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BROADCASTING IN RANDOM RECURSIVE DAGS

Simon Briend1, Luc Devroye2 and Gábor Lugosi3,*

Abstract. A uniform k-dag generalizes the uniform random recursive tree by picking k parents
uniformly at random from the existing nodes. It starts with k “roots”. Each of the k roots is assigned a
bit. These bits are propagated by a noisy channel. The parents’ bits are flipped with probability p, and a
majority vote is taken. When all nodes have received their bits, the k-dag is shown without identifying
the roots. The goal is to estimate the majority bit among the roots. We identify the threshold for p as
a function of k below which the majority rule among all nodes yields an error c+ o(1) with c < 1/2.
Above the threshold the majority rule errs with probability 1/2 + o(1).
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1. Introduction

The interest in network analysis has been growing, in part due to its use in communication technologies,
social network studies, and biology, see Coolen et al. [1]. The problem we study here is the one of broadcasting
on random graphs. We study the setting where a bit propagates with noise and we want to infer the value of
the original bit. The question is not if and how the information propagates, but if there is a signal propagating
on the graph, or only noise. Variations of this binary classification problem have been studied. For example, in
the root-bit estimation problem, the root of a tree has a bit 0 or 1. The value of this bit propagates from the
root to the leafs, and at each propagation from a vertex to the next it mutates (flips the bit) with probability
p. One can try to infer the root’s bit value from observing all the bits of the graph or only the leaf bits. This
question was first formulated in Evans et al. [2] on general trees, where it was shown that root bit reconstruction
is possible depending upon a condition on the branching number. More recently, the case of random recursive
trees (Addario-Berry et al. [3], Desmarais et al. [4]) has been studied. Other variations of these problems on trees
include looking at asymmetric flip probabilities (Sly [5]), non-binary vertex values (Mossel [6]) and robustness to
perturbation (Janson and Mossel [7]). We refer the reader to Mossel [8] for a survey of reconstruction problems on
trees. Many problems are described by more general graphs rather than trees. The original broadcasting question
has been studied on deterministic graphs (Harutyunyan and Li [9]) and Harary graphs (Bhabak et al. [10], for
example). We are interested in the problem of noisy propagation in the spirit of the root-bit reconstruction
(Evans et al. [2]), but on a class of random graphs that we call k-dag (for directed acyclic graph). A similar
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Figure 1. A realisation of the process up to time 6, for k = 3, starting with R3 = 1/3.

problem – for a different class of random dags – has been studied in Makur et al. [11]. In a related probelm,
Antunović et al. [12] studied the case of the preferential attachment model, where initial nodes have a color and
the color of the new nodes is a function of the colors of their neighbors.

Since we track the proportion of zero bits in our graph, we cast the process as an urn model. A similar
reformulation was already done in Addario-Berry et al. [3] to study majority voting properties of broadcasting
on random recursive trees. The proportion of zero bits and the bit assignment procedure can be viewed as
random processes with reinforcement. A review of results can be found in Pemantle [13] and is extensively used,
alongside results of non-convergence found in Pemantle [14]. As in Addario-Berry et al. [3], we make ample use
of the properties of Pólya urns (Janson [15], Knape and Neininger [16], Wei [17]). Variations of the Pólya urn
model that are useful for our analysis include an increase of the number of colors over time (Bertoin [18]), the
selection of multiple balls in each draw (Kuba and Mahmoud [19]), and randomization in the color of the new
ball (Janson [20], Zhang [21]). We note, in particular, the multi-ball draw with a linear randomized replacement
rule of Crimaldi et al. [22]. In the present paper, we consider multi-ball draws, but with non-linear randomized
replacement.

The paper is organized as follows. After introducing the mathematical model in Section 1.1, in Section 1.2 we
present the main result of the paper (Thm. 1.1) that shows that there are three different regimes of the value of
the mutation probability that characterize the asymptotic behavior of the majority rule. In Section 2 we discuss
the three regimes of p. In Section 3 we establish convergence properties of the global proportion of both bit
values assigned to vertices and in Section 4 we finish the proof of Theorem 1.1 by studying the probability of
error in all three regimes. Finally, in Section 5 we establish a lower bound for the probability of error that holds
uniformly for all mutation probabilities. We conclude the paper by discussing avenues for further research.

1.1. The model

We start by describing the evolution of the uniform random recursive k-dag and the assigned bit values that
we represent by two colors; red and blue.

Let us fix an odd integer k > 0. The growth process is initiated at time k. At time k, the graph consists
of k isolated vertices. A fraction Rk are red and a fraction Bk = 1 − Rk are blue. We set R1 = · · · = Rk and
B1 = · · · = Bk. The network is grown recursively by adding a new colored vertex and at most k edges at each
time step. At time n, a new vertex n connects to a sample of k vertices chosen uniformly at random with
replacement among the n− 1 previous vertices. (Possible multiple edges are collapsed into one so that the graph
remains simple.) The color of vertex n is determined by the following randomized rule:

� the colors of the k selected parents are observed;
� each of these is independently flipped with probability p (if a parent is selected more than once, its color
is flipped independently for each selection);

� the color of vertex n is chosen according to the majority vote of the flipped parent colors (i.e., there are
exactly k votes).

If one is only interested in the evolution of the proportion of red and blue vertices (but not the structure
of the graph), one may equivalently describe it by an urn model with multiple draws and random (nonlinear)
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replacement. The urn process is defined as follows. The urn is initialized with an odd number k of balls, a
fraction Rk being red and Bk = 1−Rk blue. At each time n ≥ k + 1,

� k balls are drawn from the urn, uniformly at random with replacement, and returned to the urn;
� the color of each drawn ball is flipped with probability p (i.e., a drawn ball that is red is observed as blue
with probability p);

� a new ball is added to the urn, whose color is chosen as the majority of the k observed colors.

In the root-bit estimation problem considered here, the statistician has access to an unlabelled and undirected
version of the graph at time n, along with the vertex colors. The goal of the statistician is to estimate the colors
assigned to the k roots. More precisely, based on the observed graph, one would like to guess the majority color
at time k.

This problem has been studied in depth by [3] in the case when k = 1, that is, when the produced graph is a
uniform random recursive tree. Two types of methods for root-bit estimation were studied in [3]. One is based
on first trying to localize the root of the tree–disregarding the vertex colors. If one finds a vertex that is close to
the root, one may use the color of that vertex as a guess for the root color. Such a vertex is the centroid of the
tree. Indeed, it is shown in [3] that the color of the centroid is a nearly optimal estimate of the root color. In
the same paper, the majority rule is also studied. This method disregards the structure of the tree and guesses
the root color by taking a majority vote among all vertices. It is shown that for small mutation probabilities
the majority rule is also nearly optimal.

In the more general problem considered in this paper, one may also try to estimate the colors of the k roots
by finding nearby vertices. However, this problem becomes significantly more challenging as the k-dag does not
have a natural centroid. The interested reader is referred to the recent paper of Briend, Calvillo, and Lugosi
[23] on root finding in random k-dags. Instead of pursuing this direction, we focus on the majority vote. More
precisely, we are interested in characterizing the values of the mutation probability p such that the asymptotic
probability of error is strictly better than random guessing.

At time n, the majority vote, denoted by bmaj
n , is defined as follows:

bmaj
n =



“R” (red) if Rn > 1/2

“B”(blue) if Rn < 1/2

Ber(1/2) if Rn = 1/2 (a random coin flip).

We define the probability of error by

Rmaj(n, p) = P
{
bmaj
n ̸= bmaj

k

}
.

Note that bmaj
k depends on the initial vertex colors that are assumed to be chosen arbitrarily and fixed. Hence,

Rmaj(n, p) is also a function of the initial proportion Rk but to avoid heavy notation, we supress this dependence.

1.2. Related results and our contribution

Our broadcasting model is an extension of the broadcasting on uniform random recursive trees that was
extensively studied in Addario-Berry et al. [3]. In this problem, k = 1 and the only parameter is p, the mutation
probability. For the majority voting rule, they prove the following:

(i) There exists a constant c > 0 such that

lim sup
n→∞

Rmaj(n, p) ≤ cp.
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(ii) For all p ∈ (0, 1/2],

lim
n→∞

Rn =
1

2
with probability one.

(iii) For p ∈ [0, 1/4)

lim sup
n→∞

Rmaj(n, p) <
1

2
.

(iv) For p ∈ [1/4, 1/2]

lim sup
n→∞

Rmaj(n, p) =
1

2
.

In other words, even though the proportion of vertices that have the same color as the root converges to
1/2, for mutation probabilities smaller than 1/4, sufficient information is preserved about the root color for the
majority vote to work with a nontrivial probability.

We generalize these results to k-dags and characterize the values of p for which majority voting outperforms
random guessing. In order to state the main result of the paper, we introduce some notation.

For any odd positive integer k, let

αk :=
1

2k−2

k∑
i>k/2

(
k

i

)
(i− k/2) = 4E

[(
Bin(k, 1/2)− k

2

)
+

]
. (1.1)

For example, α1 = 1, α3 = 3/2, and by a simple application of the central limit theorem, for large k,

αk ∼
√

2k

π
. (1.2)

In the statement of our main theorem, we assume, without loss of generality, that initially red vertices are
in majority, that is, Rk > 1/2.

Theorem 1.1. Let k be an odd positive integer and consider the broadcasting process on a random k-dag
described above. Assume that initially Rk > 1/2.

(i) If p < 1
2 − 1

2αk
, then there exist β1 ∈ (0, 1/2) and β2 = 1− β1 (whose value only depends on k but

not on the initial color configuration) such that

P {Rn → β1}+ P {Rn → β2} = 1 and P {Rn → β1} < P {Rn → β2} .

In particular, regardless of the initial value of Rk,

lim sup
n→∞

Rmaj(n, p) <
1

2
.

(ii) If 1
2 − 1

2αk
≤ p < 1

2 − 1
4αk

, then Rn → 1/2 a.s. and

lim sup
n→∞

Rmaj(n, p) <
1

2
.

(iii) If 1
2 − 1

4αk
≤ p ≤ 1

2 then Rn → 1/2 a.s. and

lim
n→∞

Rmaj(n, p) =
1

2
.
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Theorem 1.1 shows that for all k ≥ 3, there are three regimes of the value of the mutation probability. In
the low-rate-of-mutation regime the proportion of red balls almost surely converges to one of two numbers,
both different from 1/2. Moreover, the limiting proportion is positively correlated with the initial value. In the
intermediate phase, the vertex colors are asymptotically balanced, but there is enough signal for the majority
vote to perform strictly better than random guessing. Finally, in the high-rate-of-mutation regime, the majority
vote is equivalent to a coin toss, at least asymptotically.

Note that for k = 1, α1 = 1, so 1/2 − 1/(2α1) = 0, and therefore the low-rate-of-mutation regime does not
exist. Of course, this is in accordance with the results of [3] cited above.

On the other hand, for k = 3 the two thresholds are 1/2− 1/(2α3) = 1/6 and 1/2− 1/(4α1) = 1/3, meaning
that from k = 3 onward the three different regimes can be observed. For large k, both threshold values are of
the order 1/2−Θ(1/

√
k).

A closely related model has been studied by Makur et al. [11]. They study different random dags, where
important parameters are the number of vertices at distance k from the root and the indegree of vertices. They
also suppose that the position of the root vertex is known. Two rules of root bit estimation are studied: a noisy
majority rule and the NAND rule. Makur et al. [11] show that if the number of vertices of depth k is Ω (log(k))
then there is a threshold on the mutation probability for which root bit estimation is possible.

As a first step, we study the convergence of the proportion of red balls. To this end, it suffices to study the
generalized urn process defined above. We mention here that Crimaldi et al. [22] study a somewhat related urn
process, though with linear replacement rules.

In order to avoid unessential complications caused by breaking ties, we only consider odd values of k. The
same techniques allow one to analyze even values of k. In such cases, in the event of a tie among the k observed
colors, one may choose the color of the new vertex at random.

2. Different regimes

We start by studying the evolution of Rn. Let us denote by cn the color of the nth vertex appearing in the
graph. After possible mutation, each edge connecting vertex n+1 to an older vertex carries a signal. This signal
is red with probability

f(Rn) := (1− p)Rn + p(1−Rn) = (1− 2p)Rn + p.

Because the k parents are chosen independently and that the color is chosen by the majority,

P {cn+1 = R} = P {Bin (k, f(Rn)) ≥ k/2} , (2.1)

where, conditionally on Rn, Bin (k, f(Rn)) is a binomial random variable. Moreover, we know that the number
of red vertices evolves as (n + 1)Rn+1 = nRn + 1(cn+1 = R), where 1 is the indicator function. We rewrite
this as

Rn+1 = Rn +
1(cn+1 = R)−Rn

n+ 1
. (2.2)

A key to understanding Rn is then to study the random variable 1(cn+1 = R)−Rn. We define, for t ∈ [0, 1],

g(t) := E [1(cn+1 = R)−Rn|Rn = t] = P {Bin(k, f(t)) > k/2} − t. (2.3)

The evolution of Rn is entirely determined by the function g. Observe first that for any t ∈ [0, 1], f(1 − t) =
1− f(t). Also, since k is odd,

P {Bin(k, 1− f(t)) > k/2} = 1− P {Bin(k, f(t)) > k/2} ,
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which implies that

g(1− t) = −g(t).

The extremal values of g are

g(0) = P {Bin(k, p) > k/2} > 0,

and

g(1) = P {Bin(k, 1− p) > k/2} − 1 < 0.

Since g is continuous, the polynomial g has at least one root. From the symmetry property we have g(1/2) =
−g(1− 1/2) = −g(1/2), so g(1/2) = 0. Moreover, we obtain

g′(1/2) =
1− 2p

2k−2

k∑
i>k/2

(
k

i

)
(i− k/2)− 1.

Recalling the definition of αk from (1.1), we have g′(1/2) = (1− 2p)αk − 1. Since αk ≥ 1, we conclude:

g′
(
1

2

) 
< 0 if p > 1

2 − 1
2αk

,

> 0 if p < 1
2 − 1

2αk
.

To understand the other potential zeros of g, let us study its convexity.

Lemma 2.1. The function g is strictly convex on (0, 1/2) and strictly concave on (1/2, 1).

Proof. We may use the elementary identities

P
{
Bin(k, x) ≥ k + 1

2

}
= P

{
Beta

(
k + 1

2
,
k + 1

2

)
< x

}
, (2.4)

where Beta(a, b) is a beta(a, b) random variable. Hence,

g(t) =

∫ f(t)

0

(x(1− x))
k−1
2

Γ(k + 1)

Γ2
(
k+1
2

)dx − t,

and therefore

g′(t) = (1− 2p) (f(t)(1− f(t)))
k−1
2

Γ(k + 1)

Γ2
(
k+1
2

) − 1. (2.5)

Since f(t)(1− f(t)) = −(1− 2p)t(t− 1) + p(1− p) is increasing for t ∈ (0, 1/2) and decreasing for t ∈ (1/2, 1),
g is strictly convex on (0, 1/2) and strictly concave on (1/2, 1).

In summary, if p > 1
2 − 1

2αk
, then g′(1/2) < 0, and thus g is monotonically decreasing on [0, 1] and has only

one zero in [0, 1]. If g′(1/2) = 0, then there is only one zero (at 1/2) and g exhibits an inflection point at 1/2.
If p < 1

2 − 1
2αk

, then g′(1/2) > 0 and thus g has exactly one zero in (0, 1/2) and by symmetry, it also has one

zero on (1/2, 1). We denote these zeros by β1 and β2, respectively.
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Figure 2. g as a function of t ∈ [0, 1], for k = 3, with the choices p = 0.18 > 1/6 and p =
0.12 < 1/6.

Figure 2 shows two examples of the graph of the function g.
It is also interesting to know the position of β1 (recall that β2 = 1− β1). First, we note that for fixed k, if p

tends to the threshold 1− 1/(2αk), then β1 tends to 1/2. In the following lemma we study the case when p is
far enough from the threshold, that is, when p ≤ 1

2 − C
2αk

, for a sufficiently large constant C.

Lemma 2.2. Let p ≤ 1
2 − C

2αk
for C ≥

√
8 log(2)

π . Then

β1 ≤ exp

(
−k(1− 2p)2

8

)
.

Proof. β1 is the smallest root of g(t) and since g(0) > 0, its smallest root is smaller than the smallest root of
any upper bound of g. On the other hand,

g(t) = P
{
Bin(k, f(t)) ≥ k

2

}
− t ≤ exp

(
−2k

(
1

2
− f(t)

)2
)

= exp

(
−2k(1− 2p)2

(
1

2
− t

)2
)

− t.

Thus, β1 is at most the first zero of b(t) := exp
(
c1
(
1
2 − t

)2) − t, for c1 = 2k(1 − 2p)2. Since b(0) > 0, if for

some t∗, b(t∗) ≤ 0 then the first zero of b and therefore β1 is at most t∗. Taking t∗ = e−c1/16, we have

b(t∗) ≤ 0 ⇐⇒
(
1

2
− e−c1/16

)2

≥ 1/16 ⇐⇒ c1 ≥ 32 log(2).

From (1.2) and the expression of c1, we have that by taking C ≥
√

8 log(2)
π ,

2k(1− 2p)2 ≥ 32 log(2).
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This shows that for p ≤ 1
2 − C

2αk
, we have

β1 ≤ exp

(
−k(1− 2p)2

8

)
.

3. Convergence of the proportion of red balls

In order to analyze the probability of error of the majority vote, first we establish convergence properties
of Rn. The two possible regimes of g suggest that there are two distinct regimes of the evolution of Rn. From
(2.2) we note that Rn has a positive drift if g(Rn) is positive, and a negative drift otherwise. This suggests that
in the high-rate-of-mutation regime, Rn converges to 1/2 and in the low-rate-of-mutation regime it converges
to either β1 or β2. The following section investigates this intuition, using Lemma 2.6 and Corollary 2.7 from
Pemantle [13] about the convergence of reinforced random processes. We state them here.

Lemma 3.1 (Pemantle [13]). Let {Xn; n ≥ 0} be a stochastic process in R adapted to a filtration {Fn}. Suppose
that Xn satisfies

Xn+1 −Xn =
1

n
(F (Xn) + ξn+1 + En) ,

where F is a function on R, E [ξn+1 | Fn] = 0 and the remainder term En goes to 0 and satisfies
∑∞

n=1 n
−1|En| <

∞ almost surely. Suppose that F is bounded and that E
[
ξ2n+1 | Fn

]
< K for some finite constant K. If for

a0 < x < b0, F (x) ≥ δ for some δ > 0, then for any [a, b] ⊂ (a0, b0) the process {Xn} visits [a, b] finitely many
times almost surely. The same result holds if F (x) ≤ −δ.

Corollary 3.2 (Pemantle [13]). If F is continuous on R, then Xn converges almost surely to the zero set of F .

3.1. The high-rate-of-mutation regime
(
1
2
− 1

2αk
≤ p ≤ 1

2

)
Rewrite (2.2) as

Rn+1 −Rn =
1

n+ 1

(
P
{
Bin(k, f (Rn)) ≥

k

2

}
−Rn

)
+

1

n+ 1

(
1(cn+1 = R)− P

{
Bin(k, f (Rn)) ≥

k

2

})
.

Since g(Rn) = P {Bin(k, f (Rn)) ≥ k/2} −Rn, we see that

Rn+1 −Rn =
g(Rn) + ξn+1

n+ 1
, (3.1)

where ξn+1 = 1(cn+1 = R)−P {Bin(k, f (Rn)) ≥ k/2}. Because g is continuous and E [ξn+1|Rn] = 0, our process
satisfies all the requirements for Corollary 3.2. It states that Rn converges almost surely to the set of zeros of
g. In this regime, this implies that Rn converges to 1/2 almost surely.

3.2. The low-rate-of-mutation regime
(
0 < p < 1

2
− 1

2αk

)
In this regime, the requirements of Corollary 3.2 are still met. So Rn converges almost surely to the set of

zeros of g, which is {β1, 1/2, β2}. We first show that Rn does not converge to 1/2: 1/2 seems to be an unstable
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equilibrium point, since the drift in the process has a tendency to pull Rn away from 1/2. We state Theorem 2.9
from Pemantle [13] here:

Theorem 3.3 (Pemantle [13]). Suppose {Xn} satisfies the conditions of Lemma 3.1 and that for some w ∈
(0, 1) and ϵ > 0, signF (x) = sign(x − w) for all x ∈ (w − ϵ, w + ϵ). For ξ+n+1 = max(ξn+1, 0) and ξ−n+1 =

max(−ξn+1, 0), suppose that E[ξ+n+1 | Fn] and E[ξ−n+1 | Fn] are bounded above and below by positive numbers
when Xn ∈ (w − ϵ, w + ϵ). Then P{Xn → w} = 0.

Corollary 3.4. In the low-rate-of-mutation regime, almost surely the process Rn does not converge to 1
2 .

Proof. Since the conditional distribution of ξn+1, given Rn = 1/2 does not depend on n, it is immediate that

c < E[ξ+n+1|Rn = 1/2] < 1,

and

c < E[ξ−n+1|Rn = 1/2] < 1,

for some c > 0 that does not depend on n. Since t 7→ E[ξ±n+1|Rn = t] is continuous and does not depend on n,
there exists ϵ > 0 such that for all t ∈ (1/2− ϵ, 1/2 + ϵ),

c

2
< E[ξ±n+1|Rn = t] < 2.

Moreover, g is negative on (1/2− ϵ, 1/2) and positive on (1/2, 1/2 + ϵ). So, by Theorem 3.3,

P
{
Rn 7→ 1

2

}
= 0.

Corollary 3.5. In the low-rate-of-mutation regime, the process Rn converges almost surely, either to β1 or to
β2, that is,

P {Rn → β1}+ P {Rn → β2} = 1.

Proof. It suffices to check that Rn converges to β1 or β2 and does not oscillate between them. Between 1/2 and
β2 the function g is positive, so there exists 1/2 < a0 < a1 < β2 and δ > 0 such that for all t ∈ (a0, a1), g(t) > δ.

Lemma 3.1 shows that Rn visits any set [a, b] ⊂ (a0, a1) finitely often almost surely. Because the step sizes of
Rn are of order 1/n, if Rn visits [a, b] finitely many times, it crosses it finitely many times. Indeed, for n large
enough it cannot cross [a, b] without visiting [a, b]. Since Rn converges almost surely to the set {β1, β2}, but
Rn crosses the set (a0, a1) finitely many times, we see that Rn converges almost surely either to β1 or β2, as
claimed.

4. Is majority voting better than random guessing?

As a first step of understanding if majority voting is better than random guessing, we prove the following
lemma. It gives an equivalent condition to the success of majority voting in terms of the first time the majority
flips.

Lemma 4.1. Let T denote the random time at which the majority flips for the first time, that is,

T = min
{
n ∈ N : bmaj

n ̸= bmaj
k

}
.
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Then lim supn→∞ Rmaj(n, p) < 1/2 if and only if P {T = +∞} > 0.

Proof. From the definition of Rmaj(n, p),

lim sup
n→∞

Rmaj(n, p) = 1− lim inf
n→∞

P
{
bmaj
n = bmaj

k

}
.

Fix a positive ϵ. Since the sequence of events {∀i ∈ [n] : bmaj
i = bmaj

k } is decreasing, and {T = +∞} = {∀i >
k; bmaj

i = bmaj
k }, by continuity of measure we can choose n such that

P
{
∀i ∈ [n] : bmaj

i = bmaj
k

}
≤ P {T = +∞}+ ϵ.

For N ≥ n+ 1, we have

P
{
bmaj
N = bmaj

k

}
= P

{
bmaj
N = bmaj

k and ∀i ∈ [n] : bmaj
i = bmaj

k

}
+ P

{
bmaj
N = bmaj

k and ∃i ∈ [n] : bmaj
i ̸= bmaj

k

}
.

(4.1)

The second term on the right-hand side decomposes as

P
{
bmaj
N = bmaj

k and ∃i ∈ [n] : bmaj
i ̸= bmaj

k

}
=
(
1− P

{
∀i ∈ [n] : bmaj

i = bmaj
k

})
P
{
bmaj
N = bmaj

k

∣∣∣ ∃i ∈ [n] : bmaj
i ̸= bmaj

k

}
.

From the definition of our process, if Ri = 1/2, then, conditionally on this event, the distribution of RN for
N > i is symmetric. Therefore

P
{
bmaj
N = bmaj

k

∣∣∣ ∃i ∈ [n] : bmaj
i ̸= bmaj

k

}
=

1

2
. (4.2)

Plugging this into (4.1) yields

P
{
bmaj
N = bmaj

k

}
= P

{
bmaj
N = bmaj

k ∩ ∀i ∈ [n] : bmaj
i = bmaj

k

}
+

1

2

(
1− P

{
∀i ∈ [n] : bmaj

i = bmaj
k

})
,

(4.3)

The first term of the right-hand side is bounded from below by P {T = +∞}, which transforms (4.3) into

P
{
bmaj
N = bmaj

k

}
≥ 1

2
+ P {T = +∞}− 1

2
P
{
∀i ∈ [n] : bmaj

i = bmaj
k

}
.

Taking the limit on N and recalling the choice of n gives

lim inf
N→∞

P
{
RN >

1

2

}
≥ 1

2
+

1

2
P {T = +∞}− ϵ

2
.

Since the above holds for any ϵ, if P {T = +∞} > 0 then lim infN→∞ P
{
bmaj
N = bmaj

k

}
> 1/2. This proves the

“if” direction of the statement.
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On the other hand, from (4.3),

P
{
bmaj
N = bmaj

k

}
≤ P

{
∀i ∈ [n] : bmaj

i = bmaj
k

}
+

1

2

(
1− P

{
∀i ∈ [n] : bmaj

i = bmaj
k

})
.

Taking the limit on N and recalling the choice of n yields

lim inf
N→∞

P
{
bmaj
N = bmaj

k

}
≤ 1

2
+

1

2
P
{
∀i ∈ [n] : bmaj

i = bmaj
k

}
≤ 1

2
+

1

2
P {T = +∞}+ ϵ

2
.

As this holds for any positive ϵ, if lim infN→∞ P
{
bmaj
N = bmaj

k

}
> 1/2, then P {T = +∞} > 0. This concludes

the proof.

Lemma 4.2. If

lim sup
n→∞

Rmaj(n, p) ≥ 1

2
,

then

lim
n→∞

Rmaj(n, p) =
1

2
.

Proof. If lim supn→∞ Rmaj(n, p) ≥ 1
2 then Lemma 4.1 shows that T is almost surely finite. But since

P
{
bmaj
n ̸= bmaj

k | T ≤ n
}
=

1

2
,

this implies

P
{
bmaj
n ̸= bmaj

k , T ≤ n
}
=

1

2
P {T ≤ n} .

Moreover, since T is finite almost surely, limn→∞ P {T ≤ n} = 1 and by the continuity of measure,

lim
n

P
{
bmaj
n ̸= bmaj

k , T ≤ n
}
= P

{
bmaj
n ̸= bmaj

k

}
.

This concludes the proof of the the lemma.

4.1. The low-rate-of-mutation regime
(
0 < p < 1

2
− 1

2αk

)
As explained in Section 3.2, if p < 1

2 − 1
2αk

, then Rn converges to either β1 or β2. Next, we show that if

R1 > 1/2, then Rn is more likely to converge to β2 than to β1. To do so, recall (2.2) and write it as

Rn+1 =
n

n+ 1
Rn +

1

n+ 1
Bn(g(Rn) +Rn),
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where the Bn are independent Bernoulli random variables. We fix τ ∈ (1/2, β2). From the analysis of g we know
that g(τ) > 0. Since g(t) + t = P {Bin(k, f(t)) ≥ k/2} and f is increasing, for all t ≥ τ ,

g(t) + t ≥ g(τ) + τ.

Fix a positive integer N and introduce the mapping

t 7→ h(t) :


h(t) = 1/2 if t < τ

h(t) = g(τ) + τ otherwise.

Then define Dk = 1. For n ≥ k, let

Dn+1 =
n

n+ 1
Dn +

1

n+ 1
B′

n (h(Dn)) ,

where B′
n are independent Bernoulli random variables. From the definition of the process (Dn), on the event

{Dn ≥ τ, ∀n ≥ 1}

nDn ≥ Dk +Bin(n− k, g(τ) + τ).

Hence, by the union bound and Hoeffding’s inequality,

P {∃i ≥ N : Di ≤ τ | ∀n ∈ [k,N ] : Dn ≥ τ} ≤
∑
i≥N

P {Bin(i− k, g(τ) + τ) ≤ iτ} ≤ 2e−(N−k)g(τ)2

1− e−2g(τ)2
.

Choosing N such that the last term above is less than one yields

P {∀i ≥ N : Di ≥ τ | ∀n ∈ [k,N ] : Dn ≥ τ} > 0.

Since

P {∀i ≥ k : Di ≥ τ} = P {∀i ∈ [k,N ] : Di ≥ τ} × P {∀i ≥ N : Di ≥ τ | ∀n ∈ [k,N ]; Dn ≥ τ} ,

we just proved that

P {∀i ≥ k : Di ≥ τ} > 0. (4.4)

Define the stopping time T ′ = min {n ≥ k; Dn ≤ τ}. Since for all t ≥ τ , g(t) + t ≥ g(τ) + τ , on the event
{Rk ≥ Dk ≥ τ}, there exists a coupling of the Bernoulli random variables B and B′ such that

∀n ∈ [k, T ′] : Bn ≥ B′
n,

and thus a coupling of the random variables Rn and Dn such that

∀n ∈ [k, T ′] : Rn ≥ Dn.
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Figure 3. A linear lower bound for |g|, k = 3 and p = 0.18.

From this coupling and (4.4) we have

P
{
∀n ≥ k : Rn >

1

2

}
> 0,

which, thanks to Lemma 4.1, proves that in the regime p < 1/2− 1/(2αk),

lim sup
n→∞

Rmaj(n, p) <
1

2
,

proving the first statement of Theorem 1.1.

4.2. The high-rate-of-mutation regime
(
1
2
− 1

2αk
≤ p ≤ 1

2

)
In the range p > 1/2− 1/(2αk) the proportion of red balls converges to 1/2. It does not mean that majority

voting cannot be better than random guessing. Indeed, the proportion can converge to 1/2 from above. This is
this possibility that will now be investigated.

4.2.1. Extreme rate

First, we examine the “extreme” case when the rate of mutation is near 1/2, more precisely when p >
1/2− 1/(4αk). Define the linear function h by h(t) := g′(1/2) (t− 1/2). Then

g(t)

{
≥ h(t), if t ∈ [0, 1/2],

≤ h(t), if t ∈ [1/2, 1].

In Figure 3 we plot h and g.
Let us define an auxiliary process R∗

n by the stochastic recursion R∗
k = 1 and for n ≥ k

R∗
n+1 = R∗

n +
Bn (h(R

∗
n) +R∗

n)−R∗
n

n+ 1
,
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where Bn (h(R
∗
n) +R∗

n) is a Bernoulli random variable with parameter h(R∗
n) +R∗

n, conditionally independent
of R∗

n. In particular,

E [Bn (h(R
∗
n) +R∗

n)−R∗
n|R∗

n = t] = h(t).

Since the value of g (for (Rn)) and h (for (R∗
n)) represents a drift in the processes Rn and R∗

n we expect that
the process (R∗

n) is further away from 1/2. Indeed, we may introduce a coupling as follows. Define the stopping
time T ∗ as the first time R∗ reaches 1/2:

T ∗ := min

{
n ≥ k : R∗

n ≤ 1

2

}
.

Since for the times n ∈ [k, T ∗], h(R∗
n) ≥ g(Rn), we may use a similar coupling argument as in Section 4.1. Thus,

there is a coupling of R∗ and R such that

∀n ∈ [k, T ∗]; Rn ≤ R∗
n.

From this coupling, for T defined in Lemma 4.1 we have

P {T = +∞} ≤ P {T ∗ = +∞} . (4.5)

Observe that in the case of k = 1, g is linear and the two processes Rn and R∗
n coincide. The linear case was

analyzed in Addario-Berry et al. [3] and we may use their results to understand the behavior of R∗
n. Indeed, the

process defined in Addario-Berry et al. [3] is the same as R∗ if one sets the flip probability of Addario-Berry
et al. [3] equal to −g′(1/2)/2 and starts at time k. They prove that if p ≥ 1/4, then, for the process starting at
time 1, majority voting has an error probability of 1/2 + o(1/2). Lemma 4.1 implies that this process reaches
1/2 in finite time almost surely. So even conditioned on its value being 1 at time k it will reach 1/2 in finite time
almost surely. This proves that even for R∗

n starting at time k its error probability is 1/2 + o(1). According to
Lemma 4.1 this implies that for this range of p, P {T ∗ = +∞} = 0. Hence, using Lemma 4.1 and (4.5), shows
that if g′(1/2) ≤ − 1

2 , then

lim sup
n→∞

Rmaj(n, p) =
1

2
.

Lemma 4.2 shows that limn→∞ Rmaj(n, p) = 1/2. Because g′(1/2) = (1 − 2p)αk − 1, we just proved that if
p ≥ 1/2− 1/4αk, then

lim
n→∞

Rmaj(n, p) =
1

2
,

completing the proof of the third statement of Theorem 1.1.

4.2.2. Intermediate rate

It remains to study the “intermediate” case p ∈ [1/2− 1/(2αk), 1/2− 1/(4αk)). To this end, we may couple
Rn to a process for which majority voting outperforms random guessing. Let us fix p ∈ [1/2 − 1/(2αk), 1/2 −
1/(4αk)), which implies that g′(1/2)/2 > −1/4. Then choose q = −g′(1/2)/2 + ϵ with ϵ > 0 small enough so
that q < 1/4 and g(0) > h(0). We define the linear function h(t) := −2q(t− 1/2), and as illustrated in Figure 4,
we denote by a and b the intersection points between h and g (apart from 1/2). More precisely a and b are
defined as the the roots of g − h distinct from 0. Since g − h is strictly convex on (0, 1/2) and (g − h)(0) > 0,
(g − h)′(1/2) < 0, a and b are well defined and sit respectively in (0, 1/2) and (1/2, 1).
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Figure 4. Comparison of h and g, for k = 3 and p = 0.34 (rescaled for clarity).

We define R∗
n similarly as in the previous section but now with h(t) = −2q(t− 1/2), that is R∗

k = 1 and

R∗
n+1 = R∗

n +
Bn (h(R

∗
n) +R∗

n)−R∗
n

n+ 1
,

where the Bn are conditionally independent Bernoulli random variables. In particular,

E [Bn (h(R
∗
n) +R∗

n)−R∗
n|R∗

n = t] = −2q

(
t− 1

2

)
.

Just as in the previous section, we may use the analysis of Addario-Berry et al. [3] for the case k = 1 with
mutation probability of q. Addario-Berry et al. [3] state that for the process R∗

n started at time 1 and for
q < 1/4 majority voting is better than random guessing. As it was pointed out to us by a referee, the proof in
Addario-Berry et al. [3] that uses general limit theorems for Pólya urns with randomized replacements due to
Janson [20] is incorrect. In the Appendix we give a self-contained proof of this statement.

To use the result for trees, we need to make sure that it holds when R∗
n is defined as above, started at time k.

Let R′∗
n be the process started at time 1, for which the majority voting is known to outperform random guessing.

Let T ′∗ and T ∗ be the first time indices at which R′∗
n and R∗

n reach 1/2, respectively. Finally, let (Un)n∈N be a
collection of independent uniform random variables. For n ∈ [k, T ′∗), we couple R′∗

n and R∗
n as follows

R′∗
n+1 = R′∗

n +
1
(
Un ≤ h(R′∗

n ) +R′∗
n

)
−R′∗

n

n+ 1
,

and

R∗
n+1 = R∗

n +
1
(
Un ≤ h(R∗

n) +R∗
n

)
−R∗

n

n+ 1
.

With this coupling, a recursion proves that for all n ∈ [k, T ′∗), R∗
n ≥ R′∗

n . Because majority voting is known
to outperform random guessing for R′∗, Lemma 4.1 proves that P {T ′∗ = +∞} > 0. The coupling directly
implies that P {T ∗ = +∞} > 0. So majority voting outperforms random guessing for the process R∗. Thus,
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from Lemma 4.1 it follows that

P
{
∀n ≥ k : R∗

n >
1

2

}
> 0.

Now, from Lemma 3.1 we deduce that both processes Rn and R∗
n converge almost surely to 1/2 and exceed

b only finitely many times. Thus, there exists an almost surely finite random time T ′ such that and ∀n ≥ T ′;
Rn ≤ b and R∗

n ≤ b. We use similar coupling arguments as in Section 4.1. So, on the event that R∗ does not
reach 1/2 we can couple Rn and R∗

n from T ′ onwards such that Rn ≥ R∗
n. This proves that

P
{
∀n ≥ T ′ : Rn >

1

2
| T ′

}
> 0.

Using that T ′ is finite almost surely and Lemma 4.1 we conclude that majority voting is better than random
guessing in this regime. More precisely, if 1/2− 1/2αk ≤ p < 1/2− 1/4αk, then

lim sup
n→∞

Rmaj(n, p) <
1

2
.

This completes the proof of Theorem 1.1.

5. A general lower bound

In this final section, we derive a lower bound for the probability of error that holds for all mutation
probabilities. In particular we show the following.

Proposition 5.1. Let k be a positive odd integer and let k/2 < ℓ < k. Assume that initially there are ℓ red
vertices, that is Rk = ℓ/k. Letting

hk := P
{
Beta

(
k + 1

2
,
k + 1

2

)
≥ 1− 1

k

}
,

the probability of error of the majority rule satisfies

inf
0≤p≤1
n≥2ℓ

P
{
bmaj
n ̸= bmaj

k

}
≥ 1

2
h2ℓ−k
k .

Proof. The proposition follows by simply considering the event that the first 2ℓ − k new vertices are all blue.
In that case, at time 2ℓ the number of red and blue vertices are equal. We may write, for any n ≥ 2ℓ,

P
{
bmaj
n ̸= bmaj

k

}
≥ P

{
bmaj
n ̸= bmaj

k | ck+1 = · · · = c2ℓ = B
}
× P {ck+1 = · · · = c2ℓ = B} .

From the symmetry of our model, P
{
bmaj
n ̸= bmaj

k | ck+1 = · · · = c2ℓ = B
}
= 1/2. Thus

P
{
bmaj
n ̸= bmaj

k

}
≥ P {ck+1 = · · · c2ℓ = B}

2
.
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To estimate the probability on the right-hand side, we use (2.4), which implies

P {ci = B} =

∫ 1

f(Ri)

(x(1− x))
k−1
2

Γ(k + 1)

Γ2
(
k+1
2

)dx.
If Rk = ℓ/k and ck+1 = · · · = ci−1 = B, where k < i ≤ 2k, then Ri−1 = ℓ/i. Since 0 ≤ p ≤ 1/2,

f(Ri−1) = (1− 2p)
ℓ

i
+ p ≤ max

(
1

2
,
ℓ

i

)
≤ k − 1

k
= 1− 1

k
.

Therefore,

min
k<i≤2ℓ

P {ci = B | ck+1 = · · · = ci−1 = B} ≥ hk,

as claimed.

6. Concluding remarks

In this paper we study the majority rule for guessing the initial bit values at the roots of a random recursive
k-dag in a broadcasting model. The main result of the paper characterizes the values of the mutation probability
for which the majority rule performs strictly better than random guessing. Even in this exact model, many
interesting questions remain open. For example, we do not have sharp bounds for the probability of error. It
would also be interesting to study other, more sophisticated, classification rules that take the structure of the
observed k-dag into account. In particular, the optimal probability of error (as a function of k and the mutation
probability p) is far from being well understood. For an initial study of localizing the root vertices, we refer the
interested reader to Briend et al. [23].

A natural extension of the model is obtained by considering q > 2 colors. In this model, one aims at guessing
the most common color of the initial configuration. In order to extend our results, instead of a single number,
one needs to consider a vector of dimension q − 1 to track the proportion of each color. For example, one may
consider the following rule to assign a color to a new vertex. At each step, among the k observed colors, pick
the most common (break ties uniformly at random). However, the analysis becomes most complex since instead
of comparing one random variable to 1/2, one needs to compare a random variable to q− 2 others to determine
which one is the most common. If one manages to write this recursion in a tractable manner, we believe that
a similar approach as the one of this paper may be used to understand the evolution of the proportion of each
color. Depending on the convergence regime, an important part of our proof relies on the comparison to the
tree case, that is, the case k = 1. In a tree, one way to study the multi-color problem is to group q − 1 of the
colors together. By doing so, the multi-color problem is simplified to a two-color problem in the tree with a
non-symmetric flip probability. However, the details may be nontrivial and are left to future research.
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Applic. 110 (2004) 177–245.
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Appendix A.

A.1 In trees majority is better than random guessing for p < 1/4

In Section 2.3 of [3] it is stated that the majority vote is asymptotically better than random guessing when k = 1
(i.e., the graph is a uniform random recursive tree) and the mutation probability p is less than 1/4. This result is used
in Section 4.2.2 above.

In [3] it is claimed that this follows simply from a general limit theorem for Pólya urns with randomized replacements
due to Janson [20]. However, the claimed symmetry in Janson’s limit distribution was not checked in [3]. In order to
remedy this, in the next Proposition we give a self-contained proof of the statement.

Suppose, without loss of generality, that the root vertex is red, that is, R1 = 1. Define the difference between the
number of red and blue balls at time n by ∆n = n(Rn −Bn).

Proposition A.1. If p < 1/4, then

lim inf
n→∞

P {∆n > 0} >
1

2
.

Proof. We use the representation defined in Section 2.1 of [3] for the difference ∆n, which we recall now.
The URRT is generated in the standard way, without attached colors, with 0 being the root vertex, and for i ∈

{1, . . . , n}, pi ∈ {0, . . . , i − 1} is the uniform random index of the parent of vertex i. Coloring the vertices may be
equivalently done as follows:

� let M1,M2, . . . ,Mn ∈ {0, 1} be independent Bernoulli(2p) random variables. When Mi = 1, vertex i is marked.
Then there is an independent coin flip ξi that takes values uniformly at random in {−1, 1} and determines if a
marked node takes the same color as its parent or it flips.

� when Mi = 0, vertex i is not marked. These nodes have the same color as their parent.

The root and marked nodes become roots of subtrees that are disjoint and partition the uniform recursive tree into many
pieces. Each of the subtrees consists of nodes of the same color, and the roots have the color of their original parent if
ξ = 1 and different otherwise (if ξi = −1). More precisely, if Bi ∈ {−1, 1} is the color of vertex i (with +1 interpreted as
“red” and −1 as “blue”), then

Bi =

{
Bpi if Mi = 0 (no marking) or if Mi = 1, ξi = +1 (no flipping);
−Bpi if Mi = 1, ξi = −1.

Let Ni denote the size of the maximal subtree rooted at vertex i such that all its vertices apart from i are unmarked
(and therefore monochromatic).

With this notation, ∆n may be written as ∆n = N0 +Wn, where

Wn =

n∑
i=1

NiBpiξiMi.

Since the Rademacher random variables ξi are independent of all other random variables,Wn has a symmetric distribution
about 0. In particular, by conditioning on all other random variables, we get that

P {∆n ≤ 0} =
1

2
P {N0 ≤ |Wn|} .

Hence, it suffices to show that lim supn→∞ P {N0 ≤ |Wn|} < 1. To this end, for a positive integer k, let Ek be the event
that the first k vertices are unmarked, that is, M1 = · · · = Mk = 0. Clearly, P{Ek} = (1− 2p)k. Then

P {|Wn| ≥ N0} ≤ P{Ec
k}+ P {|Wn| ≥ N0, Ek}

= 1− P{Ek}+ P

{∣∣∣∣∣
n∑

i=k+1

NiBpiξiMi

∣∣∣∣∣ > N0, Ek

}

= 1− P{Ek}

(
1− P

{∣∣∣∣∣
n∑

i=k+1

NiBpiξiMi

∣∣∣∣∣ > N0

})
,
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where we used the fact that the events Ek and
∣∣∑n

i=k+1 NiBpiξiMi

∣∣ > N0 are independent. Thus, it suffices to prove that

there exists an integer k > 0 such that lim supn→∞ P
{∣∣∑n

i=k+1 NiBpiξiMi

∣∣ > N0

}
< 1. To this end, we may write

P

{∣∣∣∣∣
n∑

i=k+1

NiBpiξiMi

∣∣∣∣∣ > N0

}
≤ P

{∣∣∣∣∣
n∑

i=k+1

NiBpiξiMi

∣∣∣∣∣ > EN0

2

}
+ P

{
N0 <

EN0

2

}
. (A.1)

We show that the second term on the right-hand side is bounded away from one, while the first term can be made
arbitrarily small by choosing k sufficiently large. In order to bound the second term on the right-hand side of (A.1),
we use the fact that by [3], Lemmas 4 and 6, EN0 ≥ e−1(n + 1)1−2p and Var(N0) ≤ c(p)(n + 1)2−4p + O(n logn) for a
constant c(p) > 0 depending on p only. Hence, using the Chebyshev-Cantelli inequality,

P
{
N0 ≥ EN0

2

}
≥ (EN0)

2

(EN0)2 + 4Var(N0)
≥ e−2

e−2 + c(p) + on(1)
,

which is clearly bounded away from 0.
Using once again the bound EN0 ≥ e−1(n+1)1−2p, the first probability on the right-hand side on (A.1) may be upper

bounded, using Markov’s inequality, by

P

{∣∣∣∣∣
n∑

i=k+1

NiBpiξiMi

∣∣∣∣∣ ≥ (n+ 1)1−2p

2e

}
≤

(
E
(∑n

i=k+1 NiBpiξiMi

)2)1/2
(n+ 1)1−2p/2e

Since the ξi are independent of all other random variables,

E

(
n∑

i=k+1

NiBpiξiMi

)2

=

n∑
i=k+1

EN2
i ≤

n∑
i=k+1

((
n+ 1

i+ 1

)2−4p

e4(4 + e) + e

)
,

where the upper bound for EN2
i follows from [3], Lemma 6. Thus,

P

{∣∣∣∣∣
n∑

i=k+1

NiBpiξiMi

∣∣∣∣∣ ≥ (n+ 1)1−2p

2e

}
≤
(
2e3

√
4 + e

)( n∑
i=k+1

1

(i+ 1)2

)1/2

+ 2e3/2n−1/2+2p

≤ 2e3
√
4 + e√
k

+ on(1).

Thus, by choosing k sufficiently large, we clearly have lim supn→∞ P
{∣∣∑n

i=k+1 NiBpiξiMi

∣∣ > N0

}
< 1 as desired.
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