix is a Vandermonde matrix for elements al.z, 1<i<{4+1.1ts

determinant is
1 @@= 1 [o-aal

1<i<j<{+1 I<i<j=<t+1

%

v

(‘t)
. 2

min (a;+1 — a;)a .
|:l§i<é+l( i+1 — ai) 1i|
Thus,

(‘1Y

+1
det(Y) > af+l+( 2 ) |: min ((l,‘_H —ai)i|
I1<i<{+1
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Recall that

M — L in probability
ik/n £(0) '

Therefore, with probability 1 — op(1),

k e+1+2(%h k (t+1y?
sa> (575:) ~(zm)

We conclude

detl(y) —0p ((%)(Z+l) ) ’

as required. O

Remark 6.6. 1t is an easy exercise to show that the errors of the estimates of the
21
derivatives have worst rates of convergence. For g® (O) — 62 we obtain o(n™ 4F1),

and in general, for g (0) — e»;, we have the rate o(n~ s ), 0 <j < ¢, that is, for
g?9(0) — ey, the rate of convergence is o(1) only. |



Chapter 7
Entropy estimation

7.1 Differential entropy

Differential entropy, or continuous entropy, is a concept in information theory
related to the classical (Shannon) entropy (Shannon, 1948). For a random variable
with density f on R, it is defined by

E(F) = — fR F6) logf (), (7.1)

when this integral exists (with the convention 0log0 = 0). If d = 1 and f is the
uniform density on [0, a], a > 0, then its differential entropy is

a1 1
&(f) =—/ —log —dx = loga.
o a a

We see that for a < 1, loga < 0, so that &(f) can be negative. The standard
exponential has &(f) = 1, and the standard Gaussian has &(f) = log+/2we, to
give a few examples.

Since ulogu > —1/e for all u > 0, the integral of the positive part of the function
—flogf is finite as soon as f has compact support. Thus, for finite support densities,
one can without any worries use (7.1), even when the integral diverges, for in that
case, &(f) = —oo. In fact, we have

£() = -3 (upp(f).

where A denotes the Lebesgue measure on R¢. The situation & (f) = —oo can only
occur for unbounded densities. Indeed, if f < ||f||co < 00, then

E(f) = —log|lffleo-

© Springer International Publishing Switzerland 2015 75
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An example of a density on R with &(f) = —oo is

0<x<1/2.

There are other continuous entropies, most prominently the continuous version
of Rényi’s entropy (Rényi, 1961),

6N = o [ Frodx g1,

I—gq

The quadratic entropy is &(f) = —log [p f2(x)dx. It is a good exercise to prove
that, under appropriate conditions, lim,—.1 &,(f) = &(f). We will not be concerned
with & (f) in this book, except perhaps for the observation that most of this chapter
can be recast, with minor modifications, for &,(f)—see Section 7.5.

Entropy and related concepts play an important role in fields as diverse as phys-
ical sciences, source coding, texture classification, spectroscopy, image analysis,
and signal processing, just to name a few (see, e.g., Leonenko et al., 2008, and the
differential entropy handbook by Michalowicz et al., 2014—the latter monograph
also provides a comprehensive collection of the entropy of most frequently used
probability densities). The basic features of differential entropy are described in
Cover and Thomas (2006). Of importance are its extremal properties: for example,
if the density f is concentrated on the unit interval [0, 1], then the differential entropy
is maximal if and only if f is uniform on [0, 1], and then & (f) = 0; similarly, if the
density has fixed variance, then &(f) is maximized by the Gaussian density.

Our objective in this chapter is to estimate &(f). This problem has various
applications in goodness-of-fit testing, parameter estimation, quantization theory,
and econometrics. There are numerous estimates in the literature, mostly listed in
the survey by Beirlant et al. (1997). One of these, based on the nearest neighbor
method, was proposed by Kozachenko and Leonenko (1987). This method, while
natural and deceptively simple, has defied a thorough analysis. We hope to shed
some light on this in the present chapter.

Given a generic density estimate f,, the differential entropy can be estimated by
one of two kinds of plug-in estimates,

- [ A 1o xex
or

1 n
—— > " logfu(Xy).
n i=1

In most cases, the density estimate f, itself is consistent. However, the rate of
convergence of the plug-in estimate is limited by the rate of convergence of Ef, to f.
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Kozachenko and Leonenko (1987) noted that if one uses an inconsistent estimate
for plug-in, i.e., the 1-nearest neighbor estimate, then one can in fact improve the
rate of convergence of the plug-in estimate.

7.2 The Kozachenko-Leonenko estimate

LetXy,..., X, (n > 3) bei.i.d. random variables with density f on R4. Let R; denote
the distance between X; and its nearest neighbor among X, ..., X;—1, Xj+1, . - ., X!

R, = min | X; — X,.
i#i

Let B(x, p), as always, denote the closed ball centered at x of radius p, and let  be
the probability measure corresponding to f.
Following Kozachenko and Leonenko (1987), we consider the estimate

1 < 1
=5 2ot (nx (B(Xf,R»)) ’

where the lowercase £ is used as a mnemonic device. The rationale behind this
definition is that

£, =log (n; 1) + %Z log (f,f:?(&)) ,
i=1

where fn(:i) is the l-nearest neighbor density estimate of f based on the n — 1
observations X, ..., X;—1, Xj+1,...,X,. Thus, under appropriate conditions, £,
should not be asymptotically too far from

Elogf (X)) = A J ) logf(x)x = ~6(7)

This estimate is sensitive to large tails, as the following example explains.

Lemma 7.1. There exists a function f on R with

/fp(x) log? f(x)dx =0, allp,q >0,
R

for which EX,, = —oo for alln > 2.
Proof. Define

o0
S = ]=Zl ]l[ZZf,sz"'j(/-t-l)].
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Observe that

n

1 1
b=~ Zlog (WX,R,)))

i=1

I, 1
Z'Z “(wwom) - w2l (waom) o2

It turns out that, for all n,

I, o 1
: [Z 2 loe (nk (B(X,-,R,-)))} =%

whereas

I, _ 1
: [Z;k’g (= (B(&ﬂ»))} -

To prove the first claim, denote by X1y < --- < X, the order statistics for the
sample, and observe that

— ) I< + 1 )
|: Zlog ( A(B(XuR)))] = [ilog (minl<i§n(X(i)_X(i—1))

(since the function log™ is increasing).

The minimum min;<;<,(X3 — X(—1)) is stochastically minimized by the same
quantity if f were the uniform distribution on [0, 1]—just squish the intervals in the
definition of f together. That quantity behaves like the minimal uniform spacing,
which is asymptotically distributed as E/n?, where E is standard exponential. To
be precise, denote by U1y < --- < U, uniform [0, 1] order statistics, and let the
associated spacings S; be

Si=Uyp—Uji-ry, 1=<i<n+1,

where, by convention, Uy = 0 and U,41) = 1. Recall that, by Theorem 1.3,

2 E; E,1
(Sla"'9Sn+l): ey )
Y E Y E
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where E|,...,E,+; are independent standard exponential random variables.
Therefore,

Elog™ ( ! )
min; <i<, (X)) — X(-1))

IA

1
Elo
g (mink,-sn(U(,-) — U(i—l)))
1
<Elog| ———=
minj<j<pt1S;

G,
— Elog (#) ,
ming<j<p+1 E;

where G,+1 = Z:’: 11 E; is Gamma(n + 1) distributed. Therefore,

1
Elogt [ — <ElogGny1 —Elog( min E;
& (m1n1<[§n(X([) _X(il))) - £ +l g ( 1<i<n+1 )

E
= ElogG,4+1 — El o
08 Gnt1 Og(n—i—l)

(where E is standard exponential)
<log (EG,+1) —ElogE + log(n + 1)
(by Jensen’s inequality)
=2log(n+ 1) + y,v

where y = —ElogE = — f0°° e logtdr = 0.577215664901532.. .. is the Euler-
Mascheroni constant. Thus, the first term in (7.2) satisfies

I, 4 1
- [Z 2 e (= (B(x,»,Ro))} R

Next, we show that the expectation of the second term of (7.2) is infinite. To this
aim, we write, using the fact that the function log™ is decreasing,

E ! ilo - ! > 1I[*]lo - !
n £ \m BXi.R))) | " n £ Xy — X(i—1)

i=1
1 1
> —Elog™ (—) 1,
n Xy — Xin—1)

for any event A. Let

Aj = [Xy = X(w, X, € j-thinterval, X, ..., X, € intervals of index < j]

and

o0
A=Ja.

Jj=2n
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For j > 2n, writing §; = 27 =27 — ﬁ for the separating gap between the
(j — 1)-st and j-th intervals, we have

1
Elog™ (—) 1,
Xy = Xp-1 )

A%

(log B))P{A;}

_ logh; (1 _ 1)"_1
S+ 1) J

log B;
~ 2nj(j + 1)

It is easy to see that > Jl((/)gT’if) = 00, so that, for every n,

1
Elog™ (—) 14 = oo. O
Xy = Xn—1)

Thus, to avoid annoying conditions, we will simply assume that f has compact
support, which in turn implies that

£ =~ [ toef

is properly defined—it is either finite or —co. We leave it as an easy exercise to show
that in this case, for all integers p > 1,

/ f(x)log’ f(x)dx < 00 & / S(x)log’ (f(x) + 1)dx < oo.
Rd R4

The expression on the right-hand side is easier to handle since the integrand is
always nonnegative. Our main result is as follows:
Theorem 7.1. Assume that f has compact support and that fRd f(x)log(f(x) +
1)dx < oco. Then

El, — —&(f) + v,

where y = 0.577215664901532 . .. is the Euler-Mascheroni constant. Furthermore,
if [zaf (X)1og*(f(x) + 1)dX < 00, then

VZI‘L S

3

S|o

where c is a constant that depends upon f. Finally,

L, — —&(f) +y inprobability.
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Letting {, = —{,+y, we also conclude from Theorem 7.1 that E|,—& (f)|> — 0
as n — oo (mean squared consistency). In the univariate case, Tsybakov and
van der Meulen (1996) established the mean squared O(1/ /) rate of convergence
of a truncated version of ¢,, for a class of densities with unbounded support
and exponentially decreasing tails, such as the Gaussian density. Some analysis
for bounded f is to be found in Leonenko et al. (2008). It should be noted that
Theorem 7.1 does not settle the deeper question if, for all compact support densities
£, under the unique condition [, f(x) log(f(x) + 1)dx < o0, £, — —&(f) + y in
probability.

Proof (Theorem 7.1). Define the following maximal functions:

e (B ) . xwmm»
f(”“iﬁ(ku%xp») and &"(x) ﬁ%(uanxp» ‘
Observe that
1
Ebs = Elog (m)

_ np (B(Xy, Ry)) 1
=Elo (nx (B(Xl,Rl))) +Elog (n/L (B(XI,RI)))

(which is allowed since both expected values are finite as we will soon see)

def

=I+1IL

Note that

u(BX(,Ry))

—log(g"(Xy) + 1) =< log (m

) < tox(r*x0) + ),
and thus that
—Elog(g*(X) + 1) <I < Elog(f*(X) + 1)
where X Z X. Assume that we can verify that
Elog(f*X) + 1) = A{lf(x) log(f*(x) + 1)dx < oo (7.3)
and that

Elog(g*X) + 1) = /Rdf(x) log(g* (x) + 1)dx < oo. (7.4)
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Then, by the Lebesgue dominated convergence theorem, we conclude that
I - Elogf(X) = —-&(f)
if

n(BX|,Ry))

— (X in probability.
J(B(X,. Ryy) /X1) inprobability

This follows trivially since R; — 0 almost surely (by Lemma 2.3) and p-almost all
x are Lebesgue points of f. Finally,

2
ni (B(X1,R1)) = nUq),

where U(j) < --- < Uy, are uniform [0, 1] order statistics (see Chapter 1). One can
easily check (see Example 20.1 in the Appendix) that, for E a standard exponential
random variable,

E1l ( ! ) El (1) /oo “'log tdt
0 — Elog| =) =—- e 'lo =y.
e\ o, el z A g Y

To verify (7.3) and (7.4), we use the results on maximal functions given
in Section 20.8 of the Appendix. As f has compact support, we know by
Lemma 20.8 that the condition [p,f(x)log(f(x) + 1)dx < oo implies
Jraf(x)log(f*(x) + 1)dx < co. Next, denote by K a positive constant such that
the support of f is included in [—K, K]?. Then, similarly, since Ry < 2K Jd, we
can replace A in the definition of g* by the Lebesgue measure truncated to the ball
B(0,3K/d). By Lemma 20.7, for t > 0,

y,({x eR?: g*(x) > t}) < ;A(B(O, 3K\/3))
for a universal constant c. Note that

Blogle' (%) + 1) = [ (xR logte" (9 + 1) > o

d
{

Il
S~

xeR :g*x) + 1> e’})dt

o]
o]

0

o]

IA

i
i
/0 /L({X eRY: g*(x) > %t})dt + /(;logzdt
< 2¢A(B(0.3kVd)) / e 4 log2
0

= 202 (B(0.3Kd) ) + log2.
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so that (7.4) follows. This concludes the proof of the first part of the theorem. The
third part follows from the first two by Chebyshev’s inequality. The second part is
shown in the next section. o

7.3 The variance of the Kozachenko-Leonenko estimate

The purpose of this section is to illustrate the power of some simple bounding
methods—the application to the estimate at hand is only of secondary importance.
We will apply the Efron-Stein inequality (Appendix, Theorem 20.10) to show
that under the conditions of Theorem 7.1, V¢, = O(1/n). To do so, a second
independent sample is needed. We let X, ..., X, X|, ..., X bei.i.d., all distributed
as X, with density f on R4, Let £, be the Kozachenko-Leonenko estimate, based on
X1, ..., X,. Consider Xy, ...,X,, and let R,(1), ..., R,(1) be the nearest neighbor
distances

R,(l = min X‘—X,‘ .
)= min_ X~ Xi|

Define

n

' 1
b =~ ;log (W,Rl(l)))) '

1

Finally, let R}, ..., R, be the nearest neighbor distances based on X/, X, ..., X,,

and set
o1 S S T - -
=5 [log (n)k (B(X’,R/l))) " ;10% (m\ (B(x,-,R;)))] '

We have, by the Efron-Stein inequality,
Ve, < SEIG = 6 < B[l — i P+ 6o = 4]
= 2nE|€, — L,_1|*.

Let 7; € {1,...,n} denote the index of the nearest neighbor of X;, so that R; =
IX;, — X;||. We have

1
n(Ey — o) = log (m)

1 1 : :
+Z [r,—l][Og( /\(B(XZ,R))) g(M)}
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since only those data points X;, i > 2, with t; = 1 can have R;(1) # R; (and
thus, R;(1) > R;). Squaring and using the c¢,-inequality (Proposition 20.1 in the
Appendix) shows that

n* (U — Ly—1)?

- - of b
= (1 + ;ﬂln:ll) x [log (nA (B(Xl,Rl)))

n 2 1 n 2 1
+2) A= log (m) +2) L= log (nA(B(XlRl(l))))}

i=2 i=2
(7.5)

According to Lemma 20.6, since X has a density, with probability one,

1+ Zﬂ[n‘=l] = Yd,

i=2

where y, is the minimal number of cones of angle 7/6 that cover RY. The first term
on the right of (7.5) is bounded as follows in expectation:

of
Elog (nx (B(XI,RI»)

_ np (B(X1. Ry)) 1 ?

-F [(R’g (Faxzy) o (ramn) }

< 5 (1 (B(Xy, Ry)) 2 1

= 2llog (A(B(xl,m)) aklos (nu (B(xl,Ro))' (76

Arguing as in the proof of the first part of Theorem 7.1, and using the closeness of
nu(B(X1, Ry)) 4 nUq to a standard exponential random variable E, one checks
(Example 20.1 in the Appendix) that the last term in (7.6) tends to 2Elog’ E =
2(y? + %2). The first term in (7.6) is not larger than

2Elog?(f*(X) + 1) + 2Elog*(g* (X) + 1),

where f* and g* are as in the previous section. Using the arguments of that
proof together with Lemma 20.8, we see that Elog>(f*(X) + 1) < oo if
Jraf (X) log?(f(x) + 1)dx < oo, and that Elog?(g*(X) + 1) < oo, for all densities
f with compact support.

The middle term of (7.5) has expected value

5 1
2(n—DE [ﬂ[rfu log (m)}

B B L of L
=2(n—1)x n_l]Elog (nx (B(Xz,Rz)))
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since (X3, R») is independent of 1[;,—1}. Therefore, the middle term is in expectation
twice the expectation of the first one.
Finally, we deal with the last term of (7.5). Its expectation is

— ? ;
2(n—DHE |:]1[f2=1]10g (n/\ (B(Xz,RE)))]

(where R} is the second nearest neighbor distance of X, among X, X3,...,X,)

=200 e (e
=2(n—1)x —Elog (M (B(Xz,RE))>

(since (X, R3) is independent of 1[;,—1)).

We bound the last expected value by

2E12’L(B(X—2’RE)) ZEIZ;. 7.7
o8 (A(B(XZ,R;)) e B RY) a7

Since nu(B(X2, R3)) Z . (), the last term can be shown to converge to 2| log? G,
(where G, is a Gamma(2) random variable—see Example 20.1 in the Appendix),
which is a finite constant. Finally, the first term of (7.7) is not larger than

2E log*(f*(X) + 1) + 2Elog*(g*(X) + 1) < oo.

This concludes the proof of Theorem 7.1. O

7.4 Study of the bias

The estimation of &(f) or f]Rd f¥(x)dx from i.i.d. observations has many applica-
tions, and so, the rate with which these functionals can be estimated is crucial.
A thorough introduction and discussion can be found, e.g., in the work of Birgé
and Massart (1995). Considering for example classes of densities bounded away
from 0 and oo on [0, 1] and satisfying the Lipschitz condition

f(x) —f(&)| < elx—x'|P, (7.8)

for fixed ¢ > 0, B € (0, 1], they showed that most functionals cannot be estimated
at a rate better than

S

_ 4B
4B+ if,B
1
4

.
7n
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For f]Rd f2(x)dx, this was first observed by Bickel and Ritov (1988), who addition-
ally provided estimates with matching rates of convergence (see also Laurent, 1996).
For &(f), Donoho (1988) discusses the situation.

For the Kozachenko-Leonenko estimate £,, we know (by Theorem 7.1) that
V¢, = O(1/n), so the bias of the error, Ef,, + &(f) — y, is of interest. The
phenomenon described above will be rediscovered: for sufficiently smooth f on R,
the rate 1//n is achievable, while for unsmooth f, the bias dominates and makes
the rate much slower. We provide a quick computation for the Lipschitz class given
by (7.8), assuming for convenience that f is supported on [0, 1].

The precise study of the bias will not be done here, as it is not essential for
a better understanding. For a simple class of densities, we offer a quick-and-dirty
upper bound.

Theorem 7.2. Leta > 0, B € (0, 1], ¢ > 0 be given constants, and let the density
f be supported on [0, 1], with infyepo. 11 f(x) = « and, for all x,x" € [0, 1],
() —f ()| < ele— 1P,

Then
1
Eﬁnz—(f(f)—l—y-l-o(—ﬂ),
n

where y = 0.577215664901532 . .. is the Euler-Mascheroni constant.
Corollary 7.1. Under the conditions of Theorem 7.2,

Of5) #8<3

ElX,+&F) —y| =
[, + EF) — vl O(ﬁ)if%fﬂfl.

In other words, we rediscover the phenomenon described in Birgé and Massart
(1995).

Proof (Theorem 7.2). We look at E{,,+& (f)—y. Note that, if R(x) = min;<;j<n |Xi—
x|, x € R, then

1
Ef,4+1 = Elog (2(n+—1)R(X))

(where X is independent of X1, ..., X,)
B(X,R(X
:]Elog(u( (. R(X)

2R(X)f (X)

1
) + Elogf(X) + Elog ((n + u (B (X,R(X))))

def

=I1+1I4 1L
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7.4 Study of the bias
Clearly, I = —&(f), which is finite since f is Lipschitz, hence bounded, and f
is supported on [0, 1]. Next, recall (Chapter 1) that (n + 1)u(B(X, R(X))) is (n +

1)Beta(1, n) distributed, i.e., it has density
n X n—1
1— , 0<x<n+1.
n+1 n+1
For E a standard exponential random variable, we evaluate

IV = |Elog ((n + 1)Beta(1,n)) — Elog E

by using

We have
n+1 X n—1 1 1
/ 1ogx((1 . ) —e_"+lx) dx’ +0 (-)
0 n+1 n
> n—1 2logn n—1 ;zl;ll -*2
< / (log x)e™ nF1*dx + / | logxle_m"<1 — e_m>dx +0 (—)
2logn 0 n
1 © _nml o, 1
|logx|e” »F*x"dx + O | —
0 n

logn
<0 +
n? n+1—2logn

o(t)

Thus, IIl = O(1/n) —ElogE = O(1/n) + y.
It remains to show that I = O(1/##). To this aim, note that, for any p > 0,

IV <

cpft!

2cpPt!
— < <
2pf (X) 511 < n(BX,p)) < 2of(X) + 1
and that
w(B(X, p)) = 2ap.
Thus,
[<Elo (1 N 2¢RPHI(X) )
=R T2+ DROOFX)

C
= mRb
SBrnat®



88 7 Entropy estimation

(since log(1 + u) < u for all u > 0)

< Gt RO

(by Jensen’s inequality).

Therefore, recalling the notation R; = min;; |X; — Xj|, we are led to
c n+1
I< R;
T B+ D |:n+1Z :|

< (i)
~ B+ Da n+1/)

Finally, define the event

A= [cRﬂ(X) < @} .

On A, we have

m+wmﬂwmz@;3

Thus,

2R(X)f(X)
max ((ZR(X)f(X) — ZLRITI(X)), 2aR(X))

- cRP (X) f(X)
—M%O+w+wm—ww0“+m%( )”

3 cRP (X) VB oy se
= IElog (1 + m) 14 + lOg (T) ]P){A },

since, by Lemma 7.2 below,

—I < Elog

def 1 o
fmswma=(%i)”cﬂu
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So,
cRP(X) V(B.c) cRP(X)
122 o) +oe (Y52 B v
(by Markov’s inequality)
1
=o()
since ERP(X) < (ﬁ)ﬂ, as noted above. |

Lemma 7.2. Iff is a Lipschitz density on [0, 1] satisfying |f (x) —f(x')| < c]x—x'|P
forc > 0and B € (0,1], then

B
def 1) A+t 1

Proof. Let M = £(0). Since f(x) > max(0, M — c|x|?), we have
dhve

1
— > _ ﬂ
1—/0 f(x)dx_/ s (M clx| )dx

MNP e (MN\'TE
—wm(Z) - =
(%) -5 (%)

Therefore,

7.5 Rényi’s entropy

Rényi’s entropy suggests that one should be able to mimic the Kozachenko-Leonen-
ko methodology for estimating f]Rd f9(x)dx when g is close to 1. Assume that g > 1,
and define

1 <& 1 g1
“:ZZ(mw@ﬂm)’

i=1
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where we adopt the notation of the previous sections. Then we have:

Theorem 7.3. Assume that [, f?(x)dx < oo for fixed g € (1,2). Then
Eb, - I'2 — q)/ fi(x)dx,
R4

where I' is the gamma function. If, in addition, q € (1,3/2) and f]Rd A (x)dx <
00, then Vb, = O(1/n). In that case,

b,—>TQ2- q)/ fi(x)dx in probability.
R4

Proof (Sketch). Note that if f* is the maximal function of f, then

1 !
E“:E[Luwmh&») }

_E [(M)“ (;)’H]
A (B(X1,R1)) np (B(X1, Ry))
= E[A,B,).
On the one hand,
A, < (PP X)), A, = f771(X))  in probability,

and, since f(x) < f*(x) at A-almost all x,
E| (X)) *4(x)d
[ x0™] < [ o < o0

forg > 1if f]Rd f4(x)dx < oo (by the properties of maximal functions). On the other
hand, B, is independent of X; (and thus of f*(X;) or f(X})),

2 (1)
B, — (E) for E standard exponential,

and,if 1 < g < 2,
supE[B, 15,k >0 asK — oo

(a property of the sequence of beta distributions under consideration—see Exam-
ple 20.1). Thus, by the generalized Lebesgue dominated convergence theorem
(Lemma 20.2 in the Appendix),
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1\¢!
Eb, — E [ (X1)] x E[ (E) }
—re-g) /R .

One can use the Efron-Stein technique to show, in addition, that Vb, = O(1/n)
provided that

22 AN
* q—
E[(f (X)) ]<oo and ]E[(E) ]<oo.

Observe that E[(f*(X))*%] < [pu(f*(x))?~'dx, and that this integral is finite
whenever [, /%7 (x)dx < 00 if 2¢ — 1 > 1, i.e., ¢ > 1. Also,

1 2g—2
E[(E) :|:F(3—2q)<oo

if g < 3/2. O
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Regression estimation



Chapter 8
The nearest neighbor regression function
estimate

8.1 Nonparametric regression function estimation

Let (X, Y) be a pair of random variables taking values in R? x R. The goal of
regression analysis is to understand how the values of the response variable Y
depend on the values of the observation vector X. The objective is to find a Borel
measurable function g such that |Y — g(X)| is small, where “small” could be defined
in terms of the L? risk E|Y — g(X)|? (p > 0), for example. Of particular interest is
the L? risk of g,

ElY —gX)*. (8.1)
One advantage of (8.1) is that the function g that minimizes the risk can be
derived explicitly. To see this, assume that EY? < oo and note that we are interested

in a measurable function g* : R — R such that

ElY - g X))’ = inf E Y —g(X)|,

where the infimum is evaluated over all measurable functions g : RY — R with
Eg?(X) < oo. Next, let

r(x) = E[Y|X = x]

be (a version of) the regression function of ¥ on X. Observe that, for an arbitrary
g : R? — R such that Eg(X) < oo,

E|Y —g(X)* =E[Y —r(X) + r(X) — gX)|’
=ElY —rX)I’ + E[r(X) —s(X) .
© Springer International Publishing Switzerland 2015 95
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where we have used

E[(Y — r(X)) ("(X) — ¢(X))] = E[E[(Y — r(X)) (H(X) — g(X)) | X]]
=E[(rX) - gX)E[Y — r(X) | X]]

=E[(rX) — ¢(X)) (r(X) = r(X))]
=0.

Thus, denoting by u the distribution of X, we conclude that
BIY — 0P = E[¥ ~r00F + [ g0 ~ ri0P (@)
R

The second term on the right-hand side is called the L? error (integrated squared
error) of g. It is always nonnegative and is zero if and only if g(x) = r(x) u-almost
surely. Therefore g*(x) = r(x) u-almost surely, i.e., the optimal approximation
(with respect to the L? risk) of Y by a square-integrable function of X is given by
r(X). It is known that the conditional expectation E[Y|X] exists even if it is only
assumed that Y has a finite first-order moment. Thus, in the sequel, we suppose that
E|Y| < oo and focus our attention on the function r as a good approximation of the
link between X and Y.

In practice, however, the distribution of (X, Y) (and thus, the regression function)
is usually unknown. Therefore, it is hopeless to predict Y using r(X). But, fortu-
nately, it is often possible to collect data according to the distribution of (X, Y) and
to estimate the regression function from this data set. To be more precise, assume
that we are given a sample 7, = ((X;,Y1),...,(X,.Y,)) of i.i.d. R? x R-valued
random variables, independent of (X, Y) and distributed as this prototype pair. The
objective is to use the data &, in order to construct an estimate r,, : R? — R of
the function r. Here, r,,(x) = r,(x; %,) is a Borel measurable function of both x
and the observations. However, for simplicity, we omit &, in the notation and write
rn(x) instead of r,(x; Z,).

In modern statistics, regression analysis is widely used for inference and forecast-
ing, where its application has substantial overlap with the field of machine learning.
Over the years, a large body of techniques for carrying out regression estimation
has been developed. Customary methods such as linear and ordinary least squares
regression are parametric, in the sense that the target function is defined in terms of a
finite number of unknown parameters, which are estimated from the data. Parametric
estimates usually depend only upon a few parameters and are therefore suitable even
for small sample sizes n if the parametric model is appropriately chosen. On the
other hand, regardless of the data, a parametric estimate cannot approximate the
regression function better than the best function that has the assumed parametric
structure. For example, a linear fit will produce a large error for every sample
size if the true underlying regression function is not linear and cannot be well
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approximated by linear functions. This inflexibility is avoided by the nonparametric
estimates, which do not assume that the regression function can be described by
finitely many parameters. Such procedures are therefore particularly appropriate
when the joint distribution of X and Y cannot be safely assumed to belong to any
specified parametric family of distributions.

The literature on nonparametric regression methods is too vast to permit anything
like a fair summary within the confines of a short introduction. For a comprehensive
presentation, we refer to the monograph by Gyorfi et al. (2002), which covers almost
all known nonparametric regression techniques, such as classical local averaging
procedures (including kernel, partitioning, and k-nearest neighbor estimates), least
squares and penalized least squares estimates, local polynomial kernel estimates,
and orthogonal series estimates. Our goal in this and the subsequent chapters is to
offer an in-depth mathematical analysis of the nearest neighbor regression function
estimate, a nonparametric method first discussed by Royall (1966) and Cover (1968)
in the late 60s of the 20th century, and later by Stone (1977).

8.2 The nearest neighbor estimate

The data in our model can be rewritten as
Yi=rX)+e&., 1=<i<n,

where ¢; = Y; — r(X,) satisfies E[¢;|X;] = 0. Thus, each Y; can be considered as
the sum of the value of the regression function at X; and some error ¢;, where the
expected value of the error is zero. This motivates the construction of estimates by
local averaging, i.e., estimation of r(x) by the average of those Y;’s for which X; is
“close” to x.

Of particular importance is the nearest neighbor estimate. Let us denote by
Xnx), Y1 (%), ..., Xw(x), Y()(x)) a reordering of the data (Xi,Y)),...,
(X, Y,,) according to increasing values of || X; — x||, that is,

Xy ®) = x|| <+ = X (x) = x|

and Y(;(x) is the ¥; corresponding to X(;(x). When |X; — x| = [IX; — x|| but
i # j, then we have a distance tie, and a tie-breaking strategy must be defined to
disambiguate the situation. There are different possible policies to reach this goal.
The one we adopt is based on ranks: if |X; — x|| = ||X; — x|| but i # j, then X; is
considered to be closer to x if i < j. For more clarity, the next section is devoted
to this messy distance tie issue. Nevertheless, it should be stressed that if p has
a density, then tie-breaking is needed with zero probability and becomes therefore
irrelevant.
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Definition 8.1. The (raw) nearest neighbor estimate is

ra(X) = Y v (%), (8.2)

i=1
where (v,1, ..., V) is a given (deterministic) weight vector summing to one.

Remark 8.1. Throughout and when needed, with a slight abuse of notation, we set
v = Oforalli > n. O

Thus, in this procedure, the local averaging is done by weighing the Y;’s
according to a sequence of specified weights and according to the rank of the
distance from X; to x. The weights (v, . . ., v,,) are always summing to one. They
are usually nonnegative, but in some cases they can take negative values. Important
subclasses include monotone weight vectors:

Upl 2 Up2 2+ 2 Upp,
and the uniform weight vector:

o = %forlfifk
"0 fork<i<n,

where k is a positive integer not exceeding n. In the latter case, we speak of the
standard k-nearest neighbor estimate.

Nearest neighbor estimation is one of the oldest approaches to regression
analysis and pattern recognition (Fix and Hodges, 1951, 1952; Cover, 1968). It is a
widespread nonparametric method, with hundreds of research articles published on
the topic since the 80s (Dasarathy, 1991, has provided a comprehensive collection
of around 140 key papers). For implementation, it requires only a measure of
distance in the sample space, hence its popularity as a starting point for refinement,
improvement, and adaptation to new settings.

Remark 8.2. There are many ways of defining an ordering of data points. In the
present text, we take the standard Euclidean (¢?) distance. One can consider £”
distances in general, and even distances skewed by an affine transformation. In
particular, for x € RY, the norm of x can be defined as ||Ax|, where A is a fixed
positive definite d x d matrix.

A slightly different approach is taken by Devroye (1991b) (see also Olshen,
1977), where given X, ..., X, and X, one first ranks all data with respect to each
coordinate. Let r;; be the rank of the j-th coordinate of X; among all j-th coordinates,
and let r; be the rank of the j-th coordinate of x. Assume for now that all marginal
distributions are nonatomic to avoid ties. Then form an £” metric

1/p
d g _ P <
distance(X;, x) = (Zj=1 |rij = rjl ) forl <p<oo
maxi<j<q |1 — 1|  forp = oco.
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Most of the results of this book regarding regression function estimation and
classification remain true for the nearest neighbor estimate based on this metric. In
particular, the estimate is universally weakly consistent under the same condition on
the v,;’s given in Theorem 11.1. It has the advantage to be invariant under monotone
transformations of the coordinate axes.

One can even construct regression function estimates that are invariant under
all affine transformations of the data. One possibility is described by Biau et al.
(2012). Here is another one. Let T denote transposition and assume that vectors
are in column format. For a given set of D vectors ay,...,ap € R4, rank the data
X, ..., X, and x according to the values of ajTXi, 1 <i<n,and aij, and form the
£P metric on the ranks described above, but now with D, not d, sets of ranks. The
invariance under affine transformations follows when ay, ..., ap are selected such
that the ranks do not change. To achieve this, one can take a; perpendicular to the
(d — 1)-dimensional hyperplane determined by (X(j—1)a+1, - - . , Xjq). This family of
estimates has not yet been studied, but should be consistent for all fixed D > d, at
least when X has a density. O

As for density estimation, there are different ways to measure the closeness of
the regression estimate 7, to the true regression function r. These include global
criteria, such as the distances in L/

1/p
2 = ([, 190 = reoF w@w )
R4
and the uniform deviation

L (r,, r) = ess sup |r,(x) — r(x)|
x€ER4

(with respect to the distribution ). On the other hand, local criteria fix a query point
x and look at the closeness between r,,(x) and r(x). The regression function estimate
r, is called weakly (strongly) pointwise consistent on A if

r,(X) = r(x) in probability (almost surely) for all x € A.

From the pointwise convergence of r,, one can often deduce results about the
convergence of [ |r,(x) — r(x)[” it (dx), but the inverse deduction is not simple.
In the next few chapters, we will be interested in sufficient conditions on the
weight vector (v, . . ., Uy,) for weak and strong consistency of the general nearest
neighbor estimate, under minimal assumptions regarding the distribution of (X, Y).
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8.3 Distance tie-breaking

When X has a density with respect to the Lebesgue measure on R¢, distance ties
occur with zero probability. However, in general, X does not have a density and ties
can occur: the event [||X; — X]|| = ||X; — X buti # j] can happen with positive
probability, so we have to find a strategy to break the ties.

Remark 8.3. To see that the density assumption cannot be relaxed to the condition
that the distribution u of X is merely nonatomic without facing possible distance
ties, consider the following distribution on R? x R¢ with d,d’ > 2:

1 1
n= E(Td ®ox) + E(Ud ® ),

where t; denotes the uniform distribution on the surface of the unit ball of R and
04 denotes the unit point mass at the origin of R?. Observe that if X has distribution
7, Q0. and X’ has distribution 0, ® 7z, then || X —X'|| = /2. Hence, if X1, X, X3,
X, are independent with distribution p, then P{||X; — Xs|| = ||X5 — X4||} = 1/4.
O

There is no consensus on the best way to break distance ties. Some possible
policies are discussed in Chapter 11 of the monograph by Devroye et al. (1996).
The one we adopt throughout the book is by looking at the index, i.e., whenever
IXi — x| = [IX; —x||, i # j, we declare X; closer to x if i < j. However, the
possibility of distance ties leads to consider various possible versions of the nearest
neighbor regression function estimate. Let us start by defining the rank X; of X;
with respect to x as follows:

Xi= Z L —xii<f1xi—xiy + Z L= 1x,—xIl1-
J#i Jsi

Therefore, if |X; — x| = [|X; — x]|, then X; < X} if and only if i < j. Since ties

are broken by looking at the index, we see that the data are reordered by rank with
respect to X, i.e., that our ordering

(X)y®). Y1y (®)) ... (Xt (%), Y1) (%))
is such that
X Y) = (X(z) (), Y(z)(x) -

There is an inverse rank vector (o7, ..., 0,), also a permutation of (1, ..., n), which
is defined by

(X(i) (x), Y (X)) = (X5, ¥o,)-
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Thus, oy, = i and X,;, = i for all i. In the raw weighted nearest neighbor estimate,
we have

I",,(X) = Z vm'Y(i) (X) = Z vm'Yai
i=1

i=1

n n

= Z Z Uni Vil g;=i)-

i=1 j=1

The knee-jerk reaction of most statisticians is to break distance ties by averaging.
If we write r,(x; X1, ..., X,) for the raw weighted nearest neighbor estimate, then
the averaged estimate, which removes any dependence on ties, is

_ 1
Fa(X) = - E (X Xq,, .., Xg,).
Tl permutations
(T15eetp) of (1,...,1)

If there are no distance ties, then r,(x) = r,(x). However, if
X (i—n (%) = x|| < X (x) —x]| =+ = [Xg-1(x) —x]| < [ X (x) —x],

then the weight of each of Y(;(x),...,Yj—1)(x) in the definition of 7,(x) is the
average weight

Upi + -+ Un,j—1
j—i
It is the same principle that is used in payouts in a golf tournament in case of ties—

the prize money is averaged. The weight of Y(;)(x) in 7,(x) is written as V,;, which
now is a random variable:

Fa(X) = Y V¥ (x).

i=1

We still have Z?:l Vi = 1, and if (v,,1 < i < n) is monotone, then so is
(Va1 <i<n).

Proving consistency and rates of convergence for r, is harder and more informa-
tive than for r,, in view of the following trivial observations:

E[ra(x) = r(®)|” < E[ra(x) = r(®)[",

E[ sup (7 (x) —r(x)@ < E[ sup [12(x) —r<x>|},

x€R4 x€R4
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or
ErX) —rX)f <E|rnX)—rX).

Thus, all our results are for r,.

We conclude this section with the following useful proposition, whose proof is a
good illustration of the utility of the rank formalism. Further results of this sort are
given in Kaufmann and Reiss (1992) and Cérou and Guyader (2006).

Proposition 8.1. Assume that E|Y| < oo, and let r(X) = E[Y|X]. Then,
conditional on X1, . .., X, the random variables

Xy (X), Y1y (x)) » -, (X (%), Y (%))

are independent. Moreover, for each 1 <i < n,

E [Y(,‘) (X) —-r (X(,-) (X)) | X] yeens Xn] =0.

Proof. SetZ; = (X;,Y;) and Z;)(x) = (X (X), Y»(x)), 1 < i < n. We have to
prove that, for any Borel sets Ay, ..., A,,

n n
E [H Lz wea | X1, -, Xn] = [[E[Lzymwens 1 X1..... X,].

i=1 i=1

Let (01,...,0,) be the random permutation of (1,...,n) such that Z;(x) = Zo,.
We may write

E [l_[ Lz wean 1 X1, - - - 7Xn:|

i=1

=E |:1_[ Lz, ean | X1, .. .,X”]

i=1

= Z |:]1[(a1,....a,,):(n,“..r,,)] xE |:l_[ Lz, ean X1, ... Xn:|] ,

all permutations i=1
(71,..7n) of (1,...,1)

where, in the last equality, we used the measurability of (o7, . . ., 0,,) with respect to
X1, ..., X,. Next, invoking the independence of (X, Y1), ..., (X, ¥,,), itis a simple
exercise to prove that Zy, ..., Z, are independent conditional on Xy, ..., X,. Thus,

E []‘[ iz wean | X1, X}

i=1

= Z |::U.[(Jl ,,,,, on)=(11,-..,Tn)] X 1_[ E []l[Zrl-EAi] | Xl, RN Xn]:|

all permutations i=1
(71,0,Tp) of (1,...,n)
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- HE []I[ZG[GAI'] |X1, e ,Xn]

i=1

= [TE[Lzywen 1 X1. ... X,] .

i=1

This shows the first statement of the proposition. To prove the second one, notice
that

E [Y@(X) —r (X(,')(X)) |X1 yee ey Xn] =K [Y(i)(X) | X] yee ey Xn] —r (X(,‘)(X)) .
But

E[Y(,’)(X) |X1,...,Xn]

=Y 1Bl [ X..... X,]

=1
= > 1= ElY[X]
j=1

(by independence of (X;,Y;) and X, ..., X;—1, Xj11,...,X,)
= A= (X))
=1

=r (X(i) (X)) .



Chapter 9
The 1-nearest neighbor regression
function estimate

9.1 Consistency and residual variance

Our objective in this short chapter is to analyze some elementary consistency
properties of the 1-nearest neighbor regression function estimate. This will also offer
the opportunity to familiarize the reader with concepts that will be encountered in
the next few chapters. Recall that this very simple estimation procedure is defined
by setting

m(x) =Yn(x), xe R,

where (X(1)(x), Y1)(x)), . .., X (X), Y (X)) is a reordering of the data according
to increasing values of ||X; — x||, and distance ties are broken by looking at indices.

Assuming EY? < oo, we have seen in the introduction of Chapter 8 that the
regression function 7(x) = E[Y|X = x] achieves the minimal value of the L? risk
over all Borel measurable functions g : R? — R with Eg?(X) < oo, that is,

E|Y —r(X)]* = inf E|Y — g(X)|*.
8

The quantity
L* =E|Y —r(X)]* = EY? — E2(X)

is called the residual variance (variance of the residual, noise variance). It is zero if
and only if ¥ = r(X) with probability one—such a situation is called noiseless.
In this chapter, we prove the following result:

Theorem 9.1. Assume that EY?> < oo. Then the 1-nearest neighbor regression
function estimate r,, satisfies

E|r,(X) — r(X)|* — L*.
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Thus, when k = 1, the mean integrated squared error E|r,(X) —r(X)|? converges
to the residual variance L*. This convergence is universal, in the sense that it happens
for any distribution of (X,Y) with EY? < oo. The I-nearest neighbor estimate
is L2-consistent (that is, E|r,(X) — r(X)|> — 0) in the noiseless case only. To
circumvent this problem, a possible strategy is to let the parameter k depend upon 7.
In the remaining chapters on regression, k will satisfy k — oo and k/n — 0 as
n — oo in order to obtain consistency.

9.2 Proof of Theorem 9.1

The proof of Theorem 9.1 begins with a useful technical lemma, which is a
refinement of an inequality of Stone (1977) (see also Fritz, 1975).

Lemma9.1. Letp > 1, and let g : R? — R be a Borel measurable function such
that E|g(X)|P < oo. Then

E g (X1)X)|” < caE [gX)I,

where c, is a positive constant depending upon the dimension d only.

Proof. Let 01 = 01(X;Xj,...,X,) be the index in {1,...,n} corresponding to
the nearest neighbor pair (X1)(X), Y(1)(X)). Thus, (X1)(X), Y1y(X)) = (X4, Ys,).
Write

Ele(XpyX)|" =E | D 1= [eXp|”
j=1
Define the event
n
A= Jx=xj
i=1

Then

E|Y lp=pla [gX)[" | =E| 16X Y Lo =il
j=1 Jj=1

=ElgX).
So, only the case A is of interest. Cover RY with a finite number y, of cones

€\, ..., 6y, of angle 6 = /8 (this is possible by virtue of Theorem 20.15). For
each 1 < £ < yy, let 6,(X) = X + % be the corresponding translated cone with
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origin at X. Within each translated cone, mark all X;’s of smallest radius || X; — X||.
In the £-th cone, let N, be the number of marked X;’s. If the cone is empty, then
N¢ = 0. By symmetrization,

E| > L= [¢X) [ L xoexy
=1

Vd
<E[XPY Y LX) XXX =1 L xxp L x

i=1

=1 j:X;€6,(X) i)

Within cone %;(X), on the event A€, X can only be the nearest neighbor of at most
one point, namely a marked point. In fact, if Ny > 1, then it cannot be the nearest
neighbor of any point. To see this, assume that X; is marked, that X; # X, and let
X, belong to the cone (see Figure 9.1 for an illustration in dimension 2). Then, if
1Xs —X]| > |IX;—X]|, one has ||X; —X;|| < | X—X,]|. Indeed, consider the triangle
(X, X}, X,), and define the angles o, 8, y as in Figure 9.2. If « = 0, the result is
clear. If « > 0, then

IX - X, _ X=X _ X - X]|

sino sin y sin 8

Fig. 9.1 A cone in dimension 2. Both X; and X, are marked points.
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Fig. 9.2 Triangle (X, X;, X;) with X; a marked point.

Now,B8+y =m—aandy > B,s0y > (r —«a)/2. Hence,

sin o
1Xj = Xsl| < —=~ IX =Xl
sin (—2 )
sin o
= — | X=X,
cos(a/2) | |

= 2sin(a/2)[IX — Xq||
< 2sin(r/8) X — Xyl
< 2sin(x/6)||X — X||
= X=X

Therefore, 01(X;; X1, ..., Xs—1, X, X415 - - - X)) # sif s £ j. We conclude

JX;€60(X) i)
The inequality then follows easily with ¢; = y; + 1. O

Lemma 9.2. Letp > 1, and let g : R? — R be a Borel measurable function such
that & |g(X)|? < co. Then

E|g(X1)(X)) —¢X)|" =0 and El|g (X (X)|" = E[gX)].

Proof. For ¢ > 0, find a uniformly continuous function g, with compact support
such that E|g(X) — g.(X)|? < e (see Theorem 20.17 in the Appendix). Then, using
the elementary inequality |a + b + |’ < 3?7 !(|a|’ + |b|P + |c|P) valid for p > 1
(c,-inequality—see Proposition 20.1 in the Appendix),
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E|g (X1)(X)) — gX)|’
= 37 (Elg (XaX) = g (X X)[" + E g (X (X)) — (X"
+Eg:(X) — g(X)I" )

<3 (ca+ DE[g(X) — g (X + 37'E [g. (X (X)) — g:(X)|”
(by Lemma 9.1)
<3 ca+ De+ 3 7'E g (Xy (X)) — g:(X)[".

We find § > 0 such that |g.(y) — g.(x)| < eif ||y — x|| < 6. So,
Elg: (X0)(X)) — g:X)|" < & + 27|12 x P {1 X(1)(X) — X]| > &} .

Let p be the distribution of X. By the Lebesgue dominated convergence theorem,
we have

P {|IX1)(X) = X]|| > 8} - 0
if for j1-almost all x € R9,
P {|X () (x) — x]| > 8} — 0.

If x belongs to the support of u, then P{||X—x|| < §} > 0 forall § > 0 by definition
of the support. Thus,

P{Xn®) — x| > 8f = (1 =P {IX—x| <&)" —0.

But w(supp(i)) = 1 (see Chapter 1) and, putting all the pieces together, we
conclude that

E|g (X1)(X) —gX)|” <377 ((ca + e + ") + o(1),
so that
E g (X0y(X)) —g(X)|” — 0.

This shows the first assertion of the lemma. To prove the second one, just note that

[E g (X)) [ ~ E lgX)P

< ] g (X0 0) " ~ g0 |

and apply the first statement to the function |g|”. |
Lemma 9.3. Assume that EY? < oo, and let 6*(x) = E[|Y —r(X)|?> | X = Xx]. Then

E|Yn(X) - r (XayX)|* = Elo? X (X)].
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Proof. As in the proof of Lemma 9.1, we let o7 be the index in {1, ..., n} such that
(X(l)(X), Y(l)(X)) = ()((71 N Ygl). Then

(7000 — r (X (0)” = Y B[ 110y 1~ %) ]
j=1

S S L [ P
j=1

where, in the second equality, we used the fact that o is measurable with respect
to X, Xy, ..., X,. Thus, using the independence between the pair (X;, ¥;) and the
observations X, Xioo o Xjm1, X1, -, X, we are led to

E|Y(1)(X)—’”(X(1)(X) Z]E[H[GI—J]EUY r(X)|) ]]

= Z E []l[m =j]02(Xj)]

Jj=1
= E[o”(X(1)(X))],
as desired. O

We are now in a position to prove Theorem 9.1.

Proof (Theorem 9.1). We have
E|r,(X) — r(X)* = E [Y0)(X) — r (Xay (X)) + r (Xy (X)) — r(X)|*
= E[Y0,(%) = (X)) X)) |* + E[r (X1)(X)) = r(X) |’
+2E[(Ya)(X) = (X (X)) (r (X (X)) = r(X))].

The second term on the right-hand side tends to zero by Lemma 9.2 and the fact
that Er2(X) < EY? < oo. Define 6%(x) = E[|Y — r(X)|*| X = x|, and note
that the assumption EY? < oo implies Eo?(X) = E|Y — r(X)|?> < oco. According
to Lemma 9.3, the first term is E[o%(X(1)(X))], and it tends to Eo*(X), again by
Lemma 9.2. Finally, by the Cauchy-Schwarz inequality,
E [(Yoy (X) — 7 (X (X)) (r (Xy (X)) = r(X))]
2
= E [0 (Xo)(X))] < E[r (X (X)) = r(X)|
= (Eo*(X) + o(1)) x o(1)
— o).



Chapter 10
I?-consistency and Stone’s theorem

10.1 I”-consistency

We know that, whenever EY? < oo, the regression function r(x) = E[Y|X = X]
achieves the minimal value L* = E|Y — r(X)|?> of the L? risk over all square-
integrable functions of X. It is also easy to show, using the independence of (X, Y)
and the sample &,,, that the (conditional) L? risk E[|Y — r,,(X)|? | Z,] of an estimate
r,, of r satisfies

E[|Y = n(X)]* | Z:] = E)Y = r(X)] + /R 7 () = O (),

where p is the distribution of X. This identity reveals that the L risk of the estimate
ry is close to the optimal value if and only if the L error [, [r,(x) — r(x)|*p(dx) is
close to zero. Therefore, the L? error (integrated squared error) is a nice criterion to
measure the quality of an estimate.

Since r, is a function of the data set &, the L? error is itself a random variable.
Most often, one is interested in the convergence to zero of the expectation of this
random variable. The estimate 7, is said to be (globally) L2-consistent (or mean
integrated squared error consistent) if

E U |Fra(x) — r(x)]? ;L(dx)i| —0 asn— 0o,
R4

where the expectation E is evaluated with respect to the sample %,. Taking
expectation with respect to both X and %, this can be rewritten in a more compact
form as

E [r,(X) — r(X)|* — 0.
© Springer International Publishing Switzerland 2015 111
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More generally, denoting by p a positive real number and assuming that
E|Y|P < oo, the estimate r,, is (globally) L”-consistent if

E |r,(X) — r(X)” — 0. (10.1)

Note that (10.1) is a global proximity measure—from (10.1) we can merely
conclude that liminf,, o E|r,,(X) — r(x)|? = 0 at u-almost all x by Fatou’s lemma.
This does not imply that r,,(x) — r(x) in probability.

Our main goal in this chapter is to show that the (raw) nearest neighbor regression
function estimate defined in Chapter 8 is universally L”-consistent, i.e., that (10.1)
holds for all distributions of (X, Y) with E|Y|? < oco. This result is a consequence
of a fundamental theorem of Stone (1977), which provides necessary and sufficient
conditions for consistency in L” of general local averaging regression estimates.
This is the topic of the next section.

10.2 Stone’s theorem

A local averaging estimate is any estimate of the regression function that can be
written as

r(x) = ) Wu(®)Yi, xeR (10.2)

i=1
where (W, (x),..., W,,(x)) is a weight vector and each W,;(x) is a Borel mea-
surable function of x and X,...,X, (not Yi,...,Y,). It is intuitively clear that

the pairs (X;, Y;) such that X; is “close” to x should provide more information
about r(x) than those “far” from x. Therefore, the weights are typically larger
in the neighborhood of x, so that r,(x) is roughly a (weighted) mean of the Y;’s
corresponding to X;’s in the neighborhood of x. Thus, r,, can be viewed as a local
averaging estimate. Often, but not always, the W,;(x)’s are nonnegative and sum to
one, so that (W, (x), ..., W,,(X)) is a probability vector.

An example is the kernel estimate (Nadaraya, 1964, 1965; Watson, 1964), which
is obtained by letting

K (%)

n -X;\’
2= K(XT’>

where K is a given nonnegative measurable function on R? (called the kernel), and &
is a positive number (called the bandwidth) depending upon n only. Put differently,
for x € RY,

Wni (X) =
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If both denominator and numerator are zero, then we set r,,(x) = % Y, Y:. Such
a strategy ensures that r, is a linear function of the Y;’s: if all ¥;’s are replaced by
aY; + b, then r,(x) is replaced by ar,(x) + b. In particular, for the so-called naive
kernel K(z) = 1y <1}, one obtains

> it Lpn—xi<n Yi
> it Lps—x;<n

ra(x) =

i.e., r(x) is estimated by averaging the Y;’s such that the distance between x and
X; is not larger than h. For a more general kernel K, the weight of Y; (i.e., the
influence of Y; on the value of the estimate at x) depends on the distance between x
and X; through the kernel shape. Popular kernels include the Epanechnikov kernel
K@) =(1- ||z||2)1[||z||5]] and the Gaussian kernel K(z) = eIl

A second important example is the nearest neighbor regression function estimate
», which we have introduced in Chapter 8. Recall that

) =Y vi¥Yp(x). xeRY (10.3)
i=1

where (vy1,...,V,,) is a given weight vector summing to one, and the sequence
X)), Y1 (x), ..., Xw(X), Y (x)) is a permutation of (X, Y)),...,(X,,Y,)
according to increasing values of ||X; — x|| (as usual, distance ties are broken by
looking at indices). We see that the nearest neighbor estimate is indeed of the
form (10.2), since it is obtained by putting

Wm’(x) = Uny;s

where (X, ..., Y,) is a permutation of (1,...,n) such that X; is the X;-th nearest
neighbor of x for all i.

Stone’s theorem (Stone, 1977) offers general necessary and sufficient conditions
on the weights in order to guarantee the universal L”-consistency of local averaging
estimates.

Theorem 10.1 (Stone, 1977). Consider the following five conditions:

(i) There is a constant C such that, for every Borel measurable function
g : R4 — R with E|g(X)| < oo,

EI:Z Wi (X)] |8(Xi)|i| <CE|gX)| foralin=>1.
i=1

(ii) There is a constant D > 1 such that

P% Z|Wni(X)| < D} =1 foralln=>1.
i=1
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(iii) Forall a > 0,

Z [W,i(X)| Ljjx,—x|>q) — O in probability.

i=1

(iv) One has

n
Z W,i(X) — 1 in probability.

i=1
(v) One has

max |W,;(X)| — 0 in probability.

1<i<n

If (i)-(v) are satisfied for any distribution of X, then the corresponding regres-
sion function estimate r, is universally LP-consistent (p > 1), that is,

Elr(X) —rX)I” — 0

for all distributions of (X, Y) with E|Y|P < oo, p > 1.

Suppose, conversely, that r, is universally LP-consistent. Then (iv) and (v) hold
for any distribution of X. Moreover, if the weights are nonnegative for all n > 1,
then (iii) is satisfied. Finally, if the weights are nonnegative for all n > 1 and (ii)
holds, then (i) holds as well.

Remark 10.1. 1t easily follows from the Lebesgue dominated convergence theorem
that condition (v) of Theorem 10.1 may be replaced by

E[ZW,&,.(X)] — 0. 0
i=1

Before we prove Theorem 10.1 in the next section, some comments are in order.
Condition (7) is merely technical. It says in particular that for nonnegative weights
and for a nonnegative, noiseless model (i.e., ¥ = r(X) > 0 with probability one),
the mean value of the estimate is bounded from above by some constant times the
mean value of the regression function. The attentive reader may note that (i) is the
condition that permits one to avoid placing a continuity assumption on r. Conditions
(if) and (iv) state that the sum of the weights is bounded and is asymptotically one.
Condition (iii) requires that the overall weight of X;’s outside any ball of fixed radius
centered at X must go to zero. In other words, it ensures that the estimate at a point
X is asymptotically mostly influenced by the data close to X. Finally, condition (v)
states that asymptotically all weights become small. Thus, no single observation has
a too large contribution to the estimate, so that the number of points encountered in
the averaging must tend to infinity.
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It (W, (X), ..., W, (X)) is a probability vector, then (ii) and (iv) hold automati-
cally and the three remaining conditions are necessary and sufficient for consistency.
This useful result is summarized in the following corollary.

Corollary 10.1. Assume that the weights are nonnegative and sum to one:

Wai(X) 20 and Y Wu(X) = 1.

i=1

Then the corresponding regression function estimate is universally LP-consistent
(p = 1) if and only if the following three conditions are satisfied for any distribution
of X:

(i) There is a constant C such that, for every Borel measurable function g:
R? — R with E|g(X)| < oo,

B[ Y WaX) 6% | < CELe0] forattn= 1.

i=1

(ii) Forall a > 0,

Z Wui(X)1jx,—x|>q) — O in probability.

i=1
(iii) One has

max W,;(X) — 0 in probability.

I<i<n

Technical condition (i) in Theorem 10.1 may be hard to verify for some families
of weights. However, this requirement can be bypassed for a bounded Y, at the price
of a stronger assumption on the regression function. Recall the definition

[¥)loo = inf {t > 0: P{|Y| >t} = 0}.

Corollary 10.2. Assume that |Y||eo < 00 and that the regression function is
uniformly continuous on R?. Assume, in addition, that for any distribution of X,
the weights satisfy the following four conditions:

(i) There is a constant D > 1 such that

IP{ D IWu(X)) §D} =1 foralln>1.

i=1
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(ii) Foralla > 0,

Z [W,i(X)| Ljjx,—x|>q) — O in probability.

i=1

(iii) One has

n
Z W,i(X) — 1 in probability.

i=1
(iv) One has

max |W,;(X)| — 0 in probability.

1<i<n

Then the corresponding regression function estimate is L? (p > 1) consistent.

Proof. Verify that the conclusions of Lemma 10.1 and Lemma 10.2 in the next
section hold without condition (i) of Theorem 10.1 as soon as ||Y||cc < 00 and r is
uniformly continuous. O

10.3 Proof of Stone’s theorem

For the sake of clarity, the proof of Theorem 10.1 is divided in a series of five
lemmas. The first two lemmas concern the sufficiency, whereas the last three ones
pertain to the necessity.

Lemma 10.1. Let p > 1. Assume that E|Y|P < oo. If conditions (i)-(ii) and (v) of
Theorem 10.1 are satisfied, then

n p
D WuX) (Y — (X)) | — 0.

i=1

E

Proof. We first show that the conclusion of the lemma holds when p = 2. The
general case is then obtained through a truncation argument. Define 0%(x) = E[|Y —
r(X)|?| X = x], and note that the assumption EY?> < oo implies Eo*(X) < oo.
Next, write

n 2 n n
E| > WuX) (Yi—r(Xp) | =YY E[Wu(X)Wy(X) (Yi—r(X) (Y—r(X))) |-
i=1

i=1 j=1
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For i # j,
E[W.i(X)W,;(X) (Y — (X)) (¥; — (X)) ]
= E[E[W,u(X)W,;(X) (¥; — r(X) (¥ — (X)) [ X, X1, ..., X,,, V]
= E[Wu(X)W,;(X) (¥; = rX)) E[Y; — r(X)) | X, X1, ..., X, Y] ]
= E[W.u(X)W,;(X) (¥; — r(X)) (r(X)) — r(X))) ]
=0.

In the third equality, we used the independence between the pair (Xj,Y;) and
X, X], Xj—la Xj+1, ey Xn, Yi. Hence,

n 2
D WuX) (¥; — (X)) | =

i=1

E

E[Z Wa(X)|Yi — r(Xi)|2:|
i=1

— E[ > W,fl.(X)oz(X,-)]. (10.4)
i=1
By Stone’s conditions (if) and (v), and the dominated convergence theorem,
n
IE[ > Wfi(X)} -0 (10.5)
i=1

(see Remark 10.1). If Y is bounded, then so is o2, and (10.5) implies the desired
result. For general 02(x) and & > 0, a denseness argument (cf. Theorem 20.17 in the
Appendix) reveals that there exists a bounded Borel measurable function o2(x) < L
such that E|o?(X) — 02(X)| < &. Thus, by (ii),

2
E

Z Wi (X) (Y; — r(X;))

i=1

< E[ D WEX) [0 (X)) — 02(X))| } + E[ > W,fi(X)af(xi)}
i=1 i=1

< DIE[ D WX |0 (Xi) — 02 (X)) } + LE[ > Wfi(X):|.
i=1 i=1
Thus, using (i) and (10.5), we obtain

n 2
Y WuX) (i = r(X))) | < CDE|0*(X) — 02(X)|

i=1

lim sup £

n—>oo

< CDse.

Since ¢ is arbitrary, the lemma is proved for p = 2.
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Consider now the general case p > 1. Given a positive number M, set Y =
Y1(jyj<m and ™ (x) = E[Y™|X = x]. Using the elementary inequality |a + b +
clP <377 1(lalP + |b|P + |c|P) valid for p > 1, we may write

E Z W, (X)(Y; — v

i=1

D WailX) (¥; = r(X0)) ‘,, <3 IE "’
i=1

n p
+ 3B Y WX (v — (Xi))’
i=1
(10.6)
n P
+ 3| Y WaX) (r(X0) — (X)) |
i=1

For p > 1, by the triangle and Holder’s inequalities, setting ¢ = p/(p — 1), we have

"<e[ (S ool -r)) ]

i=1

E Z Wi(X)(¥; — ¥

i=1

= E-(Z }Wni(x)|l/q|Wm(X)|1/p|Yi B Yi(M)|)pi|
=N =1

- n

< B (3 0l)™ 32 W1 1 ip]

- i=1 i=1

Thus, by conditions (i)—(ii),

E

‘ P
D WuX)(Y; YfM))‘ < CDYE|y — Y|P,
i=1
On the other hand, for p = 1,

E < CEly —Y"|.

Y WauX)(¥; - ¥
i=1

Using the fact that E|Y — Y™ P — 0 as M — oo, we conclude that, for all p > 1,

Z VVm(X)(Yz - Yi(M)) =0.

i=1

lim supE

M—00 ;51

‘[’

Similarly, forp > 1,
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n P
Z Wi (X) ("™ (X)) — (X))

i=1

E

IA

CD'/E|r(X) — ™ (X) |

= CD’/YE|E[Y — Y™ | X]|"

IA

CD'/ME|y — y™|’

(by Jensen’s inequality),

whereas for p = 1,

E Z W (X) (r™ (X)) — r(X))| < CE|Y — Y|,

i=1

For p > 1, the term E|Y — Y™ |? approaches zero as M — oo, uniformly in n. It
follows that the first and third terms in (10.6) can be made arbitrary small for all M
large enough, independently of n. Thus, to prove that the conclusion of the lemma
holds for Y, it is enough to show that it holds for Y™ In other words, without loss
of generality, it can be assumed that Y is bounded. But if Y is bounded, then to prove
the result for all p > 1, it is enough to show that it is true for p = 2. Since this has
already been done, the proof of Lemma 10.1 is complete. O

Lemma 10.2. Letp > 1, and let g : RY — R be a Borel measurable function such
that B|g(X)|P < oc. If conditions (i)—(iii) of Theorem 10.1 are satisfied, then

n P
E| Y Wu(X) (e(X)) — (X)) | — 0.

i=1

Proof. For p > 1, by the triangle and Holder’s inequalities, setting g = p/(p — 1),
we have

p

E| Y Wu(X) (g¢(X) — g(X))

i=1

n p
< E[(Z Wi (X)| |2(X0) —g<X)|) ]

i=1

= E[(Z Wt (X9 [ Wi (X)] 7 [ (X;) — g(X>|) ]
i=1

=< E|:< Z |W,i (X)) )p/q Z [W,i(X)| |g(Xi) — g(X)|pi|_

i=1 i=1
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Thus, by condition (if),

n P n
E| " Wu(X) (5(X) — 5(X)) ‘ < DWE[Z [W,i(X)] 1g(X) —g(xn"]

i=1

i=1

On the other hand, forp = 1,

3 Wa(X) (5(X) — g(X))

i=1

E < E[Z W, (X)] [8(X) — 8(X)| }

i=1

Therefore, the result is proved if we show that, for all p > 1,

[ 3 W0l 1ex) - 00 | >0

i=1

Choose ¢ > 0. Let g, be a continuous function on RY having compact support
and such that E|g(X) — g.(X)|”? < & (such a choice is possible for p > 1 by a
denseness argument—see Theorem 20.17 in the Appendix). Because |a + b + c|P <
37~ (|alP + |b|P + |c|P), we may write

E[Z Wi (X)] (X)) - g(X>|”} < 3P—1E[Z Wi (X)] (X)) - gs<x,»)|”]

i=1 i=1

+ 3Bl Y [ Wau(X)| [2:(X) —ge(X)l”}
- i=1

(10.7)

+ 3B Y Wu(X)] [2:(X) — g(X) I"]

L i=1
By condition (i),
E[Xn: (Wi (X)) [8(X5) —ge(Xi)I"’] =< CE[g(X) — g:(X)" = Ce.
i=1
Moreover, it follows from (ii) that
E[Z Wi (X)) [g:(X) — g(X>|"} <DE|g.(X) - gX) < De.
i=1

Thus, to prove that the conclusion of Lemma 10.2 holds for g, it suffices to prove
that the second term in (10.7) can be made arbitrarily small as » tends to infinity.
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Since g, is continuous with compact support, it is bounded and uniformly
continuous as well. Choose § > 0. There is an @ > 0 such that |g.(y) — g.(X)|? < §
ifx € R%, y € RY, and ||y — x|| < a. Then, by (ii),

E[ S W (0] (%) — g8<x>|f’} < Pllg. E[ S W) n[nxi_xnm]}ws.

i=1 i=1

It follows from (ii) and (iii) that

E|: > Wu(X))| ]l[||X,‘—X||>a]i| — 0.

i=1

Thus

fimsup | 3 W, 0] %) ~ 8.0 | < 5.

i=1
Putting all the pieces together, we obtain

imsup | Y- W00 [eX) — 20" | <37 (€ + D)+ D3).

n—>00 ;
i=1

Since ¢ and § are arbitrarily small, the conclusion of Lemma 10.2 holds. O

Lemma 10.3. Assume that the weights satisfy the following property: there is a
sequence Zi,...,Z, of independent standard normal random variables such that
(Zy,...,Z,) is independent of (X,X,...,X,), and

Z W,.i(X)Z; — 0 in probability.

i=1
Then
max |W,i(X)| — O in probability.
<i<n

Proof. The conditional distribution of >\, W,(X)Z; given X, Xj,...,X, is nor-
mal with zero mean and variance Z?:l W,fi (X). Thus, for ¢ > 0,

IP’{ ) ani(X)Zi > s} - IP’{|ZI|

Zn: W2(X) > g}
i=1

> 2 * —xz/zdx)]p{ - 2(X 2}
—(m/l ‘ 2 W0 > &y,
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and hence
P{ D OWrX) > 82§ — 0.
i=1

The conclusion of the lemma follows from max;<;<, WA(X) < >, W2(X). O

Lemma 10.4. Assume that the weights are nonnegative and that, for every bounded
and continuous nonnegative function g : R? — R,

Z W,.i(X)g(X;) — g(X) in probability.

i=1
Then condition (iii) of Theorem 10.1 is satisfied.

Proof. Leta > 0 be given. Choose xo € R?, and let g be a bounded and continuous
nonnegative function on R? such that g(x) = 0 for ||x — Xo|| < a/3 and g(x) = 1
for ||x — X¢|| > 2a/3. Then on the event [||X — x¢|| < a/3], g(X) = 0 and

Z Wi (X)g(Xi) > Z Wi X)L [x,—x || >l -

i=1 i=1

Therefore,

Ljx—xoli<a/3] Z Wi (X)L x,—x||>q] — 0 in probability.

i=1

Thus, since any compact subset of R? can be covered by a finite number of closed
balls of radius a/3, we conclude that for every compact subset B of RY,

15(X) > Wi(X)Lyjx,—xj=q) — O in probability.

i=1
Therefore, since P{|X]|| > M} tends to zero as M — oo, (iii) holds as desired. O

Lemma 10.5. Assume that the weights are nonnegative and satisfy the following
property: for every Borel measurable function g : R? — R such that E|g(X)| < oo,

n—>oQo

lim supE[Z W, (X) |g(X,~)|i| < 0.

i=1

Then there is a positive integer ng and a positive constant C such that, for every
Borel measurable function g : R? — R with E|g(X)| < oo,

E[ZWM(X) |g(X,~)|i| < CE|g(X)| foralln > ny.

i=1
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Proof. Suppose that the conclusion of the lemma is false. Then there is a strictly
increasing sequence {n,} of positive integers and a sequence {g;} of Borel measur-
able functions on R? such that E|g,(X)| = 27¢ and

E[ Z Wi (X) |ge(Xi)| } > (.

i=1

Set g = Y 72, |g¢|- Then g is a measurable function on R?, E|g(X)| = 1 < oo, and

[ Y W0 160 | = B 3 w0 ekl ] = ¢
i=1 i=1

Thus
limsupE[ZWni(X) |g(X,~>|} — o,
oo i=1
which contradicts the hypothesis. Therefore the lemma is valid. O

We are now ready to prove Theorem 10.1.

Proof (Theorem 10.1). Using the inequality |a + b + c|? < 37~ (|al? + |b|P + |c|?),
we may write

n P
Z Wi (X) (Y; — r(X;))

i=1

E|r,(X) —rX)’ <3 'E

n p
3 Wai(X) (X)) — (X))

i=1

(Z W, (X) — 1)r(X)'p.
i=1

The first term of inequality (10.8) tends to zero by Lemma 10.1, whereas the second
one tends to zero by Lemma 10.2. Concerning the third term, we have

+ 3 IR (10.8)

+ 37 'E

n p
E‘(;Wm(X) — l)r(X)‘ -0

by conditions (ii), (iv) and the Lebesgue dominated convergence theorem.
To prove the second assertion of Theorem 10.1, first note that if r,, is L”-consistent
for some p > 1 and all distributions of (X, Y) with E|Y|? < oo, then

3" Wu(X)Y; — r(X) in probability. (10.9)

i=1
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The first two necessity statements follow from (10.9). The first one is shown by
taking ¥ = 1, independently of X, so that »(X) = 1. The second one is an
implication of (10.9) and Lemma 10.3, by letting Y be a standard normal random
variable independent of X, for which in particular (X) = 0.

To prove the third necessity assertion, assume that the weights are nonnegative
and take ¥ = r(X) = g(X), where g is a bounded and continuous nonnegative
function on R?. The conclusion immediately follows from (10.9) and Lemma 10.4.

The last necessity result is implied by Lemma 10.5. To see this, assume that the
weights are nonnegative, and let g be a Borel measurable function on R such that
Elg(X)| < oo. Take ¥ = r(X) = |g(X)|. Then, by the triangle inequality,

<E| Y WulX) gX)] = [gX)| |-

i=1

[ 3 W0 kel ] - £ 100

i=1

This inequality and the universal L'-consistency of the estimate imply

lim supﬂ«:[z W,i(X) |g(X,~)|:| < oo.

n—>00 ;
i=1

Therefore, by Lemma 10.5,

E[Z W,.:(X) |g(Xi)|:| < CE|g(X)| foralln > ny.

i=1

This inequality is true for all n > 1 (with a different constant) if condition (ii) is
satisfied. O

10.4 The nearest neighbor estimate

In this section, we apply Stone’s theorem 10.1 to the nearest neighbor regression
function estimate (10.3).

Theorem 10.2 (Universal [”-consistency). Let (v,1,...,V,,) be a probability
weight vector such that v,y > -+ > vy, for all n. Then the corresponding nearest
neighbor regression function estimate is universally LP-consistent (p > 1) if and
only if there exists a sequence of integers {k} = {k,} such that

(i) k—> o0 and k/n—0;
(i) D iog Vni = 0 (10.10)
(iii) vy — 0.
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Remark 10.2. Conditions (i) and (ii) of Theorem 10.2 may be replaced by the
following equivalent one: for all ¢ > 0, Y ..., v, — O (see Lemma 20.3 in the
Appendix for a proof of this equivalence result). O

For the standard k-nearest neighbor estimate, v,; = 1/kfor1 <i <kandv,; =0
otherwise, where {k} = {k,} is a sequence of positive integers not exceeding n.

Corollary 10.3. The k-nearest neighbor regression function estimate is universally
LP-consistent (p > 1) if and only if k — oo and k/n — 0.

This is a nice result, since no condition on (X, Y) other than E|Y|? < oo is
required. This type of distribution-free result is called universal. The concept of
universal consistency is important because the use of a nonparametric estimate
is usually a consequence of the partial or total lack of information regarding the
distribution of (X, Y). Since in many situations we do not have any prior knowledge
about this distribution, it is therefore essential to design estimates that perform well
for all distributions.

The crucial results needed to prove Theorem 10.2 are gathered in the next two

lemmas. If X, X, ..., X, are elements of R? and (v,1,..., V) is a weight vector,
we let

Wni(x;xlv”wxn):vnk, 1 Slfn’
whenever X; is the k-th nearest neighbor of x from among xi, ..., X, (distance ties

are broken by comparing indices).

Lemma 10.6. Let X,X1,...,X, be vectors of RY, and let (V,1,..., V) be a
probability weight vector such that v, > -+ > vy, for all n. Then

n
E Wi (Xi X1, ..o Xm0, X, Xig 1, - - -5 Xn) < 24,
i=1

where g is the minimal number of cones of angle 1 /12 that cover RY.

Proof. By Theorem 20.15, there exists a finite collection of minimal cardinality
€\, ..., Cy, of cones of angle /12 , with different central directions, such that their
union covers R%:

Vd
J% =r".
=1

Similarly, for x € R4,

Vd
Jx+%) =R
(=1
To facilitate the notation, we let ¢ (x) = x+ %, and denote by € (x) the translated
cone %;(x) minus the point x. Introduce the set A = {i : 1 <i < n,x; = x}, and let
|A] be its cardinality.
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Let x; be a point falling in ;" (x). The key observation is that if x; is the nearest
neighbor of x from among those xi, ..., X, that belong to 4" (x), then x can be
the nearest neighbor of only x;—or, equivalently, it cannot be the nearest neighbor
of any other point Xx; in ¢} (x). To see this, just note that if ||x; — x| > 0 and
I — x| < [[%; — || then, by Lemma 20.5, [}x; — x| < x—x].

By induction, we conclude that if x; is the (JA| 4+ k)-th nearest neighbor of x
among those Xxi,...,X, that belong to %;(x), then x is at least the k-th nearest
neighbor of x; among {x,X; : j # iandx; € 4;(x)}. So, using the monotonicity
condition on the v,;’s, we have

n—|A]
Z Wm‘(Xi;Xl,...,X,‘—l,X,Xi+1,...,Xn)S Zvniil'
X €6 (%) i=1
Similarly,
|A]
Z Woi(Xi X1, o X1, X, X 1, ., Xp) = Z Uy < 1.
ieA i=1
Since there are y, cones, the lemma is proved. O
Lemma 10.7 (Stone’s lemma). Let (v, ..., v,,) be a probability weight vector
such that v,y > -+ > vy, for all n. Then, for every Borel measurable function

g R? — R such that E|g(X)| < oo,
[Z v ¢ (X (0)| ] < 2B lg(X)],

where y, is the minimal number of cones of angle /12 that cover RY.

Proof. Let g be a Borel measurable function on R¢ such that [E|g(X)| < co. Notice
that

[va (% 00)]| | =2 - waw 6059 |
i=1

where, with the notation of Lemma 10.6, W,;;(X) = W,;(X; X, ..., X,). Therefore,

I:va X(,)(X) :| :E[ZWni(X;Xlw-an) |g(Xl)|i|
i=1

= E[ |g(X)| Z Wni(Xi;le ... 7X[—17X9Xi+1’ .. ,Xﬂ)]

i=1

(by symmetrization)
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and thus, by Lemma 10.6,

[Z e (%0 ()| | < 2010001

Proof (Theorem 10.2).
The sufficiency. We proceed by checking the conditions of Corollary 10.1. The
weights W,;(X) in Corollary 10.1 are obtained by putting

Wm(X) = Unx;,

where (X, ..., X)) is a permutation of (1,...,n) such that X; is the X;-th nearest
neighbor of X for all i. Condition (iii) is obvious according to (10.10)(iii). For
condition (ii), take n so large that 1 < k < n (this is possible in view of the first
requirement of (10.10)), and observe that, for each a > 0,

E[ > Wm(X)]ln|x,-—X||>a1] = E[ > vniﬂ[||X<,~><X>—X||>a1]

i=1 i=1

n

= /]Rd E|: Z vni]l[||X(,~)(x)—x||>a]i|/‘L(dx)
i=1

< [ U000 =1 > o} @ + Yo

i>k

Thus, using (10.10)(ii), the second condition of Corollary 10.1 is satisfied when

| P00 =] > a} @) — .

But, by Lemma 2.2 and the Lebesgue dominated convergence theorem, this is
true for all @ > 0 whenever k/n — 0. Let us finally consider condition (i) of
Corollary 10.1. We have to show that for any Borel measurable function g on R?
such that E|g(X)| < oo,

E[Zwm(xng(x,-n] [va X(z)(X)i}SCElg(X)I,
i=1

for all n > 1 and some constant C. We have precisely proved in Lemma 10.7 that
this inequality always holds with C = 2y,. Thus, condition (i) is verified.
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The necessity. By the necessity part of Stone’s theorem 10.1, we already know
that the requirement v,; = max;v,; — 0 is necessary. Thus, it remains to
show that conditions (10.10)(¢) and (10.10)(ii) are necessary as well. According to
Remark 10.2, this is equivalent to proving that, for all ¢ > 0, me v, — 0.

Let X be uniform on [0,1], and let ¥ = X2 Take 0 < x < 1/2, and define
Z, = Y, v,,i(X(zl.)(x) — x?). Note that y> — x> = (y — x)> + 2x(y — x). Since
x < 1/2, E[X(;(x) — x] > 0 (which we leave as an exercise). Thus,

E[X(Zi)(x) - xz] > ]E}X(,-)(x) —x|2.
Now, fort > 0, ¢t < x,
P {|X(i)(x) — x| > t} = P{Bin(n, 2r) < i}
and for ¢ > x,
P {|X@)(x) —x| > 1} = P{X(;(0) > x + 1} = P{Bin(n,x + 1) < i}.

By the duality between the binomial and beta distributions (see Section 20.9 in the
Appendix),

P{Bin(n,2t) < i} = P{Beta(i,n+1—1) > 21}, 0<t<ux,
and
P{Bin(n,x + t) < i} = P{Beta(i,n+ 1 —i) >t +x}, t>x.
In any case, for all t > 0,
P {|X(,-)(x) —x| > t} > P{Beta(i,n + 1 —i) > 2t}.

Recalling that EZ = f0°° P{Z > t}dt for any nonnegative random variable Z, we
obtain

—_—

E|X) (x) — x|*

v

E [Beta’(i,n+ 1 —i)]

4
_ 1 i+
4T m+D(m+2)

Therefore,

n n i(i+ 1) n izvm‘
R e e e D

i=1 i=1 i=1
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It suffices now to show that Z,» cannot converge to zero in probability along a
subsequence n’ of n when for some ¢ > 0, § > 0,

Zvn/i25>0

i>en’

along this subsequence. Indeed,

/

n
E izvn’i = E izvn’i = (8}’1/ + 1)287
i=1

i>en’

whence
£z, > (en’ + 1)%8
T oA +2)2
Also,
/ 1 2
Plz, > H > P{Z, > EZy/2)
n

EEZn’/2
4 2 2
- (e’ +1)*6 e

= 8w +2?2 8
where the second inequality uses technical Lemma 10.8 below. Therefore, for all
€>0,) . .,V — 0asn— oco. O

Lemma 10.8. If0 < a < 1 and 0 < c are constants, then any [0, c]-valued random
variable Z satisfies

l_
P{Z > aEZ) > — L EZ.
C

Proof. Just note that
EZ = E[Z1z<arz)] + E[Z1|z5457)] < aEZ + cP{Z > aEZ}.

ad

Remark 10.3 (Nonmonotone weights). Devroye (1981a) proved the following the-
orem (notation ™ means max(u, 0)):

Theorem 10.3. Let p > 1, and let (v, ..., vu,) be a probability weight vector.
Assume that B[|Y|P log™ |Y|] < oo and that there exists a sequence of integers {k} =
{kn} such that
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(i) k—> o0 and k/n—0;
(i) v,y =0 wheni>k; (10.11)
(iii) sup,, (k max; v,;) < oco.

Then the corresponding nearest neighbor regression function estimate is LP-consis-
tent.

The condition put on Y in Theorem 10.3 is stricter than the condition E|Y|? < oo
needed in Theorem 10.2. However, the conditions on the sequence of weights are not
strictly nested: the monotonicity constraint is absent in Theorem 10.3, but (10.11)(if)
is stricter than (10.10)(ii). O



Chapter 11
Pointwise consistency

11.1 Weak pointwise consistency

Theorem 11.1 below is a slight extension of a theorem due to Devroye (1981a). It
offers sufficient conditions on the probability weight vector guaranteeing that the
(raw) nearest neighbor estimate (8.2) satisfies, for all p > 1,

E|r.(x) — r(x)]” — 0 at u-almost all x,

under the sole requirement that E|Y|? < oo. Since convergence in L' implies
convergence in probability, this theorem also shows that the nearest neighbor
estimate is universally weakly consistent at p-almost all x, provided E|Y| < oo.

It is assumed throughout that v,; > 0,1 <i < n,and Y ;_, v,; = 1. As in the
previous chapters, we let u be the distribution of X.

Theorem 11.1 (Universal weak pointwise consistency). Letp > 1. Assume that
E|Y|P < oo and that there exists a sequence of integers {k} = {k,} such that

(i) k—> o0 and k/n—0;
(i) vy =0 wheni>k; (11.1)
(#ii) sup,(kmax; v,;) < oo.

Then the corresponding nearest neighbor regression function estimate r,, satisfies
E|r,(x) — r(x)[” = 0 ar p-almost all x € R®.

In particular, the nearest neighbor estimate is universally weakly consistent at
u-almost all x, that is,

ra(X) = r(X) in probability at p-almost all x € R?
for all distributions of (X, Y) with E|Y| < oc.
© Springer International Publishing Switzerland 2015 131
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As an important by-product, Theorem 11.1 implies that the standard k-nearest
neighbor estimate (v,; = 1/k for 1 < i < k and v,; = 0 otherwise) is universally
weakly pointwise consistent at p-almost all x when k — oo and k/n — 0. Other
examples are the triangular weight k-nearest neighbor estimate (v,; = (k—i+1)/b,
for 1 <i < kand v,; = 0 otherwise, where b, = k(k + 1)/2) and the quadratic
weight estimate (v,; = (k* — (i — 1)?)/b, for 1 < i < k and v,; = 0 otherwise,
where b, = k(k + 1)(4k — 1)/6).

Corollary 11.1. Ifk — oo and k/n — 0, then the k-nearest neighbor regression
function estimate is universally weakly consistent at ji-almost all x € R,

The elementary result needed to prove Theorem 11.1 is Lemma 11.1 below.
When the distribution of X is continuous, the proof is easy. However, in the general
case, we have to take care of the messy problem of distance ties, which introduces
additional technical difficulties.

Lemma 11.1. Letp > 1, and let g : RY — R be a Borel measurable function such
that E|g(X)|P < oo. Assume that there exists a sequence of integers {k} = {k,} such
that

(i) k/n—0;
(i) vy =0 wheni>k;
(iii) sup,(kmax; v,;) < oo.

Then

p

E — 0 at p-almost all x € RY.

Z vnig (X (X)) — g(x)
i=1

Proof. Take x such that x € supp(u), and that x satisfies

_ o
aX(u(B(x,p» s 0 T8 1),

1

T hore - P u(d —
m (BO(X, )0)) 59(x.p) |g(y) g(x)l //L( y)) 0 as P \L 0

(where B° is the open ball). Since E|g(X)|” < oo, we have by the generalized ver-
sion of the Lebesgue differentiation theorem (see Theorem 20.19 in the Appendix)
that p-almost all x satisfy this property. Fix ¢ > 0 and choose § > 0 such that the
maximum above is smaller than ¢ for all 0 < p < §.

Observe, by Jensen’s inequality (which is valid here since (vyi,...,Uy) is a
probability vector and p > 1) and conditions (if)—(iif), that for some constant « > 0,

E

P n
= %E[Z X)) ‘g(xﬂp]l[z,su], (112)

j=1

Z Uni& (X(i) (X)) —g(x)
i=1
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Fig. 11.1 An example of function F and the associated a;’s.

where X is the rank of X; with respect to the distances to x if ties are broken by
index comparisons (see Chapter 8). The objective is to bound (11.2) and show that
it can be made as small as desired as n — oc.

Define Z = | X —x||, and let F(z) = P{Z < z}, Fo(z) = P{Z < z}, p(z) =
F(z) — Fo(z) = P{Z = z}. For u € [0, 1], define

F ') =inf{r > 0: F(t) > u}.

Assume that n > 2 and let / = max{i > 0 : % < 1}. The sequence of points of

interesttousare a—; = 0 < a9 < a; < a, <--- < aj, where

R 2ik .
a=F ) i>0
n—

(see Figure 11.1 for an example).
For i > 0, we have

1

Folay) < % < F(ay) = Folay) + p(ay).

It is possible to have a@; = a;4 (because of possible atoms in F'), and this causes the
principal technical problem. We address this by introducing the set of large atoms, A:

A= {z >0:pz) > %F(Z)}~
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So, we have z € A if and only if F(z) < %F(z). The range of z, [0, 00), is partitioned
as follows, for fixed § > 0:

v U @aau | @oalu@n©8)ue.c).  (113)

i>0:a;€A,a;<§ i>0:a;¢A,0;<§

We implicitly assume that § > 0 is one of the a;’s—this is always possible for all n
large enough since k/n — 0, as soon as X is not an isolated atom of . (If x is an
isolated atom, we just write

[0, 00) = {0} U (0, 8] U (8, 00),

and observe that, for § small enough, P{||X — x| € (0, §]} = 0. Thus, the analysis
is simpler in this case and left to the reader.)
We define

1 4
= — d
V(2) LB Jyme lg(y) —g®)|” n(dy),

where dB(x, z) is the boundary of the closed ball B(x, z) centered at x of radius z:

0B(x,7) = {y € R? : |y — x| = z}. Note that F(z) = u(B(x,z)) and p(z) =
Ww(0B(x,z7)). Thus, if z € A, 0 < z < §, we have

V(z) < lg(y) — g®)” n(dy) < 4e,

T (B(x.2) Jaxo)

by choice of §. Now, for each set B in the partition (11.3), we bound

det O -
() = 8] 3 [60%) - e Lissii-stem |

J=1

Clearly, 2({0}) = 0. Assume next B = A N (0, §]. Then

hB) = %E[ > leX) — )|’ n[z,sk]nmx,_xuzz]}

Z€EB j=1
a n
=Y TVEE Y lis=ylyxxi=g
Z€EB j=1

(using our index-based distance tie-breaking convention)
4
< deen
Tk

n

ﬂ[f,-skl]lnle—xlleB]}
=1
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4oe -
]

= 4ae.

Consider now B; = (aj—1,a;), a; € A, a; < 6, i > 0. Clearly, by our way of
breaking distance ties,

on
h(Bi) < —~E [18(X1) = ¢ iz, =L, —xleny]
Thus, for i > 1, after conditioning on X,

an
hB) = SB[ 1200 ~ 001 Lix—xien pintn — 1. Flar1))<x]

(where the binomial random variable is independent of X)

<% [ 180~ 091 piay) P {Bin(n — 1. 57) < &

. i—1
(since F(a;—1) > 2,:_1").

(Note that we use the notation f p Asa shortcut for f{y:”y_x” < B;}') Similarly, for i = 0,

on
) < 5 [ 1600~ gl w(@y).
By
Now, by choice of §, for i > 0,

/ lg(y) — g(x)|” n(dy) S/ lg(y) — g(x)|” n(dy) (11.4)
B; B°(0.q;

0,a;)
=< (% (BO(O’ ai))
2k

<e¢
n—1

2k

(since Fo(a;) < ;=5)-

Therefore, fori > 1,

h(B;) < 2'ae

" xP{Bin(n— 1.22F) <4}

n— n—1

and fori = 0,

h(By) < ae
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Applying Chernoff’s bound (Theorem 20.5 in the Appendix), we have

P {Bin(n — 1,25 < k} < exp(k — 27"k + klog 2™")

> n—1
= exp (k (1 +(@—1)log2— 2"71)) .
Clearly, the exponent is nonpositive for all i > 1. Also,
> 2lexp (k(1+(i—1)log2—2"")) < "exp(l —log2 + 2ilog2 — 2"")
i=1

i=1

def
= < 0Q.

Hence,

Z h(B;) < as

i>0:a;€A,a; <8

n
(1+o).
n—1

Consider B; = (a;—1,a;], a; ¢ A, a; < 8,1 > 0. Then the bounding is as above,
i.e., the binomial argument remains unchanged, and only the passage via (11.4)
requires a modification. Indeed,

[ 15(y) — g pudy) < / 18(¥) — P
B;

B(0.q;)
(where B is the closed ball)
< eu (B(0,ay))
2k 4
X f—
n—1 3

(as noted earlier).

<e¢

The factor 4/3 carries through. So,

n 4
1 —.
n—l( +C)X3

Z h(B;) < ae

iZOIa,'¢A,a,'§5
Collecting bounds, uniformly over all k > 1,

h([0.8]) < ae<4 + ;%(1 + c)),

which is as small as desired by choice of e.
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It remains to bound /((§, 00)). Observe the following:

on
h((6.50)) = B [180X) ~ 0OV Lposi-syLpina — 1, F(8)) 1
(by conditioning on X)

< %]E |§(X) —g®)[" x P{Bin(n — 1, F(8)) < k}

< % x 271 (B [g(X)[ + |gX)]")

k
k—(m—1)F(@)—klog| —————
e (k= 0= 070 - 10 () )
(if k < (n — 1)F(8), which is valid for n large enough since k/n — 0
and F(§) > 0)
=o(l) asn— oo,
because [E|g(X)|” < oo, and for all n large enough, the exponent in exp(-) is smaller

than a negative constant times 7 in view of k/n — 0 and F(6) > 0.
Therefore

h ([0, 00)) < Ots<4 + %(1 + c)) + o(1),

and the proof is complete. O

Proof (Theorem 11.1). Because |a + b|P < 277! (|a|? + |b|P) for p > 1, we see that

14 P
<27 E

Z i [Yiy (%) — 7 (X (%)) ]

i=1

E| > 0¥ (x) = r(x)

i=1

n P
Z vt (X (%)) = r(x)| - (11.5)

i=1

+ 2P 1R

We note that E|r(X)|? < oo, by Jensen’s inequality. Thus, the second term on the
right-hand side of (11.5) tends to zero at p-almost all x by Lemma 11.1. We show
that the first term tends to zero at p-almost all x whenp > 2. The case | <p < 2is
then obtained through a truncation argument.

Conditional on Xj, ..., X,, the differences Y(;(x) — r(Xy(x)), 1 < i < n, are
independent and centered (see Proposition 8.1). Theorem 20.13 in the Appendix
thus implies that for some positive constant C, depending only upon p,

P p/2

E < GE[Y vl [Yo® - r (Xp®)|’

i=1

D v [Yo ) — r (Xp ()]
i=1
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Let X; be the rank of X; in the reordering of the data according to increasing
values of ||X; —x]|. So, X; receives weight v, ;. Since

r/2

)

E

n p/2
-

> vk Yo ® - (Xp®)[’

i=1

D vrs |V — (X))
i=1

we have

p n p/2
E ‘ ZW}; Y; — r(X)|?

i=1

< Cp(max v,,i)p/zE

Z i [ Yo (%) — 1 (X» ()]
i=1

< Cp(max Um')p/z]E[ Z Uns, |Yi — r(X)| ],
! i=1

(11.6)

where we used Jensen’s inequality (which is valid here since p > 2). Next, letting
g(x) = E[|Y — r(X)|” | X = x], we have

E[Zvn; Y; — r(X,~)|”] = E[ZvngiE (1Y = rXoP X, X]]
i=1

i=1

= E[ Z an‘;g(Xi)i|-
i=1

It follows that

D v [Yo ) = r (Xp ()]

i=1

E ‘p = Cp (max vni)p/2E|: Z Uni8 (X(i) (X)) j|

i=1

Since E[g(X)| < oo, the quantity E[Y ", v,;g(X(;(x))] remains bounded for
p-almost all x by Lemma 11.1. Hence, using max; v,; — 0 as n — oo (condition
(iii)), we conclude that the first term in (11.5) tends to zero at p-almost all x. Thus,
Theorem 11.1 is proved for p > 2.

Consider now the case 1 < p < 2. Define for integer M > 0, Y™ = Y1y i<ms
ZM =y —y®™ M(x) = E[YM|X = x] and s (x) = E[Z™|X = x]. Then,
with obvious notation,

p

> v [Y((f;l ') =™ (X (X))]

i=1

P
<27

E Z Vi [ Y (%) = r (X (%)) ]
i=1

n

+ 2P_IE|:Z Uni

i=1

Z((gﬂ (X) — S(M) (X(i) (X)) ‘p i| s
(11.7)

where we used Jensen’s inequality again.
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Since Y™) is bounded, the first term of (11.7) tends to zero at u-almost all x. To
see this, it suffices to note that if Y is bounded, then to prove the result for all p > 1,
it is enough to show that it holds for p = 2. This has already been done in the first
part of the proof.

With respect to the last term of (11.7), we may write

"y

i=1

= 2P_IE|:’21 Upi

i=1

290 ) = 590 (X () (" }

p B n
z}?f)(x)‘ } 2 IE[ZUM ™ (X5 (%)) yf']
i=1
Thus, letting g™ (x) = E[|Z™M P | X = x],

E[ivm

i=1

< 2!’—1E[ Z Vi

i=1

280 (x) — s™ (X (%)) ‘,, ]

p B n
z) (x)‘ ] +2r 11[«:[ > v g™ (X (x)) ]
i=1
Next, as in the first part of the proof, we have
E[ > vz w0 } [ 0,2 |”}
i=1 L =1
=E| Y usE[|Z"] X1, XH
Li=1

= > vux, g™ (Xi):|
- i=1
=E Z vmg X( )(X)) ]

Therefore, we conclude that the last term of (11.7) is not greater than

2% IE[Z Ui g™ X()(x))]

Let Ay, be the set of all x for which the first term of (11.7) tends to zero and
the quantity E[Y ", Vg™ (X(»(x))] tends to g™ (x) as n — oo. We have already
shown (see Lemma 11.1) that, for each fixed M, j1(Ay) = 1. Let B be the set of all
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x with g™ (x) — 0 as M — oo. Clearly, u(B) = 1 because E[g™ (X)] — 0 as
M — oo and g(M) is monotone in M. For all x in B N (NyAy), we claim that (11.7)
tends to zero: first pick M large enough so that g™ (x) is small, and then let n grow
large. Since this set has p-measure 1, the theorem is proved. O

We conclude this section with the following theorem, which states that the nearest
neighbor estimate is weakly pointwise consistent at p-almost all x for a broader
family of weights, with no condition on (X, Y) other than the boundedness of Y. Its
proof is an easy adaptation of the proof of Theorem 11.1.

Theorem 11.2 (Weak pointwise consistency). Let p > 1. Assume that
IY|loo < 00 and that there exists a sequence of integers {k} = {k,} such that

(i) k—> o0 and k/n—0;
(1) 3 iog Vni — 0; (11.8)
(#ii) sup,,(kmax; v,;) < oo.

Then the corresponding nearest neighbor regression function estimate r, satisfies
E|r,(x) — r(x)[” — 0 at p-almost all x € R®.
In particular, if |Y |l oo < 00, then
ra(X) = r(X) in probability at p-almost all x € RY.

Remark 11.1. Conditions (11.8) in Theorem 11.2 may be replaced by the following
equivalent ones: there exists a positive constant o such that

(l) Zi>a/ max; vy; Upi —> 0;
(”) Zi>sn Upi —> 0, all ¢ > O,
(iif) max; v,; — 0.

(See Lemma 20.4 in the Appendix for a proof of this equivalency.) An example of
weights that satisfy (11.8) includes the geometric choice

— il
_pl=p)™ i,
1= (1—=py)"

ni B

with p, € (0, 1), p, — 0 and np, — oc. O

Proof (Theorem 11.2). When g is pu-almost surely bounded, the replacement of
(11.1) (i) by (11.8)(ii) does not upset the conclusion of Lemma 11.1. In the proof of
Theorem 11.1, take p = 2, and estimate (11.6) from above by ¢ max; v,; for some
constant c. O
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11.2 Concentration of measure and its consequences

Today, there are powerful tools for controlling the variation and stability of random
variables, and especially of functions of n independent random variables. The book
by Boucheron et al. (2013) summarizes this subject. The objective of this section,
by way of introduction, is to highlight the use of these tools for the nearest neighbor
regression function estimate

n
I‘,,(X) = Z vniY(i)(X)v X € Rd,
i=1

with min; v,; > 0 and er'l=1 v = 1.

The first notion is that of a self-bounding function. One says that a function
g : R" — [0, 00) has the self-bounding property if there exist functions g; : R"~! —
[0, 00) such that, for all x,...,x, andall 1 <i <n,

0=<gr,....xn) —&ilx1, .o Xic, Xig1, .., %) <1

and
n
Z(g(xlw--,xn) —&ilxr, o Xim X1 X)) S 80, Xp).
i=1

For a self-bounding function g,
Vg(le e 7Xn) =< Eg(Xla cee ,Xn),

where X1, ..., X, are independent real-valued random variables. This is an immedi-
ate corollary of the Efron-Stein inequality (see Theorem 20.10 in the Appendix).

Assume that ||Y||ee < 1. Write ¥ = YT — Y, where YT = max(¥,0) and
Y~ = —min(Y, 0). Then

ra(X) = 1,y (%) = 1, (%),

with
rt(x) = Z vniY(‘S (x) and 71, (x) = Z Uni ¥ ;) (X).
i=1 i=1

Take

rr(x) 1

=—"—" and g = v, Y (%).
& max; Uy, & max; Uy; g Y (/)( )
J7F1
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Clearly,

v .
g—g= —" v,
max; Uy;

so that we have a self-bounding function. Therefore,

V[ ry (x) :|SE[ ry (%) }

max; Uy max; Uy

and so

Vr;r (x) < (mljclx vm-)IErn+ x) < Max V.
Similarly,

Vr, (x) < (mlax vp)Er, (x) < mlax Vpi.

We have, without further work, using (a + b)? < 2(a* + b?),

Vra(x) < 2(VrF (x) + Vi, (%)) < 4max vy,

Thus, if |[Y|leo <1,

Pointwise consistency

E|r(x) — r(x)|* = Vru(x) + (Er,(x) — r(x))? < 4max v, + (Er,(x) — r(x))2.

The second term is the bias term, where we note that Er,(X)= Y " | v,r(X(;)(X)).

By Lemma 11.1 and Lemma 20.4, the mere conditions Y

>0/ max; Uy,

,- for some @ > 0

and Y ., v, — O forall & > 0 (besides v, > 0, Y ' v, = 1) imply that
the bias term tends to zero p-almost surely. The variance term tends to zero when
max; v,; — 0. For the standard k-nearest neighbor estimate, k/n — 0 is needed for

the bias, and k — o¢ is needed for the variance.

Of course, we already know from Theorem 11.2 that E|r,(x) — r(x)|*> — 0 at
u-almost all x. The power of the concentration inequalities will be clear when we

can say something about
P{lr(x) —Er,(x)| = &} .

Indeed, we can do better than Chebyshev’s inequality,

P{|r,(x) —Er,(x)| > &} < =

Vr,(x) _ 4 max; v,
> < .
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The following exponential inequality was proved by Boucheron et al. (2013, page
182) by the entropy method: for a self-bounding function g,

P{g(Xy,....Xn) —Eg(X1,...,X,) >t}

t
< h—— )Ee(Xi.....X,)). >0,
—exp( (Eg(xl,...,xn)) s )) ~

and

P{gXi,.... X)) —Eg(Xi,....X,) < —1}
t

= —h\ e~ | Ee(X1..... X)) ). 0 <r < Eg(Xi..... X,),

_eXp( ( Eg(X1,...,Xn)) g )) <1t <Eg(X, )

where h(u) = (1 4+ u)log(1 + u) —u, u > —1. Recalling h(u) > u?/(2 + 2u/3) for
u > 0and h(u) > u2/2 for u < 0, we have

Pl{g(Xi1,....Xn) —EgX1,...,Xn) > 1}

[2
< — , t>0,
= e"p( 2Eg(X1, ... . X) + 2:/3)

and

P{g(xl»"'7xn) —Eg(XI,...,Xn) < _t}

t2
= ], 0<t=<EgX....X,).
_eXp( Z]Eg(Xl,’Xn)) - g(] n)

Apply this to ;" (x)/ max; v,;, which is a self-bounding function when ||Y|s < 1.
Then we obtain

g2 1
P{rt(x)—Ert(x) > e} < - » &>0,
{rn (x) r, (X) = 8} = exp( 2+2¢/3 x max; vm-) ’
and
21 <Erf
P {rt(x) — Erf (x) < —¢) < { o (-5 < i) iZiS : ;:rlir) ”
+(x).

Therefore,

2 1
]P’{|r:(x) —Erj(x)\ > 8} <2exp (—2+828/3 X maxivni)’ e>0.
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Obviously, the same inequality is valid for 7, (x). Thus, summarizing, we have
proved the following interesting proposition:

Proposition 11.1. Assume that ||Y ||oo < 1. Then, at all x € R¢, for all ¢ > 0,

g2 1
P {|ry(x) — Er,(x)| > &} < 4exp (_8 ¥ 4e/3 " maxv ) '

Note that the right-hand side is summable in n for all € > 0 if

(log n) max v,; — 0. (11.9)

Hence, by the Borel-Cantelli lemma,
r,(x) — Er,(x) — 0 almost surely at all x,
if (11.9) holds. Observing that
[rn(x) = r(X)| < [ra(x) = Ery(x)| 4 [Er,(x) — r(x)]

and that the second term tends to zero at p-almost all x whenever ) for

some o > O and ) v, — 0 for all € > 0, we conclude that

i>a/ max; vp;

i>en
ra(x) = r(x) almost surely at p-almost all x,

if, additionally, ||Y||coc < 1 and (11.9) holds. Almost sure (or strong) consistency of

r,(x) towards r(x) is the topic of the next section.

11.3 Strong pointwise consistency

In some applications, data arrive sequentially—these include internet data, mea-
surements from monitoring stations, and stock ticker data, for example. One can
construct a regression function estimate r,, of r, and ask what happens to r, when
more data come in, as a function of n. In other words, the sequence {r,r2,r3,...}
itself is of interest. If we know, for example, that r,,(x) — r(x) almost surely, then
|r,(x) — r(x)| < € for all n greater than some ny, with probability one. The weak
consistency of r,(x) to r(x) does not offer such guarantees. One could in fact have
limsup,_, o, |7:(X) — r(x)| = oo almost surely—a disaster in terms of sequential
applications—while |r,(x) — r(x)| — 0 in probability.

The next theorem (Devroye, 1982) establishes the strong pointwise consistency
of the nearest neighbor estimate. The requirements that are imposed on the sequence
of weights are similar to the ones of Theorem 11.2, except that the condition k — oo
is now replaced by the slightly stronger one k/ logn — co. For the proof, we refer
to the previous section.
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Theorem 11.3 (Strong pointwise consistency). Assume that |Y ||co < 00 and that
there exists a sequence of integers {k} = {k,} such that

(@) k/logn— o0 and k/n—0;
(i) Y sk Vni = 0; (11.10)
(iii) sup,,(k max; v,;) < oo.

Then the corresponding nearest neighbor regression function estimate r, satisfies
ra(X) = r(X) almost surely at ji-almost all x € R?.

Remark 11.2. Conditions (11.10) in Theorem 11.3 may be replaced by the fol-
lowing equivalent ones (see Lemma 20.4 in the Appendix): there exists a positive
constant « such that

(i) Zi>a/maxi Upi - O;
(i) Doy Vi — 0, alle>0;
(iti) sup, ((logn) max; v,) — 0.

ad

Theorem 11.3 is rephrased for the standard k-nearest neighbor estimate as
follows:

Corollary 11.2. Assume that ||Y||co < 00. Ifk/logn — oo and k/n — 0, then the

k-nearest neighbor regression function estimate is strongly consistent at |L-almost
all x € R,

The condition k/logn — oo in the previous corollary is suboptimal. One can
show that under regularity assumptions on k, the conditions k/loglogn — oo and
k/n — 0 are necessary and sufficient for r,(x) — r(x) almost surely at p-almost
all x. A similar result with (log log n) max; v, replacing k/ loglogn — oo exists for
the general nearest neighbor estimate—see Devroye (1982).

Theorem 11.4 (Strong pointwise consistency of the k-nearest neighbor
estimate). Assume that |Y|ee < oo. Assume, in addition, that the sequence
{k} = {k,} is increasing and regularly varying, ie., for all 6 < (0,1]
krgn1/kn — ¢ > O for some finite c. Then, if k/loglogn — oo and k/n — 0, the
k-nearest neighbor regression function estimate is strongly consistent at |L-almost
all x € R,

Remark 11.3. The regular variation condition implies that ¢ = 6 for some p > 0
(see Bingham et al., 1987). When p = 0, and thus ¢ = 1, the sequence is called
slowly varying. O
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Before embarking on the proof of Theorem 11.3, we make a short detour through
the theory of records. Consider i.i.d. uniform [0, 1] random variables Uy, . .., U, and
define Z; = F~'(U;), where F is a distribution function on [0, c0) and

F ') = inf{t > 0: F(t) > u}, uel0,1].

We define the rank R; of U; at the moment of its birth by

i
R = Z ]I[UJ’SU:']'
j=1

Since ties happen with zero probability, the R;’s are well defined. We cannot do the
same with the Z;’s because F' may be atomic. Let us break ties by indices. So, Z; is
placed before Z; if Z; < Z;, orif Z; = Z; and i < j. The rank of Z; at the moment of
its birth is

i
Rz/' = Z ﬂ[ZjSZi]‘
=1

Since U; < U; implies Z; < Z; (but not vice versa), we have, for the coupled
sequences, R; < R; for all i.

It is well known that Ry, ..., R, are independent and R; is uniformly distributed
on {1, ...,i}. In what follows, we need a tail bound for the quantity
Z Lig<u-
i=m+1

where k < m < n are given parameters. We have, for u > 0,

P{ > gy = “} = P% Y lirsn > “}

i=m+1 i=m+1

n

EP% 3" Ber(t) zu}

i=m+1

< P%Bin(n —m, %) > u}

< exp (u— uk—ulog (%))
m n=m

for u > "%k, by Chernoff’s bound on binomials—see Theorem 20.5 in the

Appendix. Setting u = e x "> k, we have

n

n—m n—m
P E Tiprcr > <e m K,
{A [Ri<k] = € X - k}_e
i=m+1

This inequality is the only probabilistic fact needed to prove Theorem 11.4.
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Proof (Theorem 11.4). Without loss of generality, it is assumed that ||Y|jeo < 1.
The groundwork was laid in the previous theorem. We recall (see Lemma 11.1) that
Er,(x) — r(x) at p-almost all x, so we take such x. We recall from Proposition 11.1
that

P{|ru(x) — Ery(x)| > &} < de™n
for some positive constant & depending upon ¢ only. Define
ne = [N(1+68)), €=0,

where § > 0 and N € N* are fixed and to be determined. Let ¢ > 0 be fixed and
arbitrary. Note that we can find N large enough (depending upon ¢) such that

ZP{VM(X) Ery, (x)| > €} < Z

£=0

Here we used the condition k/loglogn — oo. By the Borel-Cantelli lemma, we
conclude that

n, (X) = r(x) almost surely at p-almost all x,
when £ — oo. The proof is complete if we can show that, as £ — oo,

max \rj (X) — 7y (x)| — 0 almost surely at p-almost all x.
ng—1<j<ng

This “trick” of partitioning the integers into suitable intervals—in this case of
exponentially growing size—is standard in the literature on strong convergence.
Observe the following, for £ > 1:

ng_1>N(1+5)5_1—1> 1
n — NA+8&8) T 1+68 N
1
>—7
T 1428

where the last inequality is valid for all N > 3 + 2§ + % Similarly, for all N > 2/6,
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Hence, forall N > 3 4+ 2§ + %
S ome—mo e
27 m
Moreover, by regular variation of k,, we have
k"k—l - (n[_l )C - 1
K, ne (1+6)
for some ¢ > 0 as £ — oo. Thus,
kn, — ki, 1
d G NN - as{ — oco.
K, (1+9)

Pointwise consistency

(11.11)

Because we are observing the regression function estimate over time, it is
necessary to introduce time as an index. Thus, the reordered data at time n are

(X(l,n) (X)’ Y(l.n) (X)) seees (X(n,n) (X)’ Y(n,n) (X)) .

The rank of X; among Xj,..
referring to time. Note that X, is increasing in n. We have

1 n
X)) =~ Y Yils,<,) and r(x) =

=1

Let ny—y < j < ny. Define

1 J
/ — .
rj(x) - k_m ; Yil(z,<k)-

For such j, we have, with probability one,

1 1,\<
j

|ri(x) = ri(®)| < (; — k_,,[) > 1Yills, <)

kj

<1-
ng
(since [[¥]loo = 1)
< K, — kn,_,
kn,

1
(1+6)

as £ — oo.

., X,, after reordering is X;,, the last index always

1 J
© Z Yil (s, <k)-
J =1
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We conclude that, with probability one,

100 = 1, (0] = 0(1) + (1 - ) + I = ]

1
1+ 6)¢
Note that for ny—; <i <j < ny, ]l[;[Jﬁki] < ]]‘[Ei,ifkné]' Thus, with probability one,

ng

kn[ |rj/(X) _rn[(x)| 5 Z

i=1

15,

ing _kné] ij =Kj

ng—1

=< Z )H[Ei‘nsz"é] - ]l[z”'skj] +
i=1

ng
Z ]l [Ei,ifkng] *

i=ng—1+1

Now, X 1,..., X, », are distributed like the local ranks R, ... ’R:w' We recall

ng
1 Z Ny —Nyg—q MM
]P){ k_ ]]'[Ei,ifkn(] Z ex S e et " ’

ny—
M i=py_ 41 =1

and thus, according to inequalities (11.11), for all N large enough,

R
]P’{— ) ]l[z,-,iskwlie(%)}Se_k”"g/z- (11.12)

M i=ng_y+1

Using k/loglogn — oo, and our definition of ng, this is summable in £ for all
s> 0.
The proof is finished if we can show that

ng—1

sup Z ‘]l[zl,,£<knl] —Iix,;<,)| — 0  almost surely in £. (11.13)

ng— 1<J<m
To get rid of the dependence upon j, observe that
Lis,,, <k, 1 = Lisy=i) < Lisp, <k, )-

Thus, the supremum in (11.13) is not larger than

ng—1 ng—1

1
7{ Z (1[21 ny <kn/é] ]1[21 ny <kn[ 1]) + kn Z (]l[z‘i,n/c_lfkng] - ]l[Ei.n[ Skng])
i=1

t =1

ng—1
1

= k_ Z ]]'[kn[_] <%, ny _kn[] + Z ]1[21 ny <kné]

=1 ”fi ne—1+1
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kng — kng_l 1 ny
S k—”ll + k_ Z ]1[21'.11( fkné]

M i=py_ 41

1 1 e
<o)+1—-—— + — Lis <p 1.
=o(l) + A+ 0y 1 Y lissk]

ne i=ng—1+1

Calling the last term Ly, recall from (11.12) that, for all N large enough,

P{L; > e(28)} < e *n¥/2,

Since § was arbitrary, the proof is complete. O
Remark 11.4.
(i) Walk (2008) proved the strong pointwise consistency of the k-nearest neighbor

(if)

estimate under the sole condition E|Y| < oo (universal consistency). The
sequence {k,} is assumed to be regularly varying with exponent 8 € (0, 1],
that is &, is of the form k, = nf L(n), where the function L : (0, c0) — (0, o0)
varies slowly at infinity, i.e.,

L(tx)
L(t)

—1 ast— oo,

for every x > 0. Examples include k, = |nf] (0 < B < 1) and k, =
|n/log(n + 1)].

Theorem 11.5 (Walk, 2008). Assume that E|Y| < oo and that the sequence
{k} = {k,} is increasing and regularly varying with exponent 8 € (0, 1]. Then,
if k = oo and k/n — 0, the k-nearest neighbor regression function estimate is
strongly consistent at ji-almost all x € RY.

The k-nearest neighbor regression function estimate

1 k
r(X) =+ > Ye®
i=1

can be regarded as the uniform kernel case of the more general estimate
defined by

n X—X,' :
2 K (—nx(k)(x)—xn> Y
n X—X,’ ’
2= K <—||X<k)<x>—x||)

which allows unequal weights to be given to the observations. In the spirit of
Moore and Yackel (1977a,b) results for density estimation, Collomb (1980,

52(X) = (11.14)
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1981) provide some weak and strong pointwise consistency results for the
estimate (11.14). The proofs involve a general lemma, showing that the prop-
erties of this estimate are consequences of the same properties for the standard
Nadaraya-Watson estimate (kernel method). O



Chapter 12
Uniform consistency

12.1 Uniform consistency

In the present chapter, we consider the uniform convergence of
n
d
rn(x) = Z vniY(i)(X)’ x € R,
i=1

where (v, ..., V) is a vector of weights summing to one, and the sequence
Xny(x), Y1)(x)), ..., (X@)(X), Y()(x)) is a reordering of the data according to
increasing Euclidean distances ||X; — x||. We are focusing on the convergence to
zero of supycg |74(x) — r(x)| for all distributions of (X, Y) for which X € R¢ has
compact support S, and with some conditions on the tails of Y.

The supremum creates two problems—first of all, by moving x about R?, the
data ordering changes. We will count the number of possible data permutations in
the second section. Second, we need a uniform condition on the “noise” ¥ — r(X) so
that the averaging done by the weights v,; is strong enough. This is addressed in the
third section. In the fourth section, we prove our main theorem, which generalizes a
result from Devroye (1978):

Theorem 12.1 (Strong uniform consistency). Let X have distribution [ of
compact support S on RY, and let the regression function r be continuous on S.
Assume that the random variable Y — r(X) given X = X satisfies the uniform noise
condition: there exists A > 0 such that

sup E [e”y_’(x)l |X = x] < 0.

xERd

Assume furthermore that, for all € > 0,
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Z |vni| - 07
i>en
and that
n n
Zvni: 1, SUPZ|Uni| < 00,
i=1 =1
and

(logn)(max |v,]) = o(1).

Then the corresponding nearest neighbor regression function estimate r, satisfies

sup |, (x) — r(x)| = 0 almost surely.
XES

Remark 12.1.

()
(if)
(iii)

We allow weights that take negative values. As we will see later, there could
be a benefit from such a choice.

For the standard k-nearest neighbor estimate, the conditions of Theorem 12.1
are equivalent to k/logn — oo and k/n — 0.

For the supremum norm convergence, it is possible to widen the class of noise
distributions at the expense of more restricted assumptions on k. For example,
if we have E|Y|” < oo for p > 0, then the condition k/logn — oo for the
k-nearest neighbor estimate r,, should be replaced by klogn/n'/? — oco. For
p = 2, this has been done, e.g., by Cheng (1984). The idea is as follows: since

o0
E|Y)P = / P{|Y| > "/7}dr < oo,
0

we see that in the sequence Y1, ..., Y,, |Y;| > i'/? happens finitely often with
probability one. The Y;’s with |Y;| > i'/? are thus harmless. Then argue as in
the proof of Theorem 12.1, using explicit exponential bounds for the random
variable | Y1y, <i1/p- ]

Finally, in the last section, we show by means of a simple example that the
conditions on k given above for the k-nearest neighbor estimate are necessary, even
if Y remains bounded and X is uniform on [0, 1]. In other words, the conditions of
Theorem 12.1 are optimal.
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12.2 The number of reorderings of the data

Let x;,...,X, € R? be vectors with possibly some duplicates. For fixed x € R¢,
reorder these vectors according to increasing values of ||x; —x||, breaking, as always,
ties by considering indices. Let (o7, ..., 0,) be the permutation thus obtained:

%o = xI| < -+ =< [I%, —x].

The inverse is the rank X}, i.e.,

Let
v ={Z%.....%,)  xeRY}

be the set of all rank vectors one can observe by moving x around in space. Similarly,
7 ={(o1,...,0,) : x € R}

Notation |#| (respectively |-#’|) stands for the cardinality of # (respectively .%).
Theorem 12.2. One has

25\¢
7| =17 < (F) n*? foralln > 2d.

Proof. The hyperplane | x — x;||> = |x — x;||* generates a sign

1ifx—x )2 > x— x|
pi(x) =30 if [x— x> = [x — x|
—1if x —xi||? < [Ix — x|~

The collection of signs (p;;(x),1 < i < j < n), called the sign pattern, determines
the ordering of ||x —x;||? and identifies all ties. There are 3() possible sign patterns,
but not all of them are possible in R¢.

For d = 1, it is easy to see that the number of sign patterns of N polynomials of
degree not exceeding D is at most 2ND + 1. For larger dimensions, the Milnor-Thom
theorem (Petrovskii and Oleinik, 1952; Milnor, 1964; Thom, 1965) states that the
maximal number of sign patterns of N polynomials of degree at most D in R? is

( 50DN

d
p ) forall N >d > 2
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(see also Warren, 1968, and Pollack and Roy, 1993). Better bounds are known for
hyperplane arrangements (i.e., when D = 1), but they are still O(N) for d fixed—
see the discussion in Matousek (2002, Chapter 6), or in Griinbaum (1972). For our
example, D = 1, N = (), so that for any d > 1 and all n > 2d, the number of sign

patterns is not more than
d
25
(7) n2d. O

12.3 A uniform exponential tail condition

In regression function estimation, the residual ¥ — r(X) is sometimes called the
“noise.” It measures the departure from the regression function r. In this text, we
have several conditions on the noise, starting with the standard one, E|Y|? < oo for
some p > 0. In some places, we assume ||Y |0 < 00, where || Y| is the essential
supremum of Y.

A practical assumption that captures many important applications is the uniform
exponential condition: there exists A > 0 such that

sup E [elly*r(x)l |X = X] < 00.
xR

This class contains all homoscedastic cases, i.e., cases in which ¥ — r(X) given
X = x is distributed as Z with EZ = 0, and for which EeM?l < oo for some A > 0.
Examples for Z include the Gaussian and exponential distributions, as well as all
bounded distributions.

Lemma 12.1. Let Z,,7Z,, ... be a sequence of independent zero-mean real-valued
random variables with

supEM?! < ¢ < o0, (12.1)

n>1

for a given A > 0 and some constant ¢ > 0. Let (v,1, ..., V) be a weight vector,
with v, = max; |v,| > 0. Let A, = Y ', |vyl|. Then, for all ¢ > 0,

. 212 A,
P Zvnizi =g <exp| — eA , €< Tm1n(1,2c).
Cc I’Lvl‘l

i=1

Similarly,
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Pi Zi= e = o = 2% min(1,20)
Upiliy = —&¢ = €X - , &= —mn(l, .
P 8cA,v, A ¢

i=1

Proof. Fix A > 0 so that (12.1) holds. Then note that by Taylor series expansion
with remainder,

oz, @ o el 3 oz
Ee n§1+aEZn+7EZn+T]E[|Zn| e ]

2 3
<1+ %Ezﬁ + %Emﬁ, if |a| < A.
Observe that
)’2
7]]«:iz,f <EM%l <.
So,
2c
supEZ2 < =,
n>Il) " AZ
Similarly,
/\3
—E|z,} < Eet#l < ¢
and thus
6¢
supE|Z,|° < —.
SPEIZIT = 55

We conclude that for |o| < A,

2 2 3
Z, ca ||
Ee*n <1+ e + JE

By Chernoft’s bounding method (Theorem 20.5 in the Appendix), for ¢ > 0,
y >0,

n
[P){ E UniZi > 8} < e VRV Y vniZi

i=1

n
— e_yg 1_[ Ee)/ VniZi
i=1
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n 2,,2 2.,3 3
_ cy v, Y|l
<e ”H(IJF moy )
- 2 3
plin A A

(assuming y v, < 1)

2 3 3
C)/ U cy |vni|
<o (e 3o (T Sl

(since 1 4+ u < " for all u)

2 2.3 2
cy A, Ty A
fexp(—ye—i— B + 3 n).
Puty = ;55— A . (which minimizes the sum of the first two terms in the exponent).
Then the bound is

g2A2 A3 §2)2
_ < _
exp( 4cA,v, + 8CA%U,1) = exp ( SCA,,v”)

if eA/ A, < 1. Note also that y v, < A implies that we should have eA/ A, < 2c.
O

12.4 Proof of Theorem 12.1

We shall begin the proof of Theorem 12.1 with a few preliminary lemmas.

Lemma 12.2. Assume that the support S of | is compact. Then, for all € > 0,

inf p (B(x,¢)) > 0.
XES

Proof. Suppose that the result is false and that infyes ((B(X, €)) = 0 for some & > 0.
Then there exists a sequence {x;} from S with ©(B(x;, €)) — 0. Since S is compact,
the sequence {x;} must have a cluster point y in S. Therefore, there exists a further
subsequence {x}} such that

w(B(x;,e)) >0 and |[x;7 —y| <e&/2 foralli.
Thus, B(y, £/2) is contained in the intersection of all the B(x}, ¢). Hence

1 (B(y,£/2) < liminf i (B}, e)) =

which contradicts the fact that y belongs to S. O
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Lemma 12.3. Assume that the support S of |u is compact and that the regression
function r is continuous on S. If, for all & > 0, Y",_ . |vu| = 0, > /_, v,y = 1 and
sup, > iy |vni| < 00, then

sup |[7,(x) — r(x)| = 0 almost surely,
XES

where
;n(x) = Z Unil (X(i)(x)) .
i=1

Proof. Let ¢ > 0 be arbitrary, and find a § > 0 such that |r(y) — r(x)| < ¢ for
all x,y € S such that ||y — x| < & (use the uniform continuity of r on §). Let
r* = ||Irlloo sup, iy lvail, let @ € (0, 1/2] be arbitrary, and let A, be the event

A, = [||X(r9,,])(x) —x|| <éforallx € S] .

Clearly,
IP’{ sup |7 (x) — r(x)| > 28}
XES

<P{A;} + ]P’{An, sup |7, (x) — r(x)| > 28}
XES

+r* Z [V >28}.

i>[0n]

Z i (r (X (%)) — r(x))

i=1

[6n]
:P{A;}—i—IP’{A,,,sup '

X€ES

Thus, for all n large enough,

IP{ sup [7r(%) — r(x)] > 28} < P{AC)

X€ES

since, on the event A,, |r(X(;)(x)) — r(x)| < eforallx € Sand 1 <i < [On], and
Y ron] |Unil < € for all n large enough by our assumption.

Next,
[0n]

n
for some x € S]

A7 [ (Bx.8) < =
n

C [Mn (B(x,6)) < 20 for some x € S]

(for all n large enough, since 8 € (0, 1/2]),
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where w,(B) = %Z;l: 1 Iix;ep) is the empirical measure of a Borel set B with
Xy, ..., X,,. From Lemma 12.2,

ingu (B(x,8/2)) = ¢ > 0.
X€E

Since S is compact, we can find a finite number N of points X, ..., Xy from § with
the property that, for every x in S, there exists an x;, | <i < N, with ||x—x;|| < §/2.
Thus,

]P{ sup |7 (x) — r(x)| > 28} < ]P’{ inf 1, (B(x.)) < 29}

XES
N

< P} U fus (05720 < 29)]

i=1

< NsupP{u, (B(x,8/2)) <26}
X€ES

= NsupP{Bin(n, py) < 2n6},

X€S

where py = u(B(x,8/2)) > 0. Therefore, if & < ¢/4, then, by Chernoff’s bound
(Theorem 20.5 in the Appendix),

]P’{ sup |7, (x) — r(x)| > 28} < Nsup ]P’{Bin(n,px) < nc/2}
X€ES XES

N (nc nc { c )
< Nsup exp ——np——og( )
XES 2 ¥ 2 pr

< Nexp (—%(1 — 10g2)) ,

where, in the last inequality, we used the fact that inf,c. 1;(p + glog(ﬁ)) =c+
5 log % In conclusion, for all n large enough,

IP’{ sup |7, (x) — r(x)| > 28} < Ne "

XES

for some @ > 0, and Lemma 12.3 now follows by the Borel-Cantelli lemma since
e~ " is summable with respect to n. O

We are now in a position to prove Theorem 12.1.
Proof (Theorem 12.1). In view of Lemma 12.3, we only need to show that

Z]P’{ sup 1 () = 7| > g} < 00

n>1
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for all € > 0, where we recall that
;n(x) = Z Unil (X(l) (X)) .
i=1
Note that

ra(®) = Fa(X) = > v [Yi (%) — 7 (Xy ()]

i=1

According to Proposition 8.1, conditional on Xi,...,X,, the random variables
Yy (x) — r(X)(x)), ..., Y (x) — r(X()(x)) are independent with zero mean.
Moreover, they satisfy the uniform noise condition

sup E [e)‘|y(">(x)_’(x(")("))| | (X1, X)) = (x4, .,xn)] <c<oo

(X15ee0 Xn) ER

for some A, ¢ > 0. By Lemma 12.1,

sup P% va|Y(1)(X)—r(X(l)(X))| >5‘(X1»'..,Xn):(X],...,Xn)§
(xl,...,xn)GRd” i=1
<> 82/\2 < An . (1 2 ) (12 2)
exp [ — , & < — min(1,2c¢), ’
- P 8cA,v, A

where v, = max; |v,| and A, = Y| |val.
While this inequality is true for all x, the supremum over x is under the
probability sign. Thus, letting

# ={(o1....,0,) : all permutations of (1,...,n) obtainable by moving x in R?} ,

we may write

]P’{suls)m(x) — r(x)| > £|(X1,...,X,,) = (xl,...,x,,)}

|, Y

s On)EW

> v (Yo, — (X))

>e)(xl,...,xn) - (Xl,...,xn)}
i=1

Z Uni (Y(T,' - V(Xo,'))

i=1

>s((x1,...,xn) =(xl,...,xn)§

L

1,0 On)

25\d 2)2 A,
< (7) 24 % 2exp(— 85Anv,,)’ e < Tmin(l,Zc),
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by combining Theorem 12.2 and (12.2). Observe that sup,, A, < oo and that A, >
| >, vnil = 1. Thus, for all ¢ > 0, the upper bound is summable in n when
(logn)v, — 0. O

Remark 12.2. The proof of Theorem 12.1 uses the Milnor-Thom theorem (see
Section 12.2). For the standard k-nearest neighbor estimate, what matters in the
proof is the number of ways of “grabbing” k points by balls B(x, p), x € R?, p > 0.
Since the k-nearest neighbor estimate can only use one of these sets, one needs an
upper bound for

‘{{Xl,...,X,,}ﬂB(x,p):xeRd,p > 0}‘.

If o7 is a class of sets on R? (such as all balls B(x, p)) then the shatter coefficient
of o/ is

S(«7,n) =  max

(X1,...,X, ) ERAn

{x1,....x,} NA:A eszf}‘

It plays a crucial role in the work of Vapnik and Chervonenkis (Vapnik and
Chervonenkis, 1971—see also Devroye and Lugosi, 2001) for finding uniform
bounds for empirical processes.

For example, for all hyperplanes in R, we have

S(<Z,n) <2n? 42
(Devroye et al., 1996, page 223), and for the class of closed balls in R?,
S(o/,n) <20 4+ 2.

The latter result suffices to prove Theorem 12.1 for the k-nearest neighbor estimate.
O

12.5 The necessity of the conditions on k

Consider the standard k-nearest neighbor estimate when X has compact support,
|Y] < 1, and r is uniformly continuous on the support of X. It is a simple exercise
to show that k/n — 0 is necessary for weak uniform consistency, because it is
even necessary for weak pointwise consistency at one point of the support. The
necessity of k/logn — oo for supremum norm convergence can be shown by a
simple example on [0, 1].

Let Y be independent of X and Rademacher, i.e., Y = %1 with equal probability,
and let X be uniform on [0, 1]. We have r(x) = 0, and
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g 1
ro(x) = Z Yo (x) 2 . (2Bin(k. 1) — k),
for all x. Define
2jk n
=, 1<j<——1,
A n’ =J= 2k

where we assume without loss of generality that » is a multiple of 2k and 5; > 2.
Then for ¢ > 0, assume that P{sup,cp |7,(x)| > €} — 0. Define

. n . k
A—{je{l,...,ﬁ—l}.|X(k)(x])—x_,|§;

Clearly, given A, the r,,(xj)’s, j € A, are all independent because the k-neighborhoods
do not overlap, and thus different ¥;’s are used in r,(x;), j € A. Let N = |A|. Then
N is the number of components (among 3 — 1) of a multinomial random vector
(Ny, .. Nn _1) whose value is larger than or equal to k, where (NVy, ... ,Nﬁ) has

%). We have, conditioning on A,

N n,..., P

parameters (n

P{sup r,(x)| < ef < B[P {lr(v)| < e} | £ Eg".

x€R
Thus,
! 1
Eq" = E|: 1_[ qu[Nj>k]] =FE 1_[ (q]l[szk] + 1[1\/_,-<k]):|
j=1 L j=1
|
=E| [[(1-a —q)]lvvjzu)}
L j=1
-l
<g[ [] (1—(1—q)s,»)],
L =
where &;,...,§2_1 are independent Bernoulli random variables with success

probability P{N; > k}. Here we used the negative association property of the
multinomial law—see Marshall and Olkin (1979), or Tong (1980). Next, by the
Chebyshev-Cantelli inequality (Theorem 20.11 in the Appendix),

P{N; > k} = P{Bin(n, %) > k} = —— = p.
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Therefore,
Eq" < (1—(1—q)p)%~!

<exp (—(1 —qp (%{ - 1))

(since 1 —u < ¢ for all u)

—on (005 (2 -1).

By assumption, this term tends to one for every ¢ > 0, and hence, the exponent must
tend to zero. Therefore (1 — g)5; — 0, or,

2 X P{|ra(x)] > €} — 0.

2%
But, for ¢ € (0, 1), this is

k| ek k
o xP{‘Bin(k, H-3|> %} = o xP{Bin(k,%) >0 +8)}

n 1 1 k
% (ﬁ) X ((1 STy —s)l—e) ’

by properties of the tail of the binomial, where @ (1/+/k) denotes a factor sand-
wiched between c]/\/% and cz/\/E for0 < c; < ¢y < 00.

Assume that k < §logn for some 0 < § < oo along a subsequence. Then along
that subsequence, the lower bound is larger than

n 1 §logn
()< ( )
10g3/2n (1 + S)l—i—a(l _ 8)1—2

We can find ¢ small enough such that this does not tend to zero along that
subsequence, and thus obtain a contradiction. Therefore, k/ logn — oo.




Chapter 13
Advanced properties of uniform order statistics

13.1 Moments

Various properties of Uy, . .., U, uniform [0, 1] order statistics, will be needed in
the analysis that follows. These are collected in the present chapter. The first group
of properties is directly related to U (1 < i < n), while the second group deals
with random linear combinations of them.

Recall (Corollary 1.1) that

2 Gl Gn
Ugy,....,Up) = e ,
(Yo ) (Gn+1 Gn+1)

where G; = Z;:lEj, 1 <i < n+1, and E,...,E,+, are independent
standard exponential random variables. In particular, G; is Gamma(i) and Uy; is
Beta(i, n + 1 — i) distributed, i.e., U; has density

xi—l(l _x)n—i
—, 0=<x=1,
B(i,n+1—1)
where
I'(a)I"(b)
B(a,b) = ———.
@b) = FaTD)

We start with the following simple lemmas.
Lemma 13.1. Fora > 0,

Fi+a)l(n+1)
rOrn+1+a)

EU% = (13.1)
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Furthermore,
Ui \*
max E [(ﬂ) ] < (1 +a)'te,
I<izn i/n

Proof. The first statement follows by working out the moments of the beta
distribution (see Section 20.9 in the Appendix). Using Theorem 20.14, (13.1) is
not larger than

(1+2) ita \* i nt1ta
( T X 1T X 4/ = X T
1+m) n o I+ n+

Since (1 + %)” is increasing in u > 0, and 1 < i < n, this is not more than

(1+a) i+a \°
2/ \n+1+4+a)

We conclude that

Ug “ o i+ o\ n ¢
E((=2) [<(1+=
e (T0) | < (14 5) max (%) (55
a o
=(1+3) 0+

<(U+o)t O

Lemma 13.2. Fora > 0,

Thus,

max
k<i<n

Uy \” 1

E||l— —1|=0|(- as k — oo.
i/n k

Proof. Fixi € {k,...,n}. By Theorem 20.14,

(1+9) i+a \* n+l4a
EUY < L X X .
(i) — 4 )n+1 (n+1+a) n+1
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Therefore,

U\ 1+ \°
El(-2 = : 1+ *
i/n 1+ .55 n+1
11—«
N\ o
=(14+— 1
<+i)(+n+1)

o\ max(e,1)
(1 + —.) .
l

IA

For the lower bound, note that

(1+9) ( i+a )“ i

o n+1X x = ’
(1+n+1) n+1+a I+o

EUE >

so that

o
Ui \* no O\ ani [ 1+ I
El(Y0) | (142 1
|:(i/n):|_(n+1)e (1+5) rr= ] “iye

(since 1 + u < ¢" for all u)
n \* a\ k-1
> (1] + =
—(n+1) ¢ ( +k)
- n \* a a?
expl——— ——
“\ir1) U 20—

(where we used log(1 + u) > u — z(f‘—iu) forO<u<1). O

13.2 Large deviations

We will need large deviation bounds for U;. These are easy to derive by Chernoft’s
bounding method applied to the gamma distribution (see Section 20.3.2 in the
Appendix). We first summarize the result:

Theorem 13.1. For § € (0, 1/2], define
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Then

For § € (0,1), define

Then

13 Advanced properties of uniform order statistics

max
1<i<n

(P{Um = 51 +8)}) -,

exp (—ip(d))

v() == —log (1 + g)

P iUy < ;(1-9)]
fﬁasx( exp (—i(3)) ) =2

Recalling that U; Zz G;/G,, itis easy to be convinced that since G, is close to n,
the tail behavior of Uj; can be uniformly bounded in n. This is what Theorem 13.1

captures.

Proof (Theorem 13.1). The proof is based on Theorem 20.6 in the Appendix
(Chernoff’s bounding method for the gamma distribution). For § € (0, 1/2], we

have

gP%Gizi(l—l—g)} +P{Gn5”(1_g>}

(valid for0 < 6 < 1/2)

< exp (—i (g ~log (1 + g)))

+exp (_n (_g ~log (1 B g)))

(by Theorem 20.6)

<2exp (—i (—g ~log (1 - g)))

(since % —log(1 + %) > —% —log(1 — g) > 0on (0,1/2)).
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Finally, for § € (0, 1),

< 2exp (—i (g —tog (1 + g)))

(since —g —log(1 — g) > % —log(1 + g) >0on(0,1)). O

13.3 Sums of functions of uniform order statistics

For fixed o > 0, the quantities that will matter most to us come in the general form

1 &
7 2 Uil
i=1
where k depends upon n (1 < k < n), and Ly, ..., L; are i.i.d. random variables
independent of Uy, ..., U,). Three special cases are of interest:

(ify EL; = u > 0;
(iii) EL, =0,VL, = 02> 0.

Clearly, (i) and (ii) can be handled together.

Theorem 13.2. Letk — coasn — oo. If EL| = u < o0, then

I (U ) 1
E|- ) L .
|:k;(k/n) }_) 1 +a

Furthermore, if VL, < o0,

k o
1 U " . e
z E (k/_n) L — T+ a in probability.
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Proof. The first part follows if we can show that

%gk: |:(IICJ/(2)1| l—ll—oz'

Let £, — oo be a sequence with 1 < £; < k and £; = o(k). Then, by Lemma 13.1,
Ug) 1 (/)"

- — < (1 I+a —
Z (& )]—( ™ 2 Gy

1+o
~o((%))=en
Next,

Ly ef()]-1 s e[
-1y (o () ()

(where the “O” is uniform over i and n by Lemma 13.2)

k N
:% 3 (é) (1+o(1))

i=L+1
1 klta _€1+a
~ X k
fltao 1+«
1 +o0(1)
o l4a

This proves the first assertion of the theorem. The second one follows by analyzing
I+ II, where

U B (Vo)
:‘Z( <>) (Li— ) and II:E;(F(:!) ‘

LetU = (U(l), ceey U(,,)). Then, ifo? = VL,

2 N\ 2
B[ |U] = %Z(%) .
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By Lemma 13.1,

E12<(1+2a)1+2“0—22k: ifn 25,:0 1
- K2 =\ k/n k)

so that by Chebyshev’s inequality, I — 0 in probability. We conclude by showing
that

U 1 . -
- Z (k/( r)z ) 1t in probability.

Let £, = |log?k]. For § > 0 smaller than 1/2, define

k

a= U |

i=L+1

By Theorem 13.1,
k
P{A} <4 > exp(—imin(p(8).¥(8))).
i={+1

where ¢ and ¥ are defined in Theorem 13.1. Clearly, for fixed § > 0, P{A} =

o(1/k?). If A€ occurs, then
1 & i\ 1 & (U 1 <& (i)
(X (@)oo= 2 () = 1 (i) oo

i={+1 i=l+1

Since

1 Zk: (i)"_) 1
ki=zk+1 k 1+

and § > 0 is arbitrary, it suffices to show that

Ui . .
- E Z0) 50 in probability.
k/ n

The expected value of the left-hand side is not more than

| l+0(1 Lk i\ B Kk 1+a B
( +Ol) %Z % =0 k = 0(1),
i=1

which is sufficient. ad



172 13 Advanced properties of uniform order statistics

Theorem 13.3. Let k — oo and k/n — 0. IfEL, = 0 and 0 < VL, = 02 < oo,
then

«/1+2a U %
- fz(k/n) L=

where N is a standard normal random variable.

1 CCf. € ﬁISt Obsel ve that
\/ l + 2 Z

This follows from a particular version of Lindeberg’s central limit theorem (Linde-
berg, 1920; see, e.g., Petrov, 1975), which states that if X, . .., Xi are independent

zero-mean random variables with finite variances, and o7 = = Zl 1 VX; > 0, then
Ly X, 2N
o K7

if, for every ¢ > 0,

k
Y EX Uy jseqq] > 0 ask — oo, (13.2)

i=1

1
o2
Ok

Replacing X; by i“L;, we have

Also,
E [ L2 i oema] < KB [ L | = 006%)

since EL? = 02 < oo and

O O’\/I_C

~—— s 0
kK V142

Thus, Lindeberg’s condition (13.2) is satisfied, and therefore,

1 k 17
— Zi"‘Li >N,
%k 2
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which is equivalent to

@ %Z()QL ZN.

i=1

Next, we show that

W, & f Z ((Ii]/(;;) (;//_;;)"‘) L; — 0 in probability.

This follows by proving that EW? = o(1). Given U = (U, ..., Ug)), we have

s = 3 ((L2) - (L))
==Y e (- (2) )

()= (%) )]

S ([T =())

so that

~| 9,

l

02 L i\ 1+«9+1 21+9
k= \k i i)

=

by Lemma 13.2, where 6 € [—c, c] is a constant taking different values whenever
used, and c is a universal constant. We conclude

() H o)

3(\)



Chapter 14
Rates of convergence

14.1 The finer behavior of the nearest neighbor regression
function estimate

In this chapter, we study the local rate of convergence of r,(x) to r(x). We obtain
full information on the first asymptotic term of r,(x) — r(x), and are rewarded with
(i) a central limit theorem for r,(x) — r(x), and (ii) a way of helping the user decide
how to choose the weights v,; of the estimate.

While it is true that the best sequence (v, ..., V,,) may depend upon x, it is
interesting that for sufficiently smooth problems (in a sense to be made precise in
this chapter), there is a universally good way of picking the v,;’s.

To simplify the notation, it is assumed throughout that x = 0, without loss of
generality. Moreover, to keep all unnecessary distractions from the reader, we study
only the weak convergence properties of r,(0) —r(0). We let the conditional variance
of Y be

o2(x) = E [|Y— FX))? | X = x] ,

and assume the following:

(i) There exists a sequence of positive integers {k} = {k,} withk — o0, k/n — 0,
and a positive constant ¢ such that

Cforl <i<k
|vni | 5 k .
0 otherwise.
It is stressed that the v,;’s may have an arbitrary sign. However, as always, we
assume that Y -, v, = 1.
(ii) The random variable X has a density f on R? that is twice continuously
differentiable in a neighborhood of 0. Also, f(0) > 0.

© Springer International Publishing Switzerland 2015 175
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(iii) The regression function r is twice continuously differentiable in a neighbor-
hood of 0.

(iv) Onehas ||Y|lco < 1. This condition can be weakened to either || Y —r(X)||co < 1
or even

sup IE[|Y—r(X)|3 |X = X] < 00.
x€RI

(v) The function o is continuous in a neighborhood of 0 and o2(0) > 0.

The case of a continuous ¢ and o (0) = 0 requires additional scrutiny that has no
place in these lecture notes.

14.2 The projection to the halfline

For pointwise analysis of the nearest neighbor estimate, it is essential to understand
that from the vantage point of 0 € R, the problem is one dimensional. To set this up,
we define the one-dimensional quantity Z = ||X]||, which has density g on [0, 00).
Observe that

PZ=p} _ BUXI =P}

0) = lim
50 P40 1Y P40 Y

— f(0) by continuity,

. P{||X]|<
Therefore, since %)f,—p}

2£(0) ford = 1

g(O):{O ford > 1.

Let G denote the distribution function of Z. Then, as z | 0,
66 =P{IXI <3 = [ CCRUIZS
4

We can reorder X1, . .., X, by increasing values of || X;|| to obtain

Zoy = IXpyll <+ = Zewy = X l-
(For simplicity of notation, we drop the dependence upon the query point 0, and
write X, Y(; and Z; instead of X(;(0), Y(;(0) and Z;(0).) If Uy < --- < Uy

are uniform [0, 1] order statistics, then we also have (see Chapter 1)

Zays -2 Zw) Z (G WUy, ....G Uw)) »
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where
G ') =inf{t >0: G(t) > u}), uel0,1].

Since

» " 1/d
6w = () v

where ¥ (1) = o(u'/?) as u | 0, it will be convenient to replace Z; by

2 ( U\ _
Zp = (m) + v (Ug)- (14.1)

The second quantity we require is the projected regression function
m(z) = E[Y | |X|| = 2 = EIrX) | IX] = 2].

Note that m(0) = r(0). We will be using the variation/bias decomposition
Yi = r(0) = (Y; = m(Z)) + (m(Z;) — r(0))

instead of the d-dimensional and more standard decomposition
Yi —r(0) = (¥; — r(Xy) + (r(Xi) — r(0))..

These are different! In fact, we have

Yi —r(0) = (Yi — r(Xy) + (r(Xi) —m(Z) + (m(Z;) — r(0)).

The new middle term, r(X;) — m(Z;), acts as some sort of noise in the projected
decomposition.

For our study, what matters is the local behavior of m, which can be obtained
via analytical methods. In the following analysis, we place ourselves in a small ball
B(0, &) around 0 in which both f and r are twice continuously differentiable, and
assume furthermore that £(0) > 0. We observe that

B < x)<z+4)

m(z) = lim ———— . 14.2

© sbo P{z < |IX[| =z + 68} (142)

To compute this, we make use of the Taylor series expansions (Giaquinta and
Modica, 2009) of f and r about 0. For x = (x, ... ,xd)—r e RY, we let

8xj a.Xj/

9 3 T 92
£(0) = ('—f(O),...,—f(O)) and f"(0) =( / (0>) ,
8x1 axd 1<jj/<d
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where T denotes transposition and vectors are in column format. Similarly,

02r
P (0)) .
XjoXy 1<jj/<d

ar ar T
7(0) = ( 0),..., 3_(0)) and r7(0) = (
x4

ax

The symbol tr(A) stands for the trace of the square matrix A, and A denotes the
Lebesgue measure on R?. We show the following proposition.

Proposition 14.1. Assume that f and r are twice continuously differentiable in a
neighborhood of 0, and f(0) > 0. Then, as z |, 0,

m(z) = r(0) + az + o(2).

where

o & SOuE"(0) + 2r'(0)"f'(0)
a 24f(0) '

The following two lemmas are useful for proving the result.

Lemma 14.1. For the ball B(0, p) < R4 and a d x d matrix A, we have

21 (B(0
[ x Axdx = P2 (B0, p) x tr(A).
B(0.p) d—+2

Proof. Note that if Y is uniform in B(0, p), then
Y Z pu'/iy,

where U is uniform on [0, 1], and Z is uniform on the unit surface and independent
of U. Thus,

1

T _ 2mr2/d T
_ x Axdx = p"EU~“ x E[Z " AZ]
A(B(0, ) Jp.p)

2

0

- <E| Y zzyAy |.
1+% = JET AN

where Ay is the (j, j')-th element of A and Z; is the j-th coordinate of Z. Therefore,

! Taxdx = 2 Xd:A 57 = P X tr(A). O
e e— X Xdx = ii L= I .
A (B0, p)) Js,p) d+2 7 T d 2
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Lemma 14.2. Forz, 8 > 0, let B, 5(0) = B(0,z+48)—B(0, z). Then, for fixed z > 0,

1 T 2
- - x'Axdx — — xtr(A) asé | 0.
A (B 5(0) JB_ ;0 d

Proof. We have
A(B.5(0)) = ((z + 8)! — %) Vg = d6z"'Vy 4+ O(87).

Also, by Lemma 14.1,

8 d+2 _ d+2
[ xTaxdx = &9 X Vy x tr(A)

= 89TV, x tr(A) + O(8?),

and the limit follows. a

Proof (Proposition 14.1). We use ¢(x) and ¥ (x) to denote functions that are

det

o(||x||?) as ||x|| | 0. By Lemma 14.2, if B.5(0) = B(0,z + §) — B(0, 7), then for
fixedz,as § | O,

Pz < [IX]| =z + &}

— [ (@ 47 @ x xT7Ox + o) ix
B.5(0) 2

= B0 [0+ S 1 4o ]+ [ pmas

B 5(0)

and
E[r(X)1xes, ;0]
- /B Y () + 7@ Tx+ xT 7 Ox+ ¥ (x))
x (O +7'©O)x+ %fo”(O)x + p(x))dx
= A (B;5(0)) [V(O)f ) + %tf (F(0)(0) + r(0)f"(0) + 2/ (0)f"(0) T)

<o ]+ [ e+ ) dx.

2.5(0)
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Consider the ratio in (14.2) and let § | O to obtain

_ r(0)£(0) + %tr(f(O)r”(O) + r(0)f"(0) + 27 (0)f'(0) ") + o(z?)
F(0) + Ztr(f"(0)) + 0(z2)

m(z)

ZZ

2df(0)

= 1(0) + o FO) (7 (O) + 2t (7 O O)T) | + o),

valid as z | 0. The conclusion follows by observing that

w(F(0)f'(0)7) =/ ©)7f(0). O

Remark 14.1. We note that f”/(0) is absent in the Taylor series expansion of
m. In fact, the expansion remains valid if f is just assumed to be continuously
differentiable. That refinement is implicit in the analysis by coupling methods given
in the next chapter. O

Our study is split into two parts, that of the variation

Vv, = i: vni (Yo) — m(Zp))) .
i=1
and that of the bias
B, = Xn: vai (m(Zp)) —m(0)) ,
i=1
where we note that r,,(0) — »(0) = V,, + B,. Here, as before,

Xy Yy, Zy), - -+ Ky, Yny» Ziwy)

is a reordering of (Xy, Y1,72y),...,(X,, Y,,Z,) according to increasing values of
Zi = [IXi-

14.3 Study of the bias

Let Uqy < -+ < U be the order statistics corresponding to a uniform [0, 1]
sample. The following quantity plays a central role in the study of the bias of the
nearest neighbor regression function estimate, and thus deserves a special treatment:

n

2/d

W= 3l
i=1

Recall that conditions (i)-(v) are defined in Section 14.1.
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Proposition 14.2. Assume that condition (i) is satisfied. Then

2/d [ k i\ 2/d 2/d
Wn=(§) (;v(%) )(1+oﬂ»(1)>+oﬂm((§) )

Remark 14.2. There is in general no guarantee that the sequence Zf: L vni(ifk)?e
has a limit as n — oo. Note however that, in all cases, Zle vi(i/k)¥4 < 1. Also,
for nonnegative weights,

| k i\2/d k i\ 2/d
W < llnfggolf (; Upi (%) ) = llrfr_ligp (; Upi (%) ) <L
Thus, for nonnegative weights, we can replace the result of Proposition 14.2 by

Wn
(k/m)>/ 4 Y5 v(ifk)*d

— 1 in probability. O

An example of sequence that satisfies condition (i) and has Zle Vi = 0is
as follows. Let {k} = {k,} be a sequence of multiples of 4, with k € {1,...,n},
k — o0, and k/n — 0. Set

0 forl<i<#%
g KB k 3k
v — ika for2<1§4
n — .
—iz‘ﬁ x - for =2 <i<k
0 for k <i<n,
where c; is a constant depending upon k. Obviously, Z, 1 V24 = 0. Also, if we

adjust ¢ to ensure lel v, = 1, we obtain for d > 2,

d—2
li = d ,
S ETC T T

so that (i) holds. For d = 2, we find limyoocx =
limg— oo ¢k = 3.

1 —
W, and for d = 1,

Proof (Proposition 14.2). From Corollary 1.1, we recall that

G G,
(Uqy, - - U(n)) ( — )

Gn+1 Gn+l

where G; = Z;:] Ej,1 <i<n+1,and Ey,...,E,y are independent standard
exponential random variables. Therefore, we rewrite W, in the form

k 2/d 2/d 2/d 2/d
W, = Uni = Uni - .
Z ( n-H) Z ( n Gn—i—]

i=1 i=1
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By the law of large numbers, G, +/n — 1 in probability. Thus,

; k \2/d
(1) W= (F) o,

G 2/d i\ 2/d
k k
c22/d u

= e+ 001G + — > LG G-

i=1

LyiGi/u2ra—(ifuy2raye)

Choose ¢ so small that the first term is small. Observe that the second term vanishes
if Gy < 2k, an event that happens with probability going to one. Finally, the last
term is op(1) as k — oo. To see this, just note that

> 8§

G 2/d i 2/d
() -6)

k 2/d
1 G;

i=1

This is a Cesaro mean, which tends to zero since G,/n — 1 in probability
asn — 00.
The proposition follows from what we just showed, i.e., that

d k
: 1
- [E 2 ]l[<Gi/k>2/"—<i/k)2/d|>.sl} Tk > P
i=1

i=1

k G, 2/d k i\ 24
Z Uni (f) - Z Upi (;) — 0 in probability. O

i=1 i=1

We are now ready for the bias term B,,.

Theorem 14.1. Assume that conditions (i), (ii), and (iii) are satisfied. Then

B, =B (S)W (i o (é)w) (1 + 0p(1)) + o ((S)W) ,

i=1



14.3  Study of the bias 183

where

a fO)(r(0)) + 27 (0)Tf' o

= Zde/dfl"'z/d(O)

Proof. By Proposition 14.1, where « is defined, we have

Bn = Z Uni (m(Z(l)) - m(())) = Z Um'Z(Zi) + Z vniw(z(i))

=1 i=1 i=1
(where ¢(z) = o(z%) as z | 0)

det

=1+1L
Clearly,
?(2)
| < Z lowl sup Jo(2)] < Z lvuilZgy sup | =7
0<z=<Z) 0<z§Z(k) <
< cZ(zk) sup &
0<z§Z(k) V4
= OIP(Z(Zk))

since Zgy — 0 in probability (by Lemma 2.2 and the fact that 0 belongs to the
support of X—see condition (if)).
Next, recall the decomposition (14.1)

g (_Uo \" ,
Zao) = (Vdf(o)) + ¥ (U,

where ¥ (1) = o(u'/¢) as u |, 0. Thus,

n Ui l/d n
12 Z mUz/d +20 ) v (Vdf(()())) Y (Up) + Y vut*(Ugp),
i=1 i=1

Using the fact that Uy — 0 in probability and |v,;| < c¢/k

where ﬁ m

for 1 <i <k,itis easy to see that

n n 2/d
2 k
1283 0l 4 ox(U2) = B3 valZf? + o (() ) ,
i=1 i=1

by the well-known fact (Theorem 1.4) that Uy = Op(k/n). Combining this result
with Proposition 14.2 proves the theorem. O
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14.4 Study of the variation
The conditional variance of Y is defined by
2 2
o2(x) =E[|Y—r(X)| X =x],
but in our analysis, after the projection to the halfline, we must work with
2@ =E[IY =m@P [IX] =], z=0,
The relationship between these quantities is
2@ = E[IrX) = m@P + o> X) [ I1X] = 2]
In any case, if ||Y]loo < 1 (condition (iv)), then r and m are similarly bounded, and

thus, 02 <4and 12 < 4 p-almost surely.
Conditional on Zi, . .., Z,, the variation term

Vn = Z Uni (Y(i) - m(Z(l)))

i=1

is a weighted sum of independent zero-mean random variables (Proposition 8.1)
bounded by 2 in absolute value with probability one. Let X; be the rank of Z; in the
reordering of the data according to increasing values of Z; = ||X;||. So, Z; receives
weight v, 5, and

Vu = Z Unx; (Yl - m(Zl)) .

i=1

The conditional variance of V,, is given by
VIVilZio. o Z) = Y V2 E [|Y,- —m@Z)* | 2. ,Zn]
i=1

n
=Y 0E [|Y,~ — m(zZ)? yz,.]
i=1
(by independence between (Z;, Y;) and Z, ..., Zi—1, Ziy1, ..., Zy)

n
2 2
= Z V5T (Z)
i=1

n
= Z UﬁiTZ(Z(,*)).
i=1
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Since 72 < 4, we see that, with probability one,

2 - 2 4-C2
BV |21, 2] <4 0= o
i=1

This can be used as a means of getting rough upper bounds on the rate of
convergence to zero of r,(0) — r(0). However, EV? may be much smaller than
O(1/k)—this all depends upon the behavior of 72, and thus o2, near 0. Note that
0(0) = 7(0) and that t too is continuous in a neighborhood of 0 under condition (v).
Lemma 11.1 shows that

VValZi.....Z) _ Yo, vat*(Zo)
a2(0) Y, v 2(0) X, vy

However, V,, satisfies a central limit result, given by the following theorem:

— 1 in probability.

Theorem 14.2. Assume that conditions (i), (iv), and (v) are satisfied. Then
Va 2

—_ >N,
a(0) Z?=lv13i

where N is a standard normal random variable.

Thus, evoking Lemma 20.1 in the Appendix, we may write

VaZo(0) | Y vk (V+oz(1)).

i=1

The asymptotic normality of the nearest neighbor regression function estimate has
first been established by Royall (1966). Later, Mack (1981) (see also Lai, 1977)
derived the rate of convergence for the bias and variance, as well as the asymptotic
normality, for estimates of the form

n X—X,' ;
i K <—||x(k><x>—x||) Yi
n x—X; ’
Zj=l K ("X(k) (X)—Xll)

where K is a bounded density (kernel) satisfying K(x) = 0 for all x € R¢ with
x|l > 1. This class of estimates incorporates the features of both the kernel and
the k-nearest neighbor methods (see also Stute, 1984, who studies the asymptotic
normality of a smoothed nearest neighbor-type estimate).

sn(x) =
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Proof (Theorem 14.2). 1t is useful to recall the Berry-Esseen inequality (see Berry,
1941, Esseen, 1942, or the book by Petrov, 1975) for sums of independent random
variables Wy, ..., W, such that EW; = 0, Y7, EW? > 0, and E|W;|* < oo:

"W
sup |P i Wi
teER lzﬂ_lEWZ

for some universal constant y > 0.
We apply this inequality with the formal replacement

T ElW?
<ty —PN<t}]| < y 2= BV

< L= 270 (14.3)
(X, Ewp)™?

W; = vy (Yo — m(Zg)) .

conditional on Zi, ..., Z,. Since, conditional on Z;, ..., Z,,

8¢
EW? = v21*(Z;) and E|Wi|® < —v2,

k
the bound in (14.3) becomes
8cy Dol Vui 8cy
k(X er(Z(,))) k,/zl (v xmin¥? (22(Zy), . .. T2 (Zw))
8cy

<
T k2min®? (t2(Z)), . ... T2 (Zw))

(since Y i, v2 > %, by the Cauchy-Schwarz inequality).

Observe that

Yoicy vai (Yo) —m(Z@w)) D07 v (Y(i> —m(Zg)) 5 D )
T(O) Zz lvil l 1 m Z(Z(l) ‘E(O) l lvlfl

def

=IxIL

Now II — 1 in probability as noted earlier. For I, we have

) vl 0(1/R)
?élﬂg ’P{I <tl2.. Z — PN < t}} "~ min’/?2 (T2Zw). ... T2(Z(k))).
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Hence,

sup [P{I < 1} — P{N <1}|
teR

= sup|]EP{I <tl|Zy,...,Z,} —P{N < t}|

teR
O(1/vk - iU
< % +Pimin (<*(Zy)), . ... T (Zw)) < té : ‘

The latter probability tends to zero since 7(0) > 0, t is continuous at 0, and Zy, — 0

in probability. Thus, I 2) N, so that I x II 2 N. ad

14.5 Combining all results

Merging Theorem 14.1 and Theorem 14.2 leads to the main result of the chapter.

Theorem 14.3 (Pointwise rate of convergence). Assume that conditions (i)-(v)
are satisfied. Then the corresponding nearest neighbor regression function estimate
ry satisfies

ra(0) = r(0) 2 6(0) | Y v (N + 02(1))

i=1

N2 K i\ 2/d o\ 2/
+8 (;) (Zl Uni (E) ) (1+op(1)) + op ((;) ) , (14.4)

=

where N is a standard normal random variable and

pu FO)u(”(0) + 27 (0)Tf'(0)
24V f1+2/d(0) '

For the standard k-nearest neighbor estimate, one has

oo f7 forl<i<k
"o fork<i<n,

where {k} = {k,} is a sequence of integers such that 1 < k < n. In this case,

N, 1 L i\ d
;vni:% and ;Uni(%) =m(1+0(1))-
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Corollary 14.1. Assume that conditions (ii)-(v) are satisfied. If k — oo and
k/n — O, then the k-nearest neighbor regression function estimate r, satisfies

2 0(0) K\ 1 K\
-0 22N e (L) o (ﬁ +(5)).

where N is a standard normal random variable and

a [(O)r(r(0)) + 27 (0)Tf'(0)
2(d + 2)V2/pi+2/ag)

The result of Theorem 14.3 can form the basis of a further discussion regarding
the choice of the weights. We essentially have two categories of weights, one in
which we are not restricting v,; to be nonnegative, and one in which v,; > 0 for
all i. If we choose

k
Z Vit =0, (14.5)
i=1

. . . .. 2
a choice discussed earlier, then, in view of the fact that % < Z?:l vgi < %, we have
the following:

Theorem 14.4. Assume that conditions (i)-(v) are satisfied and, in addition,
that (14.5) holds. Then there exists a sequence {k} = {k,} with the property that

such that
ra(0) — (0) = op(n~ 7).

The trouble with this result is that we cannot specify the choice of k. To do so
would require an analysis of the next term in the bias. But knowledge of that next
term comes only at the expense of higher order derivative conditions on f and r, and
under the new conditions, one can push things further and get even better rates than
those of Theorem 14.4.

If, on the other hand, we introduce the additional requirement inf; v,; > 0 for all
n, then the rate of convergence of r,(0) — r(0) is limited to n~ ¥ . The only good
thing in that case is that one can optimize both k and the shape of the weight vector
based on Theorem 14.3. Besides, the best shape of (v,1, . .., v,,) and the choice of k
can be determined separately and universally for all regression estimation problems
satisfying (i)-(v).



14.5 Combining all results 189

If we set k = Kn@ for some constant K > 0, then (14.4) can be recast as
follows:

1(0) = 1(0) 5 0(0)

.\ 2/d
kamN+ﬂ(va (é) )Kz/d+o]p(1). (14.6)

i=1

Several points of view may be taken now. As noted earlier, both expressions
involving the weights are bounded away from 0 and oo for nonnegative weights.

. k in2/d . .. . . .
Since Zi=l Vpi (i) / is minimal for monotonically decreasing v,;, and since

k
rearrangements of indices do not alter ) ._, vz, it suffices to consider only

monotonically decreasing weights in (14.6).
If we take the expected value of the square of the last term in (14.6)—thus
ignoring the op(1) term—then we have

limint 2170 —F(O)I

n—>00 nd+4

Doing this, and putting

k k 24\’
V=k2v3i, B:(va(z) ) ,
i=1 i=1

leads us to minimize the quantity

o?(0)

© ——V + B?BK¥4, (14.7)

The optimal choice for K is

. (do*(@)V\ 7
©-(T)

With that choice, (14.7) becomes

L

Interestingly, the optimization of (14.8) leads to the problem of finding the best
vector v,; > 0, i.e., the one that minimizes V*B?:

4 i\ 2/ d
vipd — (kam) (va (E) ) . (14.9)
i=1
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For any v,; > 0 satisfying (iv), the expression in (14.9) is sandwiched between
two strictly positive constants, uniformly over all k. The actual best form of
Uyl > -0+ > Uy With ZLI v,; = 1 that minimizes (14.9) is unknown to us, except
for d = 1. In this case, the literature on kernel density estimation (see, e.g.,
Devroye, 1987, or Tsybakov, 2008) permits one to show that (14.9) is asymptotically
minimized by the Epanechnikov kernel, i.e.,

LN\ 2
Ck 4 .
ni = 5 I = , 15 Sk,
v k( (k)) 1

where limy_, o0 ¢ = 4/3.

14.6 Supplement: L? rates of convergence

This chapter has focused on pointwise rates of convergence of the nearest neighbor
estimate. Of course, it is also possible to study rates of convergence for integrated
criteria, such as the mean integrated squared error E|r,(X) — r(X)|2. This topic
is sketched hereafter. To simplify the analysis, we focus on rates of convergence
results for the class of smooth distributions of (X, Y) such that X takes values in
[0, 1], EY? < oo, the regression function r is Lipschitz, and the conditional variance
function 0%(x) = E[|Y — r(X)|? | X = x] is uniformly bounded on R¢ (for L? rates
of convergence under more general conditions, see Kohler et al., 2006).

Theorem 14.5 (L* rates of convergence). Let r,(x) = Y i, v.uY)(X) be the
nearest neighbor regression function estimate, where (V,1, . . ., Up,) is a probability
weight vector. Assume that X takes values in [0, 1]%. Assume, in addition, that for all
x and x' € R4,

|r(x) — r(x)| < LIx—X/|
and

sup az(x) < o?,
x€R4

for some positive constants L and 0. Then
(i) Ford =1,
n n l
E|r(X) = r(X)? <67 g +8L2 ) vy -

n
i=1 i=1

(i) Ford > 2,

n n .\ 2/d
1
E|r(X) = r(X)* <07 vk + chL> > v (Z) :

i=1 i=1
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where

, 23+ VY
&)= ——

For the standard k-nearest neighbor estimate, we have the following corollary:

Corollary 14.2. Let r, be the k-nearest neighbor regression function estimate.
Then, under the conditions of Theorem 14.5,

(i) Ford =1, there exists a sequence {k} = {k,} withk ~ ,/ i—; n such that

o212
Emm»wmfsmﬂn,

for some positive universal constant A.
.. ; . 24 2
(if) Ford > 2, there exists a sequence {k} = {k,} with k ~ (37) T2n@2 such that

2
2Ld a2
lmmm—wmﬁsm(“ ) ,

for some positive universal constant Ag.

The explicit bounds of Corollary 14.2 are valid for all finite sample sizes. On
the other hand, the estimates with the optimal rate of convergence depend upon
the unknown distribution of (X, ¥Y)—it is to correct this situation that we present
adaptation results in Chapter 16. Also, we encounter here the phenomenon called
the curse of dimensionality: in order to achieve the error E|r,,(X) — r(X)|> ~ ¢, we
need a sample of size n &~ (1/ 8)1+%, which is exponentially large in d. Thus, to
get good error rates, the number of data points should grow exponentially with the
number of components of X. A possible route to address this shortcoming is feature
selection—see Chapter 16.

Proof (Theorem 14.5). The proof of Theorem 14.5 relies on Theorem 2.4, which
bounds the expected square distance between X and its i-th nearest neighbor. Letting

;n(X) = Z Upil (X(l)(x)) >
i=1

we start with the variance/bias decomposition

E|r(X) — r(X)[* = E[r,(X) — 7 (X)|* + E [7,(X) — r(X)*.
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To bound the first term, note that

i=1

E [r,(X) — 7 (X)[?

where W,,;(X) = vy, and (X, ..., X)) is a permutation of (1,...,n) such that X;
is the X;-th nearest neighbor of X for all i. But we have already shown in (10.4) that

2 n
= E[ > Wfi(X)az(Xi)}

i=1

i=1

so that
E[ry(X) = F(X)]” <07 Y vz
i=1
Finally,

2

E |7(X) — r(X)| =E X(,) (X)) — r(X))

i=1

2
I:(va X(L)(X) —}"(X)|) ]
n 2
= 25| (L Xo) -x] ) |
i=1
< 22 X v X000 - XPP)

i=1

(by Jensen’s inequality).

The conclusion follows by applying Theorem 2.4. O



Chapter 15
Regression: the noiseless case

15.1 Noiseless estimation

Classical function estimation deals with the estimation of a function r on R from a
finite number of points Xxi, ..., X,. Some applications are concerned with L” errors
with respect to the Lebesgue measure on compacts. Others use it for Monte Carlo
purposes, wanting to estimate [, r(x)dx over a compact set A. The model we study
here takes a sample X, ..., X,, of i.i.d. random vectors with a density f on A that is
not known. We observe

YiIF(X,'), lflfna

and study nearest neighbor-style estimates of . If X(;) (x) is the i-th nearest neighbor
of x among Xj, ..., X, and Y;(x) = r(X(; (X)), then the general estimate is

}’n(X) = Z vniY(i) (X) = Z Uni (X(l) (X)) s
i=1 i=1

where (v,1, ..., U,,) is a weight vector summing to one. To simplify the analysis,
we set v,; = %]l[lsisk], where {k} = {k,} is a sequence of integers between 1 and n.
Thus, in this chapter,

k

ra(X) = %Zr(Xm(x)). (15.1)

i=1

The knee-jerk reaction in this noiseless situation is to take k = 1. Indeed, how
can one do better than taking the nearest neighbor? However, as we will see below,
one can in fact outperform the 1-nearest neighbor in dimensions 2 and above. That
point will be made by a careful analysis of the pointwise error r,(x) — r(x).

© Springer International Publishing Switzerland 2015 193
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Springer Series in the Data Sciences, DOI 10.1007/978-3-319-25388-6_15
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15.2 A local limit law

Since we consider the local behavior at x, we assume that x = 0. Throughout, for
simplicity of notation, we drop the dependence upon the query point 0, and write
X and Y{; instead of X(;(0) and Y(;(0). The objective of this introductory section
is to study the limit behavior in R% of the vector (X(1y, . . ., X(x)) when k is constant.
These limit laws will be used later in the chapter to study the asymptotic behavior
of r,(0) — r(0), first when k is constant, and next when k — oo while k/n — 0.

We assume that 0 is a Lebesgue point of f and f(0) > 0, but no other conditions
are necessary for the main result of this section. As always, we denote by w the
common distribution of the X;’s.

Let Ey,...,E,+1 be independent standard exponential random variables. We
know (Corollary 1.1) that the order statistics for n uniform points in [0, 1], denoted
by Uqy < --+ < Uy, are distributed as follows:

G G,
(U“)"”’U‘"))Z(Gi]""’G_H)’ (15.2)

where G; = Z,i'=1 Ej,1 <i<n+ 1. Since

(u (B, [X1)[D) - - e (B(O, [ X)) ) Z Uy, Uw) - (15.3)

and p(B(0, p)) ~ f(0)V,p¢ as p | 0 (because 0 is a Lebesgue point), it is immediate
(and a corollary of a stronger statement proved below) that for fixed k,

2
FOV(IXpl4 ... IX@l?) = (Gi.....Gp).

The following theorem, proved by coupling, is thus not surprising.
Theorem 15.1. Assume that 0 is a Lebesgue point of f, f(0) > 0, and k is fixed.
Then
2
OV Xq), ..., Xw) = (Z:GY, ... 1,G)Y),
where G1,...,Gy are as above, and 7L, . ..,Z; are independent random vectors
uniformly distributed on the surface of B(0, 1).

Proof. Let K be a positive constant to be chosen later. Consider a density g , related
to f as follows: let

= o) @

J/d
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and set

f(0) forx € B (0, ﬁ)
8 .n(x) =
. f(x )(M) otherwise,

which is a proper density (i.e., nonnegative and integrating to one) for all n large
enough. We assume that 7 is indeed large enough for this to happen. Note that

gk (X) —f(x)|dx = [ (0) —f(x)| dx
[t i b(of)

Lo s
B /;(o'nﬁd)

<2 /B ) VOl

o2

(since 0 is a Lebesgue point of f).

—f (0) Vap?

f()‘ l‘dx

Kd
F(O) = f () dx+ |p = FO)Va~—|

Therefore, by Doeblin’s coupling method (Doeblin, 1937; see, e.g., Rachev and
Riischendorf, 1998), there exist random variables X and Y with density f and gk ,
respectively, such that

Py £ = 5 [ e —lax=o( ).

Repeating this n times, we create two coupled samples of random variables that are
i.i.d. within the sample. The sample X{, . .., X,, is drawn from the distribution of X,
and the sample Yy, ..., Y, is drawn from the distribution of Y.

Recall that the total variation distance between two random vectors W, W’ € R?
is defined by

dry(W, W) = sup |[P{W € A} — P{W
AER

where % denotes the Borel sets of RY. Let [|[Y(y|| < -+ < Yl and | X || <
< || X || be the reordered samples. Then
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dv((Yay - Yay). Xy, - X)) < drv((Yr, ... Y, Xi, ... X))

< iP{Y:‘ # Xi}

i=1
1
<nX 0(—)
n
=o(l) asn— oo.
Define
Ui = v (B0, YD) .

where v is the probability measure of Y. We recall that Uy, ..., U, are uniform
order statistics, and thus

n(U(l), ey U(k)) 2) (Gl, ey Gk)

(see Corollary 1.1). In fact, this convergence is also in the dry sense. Also, if
Y@l < K/n'/4, then

Ui =FO)Val Y I

Thus,

U 1/d U, 1/d
dry ((nYmn, Y. ((f(o()”vd) (o) ))

<P{IVil > )
- ]P’{Bin(n, FOVE) < k}
- IP’{Poisson(f(O)Vde) < k} +o(l) (asn — o0)
<e+o(l)
for all K large enough, depending upon &.

Let Z,,...,Z; be i.i.d. random vectors uniformly distributed on the surface of
B(0,1). Then

dTV ((f(()) Vdn)l/d(X(l), ey X(k)), (ZlGi/d, ey ZkGli/d))
< dTv((X(l), ey X(k)), (Y(]), e Y(k)))

+ drv ((f(o)Vdn)l/d(Y(l), oY), (ZlGi/d, el ZkG;lc/d))
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< o(1) +drv((Yay. ... Ya). Za Y .- Zel Yy )

+dry (FOVa) Zi Yl 2l Yo ), 206G, G )

K
< o(1) + P{|[ Yol > =75}

T dry ((nYmn, ). () (f([(],()k)vd)l/d))

1/d
[V

. ,ZkUl/d), (ZlG}/d, .. ,ZkGli/d))

+ dTV (nl/d (Zl U (k)

since on [||Y|| < K/n'/%], Y has a radially symmetric distribution. Therefore,

dry ((f(O)Vdn)l/d(X(l), o Xm), (ZLG}M, el ZkGi/d))

<o(l) +2e+ dTV(n(U(l), e, U(k)), (Gy,..., Gk))
=o(1) + 2e.
This concludes the proof. O
Writing Z; = (Z;1, - . ., Zi.q), we have the following corollary:

Corollary 15.1. Assume that 0 is a Lebesgue point of f, f(0) > 0, and k is fixed.
Then

2
FOVan(IXple ... IXwl’) = (Gi.....G).

Also, if ay, ..., aq are real numbers, then, writing X = X1y, ..., Xia)),
d d
(F(O)Vym)'/ Z aiX1 - Z Xk j)
j=1 j=1

d d
9 1/d 1/d
— Gl E ajZlJ-, ey Gk E CljZk.j
j=1 j=1

15.3 Analysis for fixed k

In this section, we still assume that k is held fixed and study the asymptotic behavior
of r,(0) — r(0), where r, is the k-nearest neighbor estimate (15.1). The standing
conditions for this section are the following ones:

(1) 0is a Lebesgue point of the density f and f(0) > 0.
(2) The regression function r is continuously differentiable in a neighborhood of 0.
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Recall the notation Xy = X1y, ... X)) Li = (Zin, ... Zig) (Ly, ..., L are
independent random vectors uniformly distributed on the surface of B(0, 1)), and let
7(0) = (r1(0),...,7,(0)), with r;(0) = g—;j(O), 1 <j < d. Then, by a Taylor series
approximation,

1 k
(0 = r(0) = 2 > (rX(y) = r(0))
i=1
1 k d
=22 | 27Xy + v (Xe)
=1

i j=1

(where ¥ (x) = o(||x]|) as [|x]| { 0). Observe that

Iyt v Xe)

Xeol — 0 in probability

if Xl — O in probability. But, by Corollary 15.1, || X[ = Op((f)l/d), and

therefore,
k 1/d
1 k
£ Yo =or ((‘) ) |

Still by Corollary 15.1,

d d
FOV) | D HOX ... Y 0 X
j=1

J=1

d d

9

S GY Azy . G B0z |
j=1 J=1

so that

d

k d k
>N HO)Xe,) Z%ZG}M > 0z
i=1 j=1 i=1

J=1

1=

(f(O)Van) '/

In particular, for k = 1, the limit law is E'/¢ Z;l: | rjf(O)Zl j» Where E denotes a

standard exponential random variable. By radial symmetry,

d
9
> H Oz, Z 17 01211,

J=1
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where || (0)|? = Z;l:l rj’.2(0). Thus, for k = 1, we have

(0 1
= r0) 2 O 54z, o ()

oo () i@l =0
| 00 () i1 @)1 >0

Note that for d = 1, EZ, ; has the Laplace distribution with density %e"x‘, x € R.

Remark 15.1. ltis easy to see thatif Ny, ..., Ny are i.i.d. standard Gaussian random
variables, then, with N = (NVy, ..., Ny), the normalized random vector N/||N]|| is
uniformly distributed on the surface of B(0, 1). Hence,

N N
z, 2 m = +
2
Y
Therefore, for d > 1,
N 9 Gij2

Z?l = =
1, E)
’ Zj‘.lzl sz G2 + Ga-1))2

where Gy, is Gamma(1/2) and Gy—1)2 is Gamma(d—;l) and independent of Gy/»
(see Section 20.9 in the Appendix). Thus, by Lemma 20.9,

2 1 d-1
z}, £ Beta(}, 51),
so that Z; ; has density

e
VAT ()"

We recover the well-known fact that Z; | is uniform on [—1, 1] for d = 3. O

1-2)T, |z <1.

Summarizing all of the above, we conclude:

Theorem 15.2. Assume that conditions (1) and (2) are satisfied. Then, for the fixed
k-nearest neighbor regression function estimate r,,

(FO)Var) /4 (1, (0) — (0)) 5 Lyl (0)]].

where

k
def 1 1/d
”:EéGi&b
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Analysis of L; suggests that

,(0) — r(0) = O ( (

To see this we note below that, as k — oo,

S
»
S | =

1/d
) ) . (15.4)

fa—!

BL; ~ ——.
d+2

Combined with Theorem 15.2, one may be tempted to conclude (15.4). This is an
erroneous reasoning because Theorem 15.2 does not permit k — co. A more careful
analysis shows that (15.4) is indeed true if k = O(ndzﬁ), under conditions that are
stricter than (1) and (2)—see the next section.

Let us return to the computation of EL?. We have

k k
1 1
B |G- .G = 5 2 G 'BZ = B2} % 5 )G,
i=1 i=

Thus, since IEJle’1 = M =1/d,

2 2/d Sr(i+d) ki
B = kzzEG _d_g r@o ~d+2

For the latter equivalence, we used the fact that

ro (1+O<7))’

which is implied by Theorem 20.14 in the Appendix. The quantity ]ETL,% is minimal
for k = 1 when d = 1. It is basically invariant under the choice of k for d = 2, but,
surprisingly, for d > 2, IEL,% is minimized for k = n. Of course, this argument fails
because the delicate limit law we derived fails to hold. However, this motivates the
study of r,,(0) — r(0) in R?, d > 2, with k depending upon 7 such that k — oo.

15.4 Analysis for diverging k

Most of the arguments used in the previous sections for finite k do not carry over to
the case k — oo. It is nevertheless possible to extend the coupling argument to this
situation. The standing conditions are as follows:



15.4 Analysis for diverging k 201

(@) r,(0) = % Zle r(X()), with k/logn — oo and k/n — 0.
(if) The density f is continuously differentiable in a neighborhood of 0 and
f(0) > 0.

(iii) The regression function r is twice continuously differentiable in a neighbor-
hood of 0.
(iv) The function r is bounded.

For x = (xl,...,xd)T e RY, we let
9 9 T 9 3 T
£0) = (8—2(0),...,8—)2(0)) . F(0) = (a—;m),...,a—);w)) ,

and

” 0’r
0= ()
Xj0Xjr 1<jj/<d

Theorem 15.3 (Noiseless rate of convergence). Assume that conditions (i)-(iv)
are satisfied. Then the k-nearest neighbor regression function estimate r, satisfies

o2 () o) () ()

where N is a standard normal random variable,

w I ()]
VAT 2 (Vo)

and

a [(O)r(7(0)) + 2r(0)T£(0)
2(d + 2V pr+2sa)

Theorem 15.3 can be used to determine the best choice of k. If we take the sum
of the expected values of the squares of the main terms on the right-hand side of the
limit theorem as a yardstick, then the best £ would minimize

2 k 2/d k 4/d
& (—) + &2 (—) . (15.5)
k \n n
For d = 1, the value k = 1 is best. The case of constant k was dealt with in the
previous sections and is well understood. Besides, Theorem 15.3 requires k — oo

to be valid. For d = 2, (15.5) is
2 k 2
0]
n n
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Table 15.1 Optimal rates of convergence of
r,(0) — r(0) for the k-nearest neighbor regres-
sion function estimate in the noisy and noise-
less cases.

Noisy estimation | Noiseless case

d=1 0n /") On")
d=2 |em'?) Mm%
d>2 | O@ ) O(n~ )

which is also minimal for k = 1, although any choice k = o(4/n) will do almost as
well. At d = 2, there is a phase transition, since for d > 2, (15.5) is minimized for

. 2
a sequence k that grows with n roughly as na+2:

d
2 d-2\
k ~ (% X 2 ) nd*22.
With that choice, (15.5) becomes

O [(d%zr * (da;;z)ﬂ () (§) .

The influence of the local behavior of f and r is plainly visible in the multiplicative
constant. It is perhaps worthwhile to juxtapose the results regarding optimal rates
for the k-nearest neighbor estimate in the noisy and noiseless cases, as in Table 15.1.
Here ©@ stands for a rate “in probability” as described in Theorem 15.3. For every
dimension d, the noiseless rate of convergence is, unsurprisingly, better, although
the difference tends to decrease as the dimension increases.

Remark 15.2. We note that under our conditions, it is possible that one or both
of ¢ and & are zero, in which case there is a choice of k that makes r,(0) — r(0) =

_2 . . .
op(n~ 4+2). So as to keep the notation and argument transparent, we did not consider
the weighted nearest neighbor estimate here, but with appropriate weights, under the
_2
conditions of Theorem 15.3, one should be able to obtain r,(0) —r(0) = op(n~ #+2).
O

Proof (Theorem 15.3). Theorem 15.3 is proved by using a coupling argument. We
create two coupled samples of random variables that are i.i.d. within the sample.
The sample X, ..., X, is drawn from the distribution of X, which has density f.
The sample Yy, ...,Y, is drawn from the distribution of Y, which has density g,
described below—g, is nearly uniform on the ball B(0, p) and matches f up to a
multiplicative constant outside B(0, p):

§ £0) +£(0)Tx for x € B(0, p)
8pX) =

1—£(0)Vgp? :
f(x) (%) otherwise.
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Here, as elsewhere, vectors are column vectors and T denotes transposition.
The radius is p = K(k/n)'/?, where K = K(g) is picked so large that
P{||X|l > p} < e. This can be done since

1Xall = Oz ((S)W)

(by (15.2), (15.3), and the fact that 0 is a Lebesgue point of f with f(0) > 0—
see condition (ii)). Since p | 0, g, is a proper density for all n large enough (in
particular, for p so small that |[f'(0)||p < f(0)).

We compare

k k

ra(0) = %Zr(X(,-)) with  5,(0) = %ZV(Y(i)),

i=1 i=1

and prove that

k 2/d
a(0) = 8,(0) = 0 ((;) ) | (15.6)

This is so small that it cannot possibly asymptotically dominate the last term shown
in Theorem 15.3. So, we will establish Theorem 15.3 for s,(0).
The Taylor series expansion of r about 0 is

r(x) = r(0) + 7 (0) Tx + %XT}’”(O)X + [Ix]*w(x),

where w(x) = o(1) as ||x| | 0. Thus,
1< 1 <
$1(0) = s0) = O 2 > Yo+ 5 3 Yo" (0
i=1 i=1

k
1
+o E 1Y ) IPw (Y 5)
i=1

def

=I+1I+4 1L

( K\ 24
I = op (;) , (15.7)

We show that
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so that it too has no influence in the asymptotic statement of Theorem 15.3.
Terms I and II will be related, by appropriate probabilistic representations, to
sums of uniform order statistics dealt with in Chapter 13, and this will establish
Theorem 15.3. The four items, (15.6), (15.7), I and II, are treated in the next few
paragraphs.

Proof of (15.6).  Letting

p= f(2)dz,
B(0.p)

we have

/ 18,00 —f®)| dx = / 15,00 — ()] dx
R4 B(0,p)

+ /B WS ‘

[ e~ s ax-+ |p -0V’
B(0.p)

f(O)Vdp 1‘ "

<2 / o st —rlax

By Doeblin’s coupling lemma (Doeblin, 1937; Rachev and Riischendorf, 1998),
there exist random variables X and Y with density f and g, respectively, such that

PY # X} = / 1,00 —F()| dx
— d
< /B RCCREIES

=2 [f (x) — £(0) — £'(0) "x|dx
B(0.p)
d+1€(p)

where €(p) = o(1) as p | 0, by the Taylor series expansion of f about 0.
Let (X;,Y;), 1 <i < n, be independently drawn from the distribution of (X, Y).
Then,

[7,(0) — 5,(0)] ]l[”X(k) ||§P]]l[||Y(1<) lI<pl

k ( Z Ix2y) sup [r(x) —r(y)l )]l[”X(k) ||<P]]l[”Y(k) I=p]

i=1 x,YEB(0,p)
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2 n
z Z Lix; vy [r(x) — r(0)]

i=1

= ? x Op (n/Rd \gp(x) —f(x)|dx)

IA

sup
x€B(0.p)

since Y i Ljx,£y; is Bin(n, 3 fpa 18p(x) — f(x)]dx). Therefore,

d+2 2/d
pTe(p)n k
7a(0) = 5, (O)| Lpyx gy <p1 L1l v ll<o) = Op (T) = op ((—) ) :

n

Finally,

def

Ty = [ra(0) = 50 ()| (Lpjx e l1>p1 + Ly >01)

= 2{rlloo (Lyixy 101 + L1vee I1>0)-
By Chernoff’s bound (Theorem 20.5), for some constants ¢, ¢’ > 0,

]P’{||X(k)|| > ,0} = P{Bin(n,p) < k}

< Pl d < e—c’npd — e—c’de

if k < np/2 (which is the case for K large enough). A similar argument applies
to ||Y ||, and therefore, ET,, < ¢~<"¥ for some positive constant ¢”’. By Markov’s
inequality,

Tn _ OP (e_c///k)

for another constant ¢’ > 0. Thus,

K\ 2/ . N2/
72(0) — 5,(0)| = op ((Z) ) + O]p(e_c ) =op ((;) ) ,

since k/ logn — oo.

Proof of (15.7).  We have

I < [Ypl®> sup  w(y).
YEB(QO.[ Yl

Yol = O ((S)W) .

The result follows from
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Study of I and II. We describe a random variable distributed as Y. Let U, W be
i.i.d. uniform [0, 1] random variables, and let Z be uniformly distributed on {z €
R? : ||z|| = 1}, the surface of B(0, 1), where Z is independent of U and W. Define

distributed as X conditional on ||X| > p, if U > f(0)V,p?

/d +
1/d _f/(o)T( U )] 7z
U : d SOV,
_ ( f(o)vd) Z, ifU <f0)V,p!and W > (—f(o) a

o+
a _f/(o)T(L)] 7
U . d SOV,
_ (m) Z, ifU=<f(0)Vqp®and W < (W)d ’

and the coupled random variable

distributed as X conditional on ||X|| > p, if U > f(0)V,p?

Y* = U 1/d .
(f(OW) Z, otherwise.

But, for x € B(0, p),

v a1 (T OTX\T
P{Y =x|Y —X}—l—(W) )
and
e {fOTx\T
P{Y =x|Y ——x}—( 70) ) .

Therefore, the density of Y on B(0, p) is

~ —f’(O)TX)+ (f’(O)TX)+ _ T
1o (1 (L) +(5%5) ) =ro+roms

Consider first a quadratic form of Y for a d x d matrix A. We have, for ||[Y| < p,

2

2/d
YTAY = ( 7ZAZ|1-21 1/a
(O)V ) — T _U__ Z\ 4+
SO [ b))
U 2/d
= ZTAZ.
(f (0) Vd)

In other words, the bias introduced by the “W trick” cancels out. For a linear form
with vector a € RY, for || Y| < p,

. 1/d . U 1/d .
Y = 7Z-2 71 1/d .
) (f«»vd) " (f(owd) ) L= i) / )]

1(0)
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In preparation for the finale, we note that if Z = (Z,, ... ,Zd)T,
d T
E[Z'Z] tr(A)
E[ZTAZ) = A;EZ? = x tr(A) = ——,
27z ; GEZ] = ——— xu(4) = —

where the elements of A are denoted by A;7. Here we used the fact that

E[Z} +---+2Z3] 1

EZ%:"'ZEZSZfZE.
Also note that |ZTAZ| < d° max; i |Aj|. Next, fora = (ay, ..., as)",E[laTZ] =0,
and
T 2
E[(a"Z)?] = E[a' ZZ a] = a"E[ZZ]a = % - ”‘;” :
Finally, if [f'(0) | Gz77) "/ < £(0),
E|aTZ1 ) ‘ U
—1/(0) OV Z\ +
[oe( )
1/d +
_reonT (U
s L) 2)
- (f(ol)]v )l/d
d
= W x E [aTZf,(O)TZ]l[f/(O)TZ<O]]
- (f(ol)/v )l/d
d Tryper T
=" xE[a'Zf(0)'Z].
2£(0) [ ]
Therefore, if [['(0) || 7yy;) "/ < £(0),
()
—\FO)vy
E|aTZ1 va ) Ul=—L B[22 (0)]
T (U Z\+ 2 0)
o= b)) g
1/d
U
T (f(owd)

T o/
a0 P £(0). (15.8)
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A last coupling will tame the analysis into submission. We consider a sample
of ii.d. random variables (U, Wy,Z),...,(U,, W,,Z,) that are distributed as
(U, W,Z) in the definition of Y. Define

. 1/d +
() 2 iew s (20 ) 2
Y — fO0)Va £(0)

1/d
_(f(o_l)]vd) 7. otherwise.

Couple Y and Y** by using the same values of (U, W,Z). Draw i.i.d. samples
(Y1, Y7"), ..., (Y, Y;*) from this coupled distribution, and look at

k

k
1 1
5u(0) = 2 D r(¥) and s (0) = L D" r(YEY).
i=1

i=1

where, as usual, Y1), ..., Y and Y(** AU Y(n*) are reordered by increasing values
of ||Y;||, respectively ||Y**|| In this case, this means that the Uy values are

increasing. In particular, if ( Y )l/d

OV, p, we have

Yy ---, Y(k))z(Y(*l*), .. Y(*k*))
and therefore,
P {s,(0) # s3*(0)} < P{Uqu) > f(0)Vap"}. (15.9)

In the definition of p = K(k/n)"/?, using Chernoff’s bound we can choose K so
large that the probability (15.9) is smaller than e~ for some constant ¢ > 0. Thus,
we only need to look at s;;*(0).
We have, on [s,(0) = s3*(0)],
1 &
_ T * % *xT 1/
I+1I=/(0) ZY(,) + S oYY

i=1

| & Up \ | & U 24 -
Z%Z(Vdf(()o)) 7)) Z + — Z(Vdf(()())) Z," (0)Z)

k 1/d
2 U(i) ren T
-z 0)'Z, 1
k,.zl(vdf«))) T Zo

N1/d
[W(i)g(:f/(”)—r(f’(%%) Z(i))*]

J(©0)

def

=T+ T+ Ts.

By Theorem 13.3, if

o =E[("©)72)"] = ”r/(:;)”z,
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then

2 1 (K\"" o 1
Tl = — (—) X 1/d (N+ Op(l))

Vin) o fig2 s (V)

_L(g)‘/d POl L o)
CVk\n)  Vdv27 (vgon'? o

By Theorem 13.2 , with u = E[ZT#/(0)Z] = tr(r(0)) (0))

T)= (E)M M (1 + op(1))
n 2(1+§) (vdf(onz/d

_ () (7 (0) |
- (;) 2(d+2) x (VJ(O))Z/d 1+ op(1)).

Again by Theorem 13.2, using (15.8), using a small additional argument, and putting
all the pieces together,

R OWEC 1 1
T3=( ) ()f()x 5 X 2/d(l—i-0[p>(l))
n daf(0) 142 (Vyf(0)
K\ 0)7F(0 1
(B OO,
n (d+2)f(0)  (Vi£(0))
This finishes the proof of the theorem. O
Remark 15.3. In the noisy case, we have
1 &
(0) = r(0) = > Yy = r(0)
i=1
1< 1<
=2 > (Yo - rXp) + . =Y r(Xqy) — r(0), (15.10)
i=1 i=1
where now Y(,..., Y, are as in Chapter 14. We already covered the last term

of (15.10) in Theorem 15.3. By virtue of Theorem 14.2, the first term on the right
in (15.10) is asymptotically distributed as

i\/(l) (N + op(1)). (15.11)
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where o (x) = V[Y|X = x]. The only conditions needed for this are that ¢ (0) > 0,
that Y is almost surely bounded (a condition that can be relaxed), k — oo, k/n — 0,
and that o is continuous at 0. Adding (15.11) to the expression in Theorem 15.3
makes the Lk(é)l/ 4 term asymptotically irrelevant. In other words, we basically
rediscover Corollary 14.1. The readers have two very different proofs of the same
result—one more analytic and classical, and a coupling proof that explains each
term in the asymptotic behavior. O



Chapter 16
The choice of a nearest neighbor estimate

16.1 Parameter selection

Selecting the estimate within a class of estimates that is optimal in a certain sense
is perhaps the ultimate goal of nonparametric estimation. It assumes that the class
of estimates is sufficiently rich within the universe of all possible estimates. That
the nearest neighbor regression function estimate is rich as a class follows not only
from the universality, but also from the fact that it achieves rates of convergence for
various criteria that are close to the best possible over certain classes of distributions
on (X, Y), a property that is studied in minimax theory (Stone, 1980, 1982).

In this chapter, we take a class of nearest neighbor estimates. Examples
include:

(i) The k-nearest neighbor estimate:

L for1<i<k
Upi = k .
0 otherwise.

This class is parametrized by k € {1, ..., n}.
(ii) The monotone weight estimate:

n
vnlzanZ"'zvnnzO» Zvni:L
i=1
(iii) The discretized weight estimate:

a(i,n)

Upi = , 1<i<n,
B(n)

© Springer International Publishing Switzerland 2015 211
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where B(n) is a fixed positive integer sequence, and «(i,n) is an integer
between —Bf(n) and BB(n), with B > 0 another fixed integer. Also, the
requirement » ;_, v,; = 1 implies that Y, «(i,n) = P(n). This class of
estimates is discrete and has not more than (2B (n) + 1)" members.

(iv) The kernel-weighted estimate: let K be a fixed real-valued function defined
on [0, 1] with fol K(x)dx = 1, which we call the kernel; the family of estimates
is parametrized by k € {1, ..., n}, and uses

i/k
/ K()dx forl <i<k
Uni = (i—1)/k

0 otherwise,

so that, automatically, Z;Z:l Vpi = fol Kx)dx = 1.

Taking these classes as examples, we will set out to study data-dependent choices
of the best estimates within each class.

16.2 Oracle inequality

The first simplification comes from data splitting, a technique that affords us
valuable independence for making our choices. In particular, we assume that
the (training) data are (Xi,Y1),...,(X,,Y,), as before, and that we have test
data (X},Y]),....(X],.Y;,), which are independent of the data and consist of
independent pairs all distributed as (X, Y;). In many cases—illustrated below—
one can get away with the choice m = o(n), requiring only m = & (n%) for some
O<a<l.

Now, we need to settle on the criterion. The most natural one in the regression

function setting is the L? criterion
E |, (X) = r(X)[*, (16.1)

where, as usual, r,, denotes the estimate of r and (X, Y) denotes an independent pair,
distributed as (X, Y1). We recall (Chapter 10) that

E|Y —rX)* = E|r(X) — rX)]> + E|Y — r(X)|*, (16.2)

where the last term does not depend upon the estimate or the data. Thus, minimiz-
ing (16.1) is equivalent to minimizing (16.2) and even (16.3):

E[r2(X) — 2r,(X)Y] = E|Y — r,(X)|* — EY?. (16.3)
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Assume that the estimates are parametrized by a parameter 6 € 7, with |.&7| < oo.
For example, for the k-nearest neighbor estimate, 6 = k and & = {1,...,n}. We
make the dependence of r,(x) on 6 explicit when we write r, g (x). Define

Lno = E[[rs () = (P [X1. Y1, X Vo] (16.4)
and

L, =minL,p, 6* €argminL,y.
e =

Thus, 6* is the best parameter for the given data. Let the estimate of (16.4) based
on the test data be

~

L,g =

3=

> (e (X)) — 2,6 (X)Y)) . (16.5)
j=1

We choose 6* so as to minimize L, g:

f,n j» = min I:,,,(;, 0* ¢ arg min lA,n,g.
: (1% feos

Ties are broken in a canonical manner. Since < is finite, we can map <7 to the
integers {1, ..., |<7|}, and break ties by choosing the parameter of smallest integer
value. Therefore, “arg min” returns a unique 6 € 7. It should also be noted that 6*
depends on both the training data and the test data.

What matters to us is the difference Ln, o — L. In fact, the relative difference is
of primary interest. This leads one naturally to oracle inequalities, such as the one
presented in the next theorem.

Theorem 16.1. Assume that 1 < |.&/| < oo and ||Y||eo < 00. Then
E[L , |X,Y XV, <L+ M( 2log |.</| + : )
n.0* Iy L1seees gy In) = Ly, T 0og B et I}
- Jm 2log ||

where
2

M= (143 |vm~|)
i=1

For a related discussion, see Gyorfi et al. (2002, Theorem 7.1). For classi-
fication—a special case of regression—data splitting was similarly analyzed by
Devroye (1988).
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Proof (Theorem 16.1). Let 2, = (X1, Y1),...,(X,, ¥,)). Using the independence
between (X, Y) and Z,, it is easy to see that

Ly =E[r},(X) = 2r,0X)Y + (X) | Z,] .

We apply Hoeffding’s inequality (Theorem 20.7 in the Appendix) to the sum

m

1

2 2 (1200 =201+ #0))
~E[75(00 - 20007 + #(X) 2]

= Z’”ﬁ - Ln,@»

where L, g = Ly¢ +1 YLy r*(X)). To do so, note that |1, 9 (X)| < [[Y]loo iy [Vnil
and thus that

n 2 n
|29 (X) = 2r,0(X)Y + P2(X)| < Y[, ((Z |vm-|) +2) foul + 1)
i=1 i=1
n 2
=||Y||io(1 " Z|vm-|)
i=1

det

=M.

Thus, by Hoeffding’s inequality, for t > 0,

mi?
P{L,6 — L e>t|@}<exp( 2M2). (16.6)
Since E[L, ¢+ | Z,] = L*, we only need to show that
E[L L. |2)< M( 2log || + ! ) (16.7)
no*x — Lndx nl = 7~ 0g T | .
one Jm 2log ||

Fix ¢t > 0. Then, clearly, by (16.6),

PUL . =L = 1190} < B {max(Lo L) 2 119

mt2
= Z exp (__ZMZ) .

e
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Setting §* = ,/%log |.<7|, it follows that

o0
BlL, g =L |20 < [ Pl =L, 2 119001
0

0o mtz
<4 o —— | dt
ot [T lrnn(~2)

2

<&+

mé*

M( 2oz ] + —— )
= — 0 ——11
N £ 2log ||

Thus, (16.7) is verified, and the theorem is proved. a

16.3 Examples

The oracle inequality of Theorem 16.1 permits the user to obtain asymptotically
optimal estimates. For example, if r is Lipschitz and X and Y are both bounded
random variables in R? (d > 2) and R, respectively, then any k-nearest neighbor
regression estimate E|r,(X) — r(X)|?> can be made to converge to zero at the
rate O(n_d%z) (Corollary 14.2) if we know that (X, Y) satisfies these general
conditions. This rate of convergence is best possible within that class of estimates
and distributions (Stone, 1982).

If we select k € {1,...,n} (so, |</| = n) by the data splitting method, then
Theorem 16.1 above guarantees that if we take

logn

a4
~ = o(n~72)

(.e.,m> nﬁz log n), then

ElL 4 | X1, Y1, ..., X, Y] <L (1 +0(1)),

n,0*

. 2
and therefore do we not only have an error that is O(n~ 4+2), but we even have the
correct asymptotic coefficient in the rate of convergence, i.e.,

n,é*

L;

— 1 in probability.

In addition, this optimality property carries over to many other classes of distribu-
tions.
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Gyorfi et al. (2002, Chapter 7) use Bernstein’s inequality (Theorem 20.8 in
the Appendix) instead of Hoeffding’s to obtain an improved version of the oracle
inequality of Theorem 16.1, for 8* defined as in (16.5). For fixed § > 0, and

16
£6) Y1 (5 + 35+ 19),

they show that

EIL, 5. | X1, Yo, X, Vol < (14 8)L + HOIC J’rnlogW').
This inequality improves on Theorem 16.1 when L; is small, but only if one can
“guess” the approximate value of L; so as to pick § optimally.

There are other ways of selecting the best parameter within a class of parameters.
The most celebrated among these is the leave-one-out or cross-validation method.
Here E[r2(X) — 2r,(X)Y] is estimated by using the data set itself. If r,,(i, x) denotes
rn(x) but with (X, ¥;) removed from the data, then one hopes that

! Z (ra (. X)) — 25, (i, X)) Y))
n
i=1

is a good approximation of E[r2(X) —2r,(X)r(X)] (= E |, (X) — r(X) |>—Er2(X)).

16.4 Feature selection

Feature selection, also known as variable selection, is the process of choosing
relevant components of the vector X for use in model construction. There are
many potential benefits of such an operation: facilitating data visualization and
data understanding, reducing the measurement and storage requirements, decreasing
training and utilization times, and defying the curse of dimensionality to improve
prediction performance. In addition, it is often the case that finding a correct subset
of variables is an important problem in its own right. For example, physicians may
make a decision based on the selected features whether a dangerous surgery is
necessary for treatment or not.

Feature selection has been an active research area in the statistics, machine
learning, and data mining communities. Many attempts have been made to develop
efficient algorithms for selecting the “best” (depending on the context) subset of
components—for an overview of the problem, see, e.g., Guyon and Elisseeff, 2003,
and the monograph by Hastie et al., 2009. General recipes are hard to give as the
solutions depend on the specific problem, and some methods put more emphasis
on one aspect than another. However, there are some rules of thumb that should be
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followed. One such rule is that noisy measurements, that is, components that are
independent of Y, should be avoided. Also, adding a component that is a function of
other components is useless.

In selecting subsets of variables, a sensible objective is to make the mean
integrated squared error E|r, (X)—r(X)|? as small as possible. This depends on many
things, such as the joint distribution of the selected components of X and the answer
Y, the sample size, and the regression estimate r,, itself. To make things a bit simpler,
we first investigate the residual variance corresponding to the selected components.
This approach makes sense since, in view of (16.2), the residual variance is the
theoretical limit of the L? performance E|Y — r,(X)|? of any regression method.

In this data-independent context, we may formulate the feature selection problem
as follows. Let X = (Xi,...,X,) represent d measurements. For a set A C
{1,...,d} of indices, let X, denote the |A|-dimensional random vector whose
components are the X;’s with j € A (in the order of increasing indices). Define

L*(A) = E|Y —E[Y|X4]>.

that is, the minimum risk that can be achieved using the features in A as explanatory
variables. Obviously, L*(A) < L*(B) whenever B C A, L*({1,...,d}) = L* =
E|Y — r(X)|?, and L*(@) = VY. Thus, the problem is to find an efficient way of
selecting an index set A with |A| = p, whose corresponding error is the smallest.
Here p < d is a fixed integer. Exhaustive evaluation over all variable subsets of size
p is often computationally prohibitive, as the number of subsets to be considered
grows very rapidly with the number of features—for example, ('’) is 924, while
(f;) is 2,704,156. A wide range of search strategies can be used, including best-first,
branch and bound, simulated annealing, and genetic algorithms (see Kohavi and
John, 1997, or Kumar and Minz, 2014, for reviews).

It is easy to see that the best p individual features—that is, components
corresponding to the p smallest values of L*({j})—do not necessarily constitute
the best p-dimensional vector. Indeed, the following simple example shows that a
combination of “good” single features may lead to a larger risk than a combination
of “worse” features. Let X = (X;,X,,X3)" be jointly Gaussian with nonsingular
variance-covariance matrix X, and let Y = a' X for some a € R to be chosen later.
For A C {1,2, 3}, we have by the elementary properties of the multivariate normal
distribution

L*(A)=a'Ya—a' TP (PXP")"'PXa,

where P = P(A) consists of the rows of the 3 x 3 identity matrix with row labels
in A. Take

1 =07 0O 2
YX=1-07 1 -07 and a=|25],
0 —-0.7 1 1
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to obtain the following ordering of minimum risks:

9
L) = 1 > L (2) = b= L (43 =

and
8
L*(11.2p) = 531 <L ({1.3}) = é <L ({23 =5

Thus, the (individually) best two components (X, and X3) become the worst two-
dimensional ones, whereas the worst two single components (X; and X») jointly
represent the best feature pair.

Remark 16.1. Antos et al. (1999) (see also Devroye et al., 2003) proved that for
any sequence {¢,} of estimates and any sequence {a,} of positive real numbers
converging to zero, there exists a distribution of (X, Y) such that E|¢, — L*| > a,
infinitely often. Thus, any estimate of L* is doomed to converge arbitrarily slowly
for some distribution of (X, Y), and no method can guarantee universally good
performance. Error bounds or confidence bands for L* can only be constructed under
additional assumptions on the distribution of the data. O

The following theorem says that every feature selection algorithm that finds the
best p-element subset has to search exhaustively through all (Z) subsets for some
distributions—any other method is condemned to failure, no matter how many
simulations are performed and no matter how large the sample sizes are.

Theorem 16.2. For every 1 < p < d, let rank(A) be the desired rank of A C
{1,...,d}, |A| = p, in the ordering of {L*(A) : |A| = p}. [Thus, 1 < rank(A) <
(\jl)' ] Then there exists a distribution of the random variable (X,Y) € R? x R for

which these ranks can be achieved.

Proof. The distribution of X is uniform on the hypercube {—1, 1}¢, while Y = g(X),
where

gx) =Y ag[[x
B

j€B
B C {1,...,d}, and ap > 0 are given numbers to be determined later. We note first
thatif x4 = (x;,,. .. ,xjp) forx = (xi,...,xg) and A = {ji,...,j,}, then
sx0 2 [ e []ay
JEA

= E[g(X) [ X4 = x4]

= Y o[

B:BCA  jeB
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Observe that if A = @, then g(xg) = Eg(X) = 0, and thatif A = {1,...,d}, then
g2(x4) = g(x). One can also see that

g(x) — g(xa) = 2053 ij— Z op l_[xj,
B

jeB B:BCA  jeB

and, since E[[ [;c3 Xj [ [;ep Xj] = Lip=p), that
Eg*(X) =) a3
B

and
Eg*(Xa) = Y ap = E[¢(X)g(Xa)].
B:BCA
Therefore,

L'A) =E|gX) —gX) =D i~ > af
B

B:BCA

=Y a5 —9@).
B

One can find values of {ay : A C {1, ...,d}} that give an ordering of L*(A) (and
thus ¢(A)) that is consistent with any given ordering within the subsets of equal
cardinality. This can be done incrementally for all sets {A : |A| = p} as p increases
from 1 to d.

We explain the inductive step that fills in the values of a4, |[A| = p. Define

Apfl =1+ Z Oli.

A:|Al<p

Then, for |A| = p, define

o4 = y/rank(A) X A,_.

To show that this suffices, take |A| = |A’| = p, with rank(A) < rank(A’). Then

pA)= )Y ap= ) ap+o;

B:BCA B:BCA

< /\p—l — 1 + (rank(A) x )Lp_l),
while

@A) > a?, = rank(A’) x A,
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so that (A) < @(A’) if and only if rank(A) < rank(A’). Finally, we verify the
nesting property: if |A| = p, |A’| < p, then

@©(A) > rank(A) X A, > A,

> ) ez e@). O

B:|B|<p

The previous negative result parallels a similar negative result for pattern
recognition by Cover and Van Campenhout (1977) (see also Devroye et al., 1996,
Chapter 32), where Y € {0, 1},

L*= inf E|Y—gX)
g RI—{0,1}
and thus
LA = inf E[Y—gX:jea)l.
ga:RIAI={0.1}

Of course, in practice, the real measure of the goodness of the selected feature
set is the mean integrated squared error E|r,(X) — r(X)|? of the regression estimate
designed by using training data. If we know what estimate will be used after feature
selection, then the best strategy is to select a set of coordinates based on comparing
estimates of the error. This can typically be achieved by using the data splitting
technique discussed in the previous sections. Assuming for example that r, is the
k-nearest neighbor estimate and that the set of candidate features is described by a
collection Ay, ..., A, of subsets of {1,...,d}, then we may simultaneously select
both the best parameter k in 2/j = {I,...,n} and the best component subset A in
o = {A1,...,A,}. To do this, we let 0 = (k,A) € &/ = o/ x g%, and minimize
in 6 over &7

m

7 1 2 ’ ny!
Ln.@ = E 21: (rnﬂ (X/) - 2rn,9(Xj)Yj)

=
via the test data (X}, Y1), ..., (X],. Y;,), where r,, 4 is the k-nearest neighbor estimate
with parameter k in the space of variables described by the set A. If 6 denotes
the minimum over &7 of the above quantity, then, according to Theorem 16.1, we
conclude that

1
E[L, ;. [ X1, Y1,....X,,Y,] < min L110+O< Og(”fZ))'
" o=(kA) m
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Chapter 17
Basics of classification

17.1 Introduction

Supervised classification (also called pattern recognition, discrimination, or class
prediction) is a specific regression problem, where the observation X takes values in
R4 and the random response Y takes values in {0, 1}. Given X, one has to guess the
value of Y (also termed the label or class), and this guess is called a decision. Pattern
recognition is important in different scientific disciplines, such as medicine, biology,
finance, and meteorology. In medicine, for example, one needs to evaluate patients
according to their disease risk, and the typical questions for classification are: “Is
this person infected?,” “Will this patient respond to the treatment?,” or “Will this
patient have serious side effects from using the drug?”—in all these cases, a yes/no
or 0/1 decision has to be made.

Mathematically, the decision is a Borel measurable function g : RY — {0, 1},
called a classifier. An error occurs if g(X) # Y, and the error probability for a
classifier g is

L(g) = P{g(X) # Y}.
Of particular interest is the Bayes decision function

1 ifP{Y = 1|X = x} > P{¥Y = 0]X = x}

g = 0 otherwise,

which minimizes the error probability (ties are broken, by convention, in favor of
class 0).

Lemma 17.1. For any decision function g : R? — R, one has

L(g*) < L(g),

that is, g* is the optimal decision.
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Proof. Let g : RY — {0, 1} be an arbitrary Borel measurable function. Then

P{e(X) # ¥} = 1 - P{g(X) = ¥}.
Thus,
P{g(X) # Y} —P{g"(X) # Y} =P{g"(X) = Y} - P{¢(X) = Y}
= E[P{g"(X) = YIX} - P{g(X) = Y|X}]
>0,
since, by definition of g*,
P{g"(X) = Y|X} =P{g"(X) = 1.Y = 1|X} + P{g"(X) = 0.Y = 0[X}
- :ﬂ.[gt(x)=1]P{Y = 1|X} + ]l[gt(x)=0]]P){Y = le}
=max (P{Y =0 X},P{Y =1)X}). O

The error L* = L(g*) is referred to as the Bayes probability of error (or Bayes
error):

L*= inf P{g(X)#7Y).
g:RI—{0,1}

We stress that L* = 0 if and only if ¥ = g*(X) with probability one, i.e., Y is a
Borel measurable function of X. In the design of classifiers, the probabilities P{Y =

0/X = x} and P{Y = 1|X = x} are called the a posteriori probabilities. Observe
that

P{Y = 11X =x} = E[Y|X = x] = r(x),
so that the Bayes decision function also takes the form

1if r(x) > 1/2

17.1
0 otherwise. ( )

g (x) =

Remark 17.1. Clearly,
L(g) = 1-P{g(X) =Y} =1 -E[P{g(X) = Y|X]}]
=1—E [Lym)=1rX) + L=0 (1 — r(X))].
Therefore,

L =1-E[Lyx)s1/2rX) + Lpx<i/z (1 — r(X))].
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This may be rewritten as
. ) 1 1
L* = E [min (r(X), 1 — r(X))] = 3~ §E|2r(X) —1].

In some special cases, we may obtain other helpful forms. For example, if X has a
density f with respect to the Lebesgue measure on R¢, then

Uz/““““*#@ﬁ@a
Rd
= /l%d min ((1 — p)ﬁ)(x)’pfl (X)) dX,

where p = P{Y = 1} and f; is the density of X given that Y = i. The probabilities
p and 1 — p are called the class probabilities, and f; and f; are the class-conditional
densities. If fy and f; are nonoverlapping, that is, fRd Jox)fi(x)dx = 0, then
obviously L* = 0. Besides, assuming that p = 1/2, we have

1
L Eéﬁm%wﬁwmx

1 1
=5 Z/Rd [fo(x) —f1(x)| dx

(since min(a, b) = %}’ - @). Thus, the Bayes error is directly related to the L!

distances between the densities. ad

Most of the time, the distribution of (X, Y) is unknown, so that the optimal
decision g* is unknown too. We do not consult an expert to try to reconstruct g*, but
have access to a database 7, = ((Xy, Y1), ..., (X,,Y,)) of i.i.d. copies of (X, Y),
observed in the past. We assume that &, and (X, Y) are independent. A classifier,
or classification rule, g,(x; Z,) is a Borel measurable function of x and &, that
attempts to estimate Y from x and %,. For simplicity, we omit &, in the notation
and write g,(x) instead of g,(x; Z,). The process of constructing g, is sometimes
called learning, supervised learning, or learning with a teacher.

The error probability of a given classifier g, is the random variable

L(gn) = P{gn(x) 7& Y|@n}

So, L(g,) averages over the distribution of (X, Y), but the data set is held fixed. It
measures the future performance of the rule with the given data.
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17.2 Weak, strong, and universal consistency

Generally, we cannot hope to design a function that achieves the Bayes error
probability L*, but it is possible that the limit behavior of L(g,) compares favorably
to L*. This idea is encapsulated in the notion of consistency:

Definition 17.1 (Weak and strong consistency). A classification rule g, is
(weakly) consistent (or asymptotically Bayes-risk efficient) for a certain distribution
of (X, Y) if

EL(g,) = P{g.(X) # Y} - L* asn — oo,
and strongly consistent if
L(gy,) — L* almost surely.

Remark 17.2. Noting that L(g,) > L*, consistency may alternatively be defined as
the convergence in L! of L(g,), that is, E|L(g,)—L*| — 0. Since the random variable
L(g,) is bounded, this convergence is equivalent to the convergence of L(g,) to L*
in probability, which means that, for all ¢ > 0,

P{|L(g,) —L*| > e} >0 asn— oo.

Moreover, since almost sure convergence always implies convergence in probability
(see the Appendix), strong consistency implies consistency. O

A consistent rule guarantees that by increasing the amount of data, the probability
that the error probability is within a small distance of the optimal achievable gets
arbitrarily close to one. Strong consistency means that by using more data, the error
probability gets arbitrarily close to the optimum for every training sequence, except
for a set of sequences that has zero probability altogether.

If the statistician has a fair amount of a priori knowledge about the distribution
of (X, Y), then he may be able to construct a parametric model for this distribution,
determine the parameters in the model that best fit the data, and use this particular
version of the model with X to obtain an estimate of Y. However, if the model
is not exact, then it is usually impossible to design an asymptotically optimal
discrimination rule in this manner. Thus, in the absence of sufficient knowledge
about the distribution of (X, Y), is it still possible to set up a (nonparametric)
asymptotically optimal classification rule? The answer is affirmative. Besides, since
in many situations we definitely do not have any prior information, it is clearly
essential to have a rule that gives good performance for all distributions of (X, Y).
This strong requirement of universal goodness is formulated as follows:

Definition 17.2 (Universal consistency). A classification rule is called universally
(strongly) consistent if it is (strongly) consistent for any distribution of (X, Y).
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Universal consistency was the driving theme of the monograph by Devroye et al.
(1996), and we try in the present introductory chapter as much as possible to adhere
to the style and notation of that textbook.

17.3 Classification and regression estimation

We show in this section how consistent classification rules can be deduced from
consistent regression function estimates. Indeed, a natural approach to classification
is to first assess the regression function r(x) = E[Y|X = x] from the training data
9, by some regression estimate r,, and then use the plug-in rule

1 ifru(x) > 1/2

17.2
0 otherwise. ( )

gn(x) =

The next theorem (see, e.g., Van Ryzin, 1966; Wolverton and Wagner, 1969; Glick,
1973; Csibi, 1975; Gyorfi, 1976, 1978; Devroye, 1982; Devroye and Gyorfi, 1985)
states that if 7, is close to the true regression function r in an L sense, then the error
probability of the associated decision g, is close to the Bayes probability of error.
As in the preceding chapters, we denote by u the distribution of X.

Theorem 17.1 (Classification and regression). Let r, be a regression function
estimate of r, and let g, be the corresponding plug-in classification rule. Then

0= L)~ 2" =2 [ 1) — r0l (@
R
In particular, for all p > 1,

1/p
0<Lig)—L* <2 ( /R o) - r(X)I”u(dX)) ,
and

0 < EL(g,) — L* < 2EY? |r,(X) — r(X)]” .

Proof. Proceeding as in the proof of Lemma 17.1, we may write

P{g,(X) # Y|X, Z,}
=1-P{g.X) =YX, %}
=1- (]P){gn(x) = 1, Y = 1|X’ -@n} + IP>{gn(X) = 0» Y= 0|X7 -@n})
=1 - (Ig,=0P{Y = 11X, Z,} + L, x=qP{Y = 0|X, Z,})

=1 — (L, =17X) + Ligx0=0 (1 = 7(X))),
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where, in the last equality, we used the independence of (X, Y) and Z,,. Similarly,

P{g*(X) # YIX} = 1 — (L= x=117(X) + Ljgrx)=0] (1 — (X)) -

Therefore

P{g.(X) # Y|X, 2,} —P{g*(X) # Y|X}
= r(X) (Lgr0=1] = Ligux)=17) + (1 = (X)) (g~ x)=0] = L, x)=0])
2r(X) = 1) (L= =1 — Lig,x=11)

= [2r(X) = 1L, )¢ x))-

Thus,
Plg,(X) # Y|} — L* =2 [R 170 = 1/2 1 e (00
<2 / Ira(X) — ()] p(d).
]Rd

since g,(x) # g*(x) implies |r,(x) — r(x)| > |r(x) — 1/2|. The other assertions
follow from Holder’s and Jensen’s inequality, respectively. O

Theorem 17.1 implies that a regression function estimate r,, with small L” error
automatically leads to a decision g, with small misclassification probability. In
particular, the mere existence of a regression estimate r,, for which

/ |ra(x) — r(x)|? (dx) — 0 (17.3)
]R"

in probability or almost surely implies that the corresponding plug-in decision g, is
consistent or strongly consistent, respectively. The standard consistency proof for a
classification rule based on r, usually involves showing (17.3), or its L' version.

Remark 17.3.

(i) If the bounds of Theorem 17.1 are useful for proving consistency, they are
not tight and almost useless when it comes to studying rates of convergence.
For (17.2) to be a good approximation of (17.1), it is not important that
r,(x) be close to r(x) everywhere. What is critical is that r,(x) should be
on the same side of the decision boundary as r(x), i.e., that r,(x) > 1/2
whenever r(x) > 1/2 and r,(x) < 1/2 whenever r(x) < 1/2. It is proved
in Devroye et al. (1996, Theorem 6.5) that for consistent rules, rates of
convergence of EL(g,) to L* are always orders of magnitude better than rates
of convergence of E!/2|r,(X) — r(X)|? to zero. Pattern recognition is thus easier
than regression function estimation, in the sense that, to achieve acceptable
results in classification, we can do more with smaller sample sizes than in
regression estimation. This is a consequence of the fact that less is required
in pattern recognition.
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(i) The behavior of r(x) at those x’s where r(x) &~ 1/2 is sometimes expressed by
a so-called margin condition, which takes the form

P{r(X)—1/2| <t} < Ct*,

for some positive constants C and «, and all 0 < ¢ < ¢*, where t* < 1/2
(see, e.g., Tsybakov, 2004; Massart and Nédélec, 2006; Audibert and Tsybakov,
2007; Kohler and Krzyzak, 2007; Samworth, 2012; Gada et al., 2014). This
assumption offers a useful characterization of the behavior of the regression
function r in the vicinity of the boundary set {x € R’ : r(x) = 1/2}. |

Stone’s theorem 10.1 provides us with conditions ensuring universal L”-consistency
of local averaging regression function estimates. Thus, by virtue of Theorem 17.1,
the same theorem allows us to deduce universal consistency of the corresponding
plug-in rules.

Recall that a local averaging estimate of the regression function takes the form

I’n(X) = Z Wni(X)Yiv
i=1

where (W,1(x), ..., W,,(x)) is a weight vector, and each W,;(x) is a Borel mea-
surable function of x and X, ..., X, (not Yy, ...,Y,). Equivalently, in our binary
classification setting,

(%) = D W) L=y

i=1
The companion plug-in classification rule is defined as

1 if ’-1_ ‘/Vni X Yi >1/2
) = {1 2 00 =
otherwise,

or, equivalently, whenever Y ., W,;(x) = 1,

A Wui() = > 3o Wa(®) L yi=0)
gn(X) = ;
0 otherwise.

As in the regression setting, it is clear that the pairs (X, ¥;) such that X; is “close”
to x should provide more information about r(x) than those “far” from x. Thus,
the weights are typically larger in the neighborhood of x. Examples of such rules
include the histogram, kernel, and nearest neighbor rules. Theorem 17.2 below
follows directly from Theorem 17.1 and Stone’s theorem 10.1.
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Theorem 17.2 (Stone’s theorem for classification). Assume that for any distri-
bution of X, the weights satisfy the following four conditions:

(i) There is a constant C such that, for every Borel measurable function
h:R? >R

E [Z Wi (X)| |h(xi>|] < CEIhX)| forallnz1.

i=1

(ii) There is a constant D > 1 such that

=1 foralln>1.

P { Xn: |Wni(X)| <D

i=1
(iii) Foralla > 0,

n
Z [W,i(X)| Ljx,—x||>a] = O in probability.

i=1

(iv) One has

Z W,.i(X) — 1 in probability.

i=1
(v) One has
max |W,;(X)| = 0 in probability.
1<i<n
Then the corresponding plug-in classification rule g, is universally consistent,
that is,
EL(g,) — L*

for all distributions of (X, Y).

17.4 Supplement: multi-label classification

The supervised classification theory can be generalized without difficulty from the
binary case to the multi-label case, where Y takes M > 2 distinct values, say
{1,...,M}. The Bayes decision function can be computed via the a posteriori
probabilities r;(x) = P{Y =j|IX =x},1 <j < M:

*(x) € arg max ri(x),
g (x) glsisMr‘I()
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where, by convention, ties are broken in favor of smaller indices. As in the binary
case, the performance with a certain discrimination rule g, is measured by its
probability of error L(g,) = P{g,(X) # Y|%,} and, in any case, L(g,) cannot
be smaller than the Bayes error

L*=L(g") =
(g ) g:RI—{1

Observing that
rj(x) = E[]l[y:j”X = X], 1<j<M,

the unknown r;(x)’s can be approximated by estimates r,,;(X) constructed from the
data sets

@nj = ((le ]l[Y1=j])v ey (Xn, Il[yn=j])) N
and the plug-in estimate is

gn(X) € arg max r,j(x). 17.4)
I<j<M

A generalized version of Theorem 17.1 asserts that

M
0=2en -2 =2 [ 50 - (9] u(@o
j=1 &

M 1/p
< i (X) — ! .
< z;j (A I3 — r0 u( x))

for all p > 1. Thus, if the estimates r,; are close to the a posteriori probabilities r;,
then again the error of the plug-in estimate (17.4) is close to the optimal error.



Chapter 18
The nearest neighbor rule: fixed &k

18.1 Introduction

In this chapter, (X,Y) € R? x {0,1}, and (X;,Y1),...,(X,,Y,) are reordered
according to increasing values of ||X; — x||. Ties are broken as for regression.
The reordered sequence is denoted by (X(1)(X), Y(1)(X)), ..., Xw) (X), Y)(X)).
As usual, we let r(x) = E[Y|X = x] and recall, since ¥ € {0,1}, that
r(x) =P{Y = 1|X = x}.

Definition 18.1. Let (v,, ..., v,,) be a given weight vector summing to one. The
nearest neighbor classification rule (or nearest neighbor classifier) is defined for
x € R? by

1 if TL_ Um'Y,' X)>1/2
o0 = | 1o o0 > 1/
0 otherwise,

or, equivalently,

g0(x) = % LAf 30 vnilivy =11 > Xzt Vil iy =01
0 otherwise.

In other words, g,(x) takes a weighted vote among the labels of the nearest
neighbors of x. For the particular choice (v,1,..., V) = (1/k,...,1/k,0,...,0),
we obtain the standard k-nearest neighbor rule (Fix and Hodges, 1951, 1991a, 1952,
1991b; Cover and Hart, 1967; Stone, 1977), which corresponds to a majority vote:

. k k
g,x) = 3 L i Zimt Dvp=1 > § Xizi Tivig=0]
0 otherwise,
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or more simply, observing that the 1/k terms do not play a role in the decision,

R k
an(x) = § 1 Xim Tivgeo=11 > 2z Ly m=0)
0 otherwise.

As an appetizer, and in the spirit of Chapter 9, we will be concerned in this
chapter with convergence issues for the k-nearest neighbor rule when k does not
change with n. In particular, we will see that for all distributions, the expected error
probability EL(g,) tends to a limit Ly that is in general close to but larger than L*.
The methodology for obtaining this result is based on Stone’s lemma 10.7 and is
interesting in its own right. The expression for Ly is then worked out, and several
inequalities such as Ly < L* + 1/+/ke are discussed. For surveys of various
aspects of the nearest neighbor or related methods, see Devijver (1980), Devroye
and Wagner (1982), Dasarathy (1991), and Devroye et al. (1996).

18.2 Behavior for fixed k£

The main result of the chapter is Theorem 18.1 below. Under various regularity
conditions (X has a density f, and both f and r are almost everywhere continuous),
it is due to Cover and Hart (1967). In the present generality, the theorem essentially
appears in Stone (1977)—see also Fritz (1975) and Devroye (1981b).

Theorem 18.1. Let k € {1,...,n} be odd and fixed. Let g, be the k-nearest
neighbor classification rule. Then, for all distributions of (X, Y),

EL(g,) = Ly asn — 00,

where
k

L = E[ (f) r(XY (1= r(X)* ™ (r(X)Ljapyoy + (1 = r(X)) Ljssya)) ]

j=0

In particular, for k = 1,

def

EL(gn) — Liyw =2E [r(X) (1- F(X))] >

and L* < Ly < 2L*(1 — L*) < 2L*.

Thus, whenever k = 1, the theorem says that the 1-nearest neighbor classification
rule is asymptotically at most twice as bad as the Bayes rule—especially for small
L*, this property should be useful. It is noteworthy that this convergence is universal,
in the sense that it happens for any distribution of (X, Y). On the other hand,
recalling that L* = E[min(r(X), 1 — r(X))], we see that the 1-nearest neighbor
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classifier is consistent (that is, EL(g,) — L*) if #(X) € {0, 1/2, 1} with probability
one. The noiseless case occurs when r(X) € {0, 1}. The independent case occurs
when r(X) = 1/2 (since Y is a random coin flip independent of X then). Thus,
logically, in the next chapter we will allow k to grow with n in order to obtain
universally good consistency properties.

To prove Theorem 18.1, we first need the following lemma, which generalizes
Lemma 9.2.

Lemma18.1. Ler & : RY — R be a Borel measurable function such that
E|(X)| < oo. Ifk/n — 0O, then

1 & 1<
ZE E |h (X3 (X)) —h(X)| > 0 and EE E |h(X»X)| = E|A(X)|.
i—1 i=1

Proof. We only need to prove the first assertion, since the second one follows by
the triangle inequality. Given ¢ > 0, find a uniformly continuous function %, with
compact support such that E|2(X)—h.(X)| < ¢ (this is possible by Theorem 20.17 in
the Appendix). Then there is a § > 0, depending upon ¢ only, such that |y — x|| < §
implies |h:(y) — he(x)| < &. Thus, if y,; denotes a constant depending upon d only,

k
% D B[R (X (X)) — (X))
i=1

k k
Z B (X (X)) — e (X X)) + 2 3 F [he (X (%) — 5o ()|
k

i=1

»|~

+ E he(X) — h(X)|
< 2y + DEh(X) = he(X)| + & + 2[1helloc x P {1 X (X) = X|| > &}
(by Stone’s lemma 10.7, with (v, ..., vm) = (1/k,...,1/k,0,...,0))
<2004 + De + [helloo x B {[[X (X) — X > 6}

By the Lebesgue dominated convergence theorem and Lemma 2.2, the probability
on the right-hand side vanishes as n tends to infinity, so that

k
% ZIE |1 (X(X)) — h(X)| — 0. O

Proof (Theorem 18.1). Assume that we are given i.i.d. pairs (X1, Uy), ..., (X,, Uy,),
all distributed as (X, U), where X is as before, and U is uniformly distributed on
[0, 1] and independent of X. For fixed x € RY, we define, forall 1 <i < n,

Yi = Tp<rxy) and  Yi(%) = Ty;<r)-
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Observe that (X, Y)),...,(X,,Y,) is an i.i.d. sequence with each of the n pairs
distributed as our prototype (X, Y). We now have an i.i.d. sequence with i-th vector
given by X;, Y;, Y/(x), U;. Reordering the data sequence according to increasing
values of || X; — x| yields a new sequence with the i-th vector denoted by X;(x),
Y(i)(X), Y’l.) (x), and U (x). Studying the k-nearest neighbor classification rule g,
turns out to be almost equivalent to studying the approximate rule g/,:

1t Y0 ¥, (%) > k/2

0 otherwise.

g, (x) =

The latter classifier is of no practical value because it requires the knowledge of r(x).

Interestingly however, it is easier to study, as Y{; (X)..... Y|, (x) are i.i.d., whereas
Yy(X), ..., Y (x) are not. In particular, we have that
k
P {g.(X) # g,(X)} = > E|r (Xp(X)) — r(X)]|. (18.1)

i=1

To prove (18.1), observe that for fixed x € RY, we have

P {gn(x) # &, (x)}

< P{ Y Yo # Z Y, (x)}

i=1

< IE”{ (Y(l)(x), ...,Y(n)(x)> ” (Y(/l)(x), . ..,Y(/n)(x))%

k k
{ U [ (X (®) < U (x) < r(x)] ulJ [r(x) <Up®) <r (X(i)(x))]}.

i=1 i=1

Inequality (18.1) follows by the union bound and the fact that the Ug(x)’s are
uniform on [0, 1], independent of the X;)(x)’s.

Next, let 7, = (X1, Y1, U1), . ... (X, Yy, Uy)) be the i.i.d. data augmented by
the uniform random variables Uy, ..., U,, as described above. For the decision g,
based on Z,, we have the probability of error

L(gn) = P{g,(X) # Y|Z,} = P{g.(X) # Yl-@n/},

whereas for g/, we have

L(g,) = P{g,(X) # Y|7,}.

Clearly,

E|L(gx) — L(g))| < P{g.(X) # g,(X)} = o(1),
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by inequality (18.1) and Lemma 18.1. We have just shown that EL(g,) —
EL(g)) — 0. Thus, to prove the result, it is enough to establish that EL(g),) — Ly,
where the rule g/, is defined by

. k
g (x) = 1 1fZi=!Z, >k/2
0 otherwise,
for Zy,...,Z; independent Bernoulli random variables with success probability

r(x). But, for every n,

k k
PELQ;;):P{Z1 fet Ze > §,Y=0}+IP{Z] totZ< Y= 1}

k k
=IP’{21 to A T> T = 0} +P{Zl toHL< T = 1}
(Zy, ..., 7 are iid. Ber(u(x))),

which leads directly to the first part of the theorem. To prove the second point,
observe that for all p € [0, 1], 2p(1 — p) = min(p, 1 — p) as 2max(p,1 —p) > 1.
Thus, recalling that L* = EA(X), where A(X) = min(r(X), 1 — r(X)), we conclude
that

L < Liw = 2E[r(X) (1 — r(X))]

= 2E[A(X) (1 — A(X))]

=2E[AX)]|E[1 — AX)] — 2VA(X)

<2L*(1—-L*) <2L*. O

The limit result in Theorem 18.1 is distribution-free, and the limit Ly, depends

upon r(X) only. The continuity or lack of smoothness of r is irrelevant—it only
matters for the speed with which [EL(g,) approaches the limit L. Until now we
assumed throughout that k was odd, so that voting ties were avoided. Extensions
to even k and to more general weighted nearest neighbor rules are available in the
literature—see, e.g., Bailey and Jain (1978), Devijver (1978), and Devroye et al.
(1996, Chapter 5).

Returning to the case where k is odd, several useful representations of Ly may
be obtained. For example, we have

Lon = E [r(X)]P’{Bin(k, (X)) < g \X}]
+E [(1 — (X)) ]P’{Bin(k, (X)) > g | x}]
— E[min ((X), 1 — /(X))]

+E [(1 — 2min (r(X), 1 — (X)) )]P{Bin(k, min (r(X), 1 — #(X)) ) > g | X}} .
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Put differently,
Liny = E oy (r(X))],

where, for all p € [0, 1],

ok (p) = min(p, 1 —p) + |2p — 1|]P’{Bin(k, min(p, 1 — p)) > g}

Since L* = E [min (#(X), 1 — r(X))], this expression may be exploited to obtain a
host of inequalities on Ly—L*. For example, using Hoeffding’s bound on binomials
(Corollary 20.1 in the Appendix), we may write

k
Lo —L* < sup (1-— 2p)IP’{Bin(k,p) > —}
0<p=<1/2 2

< sup (1— 2p)IP>{Bin(k, p)—kp > k(% - p)}

0=<p=<1/2

< sup (1—2p)e_2k(1/2_")2.
0<p<1/2

Therefore,

1
L — L™ < sup ue ke/2 <

0<u<l - \/E

Bounds of this type have been obtained by Gyorfi and Gyorfi (1978), Devijver
(1979), and Devroye (1981c). A sharp version, due to Devroye (1981c), asserts that
for all distributions and all odd k& > 3,

Lin < L* (1 + % (1+ O(k—1/6))) ,

where y = sup,.( 2tP{N > 1} = 0.33994241..., N is standard normal, and O(-)
refers to k — oo.

Let us finally mention that it is also instructive to look at the behavior of Ly
when L* is zero or, at least, small. Devroye et al. (1996, Theorem 5.4) show that,
for all distributions,

L* < < Loktiyw < Lok—iyw < +++ < Law < Liw < 2L
We retain from this inequality that if L* = 0, then Ly, = 0 for all odd k.

Remarkably, then, for every fixed k, the k-nearest neighbor rule is consistent. To
analyze the behavior of L when L* is small, recall that
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k
L = E[ > (j‘) r(XY (1= r(X)* (rX) L) + (1 = (X)) ﬂmm)}
Jj=0

B > (’f)r(xy“ 1 =X+ Y (f) 09 (110 |
Jj<k/2

J j>k/2

"2 @E[(’(X) (=)™ (1= ) () }

J<k/2

As p® + (1 — p)*is a function of p(1 — p) for integer a, this may be further reduced
to simplified forms such as

LlNN =2E [V(X) (1 - F(X))]
Ly = E[r(X) (1 — r(X))] + 4E[ (r(X) (1 — r(X)))’ ]
Lsw = E[r(X) (1 — r(X))] + E[ (n(X) (1 — r(X)))* | + 12E[ (+(X) (1 — r(X)))’ ].

and so on. The behavior of o (p) as p approaches zero is very informative. Indeed,
asp | 0, we have

ai(p) =2p(1 —p) ~ 2p
a3(p) = p(1 —p) (1 + 4p(1 —p)) ~ p + 3p*
as(p) = p(1 —p) (1 + p(1 —p) + 12p*(1 — p)*) ~ p + 10p°,
while for the Bayes error, L* = E[min(r(X). 1 — r(X))] = E[tts(r(X))], where

Qoo = min(p, 1 — p) ~ p asp | 0. Assuming, for example, that r(x) = p at all x,
we conclude that, as p | 0,

LlNN ~2L* and L3NN ~ L*.

Moreover, Liy — L* ~ L*, Ly — L* ~ 3L*2. Assume that L* = p = 0.01. Then
Liw—L* ~ 0.01, whereas L3y —L* ~ 0.0003. Thus, for all practical purposes, the
3-nearest neighbor rule is virtually perfect. For this reason, the 3-nearest neighbor
rule is highly recommended. Little is gained by considering the 5-nearest neighbor
rule when p is small, as Lsy — L* ~ 0.00001.



Chapter 19
The nearest neighbor rule: variable k

19.1 Universal consistency

Given weights (v, . . . , Upy,) satisfying Z?:l v, = 1, the nearest neighbor classifier
is defined for x € R? by

gn(X) _ 1 if Z:lzl Um'Y(,')(X) > 1/2
0 otherwise.

The next theorem provides necessary and sufficient conditions on the weight
sequence for this rule to be universally consistent, i.e., EL(g,) — L* for all
distributions of (X, Y). It starts with the observation that the nearest neighbor rule is
a local averaging classifier, where the weights W,,;(x) are obtained by putting

Wm’(x) = Unx;,s

where (X1, ..., X)) is a permutation of (1,...,n) such that X; is the X;-th nearest
neighbor of x for all i. Thus, this decision rule falls within the scope of Stone’s
theorem 17.2 for classification, so that we just need to check the conditions of that
theorem. This has already been done in Chapter 10, in the context of regression
estimation.

Theorem 19.1 (Universal consistency). Let (v, ..., Uy,) be a probability weight
vector such that v,; > -+ > v, for all n. Then the corresponding nearest neighbor
classification rule is universally consistent if and only if there exists a sequence of
integers {k} = {k,} such that

(i) k—> o0 and k/n—0;
(1) 3 o Vi = 0; (19.1)
(iii) v, — 0.
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For the k-nearest neighbor classifier, we set v,; = 1/k for 1 < i < k and
v,; = 0 otherwise, where k is a positive integer not exceeding n. The following
corollary, which appeared in Stone’s 1997 paper (with a different distance tie-
breaking strategy), was the first universal consistency result for any rule.

Corollary 19.1. The k-nearest neighbor classification rule is universally consistent
if and only if k — oo and k/n — 0.

For the proof of Theorem 19.1, we first need a lemma.

Lemma 19.1. Let ¢ be a positive constant. Then any [—c, c]-valued random
variable Z satisfies, for all t > EZ,
t—EZ

P{Z <t} > .
Z=tz c+t

Proof. Just note that
EZ = E[Z1[—c<z<q] + E[Z1;<z<q] = —cP{Z < t} + 1IP{Z > 1},
so that
(c+nP{z<t}>t—EZ. 0O
Proof (Theorem 19.1). We only need to prove the necessity part. We start by proving
that if g, is universally consistent, then the requirement v,; = max; v, — 0 is

necessary. Letting Y* = 2Y — 1 and Y = 2Y; — 1, it is more convenient to consider
the distribution of (X, Y*) € R? x {—1, 1}, and rewrite the nearest neighbor rule as

1if 30 vu¥ (%) > 0

X) =
gn(x) 0 otherwise.

We take X = 0, Y* = 1 with probability p € (1/2,1), and Y* = —1 with
probability 1 — p. If (iii) does not hold, there exists § > 0 and a subsequence {n,}
such that

Up1 =6>0, £>1.

Note that for all x, r,(x) = >/, v,;¥* by our way of breaking ties.
Observe that L* = 1 — p, and that

EL(gn) = PIP{ Z VY] < 0} +(Q —p)]P’% Z VuiY? > 0} )

i=1 i=1

Thus EL(g,) — L* — 0 implies

(2p — 1)1@{ D vl < o} -0,

i=1
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and therefore,

IP’{ iva: < 0% — 0.

i=1

Writing n = ny to avoid an extra level of indexing, we see that
]P)% Z vniYi* = O} EPP{ Zvniyi* = vnl%-
i=1 i=2
Note that if we set Z = Y 1, v,,; Y}, then
EZ=@2p—1)) vu=2p—1)(1—vn).
i=2

Also, |Z| < 1. Therefore, by Lemma 19.1,

- * Upl — (2]7 - 1)(1 - vnl)
P E v Y] <00 =px ,
{ i=1 % 1+ v

provided that (2p — 1)(1 — v,1) < vy, i.e., that 2p — 1 < 2puv,; (since v,; > 6, it

suffices to take p so close to 1/2 that 2"2;1 < 8). In conclusion,

- 2pva — (2p— 1)
P vi¥r <0f >px 2
% ; } b 1 + Unl
>p(2ps—(2p—1))

> 0.

Thus, along the subsequence {n;}, we cannot have

lP’% ZvngiYi* < 0} — 0,

i=1

which provides us with a contradiction.

To complete the proof, it remains to show that conditions (i) and (i) are necessary
as well. Following Remark 10.2, this is equivalent to proving that, for all ¢ > 0,
Y i=en Uni — 0. By making all components of X zero except one, it is easy to see
that we can restrict our counterexample to d = 1. So, to argue by contradiction, we
assume that there exists a pair € > 0, § > 0 such that along a subsequence {n},

va‘Z& ne{nl,nz,...}.

i>en
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Take n = ny for any £ in this subsequence. Consider the triatomic distribution
given by

(0 1) W.p. e(14+8)

2
(X.Y) =1 (0,0) wp. L2
(1,0) w.p. 1—8.

Note that L* = @ Also, letting N = Y " | 1jy,—o) and Z; z Ber(%‘g),

N N
EL(g,) > P{X =0.Y=1) viZ < 1/2} +1P>{X =0.Y=0.) vaZ > 1/2}
i=1 i=1

N
-2, {va2<1/2} di XP%ZUMZZ'“/Z%'
i=1

Thus,

N
EL(gn) —L*>efx P{ ZU,,,’Z,‘ < 1/2} .

i=1

Since EL(g,) — L* — 0, we must have

N
IP’{ > viizi < 1/2} — 0.
i=1

Observe that

1}»{ ﬁ: VuiZi < 1/2} > P{N < en} x ]P’% > vizi < 1/2}

=1 i<en
(by the positivity of the v,;’s)
= P{Bin(n, &) < en} x IP’{ Z VuiZi < 1/2%

i<en

=(1/2+ 0(1))19{ > vniZi < 1/2} .

i<en

Thus,

IP’{ > vuizi < 1/2} — 0.

i<en
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Now, set Z = Y _,_,, UniZ;, and note that
146 1+8)(1-=§ 162
ey s, _(t0-8 _1-8
2 A 2 2
1<en
and

— —82)(1 —
VZ:(1+és)4(1 5)2%5(1 51(1 5

and so, by the Chebyshev-Cantelli inequality (see Theorem 20.11 in the Appendix),

P{Z>1/2} =P{Z—-EZ > 1/2 - EZ}
<P{Z-EZ>§*/2}
Vz
< —.
~ VZ+64/4
We conclude

P{Z <1/2} > 5/4 > 5 >
- TVZ484/4 T84+ (1-8)(1-96)

Oa

which is a contradiction, since this cannot tend to zero. m|

Remark 19.1. The monotonicity condition on the v,;’s is in fact not needed in the
necessity part. Moreover, we leave it as an exercise that without requiring v,; > 0,
but with sup, Y i, [v,| < ¢ < oo, then conditions (19.1) can be shown to be
necessary. a

19.2 An exponential inequality

This section is devoted to the proof of Theorem 19.2, which offers a beautiful
exponential inequality on the difference L(g,) — L* for the nearest neighbor
classification rule g,. We assume the existence of a density for u (the distribution
of X), so that we can avoid messy technicalities necessary to handle distance
ties. It is stressed that, by the Borel-Cantelli lemma, Theorem 19.2 implies strong
consistency of the k-nearest neighbor rule whenever X has an absolutely continuous
distribution, provided k — oo and k/n — 0. Earlier versions of this result appeared
in Beck (1979), Devroye and Gyorfi (1985), and Zhao (1987). In its present form,
our theorem is an extension of Devroye et al. (1994, Theorem 1), who proved a
density-free version under an appropriate distance tie-breaking strategy (different
from ours).
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Theorem 19.2 (Strong consistency). Let (v,1,..., V) be a probability weight
vector such that v, > -+ > vy, for all n, and let g, be the corresponding nearest
neighbor classification rule. Assume that | is absolutely continuous with respect to
the Lebesgue measure on RY. Assume, in addition, that there exists a sequence of
integers {k} = {k,} such that

(i) k—> o0 and k/n—0;
(i@l) v,y =0 wheni>k;
(@ii) sup, (kv,) <o, o> 0.

Then, for every ¢ > 0, there is a positive integer ny such that, for all n > n,
P{L(g) — L = &} < de/ 000D,

where y; = Crs (see Theorem 20.15) depends only upon d. Thus, the nearest
neighbor classification rule is strongly consistent.

The basic result that will be needed in the proof of Theorem 19.2 is the following
one:

Lemma 19.2. Fora > 0, let
Se(x) = {X e RY: p(B(', [[x —xX']))) <a}.
Then, for all x € R,
1 (Sa(X)) < yaa.
Proof. Let 61(x), ..., %),(x) be a collection of cones of angle /6 covering R?, all

centered at x but with different central directions (such a covering is possible by
Theorem 20.15). Then

Yd
1 (Sa®) < Y (€ (%) N Su(x)).
(=1

Let X' € %;(x) N S,(x). Then, by the geometrical property of cones shown in
Lemma 20.5, we have

1 () N B, X —x[) NS, (x) < p(BE, Ix—x)) < a
where we used the fact that X' € S,(x). Since x’ was arbitrary,

p(6(x) N Sy(x)) <a. O
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Proof (Theorem 19.2). We are now ready to prove the theorem. The decision rule
gn may be rewritten as

1 ifr,(x) > 1/2
0 otherwise,

gn(x) = %

where r, is the companion regression function estimate, that is,
n
'n (X) = Z vniY(i) (X)v
i=1
or, equivalently,
n
I"n(X) = Z Wni(X)Yh
i=1

where W,;(x) = v,x, and (X, ..., X,) is a permutation of (1,...,n) such that X;
is the X;-th nearest neighbor of x for all i (note, since x has a density, that distance
ties do not matter). Thus, by Theorem 17.1, the statement follows if we show that
for sufficiently large n,

&

P { / ra(X) — F(®)| ju(dx) > = < de™e /0D,
R4 2

Set p,(x) to satisfy

u(B (s () = -

Notice that the solution always exists, by the absolute continuity of w. (This is the
only point in the proof where we use this assumption.) Also define

rm(x) = Z Wi (%) YiL[x,eB(x,00(x))]-

i=1

The basis of the proof is the decomposition

ra(X) = ra(x)] +

| (x) — r(x)| < rr(x) — r(x)] . (19.2)

For the second term on the right-hand side, set R (x) = || X)(x) — x| and observe
that, by conditions (i) and (iii),
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n
i on()] — Z Wai(X) YiLxeBx Ry (%))
i=1 i=1

| (%) = ra(x)| =

o
= Z ‘]l[x,-es(x,pn(x))] - ]l[x,»eB(x,R(mx»]‘

< (B (2 pu0)) — 4
= | (B x. pu(x))) = (B (x. 91 (30|
= Z,(%),

where [, is the empirical measure. Note that

EZ,(0 < <5\ Viaa (B (x. pa(x)))

_an |k { k\ 1
 k\n n)n
o
= —
Vk
uniformly over x. Also, since E|r,(X) — r(X)| = o(1) (Theorem 10.2), we have
o €
ErrX)—rX)| < —=+o(l) < —
(0 =] = — o) < 5

for all n large enough. Thus, by (19.2),

Py e - o = 3|

&
> _
- 2|

— 0] 0 @) —E [ 1770 = 9] (@)

<p { ‘ /R Z,(u(@) ~E /R Z,(on(@y

&
> 1.
= 4|

(19.3)

+p{‘
R4

To begin with, we get an exponential bound for the second probability on the
right-hand side of (19.3) by the bounded difference inequality (Theorem 20.9 in the
Appendix). Fix the data and replace (x;,y;) by (X;,¥;), changing the value of r} (x)
to 7.(x). Then

‘/ |r;(x) - r(x)| w(dx) —/ |r;:i(x) - r(x)| n(dx)| < / |r,’;(x) — r;i(x)| n(dx).
R4 R4 R4
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But |r;(x) — r};(x)| is bounded by «/k and can differ from zero only if x; €
B(x, py(x)) or X; € B(x, p,(x)). Observe that x; € B(x, p,(x)) if and only if

k
u(Bx i —x) < .
However, the measure of such x’s is bounded by y k/n by Lemma 19.2. Therefore,

2v4k 2
sup / | (%) — i (%)| ju(dx) < % o Oé)/d,
R4

X1 V1o X Y Xi i n n

and, by the bounded difference inequality,

AL

Finally, we need a bound for the first term on the right-hand side of (19.3). This
probability may be bounded by the bounded difference inequality in exactly the
same way as for the first one, obtaining

&
> _
-5

0 =9 @0 < [

ra (%) = r(x)| 1¢(dx)

} < Ze—nsl/(SOazyj)

P { ' [ 2omi@o - [z,

> f} < 26—;182/(50012)/3)
—_— 5 f— b

and the proof is complete. O



Chapter 20
Appendix

20.1 Some basic concepts

For any real-valued function g, define g* = max(g, 0) and g~ = —min(g, 0). These
are called the positive and negative parts of g, respectively, and satisfy the relations

gt.g>0 lgl=g"+g ., and g=g" —g".

We recall that a real-valued random variable X is said to be integrable if E|X| < oo,
or, equivalently, if EX* < oo and EX™ < oco. In that case, EX = EXT — EX~. We
use || X|| oo to denote the essential supremum of X:

[Xlloo = inf{t > 0: P{|X| > 1} = 0}.

There are several notions of convergence for random variables, summarized
below.

Definition 20.1. Let {X,,} be a sequence of real-valued random variables.
() We say that
X, — X in probability
if, for all ¢ > 0,
P{X,—X|>¢e} -0 asn— oo.
(if) We say that

X, — X almost surely

if
P{ lim X, = X} = 1.
n—00
© Springer International Publishing Switzerland 2015 251
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(iii) Let p > 0. We say that
X,— X inl?
if
E|X, —X|P -0 asn— oo.
Almost sure convergence implies convergence in probability. Moreover, conver-
gence in L implies convergence in probability, and none of these implications is an
equivalence.

For any sequence of events {A4,}, the event [A, i.0.] (“i.0.” stands for “infinitely
often”) is defined by

[o olNe o}
[A,i.0] = limsupA, = ﬂ U A

noo n=1m=n

The Borel-Cantelli lemma states that if

> P{A,} < oo,

n>1
then

P{A,i.0.} =0.
In particular, if

D P{X, —X| > e} < 00 (20.1)

n>1
holds for all & > 0 small enough, then

IP’{|X,, - X| > si.o.} = IP’{limsup |X, — X| > 8} =0.

n—>oo

Thus, with probability one, lim, . |X, — X| = 0, i.e., X, — X almost surely. In
other words, condition (20.1) is sufficient for almost sure convergence.

Definition 20.2. Let {u,} be a sequence of real numbers.

(i) We say that {X,} is op(u,) as n — oo if X,,/u,, — 0 in probability.
(it) We say that {X,,} is Op(u,) if, for all & > 0, there exists a finite M > 0 such
that, for all n large enough,

P{1X0/un| > M} < e.

In particular, {X,} is op(l) if X,, — 0 in probability, and it is Op(1) if the
sequence is bounded in probability.

The concept of convergence in distribution is central in modern statistics.
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Definition 20.3. The real-valued sequence {X,} converges in distribution to X
2
(written X, — X) if

P{Xn 5 .X} - ]P){X f x}

for all x € R at which F(x) = P{X < x} is continuous.

A sequence {X,,} is asymptotically (standard) normal if for all x,
P{X, < x} — ¢(x) = P{N < x},

where N denotes a standard normal random variable, and

1 § >
= — —l‘/Z
¢(X) \/E /;oo ¢ @

is the normal distribution function. If X;, X5, ... are i.i.d. with finite mean u, then
the law of large numbers (respectively the strong law of large numbers) asserts that

1 n
- E X; — p in probability (respectively almost surely).
n

i=1

2

Moreover, if the X;’s have finite variance o~ > 0, then the central limit theorem

states that

vn

%Z:’;lxi_ﬂ 21\,
o

Notice that this implies that (% Y Xi—w)/o = Op(1//n).
The reader should keep in mind the following equivalence:

%
Lemma 20.1. We have X,, — X if and only if there exists a sequence of random
variables {Y,} such that

Y, — 0 inprobability and X, 2 X +Y,. (20.2)

This is an easy implication of Skorohod’s representation theorem (see

Billingsley, 1995). We write X, Z x + op(1) and stress that Y, in (20.2) is
generally dependent on X. Let us finally mention the following result, which is
frequently encountered in consistency proofs.

Theorem 20.1 (Slutsky’s theorem) Let {X,,}, {Y,,}, and X be real-valued random
variables. Assume that X, —> X and that Y, — y in probability for some y € R.
Then XY, —> Xy and X,/ Y, —> X/yify # 0.
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20.2 Convergence theorems

The following two convergence theorems are central in measure and integration
theory. They are used at various places in the book.

Theorem 20.2 (Fatou’s lemma). Let (2, .o/, ) be a measure space, and let g, :
2 — [0, 00) be a sequence of nonnegative measurable functions. Then

/ liminfg,du < liminff gndu.
0 n—>o00 n—>oo 0

(Reverse Fatou’s lemma). In addition, if sup, g, < g n-almost everywhere and
fo lgldp < oo, then

lim sup/ gndp < / limsup g, du.
2 2

n—>oo n—>oo

Theorem 20.3 (The Lebesgue dominated convergence theorem). Let (£2, <7, )
be a measure space, and let g, : §2 — [0,00) be a sequence of measurable
functions. Assume that g, — g p-almost everywhere and that sup,, |g,| < h u-
almost everywhere, with [ |h|dpu < co. Then [, |g|ldu < oo and

/ lgn — gld — 0.
2

/gndu—>/gdu.
2 2

The next theorem is an extension of the Lebesgue dominated convergence
theorem tailored to random variables.

In particular,

Theorem 20.4. Let {X,} be a sequence of real-valued random variables. Assume
that

sup E [|Xu|Ljx, 1s51] > 0 as K — oo. (20.3)

If X, 2 X, then E|X| < oo and EX,, — EX. If X, — X in probability, then
E|X| < o0 and E|X, — X| — 0. Conversely, if E|X| < oo and E|X,, — X| — 0, then
X,—X in probability and (20.3) is satisfied.

A sequence {X,} of random variables verifying condition (20.3) is called
uniformly integrable. This property is satisfied, for example, if sup, |X,| < Z almost
surely with E|Z| < oo, or if sup, E|X,|'** < oo for some & > 0. In the same spirit,
we have the following lemma:
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Lemma 20.2 (A generalized Lebesgue dominated convergence theorem). Ler
{X,.}, {Yn}, X, Y and Z be nonnegative real-valued random variables. Assume that

%
X, — X in probability, that sup, X, < Z with probability one, that Y, — Y, that

(X,Z) and Y, are independent for all n large enough, and that EZ < oo. Assume
furthermore that

supE[Y, 1jy,>x] = 0 as K — oc. (20.4)

Then EX < oo, EY < oo, and E[X,Y,] — EXEY.
Proof. Fore > 0,6 > 0,

E[X,Y,] < E[(X + &)Y,] + E[ZY, L[x,>x+e]
<E[X + ¢]EY, + KE[Z1x,>x+¢] + E[ZY,1{y,>k]]
(for arbitrary positive K)
= (EX + &) (EY + o(1)) + o(1) + EZE[Y, 1y,

since EY,, — EY by (20.4), and by the Lebesgue dominated convergence theorem
for the middle term. Therefore, for all n large enough,

E[X,Y,] < EXEY + §

by choice of ¢ and K. A matching lower bound is obtained in a similar fashion. O

20.3 Chernoff’s bounds

20.3.1 Binomial random variables

The following theorem offers bounds for the upper and lower tail probabilities of
a binomial random variable. It is due to Chernoff (1952) (see also Karp, 1988, and
Hagerup and Riib, 1990).

Theorem 20.5 (Chernoff, 1952). Let Z be a binomial random variable with
parameters n > 1 and p € (0, 1].

(i) Let

AGES (%)t (M)nl, 0<t<n.

n—t
Then

P{Z>t;<y@) fornp<t<n



256 20 Appendix

and
P{Z <t} <y@) for0<t<np.
(ii) Let ¢(t) =t —np — tlog(t/np). Then
P{Z >t <e*D fort>np
and
P{Z <t} <e*D for 0 <t <np.

Proof. We only show the upper tail bounds and use the so-called Chernoff’s
bounding method. By Markov’s inequality, for A > 0,

P{Z > t} < E[e)tz_'“] = (1 -p +pe)‘)"e_’“,

Minimizing the upper bound with respect to A yields the following equation for the
optimal A*:

npe*’ , o —1) = (1— pyt

—— =t or e pn—t)=(1-ph.

1 —p+ pet b

The Chernoff’s bound becomes

npe)" n gik*t B (@)n ((1 _p)t)n—l _ nnpt(l _p)n*t
t g p(n—1) T

This proves the first statement. The proof of (i) is similar—just note that, in view
of l+u<e',uelR,

]P){Z > l} < enp(el—l)—/lr’

and set A* = log(#/np). The lower tail bound is obtained in the same way. O

The second set of inequalities of Theorem 20.5, though less sharp, are more
tractable than the first ones. In any case, they are more than sufficient for the purpose
of the book. The next corollary provides us with useful exponential bounds. It is
but a special form of a more general result for sums of bounded random variables,
due to Hoeffding (1963) (see Theorem 20.7 in the next section). Note, however,
that our proof is interesting in its own right since it is tailored to binomial random
variables. By construction, the bounds of Theorem 20.5(i) are sharper than the
bounds of Corollary 20.1. We leave it as an exercise to prove that the bounds of
Theorem 20.5(ii) are better whenever p < 1/4.
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Corollary 20.1. Let Z be a binomial random variable with parameters n > 1 and
p € [0, 1]. Then, forall t > 0,

P{Z—np>1t} < e 2
and
P{Z—np <—t} < o2/,
In particular,
P{|Z—np| > 1} < 272/,
Proof. We only show the upper tail bound, and assume that p € (0,1) and

t < n(l —p), for otherwise the proof is trivial. According to statement (i) of
Theorem 20.5, for all £ > 0,

P{Z—np>1} <e O,

where
h(t) = (np + 1) log (1 + é) + (n(1 = p) — 1) log (1 - n(lt_p)) .
Note that
o =tog (14 L) tog (10 L)
and

1 1
np+t+n(1—p)—t'

h//(t) —

Since h(0) = /' (0) = 0, a Taylor series expansion shows that, for some 6 € [0, 1],

12 1 1 12
h(t) = 2 (np + 16 + n(l—p)— t9) :5&'(1‘9),

where
def 1 1 n
s) = —+ =
O s Tl s e —p—)
= n s > 0

n2p(1 —p) + sn(1 — 2p) — 52’

Since ¢ < n(1 — p) and ming<,<; £(s) > 4/n, we conclude h(t) > 2¢*/n. O
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20.3.2 Gamma random variables

Theorem 20.6. Let G, be a gamma random variable with parameter n > 0. Then,
forallt > 0,

P{G, = n(1 + 1)} <exp(—n[t—log(1+1)])
and, forallt € (0, 1),

P{G, <n(1—1} <exp(—n[—t—log(1—1)]).
Proof. We employ Chernoff’s bounding method applied to the gamma density. For
general n, we have, if r > 0 and A € [0, 1),

1 n
P{G, > n(1 4+ 1)} < E[exp(AG, — An — Ant)] = (ﬁ) e~ AnaFn,

_t
1412

P{G, =n(l+0} <1 +0"e ™ =exp(—n[r—log(l +1]).

The upper bound is minimized for A = and then

Similarly, fort € (0,1), A > 0,

1 n
P{G, < n(1 — 1)} < E[exp(=AG, + An — Anf)] = (m) MU=,

t

1=, We obtain

Since the upper bound is minimized for A =

P{G, <n(l—-n}<(1—-0"" =exp(—n[-t—log(l—1)]). O

Example 20.1. Let Uy, ..., Ugy) be uniform [0, 1] order statistics, and let E be a
standard exponential random variable. Clearly, E| log(%)| < oo and, since Uy is
Beta(1,n), E|log(—+—)| < oo. Notice that y = ]Elog(%) = —fooo e logtdr =

nU(1)
0.577215664901532 . . . is the Euler-Mascheroni constant. Similarly, for ¢ € (0, 1),
E|é|q < ocoand E| nUl(l) |7 < oo. Let us show, by way of example, that
E1 ! E1 ! (20.5)
0 — Elog | = .
g I’lU(]) g E

and that, for ¢ € (0, 1),

E — 0. (20.6)

() - (&)

(Note that, by Theorem 20.4, consistency (20.6) implies the uniform integrability of
the sequence {(nl}“) )4}.)
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Recall (Corollary 1.1) that

2 Ej
Uy = .
Gn+1
where G, = Z:: 11 E; and Ey, ..., E,4 are independent standard exponential
random variables. Therefore,
1 2 Gn+1
nUq nE;
Thus, in view of
GH-H Gn+1 1
lo =lo log| — ],
Gn

identity (20.5) follows if Elog(~%tL) — 0. On the one hand, by Jensen’s inequality,

n

G, . Gy
lim sup E log (—+1) <limsuplogE (—+1) = 0.
n n

n—>oQo n—>oo

So, we only need to show that

lim sup E log (

n—>oo

n
<0. (20.7
Gt ) )

But, letting G, = Y i, E;, we see that

El " ) <Elog (2
(o) 0O, -
g Gn+1 - g Gn
© n
5/ P{log(—) >t} dr
0 Gn

o0
= / P {Gn < ne_’} dr.
0

Recalling that G,, is Gamma(n) distributed, and evoking Theorem 20.6, we conclude

that
n *© —t
Elog( )S/ e—n(é’ +t—l)dt.
Gt 0

Since [;° e~ +7Ddr < o0, (20.7) follows by the Lebesgue dominated conver-
gence theorem.
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The proof of (20.6) starts from the observation that, by the c,-inequality
(Proposition 20.1),

L\ (S:\? G \? 1 L\ (8 \*
— —) =) ==+ —
E, n — \nE; nd E; n
where S, = Y 't E;. Since S, is independent of Ej, we only need to show that

E|(57")‘1 — 1] — 0. This is achieved by following what we did for the log. We leave
it to the reader to play with the arguments above and prove, for example, that

Elog*(nU) — Elog? E and Elog*(nUp)) — Elog? G,. O

20.4 Inequalities for independent random variables

In this section, we collect without proofs some of the classical inequalities for
tail probabilities of sums of independent real-valued random variables. For more
advanced material, the reader is referred to the textbooks by Massart (2007) and
Boucheron et al. (2013).

Theorem 20.7 (Hoeffding, 1963). Let Xi,...,X, be independent real-valued
random variables. Assume that each X; takes its values in [a;, b;] (a; < b;) with
probability one, 1 < i < n. Then, forallt > 0,

IE”{ Z(Xi - EX;) > l} <exp (_Zn(zb;.z_a)z)
i=1(0i — a;

i=1

and

n 2
Pl om0 < f <o (-5 )
i=1\W0i i

i=1

In particular,

& 21
IP’{ | i;(x,- ~EX)| = t} < 2exp (_—Z?=1(bi - a,»)z)'

Consider the special case in which all X;’s take values in [—c, ¢] (¢ > 0). Then
Hoeffding’s inequality states that

n l‘2
IP’{ ‘ ;(X,- — IEX,»)) > z} <2exp (_Tcz)
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This bound, while useful for ¢ larger than c/n, ignores variance information. When
EXl2 <« 2, itis indeed possible to outperform Hoeffding’s inequality. Bennett’s and
Bernstein’s inequalities provide such improvements.

Theorem 20.8 (Bennett, 1962; Bernstein, 1946). Ler X, ..., X, be independent
real-valued random variables with finite variance. Assume that X; < c with
probability one for some ¢ > 0, 1 <i < n. Let

st = i EX?.
i=1

Then, forall t > 0,

P% i:(Xi —EX;) > l} < exp (—é [(1 + i_j) log (1 + :_zt) _ 1])

i=1

(Bennett, 1962), and

n g
p{ > (X —EX) > t} = exp (_m)

i=1
(Bernstein, 1946).

For t > s?/c, Bernstein’s inequality losses a logarithmic factor in the exponent
with respect to Bennett’s inequality. On the other hand, if s? is the dominant term
in the denominator of the exponent, Bennett’s and Bernstein’s inequalities are
almost equivalent. We also note that Bernstein’s inequality is typically better than
Hoeffding’s inequality when s?> < nc?.

The next result, due to McDiarmid (1989), is called the bounded difference
inequality. It generalizes Hoeffding’s inequality to functions of independent random
variables that are more complicated than simple sums, and that are relatively robust
to individual changes in the values of the variables. It has found many applications
in combinatorics as well as in nonparametric statistics (see, e.g., Devroye, 1991a,
for a survey).

Theorem 20.9 (McDiarmid, 1989). Ler Xi,...,X, be independent real-valued
random variables taking values in a set A. Assume that g : A" — R is Borel
measurable and satisfies

/ .
sup ‘g(xl, e X X XL e ,x,,)’ <¢, 1<i<n,
(X] oo ) EAT
x;EA
for some positive constants ci, . .., c,. Then, forallt > 0,

n 2

Ple(Xi,....X,) —Eg(Xi,....X,) > 1} < e 2/ Xi=16
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and
P{g(X1,....X,) —Eg(Xi,....X,) < 1} < 2/ Xi=e,
In particular,

P{|g(X1,. ... X)) — Eg(X1, ..., X,)| > 1} < 2e7 2/ Xi=1,

We end this section with the Efron-Stein inequality (Efron and Stein, 1981;
Steele, 1986), a powerful tool for deriving a bound for the variance of a general
square-integrable function of independent random variables.

Theorem 20.10 (Efron and Stein, 1981; Steele, 1986). Ler X, ..., X, be inde-
pendent random variables, and let g(X1, ..., X,) be a square-integrable function of
Xi....,X,. Then, if X', ..., X] are independent copies of X, . .., X,

1 < 2
Ve(X1,....X,) < 5ZE|g(X1,...,X,~,...,X,,)—g(Xl,...,X{,...,X,,)| .
i=1

Also,
VeX1,...,X,) < igf;E le(X1,...,X,) _Zi|2 ,
where the infimum is taken over the class of all (X1, ..., Xi—1, Xi+1, ..., X,,)-measu-

rable and square-integrable random variables Z;, 1 < i < n.

20.5 Some useful inequalities

Proposition 20.1 (c,-inequality). Let r > 0 and let ay, ..., a, be real numbers.
Then

14

2 a

i=1

r p
<¢, Y lail’
1

wherec, =p'" " forr > landc, = 1for0 <r < 1.

Proof. For r > 1, the inequality is implied by the convexity of the function x — |x|"
on R. For 0 < r < 1, note that for x,y > 0,

x+y y
lx+y" —|x|" = / rt e = / r(x 4+ s)"'ds
X 0

y
5] rs " lds = |y|".
0

Since |x 4+ y|” < | |x|] + [y| |, the inequality still holds for x and y of arbitrary sign.
The conclusion follows by induction on p. O
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Chebyshev’s inequality states that if X is a real-valued random variable with
EX? < oo, then, for all t > 0,

VX
P{X —EX| > 1} < P

The following theorem is a one-sided improved version of this inequality:

Theorem 20.11 (Chebyshev-Cantelli inequality). Let X be a real-valued random
variable such that EX*> < oc. Then, for all t > 0,

VX
PIX-EX>1 < —.
¢ _}_VX+t2

Proof. Assume, without loss of generality, that EX = 0. Write t = E[f — X] <
E[(t — X)1x<4], and apply the Cauchy-Schwarz inequality. |

Theorem 20.12 (Jensen’s inequality). Let X be a real-valued random variable
such that E|X| < oo, and let g : R — R be a convex function such that
Elg(X)| < oco. Then
8(EX) = Eg(X).
Proof. By convexity, there exists a € R such that, for all x,
g(x) = a(x — EX) + g(EX).
Thus,
Eg(X) =z Efa(X — EX) + ¢(EX)] = ¢(EX). O
Theorem 20.13 (Marcinkiewicz and Zygmund, 1937). Let Xy, ..., X, be inde-

pendent zero-mean real-valued random variables, and let p > 1. Assume that
E|X;|P < oo, 1 <i<n. Then

n n
Sl =gy
i=1 i=1

where C, is a positive constant depending only upon p.

4

! p/2
<GE

’

E

Proof. We recall that cosh(x) < exp(x?/2), which follows easily by a comparison
of Taylor series. Let ¢, . .., &, be independent Rademacher random variables, each
taking the values 41 and —1 with equal probability. Then, for x € R,

1
Ee! = 3 (e" + ™) = cosh(x) < sl
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Thus, for yq,...,y, > 0 fixedand A > 0,

n n
E I:e)» Yimi 8i}’i:| — E[ l_[ e)tsi}’ii| — l_[ Eereivi
i=1 i=1
n
< 1_[612}?/2 — M2,
i=1

For x > 0, we have by an easy maximization

vt (LY

Therefore, if one of the y;’s is not 0,

gemr < (%)”E [exlz;':ls,-m]
= (L) (B[ex=] + B[ xm])

P)”A
< -

_2(/16 e
=2 2

E

2 ?:1}’,2/2
p/2

(:27)

i=1

ARS

20

Appendix

by choosing A = /p/ >, y?. Clearly, the inequality remains true if all y;’s are

equal to 0.

Now, let X{,...,X] be independent of, and distributed as Xj,...,X,. Assume

that &1, ..., &, are independent of X;, X{, ..., X,, X),. Then,

anxip :]E]E[Xn:(x,-—xj)}xl,...,xn} ’
i=1

i=1

E

n

<E|) (X;—X))

i=1

p

(by Jensen’s inequality, valid for p > 1)

=E Xn: EiYi
i=1

(where ¥; = |X; — X]|)

<2(2)"e 37
i=1

P

p/2
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However,

p/2 p/2

E

anyf < E‘zixf + 22’1:)(;2
i=1 i=1 i=1
n p/2
< cp(E‘zzxiZ
i=1

X

i=1

n

+E‘2Zx§2

i=1

17/2)

p/2

3

P
= 21+2CPE

where we used the c¢,-inequality (Proposition 20.1), with ¢, = 251 if p > 2and
¢, = 1if I < p < 2. Therefore, forp > 1,

- I p\P/? "
Zx 245 sz
i=1 = 2 b (z) E' i=1 i
= =

The desired result follows with

p/2
E

‘I’

p/2
C, =225, (’3) .
e

Observing that, by Jensen’s inequality, for p > 2,

n n
L_

> X7 =T Y X

i=1 i=1

we deduce the following corollary:

p/2

Corollary 20.2. Let Xi,...,X, be i.i.d. zero-mean real-valued random variables,
and let p > 2. Assume that E|X;|P < oo, 1 <i < n. Then

i=1

)4
E < C,”"*E|X; .

Theorem 20.14. The gamma function
o
I'(x) =[ rle™ds
0

satisfies
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Furthermore, forx >y > 1,
y—X y—X
e xx(x)<1“(x)<e xx\/g
»o\xJ Ty Ty Vx

Proof. The first inequality is due to Mortici and Chen (2011), while the second one
is due to Keckié¢ and Vasi¢ (1971). O

20.6 Equivalence inequalities for weights

Lemma 20.3. Let (v,1,...,V,,) be a probability weight vector. The following
conditions are equivalent:

(I) There exists a sequence of integers {k} = {k,} such that

(i) k=00 and k/n—0;
(i1) Do Vni = 0.

II) Foralle > 0,

va» — 0.

i>en

Proof. (I) implies (II) since for each ¢ > 0, and all n large enough, k < en. (II)
implies (1) by construction. Let {#;};> be a strictly increasing sequence of integers
such that ny =1, j/nj — 0 as j — oo, and

1
Z vy < — foralln > n;.

i>n/j
Let k = n/j on [nj, njy). Clearly, k — oo and k/n — 0. Also, ) ., v,; — 0 as
n — oQ. O
Lemma 20.4. Let (v,1,...,V,,) be a probability weight vector. The following

conditions are equivalent:

(I) There exists a sequence of integers {k} = {k,} such that

(i) k—> o0 and k/n—0;

(it) Zi>k Uni = 0;
(#ii) sup, (kmax; v,;) < oo.
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(Il) There exists a positive constant o such that

(iv) Zi>a/max; Upi — O;
(V) Do Vni =0, alle>0;
(vi) max; v,; — 0.

Moreover, the same result is true when condition (i) is replaced by
(i) k/logn - o0 and k/n— 0
and condition (vi) is replaced by

(vi) sup, ((logn) max; v,;) — O.

Proof. Let us first assume that (/) is true. Then, clearly, (i) and (iii) imply (vi).
Besides, (i) and (ii) imply (v) since for each ¢ > 0, and all n large enough, k < en.
Finally, denoting by « a positive constant in (iif) such that k < «/ max; v,;, we see
that (if) implies (iv).

Conversely, assume that (/1) holds, and set k = |/ max; v,; |. Then (iii) is true
and, clearly, (vi) implies k — oo and (iv) implies (ii). The second statement of (/)
is valid because for all € > 0, en max; v,; > ZKS” v — lasn — oo.

The last assertion is proved in a similar fashion. O

20.7 Covering R with cones

A cone €(z, ) forz € R — {0},0 < 6 < 7/2, is defined by
€(z,0) ={ye R? : y = 0 or angle(z,y) < 6},

where

d
Zj:l i

angle(z,y) = arccos | — |,
llz[l Iy

lz|? = Z;j:l 2yl = Z}i:l yf. Equivalently, in vector notation,

7T

llzll Iyl

where T denotes transposition and vectors are in column format. The set x+%'(z, 0)
is the translation of €’ (z, 8) by x (change of origin).
Let

> cos 0,

Cy :min{n >1:3z,...,2, € Rd—{O} such that U%(zi,e) = Rd}

i=1
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be the minimal number of cones needed to cover R?. For d = 1, we can take z; = 1,
7 = —1forany 0 < # < /2, and cover R, so Cy = 2. In R?, we can take

Z, = (cos(29i),sin(29i)), 1<i<|[mn/0],
and verify that

[7/60]
| ¢@.6) =R

i=1

In particular, Cy < [7/67, and C,/6 < 6. In fact, one can easily see that Cy > /0,
and thus, we have Cy = [7/0].

For general d, a simple covering argument of a compact set permits one to show
that Cy < oo forall 0 < 0 < /2. We first give a simple but suboptimal bound.

Theorem 20.15. For all dimensions d > 1 and all0 < 6 < /2,

Proof. Consider the grid ¥ = {j/N : —N < j < N}¢, where N > +/d will be chosen
later. We claim that Uzeg\{o} €(z,0) = RY. To see this, take y = (y1,...,yq) €
R?—{0}, and let ||y|| denote its Euclidean norm. Similarly, we write z = (29, ..., 24)
and ||z|. We associate with y; > 0 the value —L” ’” N], and with y; < 0O the value

1%, L”yﬁN |, where the values are clearly in ¢. Call the vector of these values z, and
observe that 0 < ||z|| < 1 by the truncations towards the origin. Next,

d d 2 d

y: 1 Jd
Sy =Y = =Syl = Syl
; — |ly|[| = N “ N
j=1 Jj=1 Jj=1

by the Cauchy-Schwarz inequality. Therefore, since zjy; > 0, for z # 0,

d
di=1%yi 1

lzll Iyl Iyl 4

v

cos (angle(z,y)) = jy,

“< IIM&
2|§

I\/

I
T
Z,IQ
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Ja

We have cos(angle(z,y)) > cos 6, and thus angle(z,y) < 0,if 1 — %7 > cos 6.
Therefore, it suffices to take
N > i
~ 1—cosf
The proof follows since | 4| = (2N + 1)<. O

Boroczky, Jr. and Wintsche (2003) (see also Boroczky, Jr., 2004) showed the
following:

Theorem 20.16. For all dimensions d > 2 and all0 < 0 < arccos(l/\/g),

0
Co <ax coze x d*?log(1 + dcos* h),

where o is a positive universal constant independent of d.

This theorem implies immediately that for every ¢ > 0, there exists a universal
constant « (&) such that, for all d > 2,

Crre <a(e)2+ e)d.
Our next lemma states an interesting geometrical property of cones of angle less

than or equal to /6 (see Figure 20.1 for an illustration in dimension 2).

Lemma 20.5. Let €(z,0) be a cone of angle 0 < 6 < mw/6. If 8 < 7/6, then

foryi.y> € €(z,7/6), [lyill > 0and |lyill < |ly2ll, one has |lyr —y2[ < lly2[.
If 0 = 7 /6, then for y,y, € €(z,7/6), ||yi1ll > 0 and ||y1|| < |y2l, one has

Iy1 = yall < lly2]-
Proof. Take 6 = /6 and note that

Yi'y2
[yl lly2|l
< llyill® + lly2l® = 2lly1ll lly2ll cos(26)

lly:[I> _ ||Y1||)
21 lly2

Iyt = yalI> = llyt > + lly20> = 2lly1 [ Iy

— Iy (1 +

2
< y2lI".

The proof is similar for 0 < 6 < 7/6. O
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Vi@

\ vl
vl

Fig. 20.1 The geometrical property of a cone of angle 0 < # < 7/6 (in dimension 2).

An elegant combinatorial implication of Lemma 20.5 is the following one:

Lemma 20.6. Letx, X, ...,X, be distinct vectors of R%. Then, forall0 < 6 < /6,

n

Z ]l[x is the nearest neighbor of X; in {X1. ... . Xi—1. X, Xit 1 .. .. X, }] = Co

i=1
(distance ties are broken by comparing indices). In addition, if all distances ||x;—X]||,
1 < i < n, are different, then

n

2 : ]l[x is the nearest neighbor of X; in {X1, ..., Xi—1, X, Xi41, - - - , Xp }] = Cn/6‘

i=1

Proof. Fix 0 < 6 < m/6 and cover R? by Cy cones x+%(z,,0), 1 < £ < Cq.
In each cone, mark the x; nearest to X, if such an x; exists. If x; belongs to x +
% (z¢,0) and is not marked, then, by the first statement of Lemma 20.5, x cannot
be the nearest neighbor of x; in {xi,...,X;—1,X, X;+1, ..., X,}. This shows the first
inequality. The case § = /6 is proved by a similar argument, via the second
statement of Lemma 20.5. O
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An interesting geometrical consequence of this lemma is that if X, X, ..., X, are
random variables drawn according to a common absolutely continuous distribution,
then, with probability one, X can be the nearest neighbor of at most C /s points.

20.8 Some results from real analysis

Theorem 20.17 (A denseness result). Let p > 1. For any probability measure |1
on RY, the set of continuous functions of bounded support is dense in LP (j1). In other
words, for any g € LP (i) and € > 0, there is a continuous function g, with compact
support such that

[ 1660 = 5001 g <.

Proof. See, e.g., Gyorfi et al. (2002, Theorem A.1). O

We provide in the remainder of this section some results concerning differen-
tiation of integrals. Good general references are Stein (1970), de Guzmén (1975),
Wheeden and Zygmund (1977), and Gyorfi et al. (2002, Chapter 24). In the sequel,
notation B,(x), p > 0, means indifferently the family of cubes with center x and
edge length p, the family of closed balls centered at x of radius p, or the family of
open balls centered at x of radius p. As always, A denotes the Lebesgue measure
on R4

Theorem 20.18 (The Lebesgue differentiation theorem). Lezg: RY — R be a
locally integrable function. Then, at A-almost all x € R,

1
A (B.(x)) - dy — .
A (B,(x)) /Bp(x) lg(y) —g(x)[dy >0 asp |0

A point X at which this statement is valid is called a Lebesgue point of g. In
particular,

1
_ s |
A (B, (x) /B/’(x) g(y)dy - g(x) asp |0

Remark 20.1. Theorem 20.18 does not hold when the family {B,(x)} shrinks to x
without any restriction on the behavior of the sets. In this more general framework,
the slight additional condition f]Rd lg(y)|log™ |g(y)|dy < oo is required (it is true,
in particular, if f]Rd lg(y)|Pdy < oo for some p > 1). Valuable ideas and statistical
comments are presented in Devroye and Krzyzak (2002) and Biau et al. (2015). O

The Lebesgue differentiation theorem generalizes to measures other than the
Lebesgue measure on R?. Throughout, we let 1; and p, be two o-finite Borel
measures that are finite on the bounded Borel sets of R,
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Theorem 20.19 (The generalized Lebesgue differentiation theorem). Lerp >
1, and let g - RY — R be such that |g|P is locally integrable with respect to ji1.
Then, at ju1-almost all x € R4,

1

i (Bx) - ? w1y (dy) — .
i (B, () /Bpm 8(¥) =g pi(dy) > 0 asp 0

In particular,
| e > g0 asp b0
— 8(y) 1 (dy gX) asp .
11 (Bo(®)) Jb,

Remark 20.2. Theorem 20.19 is usually proved for p = 1. Since for a,b > 0 and
p=>1,la— b’ < |a’ — bP|, the result is true if g > 0. For general g, split g into its
positive and negative parts, and note that |g(y) — g(x)|? < 27! (|gT(y) —gT (X)|? +
g™ () — g ®"). 0

Whenever the measure u, is absolutely continuous with respect to p;, with

. . a(By(x)
a density f, then Theorem 20.19 states that the ratio 1 By)

everywhere towards the value of f at the point x. The most general differentiation

Z ngg;g without assuming that p, is abso-
lutely continuous with respect to ;. Before continuing, recall that the Lebesgue
decomposition theorem states that there exists a unique decomposition of j, into an
absolutely continuous part and a singular part with respect to 1. For any Borel set

A C R?,

shrinks p;-almost

theorem clarifies the local behavior of

1a(A) = /A F@m1dy) + o(A),

where f is a nonnegative function, integrable with respect to i, and the measure o
is supported on a set of p|-measure zero.

Theorem 20.20. If j15(A) = [, fduy + 0 (A) is the decomposition of i into parts
that are absolutely continuous and singular with respect to |41, then, at [L1-almost
all x € RY,

12%) (Bp(x))
—_— as 0.
1 (B,) f(x) p

In particular, if || and W, are mutually singular, then, at ju-almost all x € R4,

m—)O asp | 0.

1 (Bp(x))

H2(Bp(x))
n1(Bp(x))

The useful lemma below estimates the size of the maximal ratio
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Lemma 20.7 (Fefferman and Stein, 1971). There exists a constant ¢, depending
only upon d, such that, for all t > 0,

B,(x
wi [ {xeRe: sup M >t | < ¢ o (RY).
p>0 \ M1 (Bp(x)) t
Moreover, for any Borel set A C R4,

[L]( xeA:sup(M) >t§) SEMZ(A).

p>0 \ M1 (Bp(x))
When p; is the Lebesgue measure A and p, is a probability measure that is
absolutely continuous with respect to A, with a density f, then Lemma 20.7 states
that

Mixe R ) > 1)) <.
where
1
*(x) = — dy|.
[ ) sup < 7 (B,m) B,,(x)f(Y) y)

The function f* is called the Hardy-Littlewood maximal function of f. It should be
understood as a gauge of the size of the averages of f around x (note that f(x) <
f*(x) at A-almost all x).

If [pafP(x)dx < oo for some p > 1, then [p,f*’(x)dx < oo as well. On the
other hand, it is not true that [p,f(X)dx < oo implies [p.f*(X)dx < oo (just
take for f the uniform density on [0, 1] and note that fR f*(x)dx = o0). In fact,
f* is never integrable on all R. This can be seen by making the observation that
f*(x) > c||x|| 7%, for ||x|| > 1. Moreover, even if we limit our considerations to any
bounded subset of RY, then the integrability of f* requires stronger conditions than
the integrability of f. For example, [, f*(X)dx < 0o as soon as [p, f(x) log(f(x) +
1)dx < oo and f is supported on a compact set (Stein, 1970, Chapter 1). The
following lemma states this more formally.

Lemma 20.8. Letf : R? — R be a density. Assume that f has compact support and
that [ f (%) log(f(x) + 1)dx < co. Then [pqf(x)log(f*(x) + 1)dx < oo. Similarly,
Jraf(®) log?(f(x) + 1)dx < oo implies [, f(x)log(f*(x) + 1)dx < oco.

Proof. We prove the first assertion only and leave the second one as a small exercise.
Observe that
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/Rdf(x) log(f*(x) + 1)dx
= /ook({x e RY: f(x)log(f*(x) + 1) > t})dt
0

< /:O [A({x eRY: f(x) > @}) + )L({x eRY: f*(x) > t}>:| dr.

Now,

/Ooo)k<{x eRY: f*(x) > t})dt = /Ooof*(x)dx,

and this integral is finite by Stein’s result (Stein, 1970) mentioned above.
Finally, one easily verifies that for ¢ larger than some positive ¢*, the inequality
f(x)log(f(x) + 1) < t/2 implies f(x) < log(f;ﬂ)' So,

/Ooo)k({x eR?: f(x) > —log(tt—i— 1)})dt
< /Ot* M{xer!: fe > m})dt
+ [T a(x e R pwtogg e + 1) > 72}
< /oo A({x e R f(x)log(r* + 1) > t})dt
0
+ Z/OOOA({X eRY: f(x)log(f(x) + 1) > t})dt

=log(t* + 1) /Rdf(x)dx + Z/Rdf(x) log(f(x) + 1)dx < co. O

20.9 Some useful probability distributions

Bernoulli distribution

Definition. A random variable X has the Bernoulli distribution with parameter p €
[0,1ifP{X=1}=pand P{X =0} =1—p.

Notation. Ber(p).
Moments. EX = p and VX = p(1 — p).
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Binomial distribution

Definition. A random variable X has the binomial distribution with parameters n €
N —{0}and p € [0, 1] if

P{X =j} = (j)ﬂ(l -p)"7, 0<j<n

In particular, X Zz Z;;] X;, where Xi,...,X, are independent Ber(p) random
variables.

Notation. Bin(n,p).
Moments. EX = np and VX = np(1 — p).

Poisson distribution

Definition. A random variable X has the Poisson distribution with parameter
A > 0if

PiX=jt=S" jeN.

J!

Notation. Poisson(A).

Moments. EX = A and VX = A.

If np, — A > 0 as n — oo, then Bin(n, p,,) 2 Poisson(A).
Rademacher distribution
Definition. A random variable X has the Rademacher distribution if P{X = —1} =
P{X =+1} =1/2.
Moments. EX = 0 and VX = 1.
Uniform distribution
Definition. A random variable X has the uniform distribution on [0, 1] if it has

density f(x) = 1,0 <x < 1.
Moments. EX = 1/2 and VX = 1/12.
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Normal distribution

Definition. A random variable X has the normal (or Gaussian) distribution with
parameters i € R and 2 > 0 if it has density

1 _a—w?
e 22 xeR.

flx) =

2mo?

If u = 0 and 6 = 1, the distribution is called the standard normal distribution.

Moments. EX = p and VX = o2.

Exponential distribution

Definition. A random variable X has the exponential distribution with parameter
A > 0if it has density f(x) = Ae™**, x > 0. If A = 1, the distribution is called the
standard exponential distribution.

Moments. Forall g > —1,

_I'g+1)
U

In particular, EX = 1/A and VX = 1/A%. For ¢ < —1, EX? = oo.

Ex‘

Beta distribution

Definition. A random variable X has the beta distribution with (shape) parameters
a > 0and B > 0 if it has density

X1 = x)B1
f(x)zB((a—;))» <x<I,
where
1 r r
B p) = | xa_l(l_x)ﬂ—ldx:%'

Notation. Beta(x, B).

Moments. For all g > —a,

Ex? — B(a+4q.p) _ T+ qg)l(a+pB)
B(a, B) T+ +q)
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In particular,

and VX = op

EXIaJrﬂ T @+ pa+p+1)

Assume that « and B are positive integers. Then, for all p € [0,1],
P{Beta(a, 8) < p} = P{Bin(e + B —1,p) > «a}. This is called the binomial-
beta duality (see, e.g., Terrell, 1999, Chapter 9).

Gamma distribution

Definition. A random variable X has the gamma distribution with parameter o > 0
if it has density

xle™
= s > ().
0 ="pes w2
Notation. Gamma(x).
Moments. For all g > —«,
Exe = F@+9
I'(o)

In particular, EX = VX = .

The Gamma(1) corresponds to a standard exponential. If N is standard normal,
then 2 Gamma(1/2) Z N2. The random variable N? is also called a chi-square with
one degree of freedom. In general, 2 Gamma(n/2) Z Yo, N[Z, where Ni,...,N,
are independent standard normal random variables. It is called a chi-square with n

degrees of freedom.
The following lemma is left as an exercise.

Lemma 20.9. If G, and Gg are independent Gamma(c) and Gamma(f8) random

variables, then GHGT"‘G}Q and Gy +Gg are independent Beta(c, ) and Gamma(a + f)

random variables.

Thus, in particular, for Ei,..., E, independent standard exponential random

variables, the sum ) ;| E; = Gamma(n). Et donc voila.
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data splitting, 212 Bernstein’s, 216, 261
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17 distance, 27 Efron-Stein, 83,91, 141,262
definition, 25 Hoeffding’s, 214, 238, 257, 260
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Rademacher distribution, 275
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convergence in distribution, 253
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Slutsky’s theorem, 253
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