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PREFACE

Hashlng algorithms scramble data and create pseudo-uniform data distribu-
tlons. Bucket algorithms operate on raw untransformed data which are parti-
tloned into groups according to membership In equl-sized d-dimenslonal hyperrec-
tangles, called cells or buckets. The bucket data structure Is rather sensltive t,
the distribution of the data. In these lecture notes, we attempt to explain the
connectlon between the expected time of varlous bucket algorithms and the dls-
tribution of the data. The results are lilustrated on standard searchlng, sorting
and selectlon problems, as well as on a varlety of problems In computational
geometry and operatlons research.

The notes grew partially from a graduate course on probablllty theory In
computer sclence. I wish to thank Elizabeth Van Gulick for her help with the
manuscript, and David Avis, Hanna Ayukawa, Vasek Chvatal, Beatrice Devroye,
Hossam El Gindy, Duncan McCallum, Magda McCallum, Godfrled Toussalnt and
Sue Whitesldes for making the School of Computer Sclence at McGill Unlversity
such an en}oyable place. The work was supported by NSERC Grant A3458 and
by FCAC Grant EQ-1879.
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INTRODUCTION

It 1s not a secret that methods based upon the truncation of data have good
expected time performance. For example, for nlce distributlons of the data,
searching is often better done via a hashing data structure Instead of via a search
tree. The speed one observes In practice I1s due to the fact that the truncatlon
operation Is a constant time operatlion.

Hashing data structures have not recelved a lot of attention In the 1970's
because they cannot be flt Into the comparison-based computational model. For
example, there Is no generally accepted lower bound theory for aigorithms that
can truncate real numbers In constant time. The few analyses that are avallable
(see Knuth (1973), Gonnet (1981,1984) and the references found there ) relate to
the following model: the data polnts are unlformly distributed over elther {0,1] or
{1,...M}. The unlform model Is of course motlvated by the fact that it Is often
possible to find a good hash function 4 (.), l.e. a function of the data polnts which
distributes the data evenly over Its range. In the vast majority of the cases, A (.}
Is not a monotone functlon of Its argument when the argument Is an Integer or a
real number. Non monotone functions have the undesirable slde-effect that the
data are not sorted. Although this Is not important for searching, 1t 1s when the
data need to be listed In sorted order rather frequently. If the data form a data
base, l.e. each data polnt can be considered as a polnt In R% with d > 1, then
range queries can be convenlently handled If the data are hashed via monotone
functions. There Is an ever Increasing number of applications In computational
geometry ( see the general survey articles by Toussalnt (1980,1982) where appll-
cations in pattern recognitlon are highlighted ; and the survey article on bucket
methods by Asano, Edahliro, Imal, Irl and Murota (1985)) and computer graph-
ics, In which the data polnts should preserve thelr relative positlons because of
the numerous geometrical operations that have to be carrled out on them. Polnts
that are near one another should stay near. In geographic data processing,
the cellular organlizatlon is particularly helpful In storing large amounts of data
such as satellite data (see the survey article by Nagy and Wagle, 1979). Many
tests In statistics are based upon the partition of the space in equal Intervals,
and the counts of the numbers of points in these Intervais. Among these, we clte
the popular chi-square test, and the empty cell test. See for example Kolchin,
Sevast'yanov and Chistyakov (1978) and Johnson and Kotz (1977) for appllca-
tlons In statlstlcs. In economic surveys and management science, the histo-
gram Is a favorite tool for visuallzing complex data. The histogram Is also a
superb tool for statisticlans !n exploratory data analysis. In all these examples,
the order In the data must be preserved.
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Monotone hash function

Typical hash function
L L L L L

Figure 0.1.

If we use monotone or order-preserving hash functlons, or no hash functions
at all, the unlform distributlon model becomes suspect. At best, we should
assume that the data polnts are random vectors (or random varlables) that are
independent and ldentically distributed. The randomness 1s lmportant because
we are not Interested here ln worst-case performance. Expected time can only be
analyzed If some randomness 1s assumed on the part of the data. The Indepen-
dence assumptlon can be defended In some situations, e.g. In the context of data
bases for populatlons. Unfortunately In some geometrical applications, particu-
larly image processing, the Independence assumptlon Is just not good enough.
Notlce that if plxels In a screen were selected Independently and according to a
given distribution, then the composed plcture would be a ‘‘pure nolse’’ plcture.
In a sense, the more Information we have in a plcture, the more dependence we
see between the plxels. Flnally, If we accept the Independence assumption, we
might as well accept the identical distribution assumptlon, except If there Is some
nonstationary (time-dependent) element In the data collection process.

We will only deal with d-dimensional real numbers and with distributions
that have densitles. The complexltles of varlous algorithms are measured In
terms of fundamental operations. Typlcally, truncatlon or hashing Is one such
operation. We will of course assume that real numbers can be truncated and / or
hashed in time Independent of the slze or the preclsion of the number - recall
that a slmllar assumptlon about comparing two real numbers Is needed In the
well-known comparison-based complexity theory. Densltles are convenlent
because they free us from having to consider discretization problems: If a distri-
butlon Is atomle (l.e., It puts lts mass on a countable set), and enough data polnts
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are drawn from thls distributlon, the number of colllding values lncreases
steadlly. In fact, If n Independent ldentlcally distrlbuted random vectors are
considered with any atomic distributlon, then /N /n — O almost surely as
n — oo where N 1is the number of different values. Meaningful asymptotics are
only possible If elther the atomlc distributlon varles with n, or the distribution Is
non-atomlc. There 1s another key argument in favor of the use of densltles: they
provide a compact description of the distributlon, and are easlly visuallzed or
plotted.

‘When independent random vectors with a ccmmon density are partitloned
by means of a d-dimenslonal grid, the number of grld locatlons (or buckets) with
at least 2 polnts has a distributlon which depends upon the denslty In questlon.
The density affects the frequency of collislons of data polnts In buckets. For
example, If the density Is very peaked, the buckets near the peak are more likely
to contaln a large number of polnts. We want to lnvestigate how thls crowding
affects the performance of algorlthms of bucket or grid algorlthms.

Throughout thls set of notes, we will conslder a d-dimenslonal array of equl-
sized rectangles (which we wiil call a grid), and within each rectangle, polnts are
Kept in a chalin (or linked list). The number of rectangles will be denoted by m,
and- the data slze by m. We will not consider Infinite grlds such as
{[#,i41) | i Integer} because Infinite arrays cannot be stored. However, because
data may grow not only in size but also In value as n — oo, wWe will conslder at
times grld‘ sizes m that are data value dependent. In any case, m Is usually a
functlon of n.
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Figure 0.2.
2d Grid

The purpose of thls collectlon of notes Is to glve a varlety of probabllity
theoretical technlques for analyzing varlous random variables related to the
bucket structure descrlbed above. Such random varlables lnclude for example,
the average search tlme, the tlme needed for sorting, the worst-case search time
and other nonllnear functlons of the cardinalitles N,, . .., N, of the buckets.
The probabllity theoretical technlques have several features: they are general (for
example, the Lebesgue density theorem is needed In cruclal places In order to
avold having to Impose any smoothness conditlons on the densltles), and when-
ever possible, appropriate probabllity Inequalities are Invoked (for example, heavy
use Is made of Jensen's lnequality (see e.g. Chow and Telcher (1978)) and
Chernoff’s  exponentlai bounding technlque (Chernoff (1952))). Since
N, ..., N,, s multlnomially distributed for a data-Independent grid, and the
N;’s are thus not Independent, It Is sometlmes useful to use an embedding
method that relates the multlnomlal vector to a vector of Independent Polsson
random variables. This method Is commonly called Polssonization. Even In our
Polssonlzation, we choose to rely on inequalities because only Inequalities will
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help us In the assessment of the expected time performance for particular values
ofn.

The polnt Is that we do not wish to glve an exhaustive descriptlon of known
results In the fleld, or to present' a list of exotlic appllcatlons. We start very
slowly on standard problems such as one-dimensional sorting and searchlng, and
will move on to multldimensional applicatlons towards the end of the notes.
These applicatlons are In the areas of computatlonal geometry, operatlons
research (e.g. the travellng salesman problem) and pattern recognitlon (e.g. the
all-nearest nelghbor problem).

In chapter 1, we have the simplest of all possible settlngs: the random varl-

ables X,, ..., X, have a common denslty f on [0,1], and [0,1] Is dlvided Into
-1 ¢ .

m equal lntervals A; = = , ——), 1<:<m. We are concerned with the
m m

slmplest possible measures of performance In searching and sorting such as the
average successful search time (called Dg) and the number of element comparls-
ons for sorting (called C). If m = n, and f Is uniform on [0,1], then each
interval recelves on the average one data polnt. It 1s well-known that
E(Dg)= 0O(1)and E(C)= O(n) in that case. It Is also known that the den-
sity f affects the distributlon of quantitles such as Dg and C'. We wlill see that

E(D5)~1+%f/2and E(C)N%ffzasn—mo. The factor [ f %, which 1s

a measure of the peakedness of the density f , affects the performance In a
dramatlc way. For example, when ff2 = 0o, we have E(C)/n — oo and
E(Dg) — o0 as n — oco. In other words, bucket sorting takes llnear expected
time If and only If {2 < oo.

While most users will be quite satisfled with Informatlon about E (C'), some
may doubt whether the expected value Is a good measure of the state of affalrs.
After all, E(C) Is an estlmate of the time taken per sort If averaged over a large
number of sorts. The actual value of C for one indlvidual sort could be far away
from Its mean. Fortunately, this Is not the case. We will see that

C/n — %—ffz In probabllity as n — oo: thus, If [f2 < o0, C/E(C)—11n
probabillty. For large n, even If we time only one sort, 1t Is unllkely that

C/E(C) 1s far away from 1. Of course, simllar resuits are valld for Dg and the
other quantitles.

We can take our analysis a bit further and ask what the variation is on ran-
dom varlables such as C. In other words, how small 1s C - E(C) or
Dg — E(Dg)? This too Is done In chapter 1. The answer for C ls the following:

Var(C)~n|[13-(f1 + 5[1?] .
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In other words, C — E(C) Is of the order of V'n whereas E (C) ltself Is of the
order of n. Varlances are used by statlstlclans to obtaln an upper bound for

P(C-E(C) > ¢)
via the Chebyshev-Cantelll Inequallty:

Var (C)

P(C-E(C) > < —
( (€)za= €2+ Var (C)

Sometlmes, thls Inequallty Is very loose. When ¢ Is large compared to \/;z— , there
are much better (exponentlal) Inequalitles which provide us with a lot of
confldence and securlty. After all, If C Is extremely unllkely to be much larger
than E (C), then the usual worst-case analysls becomes almost meanlngless.

We close chapter 1 with an attempt at reduclng the dependence upon [ .
The 1dea Is to apply the bucket method agaln within each bucket. This wlll be
called double bucketing. The rather surprising result 1s that double bucketing
works. For example, when ff 2 < oo, we have

E(C)

n

Nl e‘f <i
2 -2

Ot =

The detalled analysls of chapter 1 Is well worth the effort. The development
glven there can be mimicked In more compllcated contexts. It would of course be
unwise to do so in these notes. Rather, from chapter 2 on, we wlll look at vart-
ous probiems, and focus our attentlon on expected values only. From chapter 2
onwards, the chapters are independent of each other, so that interested readers
can lmmedlately skip to the subject of thelr cholce.

In chapter 2, the data X, ..., X, determine the buckets: the Interval
[min X; , max X;| Is partitloned Into n equal Intervals. This Introduces addl-
tlonal dependence between the bucket cardlnalitles. The new factor working
agalnst us Is the slze of the tall of the distribution. Inflnlte talls force min X;
and max X; to dlverge, and If the rate of divergence Is uncontrolled, we could
actually have a sltuation In which the sizes of the Intervals increase with n In
some probablilstlc sense. The study of E(Dg), E(C) and other quantitles
requires auxlliary resuits from the theory of order statlstlcs. Under some condl-
tlons on f , including ff 2 < oo, we will for example see that

INTRODUCTION T

E—(QlNE( max X; - mln X,-).fj"",
n 1<i<n 1<i<n

l.e. the asymptotlc coefficlent of n s the expected range of the data (thls meas-
ures the heaviness of the taill of f ) times f f 2, the measure of peakedness.
Unless [ vanishes outslde a compact set, It Is Impossible to have
E(C)= O(n).

In chapter 3, we look at multidimensional problems In general. The applica-
tlons are so different that a good treatment Is only possible If we analyze

T (V)

=1

where ¢ (.) Is a ‘*work functlon”, typlcally a convex positlve functlon. The maln
result of the chapter Is that for m = n, the expected value of thls sum Is O(n)
If and only If / has compact support, and

foa(f)< o

provided that ¢(.) Is a ‘“nlce”” functlon. Some applicatlons In computational
geometry and operatlons research are treated In separate sectlons of the chapter.

In some problems, we need to have assurances that the expected worst-case
1s not bad. For example, In the simple one-dimensional bucket data structure,
the worst-case search tlme for a given element Is equal to the maxlmal cardinal-
1ty. Thus, we need to know how large

max(V; )

1s. This quantity Is analyzed In chapter 4. If f Is bounded on a compact set of

log n . It f 1s not
log log n
bounded, then Its expected value could Increase faster with n. This result 1s for
example applied to Shamos’ two dimensional convex hull algorithm.

R?, and m =n then lts expected value Is asymptotlc to
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Figure 0.3.
Binary trie for points distributed on [0,1].

It 1s sometimes Important to have bucket structures which are allowed to
grow and shrink dynamilcally, 1.e. structures that can handle the operations insert
and delete efficlently. The essentlal ingredlent In such a structure Is an auxillary
array of bucket cardinalities. One can choose to spiit indlvidual buckets once a
certaln threshold value Is reached. This leads to a tree structure. If a bucket can
hold at most one element, then one obtalns In fact a binary trle (Knuth, 1973).
Another strategy conslsts of splitting all buckets In two equl-sized buckets simul-
taneously as soon as the global cardinallty reaches a certaln level. In this manner,
the number of buckets Is guaranteed to be a power of two, and by manipulating
the threshold, one can assure that the ratlo of polnts to buckets Is a number
between 1 and 2 for example. This has the additlonal advantage that Individual
bucket counts are not necessary. Also, no polnters for a tree structure are needed,
slnce data polnts are kept In linked lists within buckets. This dyadlc dynamic
structure Is at the basls of the extendlble hash structure described and analyzed
in Fagin, Nlevergelt, Plppenger and Strong (1979), Tamminen (1981) and Flajolet
(1983). Tamminen (1985) compares extendlible hashing with ordinary bucketing
and various types of tries. See Tamminen (1985) and Samet (1984) for multidl-
mensional trles. To keep these notes simple, we will not analyze any tree struc-
tures, nor will we specifically deal with dynamlc bucket structures.

A last remark about the grid size m . Usually, we will choose m such that
m = m(n)~ cn for some constant ¢ > 0. (The ratlo m /n will be called c,,

INTRODUCTION . 9

so that ¢, — ¢ as n — 00.) We do so because we are malnly Interested In
searching and sorting. Roughly speaking, we can expect to sort the data In time
O(n) and to search for an element In time O(1). If m = o(n), the average
number of points per Interval grows unbounded, and we cannot hope to sort the
data In tlme O(m). On the other hand, If m /o — oo, the overhead due to
housekeeping (e.g., travellng from bucket to bucket), which Is proportional to m,
and the storage requlrements are both superllnear In n. Thus, there are few
situations that warrant a sublinear or superlinear cholce for m .

While we do generally speaking have some control over m, the grid slze, we
do not have the power to determine d, the dimension. Raw bucket algorlithms
perform particularly poorly for large values of d. For example, If each axis Is cut
\nto two Intervals, then the grid size Is 2¢. There are problems in which 2¢ s
much larger than n, the sample slze. Thus, storage limitatlons wlll keep us from
creating filne mazes In large dimenslons. On the other hand, If rough grids are
employed, the distributlon of polnts Is probably more uneven, and the expected
time performance deteriorates.
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Chapter 1

ANALYSIS OF BUCKET SORTING
AND SEARCHING

1.1. EXPECTED VALUES.
In this chapter, f Is a density on [0,1], which s divided Into m Intervals

A; = [i,_’_],ls,'sﬂ, )
m ' m

The quantlties of Interest to us here are those that matter In sorting and search-
Ing. If sorting Is done by performing a selectlon sort within each bucket and con-
catenating the buckets, then the total number of element comparisons Is

where, by-definition,

i=1

CHAPTER 1 11

A
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I

Figure 1.1.
Bucket structure with n=17 points, m=12 buckets.

The other work takes tlme proportional to m, and Is not random. Selection sort
was only chosen here for Its simplicity. It is clear that for quadratlc comparison-
based sorting methods, we will eventually have to study T .

To search for an element present In the data, assuming that all elements are
equally likely; to be querled, takes on the average
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comparisons. This wlll be referred to as the ASST (Average Successful Search
Time). Note that Dg 1s a functlon of the N;'s and Is thus a random varlable.

To search for an element not present In the data (l.e., an unsuccessful
search), we assume that the element querled 1s X, ,,, independent of the data

and distributed as X;,. The expected number of comparisons condltional on the
data ls

Dy = §Niff=§NiPi

=1 A, =1

where only comparisons with non-empty cells In the data structure are counted.
Dy will be called the AUST (Average Unsuccessful Search Time), and p; 1s the
Integral of f over A;.

The propertles of this slmple bucket structure for sorting and searchlng have
been studled by Maclaren (1966), Doboslewlcz (1978) and Akl and Meljer (1982).
In this chapter, we will unravel the dependence upon f . To get a rough ldea of

the dependence, we will start with the expected values of the quantities defined
above.

Theorem 1.1.
Let f be an arbitrary density on [0,1). Then, evenlf [f 2 = oo,

E(T)/n~1+%ff’;
1 -
E(C)/n~-2—c-f/2,
~ Lorre.
E(Ds) 1+2cff,

E(Dy)~=[1*.
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Furthermore, E(T)=o0(n%, E(C) =o(n?%, E(Dq) =o0(n) and
E(Dg)=o0(n).

Density with low value for Density with high value for
square integral square integral

Figure 1.2

Theorem 1.1 sets the stage for this paper. We see for example that
E(T)= O(n)Iif and only If [f?2 < co. Thus, for hashing with chaining, [/ *
measures to some extent the Influence of f on the data structure: it Is an indl-
cator of the peakedness of f . In the best case ( f f? < o), we have linear
expected time behavior for sorting, and constant expected tlme behavior for
searching. This fact was first polnted out In Devroye and Klincsek (1981). Under
stricter conditlons on f/ (f bounded, etc.), the glven expected time behavior was
established 1n a serles of papers; see e.g. Doboslewicz (1977), Welde (1978), Meller
and Akl (1980) and Ak! and Meljer (1982). Theorem 1.1 glves a characterization
of the densitles with _[ S 2 — oo In terms of quantities that are important In com-
puter sclence. It also provides us with the form of the “*best’” density. Because
[£2>(ff)*=1 (Jensen's Inequality), and [f*=1 for the uniform density
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on [0,1], we see that all the expected values In Theorem 1.1 are minimal for the
unlform denslty.

Theorem 1.1 does not give the rate of Increase of E (T ) as a function of n
m
when [f? = co. However, even though T = 3 N;? can reach Its maximal
’ . =1
value n? (Just set N;=n, Ny= - - =N, =0), we have E(T) = o (n?) for all
densitles f . Thus, hashing with chalnlng when used for even the most peaked

denslty, must dramatically Improve the expected time for sorting and searching
when n Is large.

Proof of Theorem 1.1.

The proof is based upon a fundamental Lemma that will be useful In several
places:

Lemma 1.1.
(1) max p; = 0 (1) as m —o0.
$
m n T
M Forallr >1,n" 3 pf < [;] mff".

f=1

(1) Forallr > 1,

§ (npi)" ~ l%‘]r_l"ff'vand zm) =0 f}p;"‘).

i=1 =1 f=1

Proof of Lemma 1.1.

(1) follows from the absolute co‘ntln‘ulty of f, le. for each ¢ > O we can find
a 8 > 0 such that for all sets A with fdz < 6, we have ff < e
A A

(11) follows from Jensen's lnequality:
T ony = 8 B[y Sy B 1=y

f =] f=1

i=1
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(111) follows from (11) and a small additlonal argument: the upper bound in
1) ~ (—1-)"1n f f 7. Furthermore, by Fatou's Lemma and the Lebesgue density
c

theorem (see Lemma 5.10 for one verslon of thls theorem), we have

Iim 1nrt f] (np; ) =nﬂgr%[%) )':"; mf Y

a—o00 N § =1 A,

,
=llm1nr—1-l;n;] mff,," (where f, (z)=mp; for T €A;)
n

n =00

r-1
> im mr(%] fumiar f,"

fa =00 n —00

r

-4

Note that f, Is the histogram approximation of f .

-1
[fT (vecause f, — [ for almost all z).
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1 2 Figure 1.3. A10
Density f and its histogram approximation

The second  half of () follows from (1)
m m
¥ p" Smaxp. 3op"h

=1 i=1

and the Inequallty

CHAPTER 1 17

The proof of Theorem 1.1 1s slmple. Observe that each /N; Is a blnomlal
(n,p; ) random varlable and thus E (N; 2)==(np; )*+np; (1-p; ). Thus,

B(T)=E > N'-'] = 3 (n%;% + np;(1-p;)) = (n~n) p,% +n
f =1 =1 =1

~ & w4~ 2[4

=1

m
by Lemma 1.1 (). Also, by Lemma 1.1 (i), Y3 p;2 = o0(1), so that
=1
E(T) = o(n?%. All the other statements In the Theorem follow from the rela-
tlons:

=% f; N’—N)=—;-(T—n).

’

1
Dg ==
s n

It s

-

lnvziny1, T
2(Ns + N;) =T on

and

Dy = f) piN; (E(Dy) = "{] ;%)

f==1 § =1

1.2. WEAK CONVERGENCE.

In the previous sectlon, we obtalned an asymptotlc expression for E (T).
One should not exaggerate the Importance of such a quantity unless it 1s known
that T-E(T) 1s usually “small”. For example, If we could show that
T/E(T)— 1 In probabllity, then we would be satisfled with our criterion
E(T). In additlon, since T /E(T) Is closed to 1 for large n, the value of T
obtalned In one particular case (l.e., run; simulation) Is probably representative of

nearly all the values that will be obtalned In the future for the same n. The
main result here is
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Theorem 1.2.

Let [f? < oo. Then:

T/n — 1+lff 2 \n probabllity ;
c
C/n — % J /% 1n probability ;

Dg — 1+ 2—1— J /% 1n probabllity ;
c
and

Dy — L[ % 1n probability .
v c

The proof of the Theorem uses Polssonizatlon to handle the fact that
N TR N,, are dependent random varlables. For some properties of the Pols-
son distribution used here, we refer to section 5.1. We proceed now by extracting
a key Lemma:

Lemma 1.2.

Let [f? < co. Let N; be Polsson (np;) random varlables 1 < i < m.
Then

1 m
lim llmsup—n— 2 E(Y;)=0

K- n—00 i=1

where Y; Is elther
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() E(N:’Iyssg)sor
(“) E(N‘ 2)P (N, 2ZI{) ; Or

(m) EWN? Ly, >k »

and I 1s the Indicator function.

Proof of Lemma 1.2.

It 1s useful to recall a simple assoclation Inequallty: If ¢, are nondecreasing
nonnegatlve functlons of their arguments, and X Is an arbitrary real-valued ran-
dom varlable, then E (¢(X )W X)) > E(H(X))E (WX)) (see e.g. Lehmann (1968),
Esary, Proschan and Walkup (1967), and Gurland (1968)). For example, appiled
here,

E(NHP(N;? > K) < E(N; Iy ).

Thus, we need not conslder (11). We will deal with (1ii) first.

3=

T EWNS Ly >k = —

1= H

(n?p;% + np;) Inp, >K

I3

-

5 (ZPmf 1Y+ 0] ) by sk
=1 A; A,

(where [, 1s the function of section 1.1)

m 2
<= (‘L)ff 4 (nff ) I, >k /o (Jensen’s lnequality)
n 2 my A, 2

1
=f(—:';'f2+ TNt >kmya -
[+

Now, n/m — 1/c. Also, It >gm/n < It >ges for almost all = for which
f (z) > 0, and all n large enough (thls uses the fact that fa = [ for almost
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all z; see sectlon 5.3.) Slace f f 2 < 00, we thus have by the Lebesgue dom-
inated convergence theorem,

llmsupf(—f + My >kmm < f( T2 ); ske e

n —00 0

and this can be made arbitrarlly small by choosing K large enough.

Conslder now (1). Let L > O be an arbltrary constant, depending upon K
only.

3=
IIMs

E(N nesk) S — E E(N;*Insysinp, >1)

l=l

1 m
+=3 EWN; 2IN.‘21(.»’?.-’+-le:. <L)

=1

A simple application of (111} shows that the first term on the right-hand-side has a
limit supermum that 1S 0 (1) as L — oo. Thus, we should choose L in such a
way that L — oo as K — oo. The second term on the right-hand-side 1s

1 hd . ., .

— Y Al |

- ‘gl ZZ‘}/’TJ’(M’.) e /5
" ,'2,,," <L
1

<= = [ VI Y eV /5
R oap2cL,i<m i>vk

< (c +o (1)) E’(Y'—’IYZ\/;() (where Y is Polsson (\/f,—) distributed)
< (e +0(1)) E(Y3/VK ) (by Chebyshev's inequallty)

= (c +0 (1)) (L¥?+3L +VL )/VK.

This tends to 0 as K — oo when we choose L = K /%, The proof of Lemma 1.2
s complete.
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Proof of Theorem 1.2.

The results for C and Dg follow from the result for T. One possible Pols-
sonizatlon argument goes as follows: let n' = n-n%4 n'' = n4+n3¥% Let
N’ ,N''’ be Polsson (n' ) and Polsson (n' ' ) respectively. Let N;' be a
number of X;'s,1<j<N'’  belonging to A;. It Is clear that
N 1' P Nm' are Independent Polsson random varlables with parameters

n'’ p;,1<i<m. Flnally, let T/ = EN ZN "*. For arbl-
§=1 =1

trary € > 0 we have

%>(1+6)(1+%ff 2)} CIN'' <n}uU [T' ' >(1+e)(1+%f/ 3.

N-n
Using Theorem 5.5, we have P(N' ' <n) = P(

n3/4
< 2 exp(-n®?/(2n’ ' (1+ T

< _n3/4/nl ry

)))- Thus, for all n large enough,

P(—- > (1+e)(1+—ff ) < o(1) + P( > (1+—)(1+-—-f/ ).

Similarly,

P(-:- < (1—e)(1+—t-ff 2) < P(N' >n)+ P(%<(1—e)(1+%ff 7)) -

< 2 exp-n%%/2+o (' ) € P < (-S)1+ 21 2),

all n large enough. Now, all the probabilities Involving T' and T' ' are o(1)
1

it both 7! /n’ and T'’ /n’’ tend to 1-+-—fj'2 In probabllity. Thus, the

statements about, T, C and Dg are valld If we can show the statement about T

where T = 2 N;% and N, ..., N, are Independent Polsson random varl-
i=1
ables with parameters np; , 1 < ¢ < m.

First, we note that by Lemma 1.1,
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E(T)= ﬁ(n2pi2+np,~) ~ n(1+%j‘f 3,

=1

To show that (T-E(T))/n — O In probability (which Is all that Is left), we
could verify the conditlons of the weak law of large numbers for trlangular arrays
of non-ldentlcally distributed random varlables (see e.g., Loeve (1983, p. 317)).
Instead, we wlll proceed In a more direct fashlon. We will show the stronger
result that E(|T-E (T))/n — 0. We have

IT-E(T) < |33 N:*E Ny g ook

=1

m

=1

E(I) < SIEW;Iyssk/a) + EWN: g nn> g o+ E (N; P (N 22K /2

{ =1

+ E(N;®)gny>k 2l

I=|% Y% <|SG-EY) +|SEY)| =T + 1V,

i=1 i=1 =1
where Y; = (N;%-E (N; 2))IIN.-’—E(N-’)lﬁK’
v =|EU),
and

E(V) < E(I)).

Now, first choose K large enough so that llm supE ({/])/n < ¢, where ¢ Is an
n -

arbitrary positive Integer. (This can be done in view of Lemma 1.2.) Now,' we
need only show that for every K, E(IIl)/n — 0. But this 1s an lmmediate
consequence of the fact that the Y, —E(Y,~) terms are independent zero mean
bounded random varlables (see e.g. sectlon 18 of Loeve (1963)).

This completes the first part of the proof of Theorem 1.2. The argument for
Dy s left as an exerclse: first, argue agaln by Polssonlzation that It suffices to
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conslder Independent /V;'s that are Polsson (np; ) distributed. Then note that we

m
need only show that ¥ p; (N;-np; )—0 In probabllity.

=1

1.3. VARIANCE.
The results obtalned so far are more qualitatlve than quantitative: we know
1
now for example that E (T ) grows as n(1+-z-ff %) and that |T-E(T)|/n tends

to O In probabllity and In the mean. Yet, we have not established just how close
T is to E(T). Thus, we should take our analysls a step further and get 2 more
refilned result. For example, we could ask how large Var (T ) Is. Because of the
relations between C, Dg and T, we need only consider Var(T) as
Var (C)=Var (T)/4 and Var(Dg)=Var(T)/(4n%). Var(Dy) 1s treated
separately.

Theorem 1.3.
A. For all f, we have

L Var (D) = 512 - 2 frr 2 21

where the right-hand-side remains valld even If [f? or [f 2 are Infinite. (To
avold co—co, consider only the lowest bound in such sltuations.)

B. Forall f
n Var(Dy)— c2(ff3-(f1DD.

Here, the right-hand-slde should formally be considered as oo when elther

Jft=o0o0r [[3=co.

We note that for all [, (ff ?? < [ 3 (Jensen's Inequallty), and that equal-
ity 1s reached for the uniform density on [0,1]. Thus, once again, the uniform
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density miminlzes the ‘‘cost’’, now measured In terms of varlances. In fact, for
8
the uniform denslty, we have Var (D) = 0, all n, and Var (T )=2n —4—14-—;
n
when ¢ =1, m=n.

For the proof of Theorem 1.3, the reader should consult section 5.1 first. We
note here that the Poissonization trick of section 1.2 Is no longer of any use
because the variance Introduced by it, say, Var(T' -T) for n’ =n (see nota-

tion of the proof of Theorem 1.1), grows as n, and Is thus asymptotlcally nonne-
gligible.

Proof of Theorem 1.3.

Conslder T first. We will repeatedly use Lemma 5.1 because N, ..., N,
are multlnomlal (n,p,, ..., pp). Thus, omitting the fact that we are con-
stantly summing for ¢+ and j from 1 to m we have

E¥T)= Y E¥N;)+ 3 E(N;)E(N;?
i#]
= N[n%(n-1)%p;* + 2n%(n-1)p,;® + n?p;?

+ S n%n-1)°p;%p;% + n¥n1)p; p;*+p;%p;) + n%p; p;]
i#i

where we used the fact that E3(N;) = n(n-1)p; 2 + np;. Uslng varlous expres-
slons from Lemma 3.1, we have

E(TH=YSEWNN;Y+ Y E(N;?N;?
i#j
= Y [np; +7n (n-1)p; *+6n (n -1)(n -2)p, 3+ n (n -1)(n -2)(n -3)p; 4|

+ 3 [n(n-1)(n-2)(n-3)p; %p;*+n (n-1)(n -2)(p; p,; *+p;*p; )+n(n-1)p; p;
i#]

Because Var (T )=E (T?-E*¥T), we have

Var (T) = Y[(—4n3+10n2-8)p; *+(4n>-16n%+12)p; 3+(6n*-7n )p; *+np;

+ 3 [(~4n®+10n%-8)p, %p; P+ (-2n2+2n )(p; ’p; +p; p; )+(-n)p; p; .
iEj
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Using the facts that Yp; =1, Ep, p; = 3pi(1-p;) = 1-3p;% E Pi%p;

= 3P ¥(1-p;) = 21’ —p; 3, and Ep, pJ = 3p; (EPJ -p; %)
= (1p; 2>~ 33p;. we see that

Var (T) = (-an3+10n2-8)(Dp, )?

+ (4n%-12n%4n +12)32p; + (2n%-2n)Np; 2

By Lemma 1.1, we have for all constants r > 1, Yp;" ~ (nc)-Uffr
Thus, If [ f? < oo,

Var (T') ~ —an3(nc Y2(f f D*+4n%(nc )2 [ % + 2n%(nc )1 [ [ 2,

which gives us our expression. The right-hand-side of thls expression 1s nonsense
If both {f? and [/ 2 are co. In that case, note that (31p;%)2 < 3p;% (by
Jensen'’s Inequality), and that thus, because 31p;% = o (p;2),

Var (T) 2 (-2n%-4n +8)37p;® + (2n%-2n)3p; 2 ~ 2n237p; 2

so that Var (T )/n — co. This concludes the proof of the first half of Theorem
1.3.

We have E (Dy) = Ynp; 2 ~ %ff 2, and

E(Dy®) = E(Sp;*N;%) + E(Zpin; NiNy)
i5#]

f

S Hnp;+n(n-1)p; ) + 3 p; %p;®n(n-1)
ig]

=na0p %+ n(n-1)Tp%?

Thus,

Var Dy) =n 39,3 - n(Dp;: %)*
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Ir ff 3 < o0, then Var (Dy) ~ "1—2'(ff 3—(ff 2y2), It
nc

J72%=o0but [f? < oo, this Is still true. If both Integrals are Infinlte, we need
an addlitional argument. For example, let J be the collection of indlces for which
p; > a/m, where a >0 Is a constant. We have, by the Inequality
(u+v)? < 20?4207,

Var (Dy) = n33p;% -2n ($p; 22 + n3p; %-2n (9 2
7 7 g Je

where J°¢ is the complement of J. By Jensen's Inequallty,
¥y = (e,
J J J

and similarly for J¢. Thus, we have

Var (Dy) 2 n (S D(Epi)™ -2) + n(Sp (e -2)-
J J v Je Je

It 1s a slmple exerclse to show that m¥p;2— [ f%2 p;— [ /.,
Je f<e Je f <a

>p; = [ f.m%p;? — oco. For any cholce of ¢« with [ f € (0,1), we have

J [ >a J [ >a

thus n Var (Dy) — oo.

1.4. LARGE DEVIATION INEQUALITIES.

Often, one would like to know the llkellhood of the event [C > z] (or of
[Dg-> z) or [Dy > z]), and In the absence of an exact answer, good upper
bounds for the corresponding probabllitles P(C > z), P(Dg > z) and
P(Dy > z) wlll do too. For thé sake of simplicity, we will derlve such upper
bounds for P(Dy > z). The analysls for C' and Dg is conslderably more com-
plicated.

First, we observe that there is little hope to get a small bound unless z

exceeds E (Dy) ~ —c-l—- f f 2. Thus, we will ask for upper bounds for the proba-
n

billty
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P(Dy > ——[[%a+e). ¢ >o0.
n

From Markov’s Inequality and Theorem 1.1, we have

E(Dy) < _1

17 0% -

P(Dy > —[/%(1+e) < =

valld for all f . Unfortunately, this bound requires large values of € to be useful.

By restricting ourselves to smaller classes of densitles, we can obtaln smaller
upper bounds.

For example, by the Chebyshev-Cantelll Inequality and E(Dy) < ¢, 7' f 2,
we have

P(Dy > (1+€)c, ' [/ %) < P(Dy-E(Dy) > ec, [ [ ?)
< Var (Dy)/(Var (Dy )+e([ [ *Pe, %)

Sy -1/(ne

If {f? < co. The upper bound Is obviously useless when Jf3®=00. When
Jf 3 < oo, 1t decreases with n for every ¢ > 0. Unfortunately, the decrease Is
only as 1/n. Better rates can be obtalned at the expense of stricter conditlons
on f. For example, we can hope to obtaln bounds that decrease as (n €2y for
arbltrary r > 1 provided that _f f? < oo for an appropriately blg constant p.

The condltlons f f? < oo, p > 1, are conditlons restricting the slze of the
infinite peaks of f . The strongest possible peak condition 1s "/ < C for some
constant C” . In that case, we can obtaln an exponential lnequallty:
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Theorem 1.4.
Assume that supf < C < oo. For all € > 0, we have

P(Dy 2 (1+€)e, [ [ ) < exp(-A (e)n)

where

2
A =supreff2-1-ff3¢C >o0.
() r>% ff 2 ff
In partlcular, If € = ¢, varles With n In such a way that ¢, | O, then
1
Ale) ~ S ([F/] 175
and If ¢, | oo, then

1
A(e,,)~?5sze,, log €, .

Proof of Theorem 1.4.

The proof s based upon Chernoff’s bounding technlque and a simple expres-
sion for the moment generating functlon of the multlnomlal dlstrlbutlon (see
Lemma 5.2). Let ¢ > O be an arbitrary number. Then

P(Dy = EN ;> (1+e)—f/ )

§ =1

< E(exp(—t(1+e)—ff +t EN pi))

§=1

= exp(—t———ff H1+e) ( E p; exp(ip; )" .

f=1
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Let us recall the definltion of the function f, from Lemma 1.1. Using the fact
2
that e®*-1 < u + iz-c" for + > 0, we have the following chaln of equalitles

and lnequalitles (where the first expresslon Is equal to the last expression of the
chaln given above):

exp(-te, (1+6) £ 3. ([ £ nexp(—f 2 )da )"
= exp(~te, {(1+6)[ [ . 1+ [/, (exp(—’i fa1)dz)

< exp(~te, (1+€) [ [ 2). (1+%ff,.’ + 2t722ff,,3 exp(-r—:‘-f,‘ )"

< expl-te, Ma+e) [ f 2+ te, M [ [+ n t22ff,,3 exp(—-C))
2m m

< exp(-tc, 'ef [ 2 + n2::2ff 3 exp(%C’)).

Here we also used the Inequality (14u) < exp(u), and the fact that
Jfa® < ff® foralls > 1 (Lemma 1.1). The first half of the Theorem follows
from the choice ¢ = rm. Now, as € | 0, we see that the supremum Is reached

for r =r (¢) > O, and that A (¢) is asymptotic to the value sup r eff 2-——;-rsz 3,
The latter supremum, for each ¢ > O, Is reached for r = ¢ f f 2/ f S 3, Resubstt-
tution gives the desired solution, A (€) ~ -;—52( Jro¥fre

When ¢ | 00, It 1S easy to see that the supremem 1n the expression for A {¢)
1s reached for r{¢) { co. By standard functional Iteratlons, applied to the equa-
tlon r(_e)=iclog(eff 2/(r(€)f f ®)), we see that A (¢) ~ the value of the expres-

sion to be optimlzed, at r =iclog(eff N7 3-(}_:-logE)), which glves us our solu-
tlon.
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Remark.

The Inequality of Theorem 1.4 for ¢, | 0, n¢,2 1 oo, Is called a moderate
deviation inequality. It provides us with good Information about the tall of
the distributlon of Dy for values of the order of magnltude of the mean of Dy
plus a few standard deviatlons of DU. On the other hand, when ¢, is constant
or tends to oo, we have large deviation inequalities. As a rule, these should
glve good Information about the extreme tall of the dlistribution, where the cen-
tral llmit theorem Is hardly at work. For example, 1t appears from the form of
the lnequallity that the extreme tall of Dy drops off at the rate of the tall of the
Polsson distributlon.

1.5. DOUBLE BUCKETING.
The results that we have obtalned until now quallfy the statement that T Is
close to n (1+-i—ff ?) when [ f? < oo. The presence of [ f ?1In this expression Is

disappointing. Perhaps we could hope to reduce the direct Influence of f on the
quantities that are of Interest to us by hashing the n Intervals a second time:
each Interval A; Is subdlvided Into N; equal sublntervals. This method will be
referred to as the ‘‘double bucketing™ method. The idea of double bucketing Is
obviously not novel (see for example Maclaren, 1968). In fact, we could keep on
dividing Intervals untll all data polnts are In separate Intervals. The structure
thus obtained 1s called an N-tree (Ehrilch (1982), Tamminen (1982)). Some
analysis for restricted classes of densitles Is glven In these papers. Recursive
bucketing when applled to sortlng Is analyzed In Doboslewlcz (1978) and Van
Dam, Frenk and Rinnooy Kan (1983).

‘What we will try to show here 1s that most of the benefits of recursive buck-
etlng are obtained after two passes, l.e. with double bucketing. The structure
that we will analyze is obtalned as follows:

Step 1. ) . ]
Let A,~=[%,-‘-), 1 <+ < n.For each A;, keep a lined list of X’ s fal-
n
ling 1n 1t. Let N; be the cardlnality of A;.

Step 2.
Fori =1ton do:If N; 2 1, divide A; Into N; equal Intervals 4,;, and
keep for each A,~J- linked lists of the data points In 1t. Let N,-J- be the cardl-
nality of A,‘j
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—
—

Double bucket structure.

n=17 data points (@)

6 ariginal buckets

bucket with cardinality Nidivided into Ni intervals

Figure 1.4.

The quantities that we will consider here are

n
T = E N,JZ!
=1 j=1
noq N 1
C =X (7 X( Nij )= —(T-n),
. 2 2
=1 1=
L& S Livoagy, L(T+n)
IR — — .. 2. ) T e—— n),
and
n N
Dy=3% ¥ 7N
f==] j=1
N, .
where all the summatlons 33 for N; =0 must be omitted, and

i=1
pij= [ f when A;; 1s defined. We note that the first division Is Into n
A :

)
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Intervals. The generallzatlon towards a divislon Into m Intervals s straighfor-
ward.

Theorem 1.5.
It [f2 < oo, then the double bucketing structure glves

1

1 1
E(T)n ~1+[e! ;EQC)n ~% [ e ;EDs)~ L2+ e)
4] 2 0 2 0

and

EDy)—1.

If we compare these asymptotic expressions with those for ordinary bucket-
Ing when m=n, le. E(T)/n ~1+[f2 we see that double bucketing is
strictly better for all f . This follows from Jensen’s lnequallty and the fact that
e™® < 1-u +—;-u2:

1 1
[17> 212> [e! > em-[f)=2.
2 ° ° e
Forall f with [f? < oo, we have

llm ﬂnT—) € [1+—i-, 2).

n —00

Thus, the llmit of E(T)/n is uniformly bounded over all such f . In other
words, double bucketing has the effect of ellminating all peaks In densities with
ff ? < oo0. ‘Let us also note In passing that the lower bound for E(T)/n 1s
reached for the uniform density on [0,1], and that the upper bound can be
approached by consldering densitles that are uniform on [0,1], and that the upper
bound can be approached by consldering densitles that are uniform on
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1
1 - 1 1 kg
y— = ]-—+—¢ and letting K — oo. The fact that the proper-
o K] ({e K K )

tles of the double bucketing structure are basically Independent of the density f
was observed Independently by Tamminen (1985). The same s a fortlor! true for
N -trees (Ehritch (1981), Van Dam, Frenk and Rinnooy Kan (1983), Tammilnen
(1983)).

Proof of Theorem 1.5.
N,
In the proof, all summations Y, for which N; = 0 should be omltted, to

1=1
avold trivialltles. We start with a lower bound for E (T).
n N .
E(T)= S EUn> X NN Xpij/pi)* + Nipij/p:])

§ =1 J=1

n n N,
= NEW;)+ 3 E(N;?-N;) py (i /7))

f=1 =1 j=1

\Y
3

" Ny
+ TEWW-N) B (50

§=1 j=1 Iv‘

=n 4 é E((N;-1),) (where u  ,=max(x,0))

§=1

—n + REW;-1)+ 3 PWN;=0)

=1 f=1

=1 + T P(N;=0)

(=1

=n + f](l—p,-)" (where p;==[ f )
i =1 A,

+ fn‘_, exp(-np; /(1-p; ) (because 1-u >exp(-u /(1-u)), 0<u <1)

=1

v
s

1
=n+n fexD(—fn/(l_fn/n )) (where fn(z)=npi' .'IEA,')
o

~n+nfe'/
0
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by the Lebesgue domlnated convergence theorem and Lemma 5.10.

We now derlve an upper bound for £ (T ). For any integer K, we have

E(T)=n+ SEV, )+ S EWV'")

f=1 i =1
where
1 2 M
Vi =W-N) Y (95 /0:) Iy, <k
=t
and
[ 2 N'
Vi’ =O=N))Y (05 /9 Iy 5k
i=1

The statements about E(T), E(C) and E(Dg) In Theorem 1.5 are proved if we
can show that

1
1 2B '
lim Hm — . ) = - .
m s BEW =]

K —00 n—c0 i=1

n
im llmsup% EE(V;")-—-—O.

1
K —00 n—o00 i=1
We will use the function g, (z) = E(V;' ), z€A;. Clearly,

9n(z) < K E(N;) = Knp; = Kf,(z),z€4,,

ffa=1,alln; f, — f almostall z.

Thus, by an extended version of the Lebesgue dominated convergence theorem
(see e.g. Royden (1968, p. 89)), we have

1 1
1 n r
lm — YNE(V, )= Im, [¢g, =[ lmg,
N n 00 0 o n —00

n-—o00 N Q=1
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provided that the llmlt of ¢, exlsts almost everywhere. Conslder now a sequence
of couples (i,7) such that z€A;; CA; for all n. We have by Lemma 5.11,
nN;p;; — [ (z) for almost all z, uniformly 1n N; 1 < N; € K. From thils, we
conclude that

9a(2) ~ E((N;-1)4IN, <k ) - 2lmost all z.

Conslder only those z’ s for which f (z) > 0, and Lemma 5.11 applies.
Clearly, N; tends In distributlon to Z where Z 1s a Polsson (f (z)) random vari-
able (this follows from np; — f (z) (Chow and Telcher (1978, p. 36-37))). Since
(N;-1),Iy, < g forms a sequence of bounded random varlables, we also have con-
vergence of the moments, and thus,

9u(2) ~ E((Z-1)Iz<x) = [ (21 +e T E) -~ E(Z-1),175k)

for all such z, l.e. for almost all z (f ). Thus,

1
im lim -::E(V,-')=Kllm J(f @r1+e/ CE(Z-1),1p5k)) dz
N - 0

I
K—00 n—

1
Here we needed the fact that Kllm f E((Z-1),17.g) dz = 0, which s a simple
—vmo

consequence of the Lebesgue dominated convergence theorem (note that
1

J E(Z)dz =1). Also,
0

LEEW )< BEW I k)

=1 f=1

Deflne the functlon h,(z)= E(V; ZIN.- k) TEA;, and the functlon
h(z)= E(Z%I;- k) where Z 1s Polsson (f (z)) distributed. We know that
hy(z) S E(N;Y) < np; + (np;)? = [, (z)+f%z)— f(z) + [ *z), almost
all z; and that [/, +/,%— [/ +/2 Thus, by an extenslon of the Lebesgue
dominated convergence theorem, we have
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1

hy — [ lm &,

0'3—‘00

E(V;') <

1
n 1

1=
Oty ~

provided that the almost everywhere llmit of h, exists. For almost all z, NV;
tends In distrlbution to Z. Thus, for such z,

oo
lha-h| < 33 7P (N;=3)}P(Z=7)| =0

i=1

1
(see e.g. Slmons and Johnson, 1871). But f h —-0 as K — oo since
1 1 0
JE(Z* = [f +f? < oo, and E(Z2I; . g )—0 for almost all z. This concludes
0 o

the proof of

1 n [
llm sup Ilm sup — E(V. = 0.
K-ox n—~o0 N z: ( : )

=1

‘We will only sketch the proof for

n N n N;
EDy)=E(Yy T Pij Nij) = E(XS o N; 3 (i /9:)?) -

i=1 j=1 =1 j=1

First, 1t 1s easlly seen that

EDy) > E(S o N /N;)= 23p; = 1.

f=1 i=1

Also, If we follow the treatment to obtaln an upper bound for E (T ), we come
across terms V;' and V;'’ in which (V; 2-N;) 1s now replaced by p; N;. Mim-
leking the Polsson approximatlon arguments  for E(T), we obtain
llin_‘s;}p E(Dy) < 1when [f? < co. This concludes the proof of Theorem 1.5.
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Chapter 2

DENSITIES WITH UNBOUNDED SUPPORT

2.1. MAIN RESULTS.

In chapter 1, we have analyzed In some detall what happens when f Is
known to have support contalned In [0,1]. In first approximation, the maln term
In the asymptotic expressions for E (T )/n and E (Dy) contaln the factor f 12
which Is scale-dependent. If we were to divide the Interval {M, .M, "] =
[mln X;,max X;] into m equal-sized sub-Intervals, these expected values would
obviously not be scale-dependent because the distributlon of N,, ..., N, Is
scale invariant.

We could repeat all of chapter 1 for this more general setting If tedlum was
no deterrent. There 1s a new Ingredlent however when f has Inflnite talls
because M, and / or M, * dlverges In those cases. The results In this chapter
rely heavily on some results from the theory of order statistics. The technicalltlies
are deferred to sectlon 2.2. The following notation will be Introduced:

Mn = m‘n X,’ ’
1<i<n

Mn’=max¢x|'y
1<i<n

R, =rangeX,, ..., X,)=M,"-M, ,

5 =M, + —-‘: (M, *-M,),1<i<m+1,

Fi41

P = ff y1<i1<m
z,
M.

p= [,
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s = ess sup X, —ess Inf X, = width of support of [. um ne L) 1im sup E(T) _, +s —l-f]"
n—00 n n —00 n c
f Theorem 2.1 shows that there Is a close relatlon between E (T ) and the
range R,. For densltles with no talls, we have a generallzation of Theorem 1.1.
Area pi It 1s noteworthy that 1+ﬁ- f f 2, the limit value of E(T)/n, Is scale Invartant.
c
® :13 points Xi When s == oo, It Is not clear at all how E (mIn(R, ¢, "f[ 2,n)) varles with n.

For example, Is this quantity close to E (R, )¢, ! f f ? (which s easler to handle)?
Thus, to apply Theorem 2.1 In concrete examples, some results are needed for
R, . Some of these are stated In Lemma 2.1.

4 buckets

We wlll work with the following quantities: X = X, has denslty f and dis-
tributlon function F (z) = P(X < z) = 1-G (z); the Integrals

F(z)= [F(t)dt ;G(z)= [G(t)dt

-00

Figure 2.1.

will also be useful. We recall that

[o] 0
E(X]))=G@+F(@©) = [G(t)dt + [F(t)dt .
o —00

Theorem 2.1.

Let f be a density on R* with [ f % < co. Then
Lemma 2.1

Let § > O be arbitrary. Then:

(1) lm Inf Um Inf E(T) >1 '
: flo a—0 (n(1+E (min(R, ¢, [ f2,60)) (1) E(min(R, ,5n)1.

(1) Hmsup E(min(R, én)) < ccolfandonlyifs < oo .
and n —00 ’

(M1) tmsup E(R,) < ocolfandonlylfs < oco.

(1) 1lm sup E(T) <1 n —00

n —00 n(1+E(mln(R,,c,,“ff2,n))) - (v) E(R,)=coforalln > 21fandonly!f E(R,)= oo forsome n > 2
If and only If E (|X[) = co.

(v) E(X]) < ooimplles E(R,) = o(n).

In particular, If s < o0, we have
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™) E(X)) <o,
llmllmlnfg-(az—)=oo (%:oo)

a0 z—00 G (z)
and

Itm m tnf 2C98)

8]0 z—0 F (-z)
imply

E (min(R, ,bn)) ~ E(R,) for all § > 0.
(vi1) Are equlvalent:
lim sup E (min(R,,n))/n > O0foralld > 0;
n —00

Iim sup F (min(R, ,6n))/n > O for some § > 0 ;
n —+00

Im sup [z [P (| X]| > z) > 0.
z —00

(vi1l) Are equlvalent:
Iim inf E (min(R, ,6n))/n >0forall§ > 0;

n —0oo

Ilm inf E (min(R, ,6n))/n > O for some § > O ;

n —00

Ilm inf |z |P(|X]| > z) > 0.
Z —0

Lemma 2.1 in conjunctlon with Theorem 2.1 gives us quite a bit of informa-
tlon about £ (T ). For example, we have

Theorem 2.2.
It [f? < oo, then are equivalent:

Iminf E(T)/n < 0}
n 00
imsup E(T)/n < ;
n —+00

§ < o0
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(And iIf 5 < co, this Ilm Inf Is equal to this Ilm sup. Its value 1+iff %)
¢

Theorem 2.2 follows from Lemma 2.1 (1), (11) and Theorem 2.1. In Devroye
and Klincsek (1980), one finds a slightly stronger result: £ (T )==0(n ) If and only
If s < o¢ and fj ? < 00. In the next chapter, this will be generallzed to R d , SO
we don’t have to bother with an R ! verslon of it here.

We also have

Theorem 2.3.
I ff 2 < oo, then condition (v1) of Lemma 2.1 Implles that

E(T)~n(1+-z—E(R,,)ff2).

Theorems 2.2 and 2.3 cover all the smali-tailed distributions with little oscll-
lation In the talls. In Akl and Meller (1982) the upper bound part of Theorem
2.3 was obtalned for bounded densitles. The actual llmiting expression of E(T)
shows the Interactlon between the effect of the peaks ( f / 2) and the effect of the
talls (E(R,)). Note that E(R,) f f % 1s a scale-invarlant and translation-
invarlant quantity: It Is solely determlned by the shape of the density. It Is
perhaps Interesting to see when condition (vi) of Lemma 2.1 Is valid.

Example 2.1. (Relatively stable distributions.)
A relatlvely stable distribution 1s one for which

G(az) __ 8 5.
(l)zll_xgo—c @) — all 6 €(0,1) ; (5=00) ;
and

1) im 92D

= , al ,1) .
Ry T, o , all a €(0,1)
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If we use the notatlon M, * = max(X,*, ..., X, 1) where u*+=max(u ,0) then
1t should be noted that if P(X > 0) > 0, (1) Is equlvalent to

(1) M, * — 1 In probabllity for some sequence a,

(Gnedenko, 1943). In that case we can take @, = Inf(z: G(z)Sl) where
v n

G (z)=P(X > z), or\n short, a, = G"(%) (Dehaan, 1975, pp. 117). We note
that (1) 1s equlvalent to G (0) < 0o, G (z)/(zG(z)) =0 as z — oo0; or to
o]

G (0) < oo, [tdF (¢)/(zG(z)) — 1 as z — oo.

For relatlvely stable distributions, we have E(R,)~F “(—1-)+G ‘1(-1-)
n n

(Pickands, 1968). It s very easy to check that condltion (v1) follows from the
relative stabllity of the distribution of X . When

zf (2) _
(lV)zlE%o W =00,

we know that (111) holds (Geffroy, 1958; Dehaan, 1975, Theorem 2.9.2). condition
(1v) comes close to belng best possible because If f Is nonincreasing and positive
for all z, then (111) implles (1v) (Dehaan, 1975, Theorem 2.8.2).

Example 2.2. (Normal distribution.)

For the normal distribution with density (27r)"Y/2 exp(-z2/2), we have rela-
tive stabillty and square integrabllity. In particular,

1
ER,)~ 2G“-(-7;-) ~ 2v2log n (see e.g. Galambos, 1878, pp. 85), and thus

E(T)~n (1+2V21log n sz)=n(1+.\/72r-logn)~ %—nx/logn .

Example 2.3. (Exponentlal distribution.)

For density f(z)=1¢"%*, z > 0, we have relative stability and square
Integrabillty. Thus, because £ (R, ) ~ log n,
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E(T)~n(1+logn jf2)~%n logn .

Example 2.4. (Regularly varylng distribution functlons.)
Condition (v1) of Lemma 2.1 1s satisfled for all distributions for which

(1) G(z)=0 for all_z large enough; or G is regularly varylng with
coefliclent p < 0 (l.e.,, G(ar)/G(z) — afforalla > 0asz ~ o).

() F(z)=0 for all z large enough; or F 1s regularly varylng with
coeflicient p < O (l.e., F(az)/F(z) — a?forall a > 0as z — 00).

In (1) and (11) we can replace the functlons G and F by G and F If we wish pro-
vided that we add the condlitlon that the coefficlent of regular varlatlon be
p < -1. The latter fact follows from the observatlon that as z — oo,
G (z) ~ zG (z)/(-p-1) (Dehaan, 1975, Theorem 1.2.1).

Example 2.5. (Upper bounds for E (R, ).)
One of the by-products of Theorem 2.1 Is that

Ilm sup E(Ti
noe nE(Rn):ff2

<1

Thus, good upper bounds for E (R, ) glve us good upper bounds for E (T )/n.
For example, we have

E(R,) < E(max X;* - min X;")
t ]

< EY"(max X;*') + EV"((-min X;7)") allr > 1,
) 2
1

<2V ET(X|).

Thus, depending upon the heaviness of the tall of X, we obtaln upper bounds for
E(T)-that increase as n'*!/". We can do better when the moment generating
function of X 1s finlte In a nelghborhood of the origin, l.e.

E(et¥ly < oo, for all ¢t In some Interval [0,€).
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Since u” < (;t) e, u > 0,we have
e

E(R,) < 2_'t,nl/r El/r(ctl)(])
[

t1X|
81 oy (log(E(e ))) Jorsuch ¢t ,and alln > e,
t log n

=2

where we took r ==log n. For the {' s In the Interval [0,¢), we have a
n — oo,

E(R,) < @+o 1)) =52,

Thus, the best result is obtalned by setting ¢t equal to e. In particular, 1
E (e tlx I) < oo for all t > O (such as for the normal denslty), then

ER,)=o0(ogn),
and thus

E(T)y=o(n log n).

Theorem 2.2 treats densitles with compact support, while Theorem 2.3 cov
ers quite a few densitles with finlte moment. We will now skip over some dens!
tles In a gray area: some have a finite first moment but do not satisfy (V1) ¢
Lemma 2.1, and some have infinite first moment E (|X|), but have relativel
small talls. The worst densities are described in Theorem 2.4:
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Theorem 2.4.
Let [f? < co. Then

(1) lmsup E(T)/n? > 01f and only If im sup |z |P(|X| > z) > 0;
n —00 z —00

(1) Um inf E(T)/n? > 01f and only if im 1nf |z [P (|X| > z) > 0;
n =00 z =00

(M) E(T)=o(n%1fand only if Im sup [z |[P(|X| > z)=0;
=0

(Note that T < n? for all densitles, and that statement (1) Implles

Thus, the Cauchy density f (z )=l-(1+1'2)'1, which satlsfles (11), must have
w

E(T) > cn? for some positive constant ¢ . If we compare Theorem 2.4 with the
results of chapter 1, we notlce that heavy talls are much more of a nuisance than
infinite peaks: indeed, regardless of which f s chosen on [0,1], we have
E(T) = o(n?®); but even moderately talled densities can lead to a lower bound
for E(T) of the form c¢n? Let us also polnt out that there are densitles with
E(]X|) =00 for all n, but E(min(R,.0n)) = o(n) for all § > 0: just take
F(z)=1-1/((1+z) log (z +¢)), z >O0.
‘We conclude thils sectlon by noting that

E(Ds) ~ E(T)/2n) + 1/2,

E(C) ~ ———E(z)‘" ~ o (i /p )

=1

and

E(Dy)~E®Y pi%p).

§=1

Nearty all that was sald about E (T ) remalns easlly extendible to E(C), E (Dg)
and E (Dy). For example, If s < oo,

~ Srre
E(Dg) 1+2cff.



40 CHAPTER 2

E(Dy)~ =[/*
and

8§
E(C)~n —=[f*.

1
E (Dg

We finally note that the quantity s f / 2 is scale Invarlant and that for a
densities 1t Is at least equal to 1, In view of

If s = oo, we have E(C) ~

)~ E(T)/(2n) and E (Dy) ~ E(T)/n.

—_

i

1=( [ [P<f1* [ d=s[f?.

support of [ support of f

2.2. PROOFS.

Proof of Lemma 2.1.

Fact (1) 1s trivial. For fact (1), we note that If s = co, we have B, —

almost surely, and thus, im inf E (min(R, ,6n )} > E (lm Inf min(R, .6n)) = co.
n—0 n —0o0

Also, In all cases, s > R,, and we are done. Fact (111) Is proved as (11).
For ttem (lv), we note that E(R,) < 2nE (|X|), that E(R,) 1 and that
ER,) = E(|X~X,)> ot E(|X-z|) = oo when E (|X|) = oo.
z

To show (v), 1t suffices to prove that E(max( | X,|,..., | X, |) =o(n).
Let |X,| have distributed functlon F on [0,00). Then for all € > 0,

Emax(|X,], ..., | X%, )= [1-Q-F (z )" dz
[+]

<ne+ [Q-(1-F(z)*)dz < ne+nf F(z)dz =ne+ o(n),

and we are done.
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We will now prove (vi). Slnce min(R,,fn) < R,, we need only show that
Iim inf E (min(R, ,6n))/E (R, )= 1 for all § > 0. Let us define z t¥=max(z ,0),

zu'=°;ln(z 0), Rt=max(X,*,...,X,"), R"=mIn(X 7, ..., X;7). We wil
show that E (R, -min(R,,6n))/E(R,) — O for all § > 0 and all nondegenerate
distribution with s = oo ( for otherwise, the statement s trivially true). Clearly,
1t suffices to show that for all § > 0, E(R *-min(R *,6n))/E(R,) —0. It X+
has finite support, we see that this follows from (l1). Thus, we need only consider
the case that X+ has inflnlte support. Now, E o(SR,‘) > E((R*-X)p+sq)

> E(R*Ig+s) -E(IX|) =ER") -E(X|) = [1-0-G()"dt - E(X])
0

~ [1~(1-G (t))* dt. Also, E(R*-min(R +6n)) = [1-(1-G (¢))" dt. We have
[} on .

reduced the problem to that of showing that for all 6§>0,
[0 o] o0
f1-a-G )" dt / [1-(1-G (¢)* dt —o.
in ]

We will need the following Inequallty:

—;-mln(nu 1) < 1-(1-4)® < min(ny,1),alln > 1, v € [0,1].

This follows from 1-nu < (1-u)* < e™; e* < %rort >1; and

1
et < 1-—% for t €[0,1]. Thus, If ¢, = Inf(z:G (z) < —n-) and n s so large that

a, > 0, we have

-;- < [1-1-G (t)"dt / (a, +nf G(t)dt ) < 1.
o]

Gy

Thus, we need only show that

00

n [G(t)dt /(a, +nf G(t)dt)—0,allé> 0.
in

Ge
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*® hod " Lemma 2.2.
By our assumptlion in (v1), we have fG(t )dt / fG(t )dt — co when @, /n ~ 0 M T < n?
F < nZ
a, n - '
(and this o turn follows of course from the fact that f G (t)dt < co lmplles . R, M. 2
) W) E(T|M, .M, *) < n(1+—— 2.
tG(t) =+ 0ast — o0o). This concludes the proof of (vi). CaP” M,
We will now prove (vll) and (viil) for R* and lim sup (or llm Inf) mo
T —~00 z —»00 * _9)2 .
zG (z) > 0. The extenslon of the result to R, Is left as an exerclse. For ) E(T|M, M, *) 2 (n-2) '}21 .
€ € (0,6) we have the following chalns of lnequalities:
én en 6 ) Proof of Lemma 2.2.
1e (min(R* ,6n)) = L f 1-1-G () dt = i( f + f ) Part (1) 1s obviously true. Parts (1) and (1i1) follow from
n n V] n o] €n
1 " 5
< = (en +nfG(t)dt)§e+6nG(en)=e+—en G(en); . m  (n-2)p; ,  (n-2)p; P
n €n € E(TIM, M,")= % [( ¥+ 1-—=)
. =1 p 14 14
i 2
and =n-2 + [(n-2)*~(n-2)] 3 (p:/p)
=1
1 . %
SE@nR* 6n)) 2 - [ 1-e 0O dt > (1-e7E0)), and the fact that
0
This proves that Iim sup zG(z) > 0 is equlvalent to
z—00 .
Ilm sup E (min(R *,6n))/n > O for all § > 0 or for some § > O; and that simllar m m B . " M. 2
ater Det=3 (f  /(Ba/m)Ry/mP < Refm) [ 17
statements are true for the limlt Infimum. This concludes the proof of Lemma Q=1 i=1 = M,
2.1.
Proof of Theorem 2.1 (i)
We are left with the proof of Theorem 2.1. This will be taken care of In We start from Lemma 2.2 (111). Let § > O be a sufficlently small number.
small steps. From the observatlon that conditlonal on M, , M, *, the N;’s are Then

binomlally distributed with parameters n -2, p; /p, we deduce the following:

Ti41

i p;’= é") (i 41— X f [ /@m0

=1 f==1
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Tl

> % Lr, [ f*R/me) o

i=1

¥

(where f (a,z) = z<l_lzl-f§y ,’; [ /ly-2])
M,

- .}n.R,, A{ f 3R, /m.z).

A9 00
Find values A (§) and 4 *(6) such that [ f2= ﬁj 2
3
A

—00
value B (8) such that

[1%a.5)> (1-§)ff2,auo < a < B

Thus, If A 1s the event [M, < A(8), M,* > A*(§)] and B Is the event
[R,/m < B(5)], we haveon A N B, for a =R, /m,

M-' o0 M

[ FHax)> [ [¥auz)- f2(a,x)—ff2(a,z)
M, M,* o0

> -9/ =222 =0-9ff*

Thus,
m 2 1
02> Iinp 1-8) —R, [f2.
f=1 m
‘We also have
m 2
X2 g CO)
1 =1
where

y
= suw Jrr.

A@Lz<y<at@)
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Note that as & | 0, we have B(§) — 0 and thus C(§) — 0. Combining these
bounds gives

S 57 2 Iy mn(-OR, [12, CO) =L Z(R,)

=1

where Z (R, ) Is an Increasing function of R,. By Gurland's Inequalitles (Gur-
land, 1968) we have E(I, Z(R,)) = P(A)E(Z(R,)). We also know that
P(A)—1for all § € (0,1). Thus, with a little extra manlpulation we obtaln the
following bound:

E(T)/n 2 (1+o(1)+E (mln(-;LR,. 1-6)f 1 % nC()))

> (1+ 0 (U)A+(1-HE (mln(%Rn [1%nC@)) .

This concludes the proof of Theorem 2.1 (1).

Proof of Theorem 2.1 (ii).
From Lemma 2.2, we have

E(T|M, M,*)/n < min(n, 14+(R, /(cap®N[ [ ?)

<1+ min(n (R, /(e 2N .

Let us take expectations on both sides of thls lnequality. For arbitrary € > 0 we
have

E(T)/n < 1+E(min(n (R, /(c,p*)f f *

< E(min(n (R, 1+6)/¢a)[ [ D) + 1+ n P(— > 1+¢)
14

< E(min(n (R, /ey ) [ [ D) + c—e-j/2+ n P <1/Vite) +1.
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The proof 1s complete If we can show that the last probability 1s o (1) for every
€ > 0. Let U,,U, be Independent uniform [0,1] random varlables, and note that
p 1s distributed as U,Y™ U,Y/(*-1) Thuys,

P(p < 1/Vit+e) K P(U\V™ < (14e)V4) + P(U,M/* ) < (1+4¢)/4)

< 2 (1+ey{r-V/4

and we are done.

2.3. A SUPERLINEAR NUMBER OF BUCKETS.

For many Infinite-talled distributions, we know precisely how E (T) varles
asymptotically. For example, for densitles covered by Theorem 2.3,

E(T)~n(+—ERy) [f?)

when m ~ ¢n. We also have In those cases, by the proof of Theorem 2.1 (1t),

1 €

< _— —_—
ETY<n(1+ 2(1%)("_1)/4 + .

E(R,
free 22 ppsy,

for arbltrary € > 0. Here ¢, = m /n. When we sort, there Is an additlonal cost
of the form Am for some constant A > O due to the time needed to Inltlalize
and concatenate the buckets. If £ (R, ) — oo, It is easy to see that In the upper
bound,

E(R
E(T)<n —%ﬁﬂ(mu»

n

provided that E(R,)/c, — co. If we balance the two contributlons to the cost
of searching with respect to m, then we will find that 1t 1S best to let m Increase

at a faster-than-llnear pace. For example, conslder the minimization of the cost
function
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n E(R,)
am 4 ZEB) (o
(=)
n
The minimum Is attalned at
— Lid 2
m=n - frz,

and the minimal value of the cost function Is

2n\/AE (R,)[f?.

If we had picked m ~ cn, then the maln contribution to the sorting time would
have come from the selectlon sort, and It would have Increased as a constant
times n E (R, ). The balancing act reduces this to about n./E(R,), albelt at
some cost: the space requirements increase at a superlinear rate too. Futhermore,
for the balancing to be useful, one has to have a prior! Information about E (R, ).

Let us consider a few examples. For the normal distribution, we would

optimally need
n1/ 1 :;-?-logn
m A 7r b
2
Am ~E(T)~n\/A:;;logn.

For the exponential distribution, we have
m n L log n
V 24 ’
A
Am ~E(T)~n ?mgn.

and obtaln
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Similarly, for all distributions with fintte f|z|" f (z)dz, [f *(z)dz, we can
choose m such that

1

1
Am ~E(T)< Cn 2

for some constant C.

The 1dea of a superlinear number of buckets to reduce the expected time can
also be used advantageously when f f 2= o0 and f has compact support.
When preprocessing Is allowed, as In the case of searching, and space require-
ments are no obstacle, we could choose m so large that E (Dg) and E (Dy) are

both O (1). To llustrate this point, we use the bound for E(T) used In the
proof of Theorem 2.1 (i1), and the fact that

T 1
De = = 4+ =,
s 2n 2

Thus, when [ f? < oo, E(R, ) — 00, we can choose
m ~ nER,)ff?,

and conclude that

llmsupm—)-§2,
n

n =00

Ilm sup £ (Dg) < 3.
n —00 - 2

‘We stress agaln that the 1dea of a superiinear number of buckets seems more use-
ful In problems in which a lot of preprocessing 1s allowed, such as In ordinary
searching and In data base query problems.
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Chapter 3

MULTIDIMENSIONAL BUCKETING.

3.1. MAIN THEOREM.

Several algorithms In computer sclence operate on polnts In R¢ by first stor-
\ng the polnts In equal-sized cells, and then traveling from cell to cell, to obtaln
some solution. Often these algorithms have good expected tlme behavior when
the polnts are sufficlently smoothly distributed over R?¢. This will be lllustrated
here by exhibiting necessary and sufficlent conditions on the distribution of the
polnts for llnear expected tlme behavior.

Our model Is as follows: X ,, . . ., X, are Independent random vectors from
R*¢ with common density f . We let C, be the smallest closed rectangle cover-
ing X,,...,X,. Each side of C, 1s divided Into n’ = |n /4| equal-length
Intervals of the type [a,b ); the rightmost Intervals are of the type [a,b]. Let A
be the collection of all rectangles (cells) generated by taking d-fold products of
Intervals. Clearly, A has m cells where

n>m > (nY41)8 > n(1-dn V).

The cells will be called A, . . ., A,,, and N; will denote the number of X;’ s
in cell A;. Thus, to determine all the cell memberships takes time proportional
to n. Within éach cell, the data are stored In a linked list for the time belng.
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—— 8 by 8 grid
N I Lo 64 points
5 '- Cell A; has N, =3 points

Figure 3.1.

The cell structure has been used with some success In computational
geometry (see for example, Shamos (1978), Welde (1978), Bentley, Welde and Yao
(1980), and Asano, Edahlro, Imal, Irl and Murota (1985)). Often It sufflces to
travel to each cell once and to do some work In the i-th cell that takes time
g (IV;) for some function g (or at least, s bounded from above by ag (lV;) and
from below by bg ([V;) for some appropriate constants a,b: thls slightly more
general formulation will not be pursued here for the sake of simplicity).

For example, one heuristlc for the traveling salesman problem would be as
follows: sort the points within each cell accordlng to thelr y-coordinate, joln
these points, then joln all the cells that have the same x-coordinate, and filnally
Joln all the long strips at the ends to obtaln a travellng salesman path (see e.g.
Christofides (1976) or P”;apadlmltrlou and Stelglitz (1978)). It Is clear that the

work here 1s O(n)+ 3 g(&V;) for g (u)=u2 or g (u)=u log(u +1) depending

§==1
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upon the type of sorting algorithm that 1s used. The same serpentine path con-
structlon Is of use In minimum-welght perfect planar matching heuristics (see e.g.
Irl, Murota, and Matsul 1981, 1983).

If we need to find the two closest polnts among X,, ..., X, In [0,1)%, 1t
clearly suffices to consider all palrwise distances d (X ,X j) for X; and X j at most
a4 (a constant depending upon d only) cells apart, provided that the grid Is con-
structed by cutting each slde of LO,I]" Into n' =[n'/?| equal pleces. Using the
Inequailty (u,+u,+..4+1 )* < 257 (u %+..+4; %), 1t Is not hard to see that the

m
total work here Is bounded from above by O (n ) plus a constant times 37 N; Z,

=1
—— 8 by 8 grid
1. . .t 64 points
N |
. . L ] B
- s
A
Figure 3.2.

Range search problem: report all points in the
intersection of A and B. Grid to be used in solution is also shown.

For multldimensional sorting and searching, we refer to section 3.2. In sec-
tlon 3.2, a few brlef remarks about the polnt-location and polnt enclosure prob-
lems will be Inciuded. The polnt enclosure problem can be consldered as a speclal
case of range searchlng, l.e. the problem of retrieving all polnts satisfying certaln
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characteristics. If for example we want to retrieve all polnts for which the coorc
nates are between certaln threshold values, then we can speak of an orthogon
range query. In the survey articles of Bentley and Frledman (1979) and Asan
Edahiro, Imal, Irt and Murota (1985), some comparisons between cell structur:
and other structures for the range search problem are made. The range searc
problem has one addlitional parameter, namely the number of polnts retrieve:
Query time Is usually measured In terms of the number of retrleved polnts plus
functlon of n. If most querles are large, then 1t makes sense to consider larg
cells. In other words, the cell size should not only depend upon n and [,
also on the expected slize of the query rectangle (see e.g. Bentley, Stanat and Wi
llams, 1977). In addltion, new distributlons must be introduced for the locatlc
and slze of the query rectangle, thus compllcating matters even further. F¢
these reasons, the range search problem will not be dealt with any further In th
collectlon of notes. The traveling salesman problem 1s briefly dealt with in se:
tlon 3.3, and In sectlon 3.4, we will look at some closest polnt problems In compt
tatlonal geometry. The latter problems differ In that the time taken by the algc
rithm 1s no longer a stmple sum of an unlvariate function of cell cardinallties, bt

a sum of a multivariate function of cell cardinalities (usually of the cardinality ¢

a central cell and the cardlnalltles of some nelghboring cells). In the entlr
chapter, we wlll deal with a work function ¢. Initlally, the tlme of an algorithr
is glven by

T = Emly(N.-)

f=1

for some functlon ¢ satisfying:
(1) ¢ 1s nonnegative and g (v )/ { o0 as u 1 oco.
1) g (u )/u" |1 0 as 4 — oo for some finite constant & ;

(1) ¢ 1is convex on [0,00); ¢ (0) = 0.

Remark.

We would like to polnt out that (1) and (11) Imply that ¢ 1s continuous anc
that ¢ (0)==0. Examples of functions ¢ (.) satisfylng the listed conditions are
g(u)=u",somer > 1,and g(u)= u log(u +1).
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Theorem 3.1.
Let [ be an arbitrary denslty on R 4. Then are equivalent:

M uminf E(T)/n < o0}
n —00

M) imsup E(T)/n < 0
n —o0

) fg(f(z))dz <oo.

Proof of Theorem 3.1.
The proof Is In three parts:

A. [ compact support, [¢(f )= o0 => llﬂgrE(T)/n = 00.
' => llm inf E(T)/n < oo.
B. f compact support, [§(f ) < co => m 1n (T)/

C. [ does not have compact support, llm Lrgr E(T)/n = oo.
7~

3

In the proof, we will use the symbols p; = [f, C= Udi p= jc" f. The
A; f=1

following fact will be needed a few times: glven C,
Y; < N <W,~+2d,1§i§m,n > 24 ,

where Y; 1s a blnomlal (n-2d,p;) random varlable, W; 1s a binomlal (n,p;/p)
random varlable, and "< denotes s stochastlically smaller than', l.e.

P(Y, >2)< PN, 2a) < P(W; +2d > 1), alz
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Proof of A.

Let C, be the smallest closed rectangle covering the support of f , and let
[fa(z) be the functlon deflned by the relatlons: f,(z)=0, z ¢ C
Ja(@)=(n-2d)p;, z € A;. We have

E(T)= % E(@(N;) = 3° EE(g(N)|C)

=1 f=1

> 51 E(E(¢(Y)|C)

f=1

> 5 E(29 ((n-2d)p; ~/n2d0p))

=1

(by Lemma 5.4, If we agree to let ¢ (u )==0 for u <0)

I

E(Is\%n(?j— 9(fa—=vV[a)) O\ denotes Lebesgue measure)

Shaded area is support of f.

C4:smallest rectangle covering
F‘—Q_‘—— support of f

C: smallest rectangle covering
all points

—

N

\ Data point

Figure 3.3.
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Thus, by Fatou’s lemma,
1
1 > — -
Um inf B(T)/n 2 E(J hm ot (rmrd (fa=v/ fa))

where the lnper llmit Inflmum Is with respect to a.e. convergence. Now, for
almost all w € O (where (Q,F ,P ) 1s our probablllty space with probabllity ele-
ment w ), we have C — C, and thus A\(C) = X\(C). But then, by Lemma 5.11,
for almost all (z,w) € R¢ X Q, we have f,(z) — [ (z). Thus, the Fatou lower
bound given above is

fexente(f Vi)

> [ el e(f/a)2> [ @NC9(f )2t =0
[ 24 >4

when [g(f )= oo (for [ g(f) < g(aMCy) < ).
L4
Proof of B.

E(T)< 3 E(E(g(W;+2d|C) < 33 E(E(g@W;)|C) +9(4d))

§ =1 =1

< mg(ad) + 2 ﬁ E(E(g(W)IC))

=1

< mg(ad) +2¢ 3% (aE (g (np;/p))+ag (1)

§=1

where a 1s the constant of Lemma 5.4 (and depends upon k£ only). Thus, to
m
show that E(T) = O(n), we need only show that 3 E(g(np;/p)) = O(n).

f =1

Now,

E(g(np;/p)) < E(g(2np;)) + 9(n)P (p <1/2).
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The last term Is unlformly bounded In n as we willl now prove. First, we have
g(n) < nkg(1). We will show that P(p <1/2) < 2d exp(-n /(4d)) for all n.
Because the function ufe™® » % > 0, I1s uniformly bounded, we see that
sx:p g(n)P(p <1/2) < oco. Indeed,

d
[p<1/2] C A lp;" < 1-1/(2d)]

where pj' 1s the Integral of f over all z ' s whose J-th component lles between
the minimal and maximal J-th components of all the X;’ s. But by the proba-

bllity Integral transform, when U,, ..., U, are independent uniform [0,1} ran-
dom varlables,

P(p;" <1-1/(2d)) < 2P(mn(U,, . .., U, > 1/(4d)) = 2(1-1/(4d ))"

< 2 exp(-n /(4d)) .

Flnally, by Jensen’s inequallty,

E E (g(2np;)) = 2 E (g (2n )M4;) f [ IN4;))

l==l ,=1

< Z E'(fy(2n>\(A ) ) IMA;)
§==1

< E(+—~ )\(C) fy(f)max(an(C)/m (20 M(C)/m )

<m Jo(f ) max2—, @ZF NCFY)

and B follows since m ~ n.
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Proof of C.

By a bound derlved In the proof of A and by the second lnequality of
Lemma 5.4, we need only show that

= 5 E(g(ln-2d)p]) =0

itgs

when f does not have compact support. By our assumptlons on ¢, (n-2d) can
be replaced by n. We may assume without loss of generality that the first com-
ponent of X, has unbounded support. Let (a,b,), ..., (a4 ,bg) be € and 1-¢
quant.l}es of all the marginal distributlons where ¢ € (0,1/2) 1s chosen such that

B=X (aj,b;) satisfles ff = -;— Let Q be the collection of 4;’ s Intersect-
j=1 B

f f.andlet Z ve

ing with B, and let ¢ be the cardlnallty of @ . Set pj' =
. A;NB

the Indicator of the event B C C. Clearly,

1 m 1 ,
- gl E(glmw)2 —E (A,Eng Lnp:" D

>E L2 = 9L DERACACIN LD
A;€Q AGQ

> B(LZ g(5-1) 2 E(Z (5 - ) 9 (G-/(5 1)

where we used Jensen's nequality. Since g (u)/u T oo, we need only show that
for any constant M , however large,

Iminf P(Z=1,n/2¢ -1 > M) > 0.

n —00

Now, let U,V be the minlmum and the maximum of the first components of
X, ...,X,. When Z = 1, we have

= (b
VU

ml/d

g <m +2
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and thus

P(Z=1,n22¢(M +1))

d-1
d

> P(Z=1,(b,~a)m /(V-U)+2m < n /(2(M+1)))

n
2 1-P(2=0) - P((b,=a)m /(V-U) 2 Srs)

-P(2m

 The second term of the last expression ls o (1) for obvlous reasons. The third

term Is o (1) since m ~ n and V-U — oo In probabllity as n — oo. The last
term is o (1) since m ~ n. This concludes the proof of C.

3.2. SORTING AND SEARCHING.

When d =1, and elements within each bucket A; are sorted by an n? sort-
ing algorithm (such as selectlon sort, or Insertion sort), Theorem 3.1 appiles with

¢ (u)=u? The data can be sorted In expected time O (n) If and only it f has
compact support and

[1% <.

If however we employ an expected time n log n sorting algorithm based upon
comparisons only (such as heapsort, quicksort or tree lnsertion sort), the data can
be sorted In expected time O (n ) If and only If f has compact support and

f/ log" f < o0.

The latter condition Is only violated for all but the most peaked densities. These
results generallze those of Devroye and Klincsek (1981). We should mention here
that If we first transform arbltrary data by a mapplng 4 : B! — [0,1] that Is
continuous and monotone, construct buckets on [0,1], and then carry out a subse-
quent sort within each bucket as described above, then often E(T) = O(n): In
other words, with little extra effort, we gain a lot In expected time. The ideal
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transformation & unlformizes, .e. we should try to use F (z ) where F is the dls-

tributlon function of the data. In general, we can take A in such a way that It Is

Ty
o

equal to F ( ) where F Is a fixed distributlon functlon, u Is a sample estimate

of location (mean, medlan, etc.) and o Is a sample estimate of scale (standard
devlation, etc.). This should In many cases give satisfactory results. It Is prob-
ably advantageous to take robust estimates of locatlon and scale, l.e. estlmates
that are based upon the sample quantlles. Meller and Akl (1980) and Welde
(1978) glve varlatlons of a similar ldea. For example, In the former reference, F
is plecewlse ltnear with cut-polnts at the extrema and a few sample quantlles.
One should of course lnvestigate If the theoretical results remaln valld for
transformations F that are data-dependent.

1

.

Distribution function F

PROPERTY: When X has distribution function
F, then U=F(X) is uniformly distributed on [0,1].

k 4
X=F' (U)

[|©

Figure 3.4.

The conditlons on f mentioned above are satisfled for all bounded denslties
f . Tt is nlce exerclse to verify that If a transformation

h(z)=z/Q+|z])

is used and f (z) < @ exp(-b|z|°) for some a,b,c > O, then the density of the
transformed density remalns bounded. Thus, for the large class of densitles with
exponentially dominated tall, we can sort the transformed data ln average tlme
O (n) by any of the bucket-based methods discussed above.
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Uniform interval widhts

—

Nonuniform interval widths

Figure 3.5.
A nonlinear transformation useful for distribution
with unbounded support.

For the expected number of comparlsons In a successful or unsuccessful
search of linked list based buckets, we obtaln without effort from Theorem 3.1
the value O(1) (even when d 1) when f has compact support and
f /% < co. These condltions are necessary too. If within each bucket the X' s
are ordered according to their first component, and are stored in a blnary search
tree or a balanced blnary tree such as a 2-3 tree, condition f /%< oo can be
replaced by f f log*f < oo. Just apply the Theorem with g (6 )=u log(s +1),
and note that [f log(f +1) < oo I1s equlvalent to fI logtf < oo because
log*u ; log(1+u) < log*u +log2. For a more detalled analysls, the quantity
T = ¥ N;? of chapter 1 must be replaced now by T = §N,~ log(NV; +1).

=1 i =1

Most of chapters 1 and 2 can be repeated for this new quantity. We leave 1t as
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an exerclse to show that

E(T)<a +bn +n E(log (1 + min(n ,R,)))

<a+bn +nlog(l+E(R,)

for some constants a,b > 0 when [f log(f +1) < co. Hence, If f Is any den-
sity with a finlte moment generating functlon In a small nelghborhood of the orl-
gin, we obtaln E(T) = O(n loglog n). Examples of such densitles are the
exponentlal and normal densitles. This extends an Interestlng observation
reported In Akl and Meljer (1982).

Query point

Figure 3.6.
The planar graph point location problerq:
return the set in the partition to which the query point belongs.
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Remark. [Polnt location problems.)

In the planar polnt-location problem, a stralght-line planar graph with u
vertices 1s glven, and one Is asked to find the set In the partitlon of the plane to
which a query polnt z belongs. In many applicatlons, a large number of querles
are ralsed for one fixed planar partitlon. We won't be concerned here with worst-
case complexities. It suffices to mention that each query can be answered In
worst-case time O (log(n )) provided that up to O (nlog(n)) time is spent In set-
ting up an appropriate data structure (Lipton and Tarlan, 1977 ; Kirkpatrick,
1983). See also Lee and Preparata (1977) for an algorithm with O ((log(n))?)
worst-case search tlme, and Shamos and Bentley (1977) for the polnt-locatlon
problem when the space Is partitloned Into nonoverlapping rectangles. It was
polinted out In Asano, Edahiro, Imal, Irt and Murota (1985) that these algorlthms
can be very slow in practice. In particular, they compare Infavorably with a
bucket-based algorithm of Edahiro, Kokubo and Asano (1983).

N e ]
W : u B
" »

Query point

Figure 3.7.
The rectangular point location problem.

Assume for example the following probablllstic model : the n polnts
X,, ..., X, and the query polnt are 11d random vectors uniformly distributed 1n
the unlt square, and the graph Is constructed by connecting points in an as yet
unspecified manner. In first Instance, we will be Interested In the expected worst-
case time, where “worst-case” is with respect to all possible planar graphs given
the data. Let us construct an m -grid where for each bucket the following infor-
mation 1s stored : the list of vertices sorted by y-coordlnates, the collections of
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edges Intersectlng the north, south east and west boundarles (sorted), and the
region of the partition contalnlng the north-west corner vertex of the bucket.
This assumes that all reglons are numbered beforehand, and that we are to
return a reglon number. Partitlon each bucket In a number of horizontal slabs,
where the slab boundarles are deflned by the locatlons of the vertices and the
polints where the edges cut the east and west boundarles. For each slab, set up a
linked list of conditions and reglon numbers, corresponding to the reglons visited
when the slab Is traversed from left to right. (Note that no two edges cross In our
graph.) It 1s Important to recall that the number of edges In a planar graph is
O (n), and that the number of reglons In the partition Is thus also O (n) . One
can verify that the data structure described above can be set up ln worst case
time O (n%?) when m ~cn for some constant ¢. The expected set-up time Is
O (n) In many cases. This statement uses technlques simllar to those needed to
analyze the expected search tlme. We are of course malnly Interested in the
expected search time. It should come as no surprise that the expected search time
decreases with Increasing values of m . If m Increases linearly In n, the expected
search time 1s O (1) for many distributlons. Those are the cases of Interest to us.
If m Increases faster than n, the expected search time ,while stlll O (1), has a
smaller constant. Unfortunately, the space requirements become lnacceptable
because Q(max(m ,n )) space Is needed for the glven data structure. On the posl-
tive side, note that the space requirements are O (n ) when m Increases at most
as O (n).

N/

Figure 3.8.

The slab method described above Is due to Dobkin and Lipton (1976), and
differs slightly from the method described in Edahlro, Kokubo and Asano (1983).
The time taken to find the reglon number for a query polnt X in a glven bucket
Is bounded by the number of slabs. To see this, note that we need to find the
slab first. and then travel through the slab from left to right. Thus, the expected
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m
time 1s bounded by Y] p;S;, where S; denotes the number of slabs In the i-th
f=1
bucket, p; 1s the probablilty that X belongs to the s -th bucket, and the expected
time 1s with respect to the distribution of X, but Is conditlonal on the data. But
E(S;)<np; +E (C;), where C; Is the number of edges crossing the boundary of
the ¢-th bucket. Without further assumptions about the distribution of the data
points and the edges, any further analysis seems difficult, because E (C;) is not
necessarlly a quantity with propertles determlned by the behavior of f 1n or near
the :-th bucket. Assume next that X 1Is unlformly distributed. Then, the
expected time Is bounded by '

5 Linp, +E(0))

i=1

_ 1, E@©)
m m

where E (C) 1s the expected value of the overall number of edge-bucket boundary
crossings. E (C') can grow much faster than m : just consider a uniform density
on {0,1)%. Sort the polnts from left to right, and connect consecutive polnts by
edges. This ylelds about n edges of expected length close to 1/3 each. E(C)
should be close to a constant times n \/-nT . Also, for any planar graph,
C<m vm where < s a unlversal constant. Thus, 1t IS not hard to check that
the conditional expected search time is In the worst-case bounded by

n n
T

This 1s O (1) when m Increases as Q(n?2). Often, we cannot afford this because of
space or set-up time llmltations. Nevertheless, 1t Is true that even If m Increases
llnearly with n , then the expected search time Is O (1) for certaln probabliistic
models for putting In the edges. Help can be obtalned If we observe that an edge
of length L cuts at most 2(2+L vm ) buckets, and thus leads to at most twice
that number of edge-boundary crossings. Thus, the expected time Is bounded by

1 e
St S 42+E(L;)Vm)

J=1
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where e Is the total number of edges and L j 1sthe length of the 7-th edge. Since
¢ =0 (n), and m ~cn (by assumptlon}, this glves O (1) provided that

S E(L)=0(m).

i=1

In other words, we have obtalned a condition which depends upon the expected
lengihs of the edges only. For example, the conditlon is satisfled if the data
polnts have an arbltrary density f/ on [0,1]% , and each polnt Is connected to its
nearest nelghbor : this is because the expected lengths of the edges grow roughly
as 1/ \/n— . The condition 1s also satisfled if the polnts are all connected to polnts
that are close to 1t In the ordlnary sense, such as for example In a road map.

L ]

NG Query point

Figure 3.9.
The point enclosure problem:report
all rectangles to which query point belongs.
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Remark. [Polnt enclosure problems.]

In polnt-enclosure problems, one !s glven n rectangles In R 4. For one query
point X, one 1s then asked to report all the rectangles to which X belongs. Since
a rectangle can be consldered as a polnt In R2d , It 1s clear that this problem Is
equlvalent to an orthogonal range search query In R?%4, Thus, orthogonal range
search algorithms can be used to solve this problem. There have been several
direct attempts at solving the problem too, based malnly on the segment or Inter-
val tree (Bentley (1977), Bentley and Wood (1980), Valshnavi and Wood (1880),
Valshnavl (1982)). For example, on the real llne, the algorithm of Bentley and
Wood (1980) takes preprocessing time O (nlog(n)), space O (nlog(n)), and
worst-case query time O (log(n)+k) where k& Is the number of segments (l.e.,
one-dimenslonal rectangles) reported. We will brlefly look into the propertles of
the bucket structure for the one-dimensional polnt-enclosure problem.

First, we need a good probabllistic model. To this end, assume that (L ,R),
the endpolnts of a segment form a random vector with a density f on the
north-west trlangle of {0,1]® (this is because L <R 1n all cases). The n Intervals
are 11d, and the query polnt has a density ¢ on [0,1]. The segment [0,1] Is part}-
tloned Into m buckets, where typlcally m ~cn for some constant ¢ (which we
assume from here onwards). For each bucket, keep two llnked llsts : one llnked
list of segments completely covering the bucket, and one of Intervals only par-
tially covering the bucket. Note that the entlre structure can be set up In time
proportional to n plus n times the total length of the segments (because a seg-
ment of length ! can be found In at least 1 and about nl linked lists). The space
requirements are formally slmliar. Under the probabllistic model consldered here,
it Is easy to see that the expected space and expected preprocessing time are both
proportional to n times the expected value of the total length. Slnce the expected
value of the total length 1s n times the expected value of the length of the first
segment, and since thls Is a constant, the expected space and preprocessing
requirements increase quadratically in n. The expected search tlme Is small.
Indeed, we first report all segments of the first linked llst in the bucket of X .
Then, we traverse the second linked list, and report those segments that contaln
X . Thus, the search time is equal to k+1 plus the cardlnality of the second
linked list, l.e. the number of endpolnts in the bucket. With the standard nota-
tlon for buckets and bucket probabllities, we observe that the latter contribution
o the expected search time 1s

3 P(X€A;)n (P (L €A;)+P (R €4;)) .

=1

In particular, If X 1s uniformly distributed, then this expression iIs simply 2n /m .
This can be made as small as desilred by the appropriate cholce of m . If, how-
ever, X Is with equal probabllity distributed as L and R respectively, which
seems to be a more reallstlc model, then the expresslon Is
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m
5 2np;? < 2[4
i=1 m

where kb 1Is the density of X' (l.e. It Is the average of the densities of L and R),
and p; = [ h . Here we used Lemma 1.1.
A,

There are other probabilistic modeis with totally different results. For exam-
ple, In the car parking model, we assume that the mldpolnts of the segments
have density f on [0,1], and that the lengths of the segments are random and
independent of the locatlon of the segment : the distribution of the lengths how-
ever Is allowed to vary with n to allow for the fact that as more segments are
avallable, the segments are more likely to be smaller. For example, If the lengths
are all the same and equal to r, where r, tends to O at the rate 1/n, the overlap
among Intervals 1s quite small. In fact, the preprocessing and set-up tlmes are
both O(n) In the worst case. If X has density f as well, then the expected
search time 1s O (1) when [ f ?<oco.

3.3. THE TRAVELING SALESMAN PROBLEM.

The travellng salesman problem 1s perhaps the most celebrated of all discrete
optimlization problems. A travellng salesman tour of X, . . ., X, Is a permuta-
tion ¢y, ...,0, of 1,...,n: thls permutation formally represents the path
formed by the edges (X,,X,), (X, X)Xy X)) The cost of a travellng
salesman tour is the sum of the lengths of the edges. The travellng salesman
problem 1s to find a minimum cost tour. When the lengths of the edges are the
Buclidean distances between the endpolnts, the problem is also called the
Euclidean traveling salesman problem, or ETSP.
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A traveling salesman path

Figure 3.10.
The Euclidean traveling salesman problem:
find the shortest path through all cities.

The ETSP 1s an NP-hard problem (Papadimitriou (1977), Papadimitriou and
Stelglitz (1982)), and there has been conslderable Interest in developing fast
heuristic algorithms (see Papadimltriou and Steiglitz (1982) and Parker and Rar-
din (1083) for surveys). It should be stressed that these algorithms are nonexact.
Nevertheless, they can lead to excellent tours: for example, a heuristlc based upon
the minlmal spanning tree for X,, ..., X, developed by Christofides (1976)
ylelds a tour which Is at worst 3/2 times the length of the optimal tour. Other
heurlstlcs can be found In Karp (1977) (with additional analysls in Steele (1981))
and Supowlt, Relngold and Plalsted (1983). We are not concerned here with the
costs of these heurlistic tours as compared, for example, to the cost of the optimal
tours, but rather with the time needed to construct the tours. For 11d polnts in
[0,1]%, the expected value of the cost of the optimal tour Is asymptotic to
B\/n_ f \/7_ where 8 > 0 Is a unlversal constant (Steele, 1981). For the uniform
distributlon, this result goes back to Beardwood, Halton and Hammersley (1959),
where 1t is shown that 0.61 < # < 0.92.

For the ETSP In [0,1]%, we can capture many bucket-based heurlstics in the
following general form. Partitlon [0,1]% Into m equal cubes of slde 1/vVm each.
Typleally, m Increases In proportion to n for simple heuristics, and m =0 (n)
when the expected cost of the heurlstlc tour is to be optlmal In some sense (see
Karp (1977)and Supowlt, Relngold and Plalsted (1983)). The bucket data struc:
ture Is set up (in time O (n +m)). The celis are traversed In serpentine fashlon,
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starting with the leftmost column, the second column, etcetera, without ever lift-
ing the pen or skipplng cells. The points within the buckets are all conneqted by
a tour which 1s of one of three posslible types:

A. Random tour. The polnts connected as they are stored in the linked lists.

B. Sorted tour. All polnts are sorted according to y coordlnates, and then
linked up.

C. Optimal tour. The optimal Euclidean traveling salesman tour Is found.

I

4 /

Figure 3.11.
Serpentine cell traversal.
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Figure 3.12.
A sorted tour.

The time costs of A ,B,C for a bucket with /N polnts are bounded respectivel;
by

CN,
CN log(N +1),
and
CN 2N
for constants C. For the optimai tour, é. dynamic programming algorithm Is usec
(Bellman, 1962). The m tours are then llnked up by traversing the cells In ser

pentine order. We are not concerned here with Just how the Indlvidual tours ar¢
linked up. It should for example be obvious that two sorted tours are linked ur
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by connectlng the northernmost polnt of one tour with the southernmost polnt of
the adjacent tour, except when an east-west connection 1s made at the U-turns In
the serpentine. It Is easy to see that the total cost of the between-cell connec-
tlons 1s O (Vm ), and that the total cost of the tours is O (n /Vm ) for all three
schemes. For schemes A and B therefore, It seems lmportant to make m pro-
portional to n so that the total cost 1s O (\/n— ), Just as for the optimal tour. In
scheme C, as polnted out In Karp (1977) and Supowit, Relngold and Plalsted
(1983), If m Increases at a rate that Is slightly sublinear (o (n)), then we can
come very close to the globally optimal tour cost because within the buckets
small optimal tours are constructed. The expected tlme taken by the algorithm
Is bounded by

O(n+m)+E(S CN),

O(n+m)+E(3 CN; log(N; +1)),

=1

and

0(n+m)+E(§ CN; 2™

=1

respectively.

Theorem 3.2.

For the methods A ,B,C for constructing traveling salesman tours, the
expected time required 1s bounded by O (n +m ) plus, respectively

(A) Cn ;

®) Cn [ f log(2+%/ )< Cn [ [ log(2+f )+ Cn log(1+-%):

n

(© C2n [ ¢™ < 20m Y+

where i{u ) 1s the functional generating function for the density f on [0,1]2.
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Remark.

The functional generating function for a density f on [0,1)2 1s defined
by

Yu)= [e¥ @dz, ueR.

By Taylor’s serles expanslon, 1t Is seen that

We)=1+4u[f +1;—:fj2+1;_jff3+ .

which explalns the name. Note that the Taylor serles Is not necessarily conver-
gent, and that 1 1s not necessarlly finlte: 1t is finlte for all bounded densitles with
compact support, and for a few unbounded densitles with compact support. Foi
example, If f < f* on [0,1]%, then ¥(u) < f—l’-e #/° u > 0. Thus, the bounc

in (C') becomes

n o
(In fact, by a direct argument, we can obtaln the better bound 2Cne ™ .) Note
that In the paper of Supowlt et al. (1983), m Is allowed to be plcked arbitrarlly
close to n (e.g. m =n /log log log n ). As a result, the algorithm based on (C
has nearly llnear expected time. Supowlt et al. (1983) provide a further
modification of algorithm (C ) which guarantees that the algorlthm runs In nearly
linear time In the worst case.

Proof of Theorem 3.2.
To show (B), we consider

E (N; log(N,- +1))

=E(£) B; ’°g(,2n3 B; +1))

j=1 j=1

CHAPTER 3 79

=n E(B, log(B, + }n:Bj + 1))

j=2

= np; E (log(2 + zu) BJ- )]

j=2
< np; log(2 + (n-1)p;) (Jensen's Inequality).
where B,, ...,B, are 1ld Bernoulll (p;) random variables. Also, since

p; log(2+(n-1)p; ) Is a convex function of p;, another applicatlon of Jensen’s Ine-
quallty ylelds the upper bound

n{/ log(2+f-;nif),

which 1s all that 1s needed to prove the statement for (B). For (C), we argue
simllarly, and note that

E(N;2™)

—E(% B;XT12%)

i=1 =1

= nE (B 2% ﬁ 281

j=2
= 2np; (2p; + (1-p; )"
= 2np; (1 + p; )"

< 2np; ¢ {(n-1)p;

n-1

/
<2n [fe™ (Jensen’s inequallty).
A,

This concludes the proof of Theorem 3.2.



80 CHAPTER 3

Remark. [ETSP In higher dimenslons.)

Halton and Terada (1982) describe a heuristic for the ETSP in d dimenstons
which Is simllar to the heurlstic glven above In which within each cell an optimal
tour 1s found. In partlcular, for points uniformly distributed on the unlt hyper-
cube, 1t 1s shown that the tour length dlvided by the optimal tour length tends
with probablillty one to one as n —o0. Also, the time taken by the algorithm Is in
probabllity equal to o (n ¢(n )) where ¢ Is an arbltrary diverging functlon plcked
beforehand and ¢ 1s used to determine at which rate m /n tends to 0. The
divergence of ¢ 1s agaln needed to Insure asymptotic optimality of the tour's
length. The only technlcal problem In d dlmenslons Is related to the connection
of cells to form a travellng salesman tour.

3.4. CLOSEST POINT PROBLEMS.

‘ Local algorithms are algorithms which perform operations on polnts In glven
buckets and 1n neighboring buckets to construct a solution. Among these, we
have algorithms for the following probiems:

(1) the close pairs problem: identify all palrs of polnts within distance r of
each other;

(11) the isolated points problem: identify all points at least distance r away
of all other polnts;

(1) the Euclidean minimal spanning tree problem;

(iv) the all-nearest-neighbor problem: for each point, find its nearest nelgh-
bor;

(v) the closest pair problem: find the minlmum distance between any two
points.

CHAPTER 3 81

\ ¢ o Distance r in definition
° of close pairs.

PROPERTY: Vertices with degree 0
are isolated points for distance r.

/ N G .

4 °
. - ¢
/. *—e .\. °
L ]
. . \
Figure 3.13.

Close pairs graph.

These problems are sometlmes called closest point problems (Shamos and
Hoey, 1975; Bentley, Welde and Yao, 1980). What complicates matters here 1s
the fact that the tlme needed to find a solution !s not merely a function of the
form

ﬁ g (V)

f=1

as in the case of one-dlmensional sorting. Usually, the time needed to solve these
problems is of the form

f} g(N;, N;*)

f==1

where /V; * 1s the number of polnts In the neighboring buckets; the definition of a
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nelghbor bucket depends upon the problem of course. It 1s qulte lmpossible to
glve a detalled analysls that would cover most Interesting closest point problems.
As our prototype problems, we will pick (1) and (l1). Our goal Is not Just to find
upper bounds for the expected time that are of the correct order but possibly of
the wrong constant: these can be obtalned by first bounding the time by a func-
tion of the form

2 I +N,*)

i=1

where § Is another function. The overlap between buckets mpliclt in the terms
N;+N;* does not matter because the expected value of a sum Is the sum of
expected values. Our goal here Is to obtaln the correct asymptotlc order and
constant. Throughout thls section too, X v - - -, X, are Independent random
vectors with density f on [0,1]¢.
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Figure 3.14.

All nearest neighﬁar graph at left. This graph is a subgraph
of the minimal spanning tree, shown at right.

Remark. [Isolated polnts. Single-linkage clustering.]

Ir X,,...,X, are d-dimensional data polnts, and r > O Is a number
depending upon n only, then X; Is sald to be isolated point If the closed sphere
of radius r around X; contalns no X;, j71.

Isolated polnts are important In statistlcs. They can often be considered as
“outllers’”’ to be discarded In order not to destabilize certaln computations. In
the theory of clustering, the following algorithm 1s well-known: construct a
graph In which X; and X; are Jolned when they are within distance r of each
other. The connected components In the graph are the clusters. When r grows,
there are fewer and fewer connected components of course. Thus, If we can find
all pairs (X;,X;) within distance r of one another very quickly, then the cluster-
ing algorithm wiil be fast too, since the connected components can be grown by
the union-ind parentpointer tree algorithm (see e.g. Aho, Hopcroft and Ullman
(1983, pp. 184-189)). This clustering method 1s equlvalent to the single linkage
clustering method (see e.g. Hartigan (1975, chapter 11)). The isolated polnts
algorithms discussed below will all glve an exhaustive listing of the palrs (X; .XJ-)
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that satisty ||X;-X;|[ < r, and can thus be used for clustering too. The prob-
lem of the 1dentificatlon of these palrs Is called the close palrs problem.

There are two bucket-based solutlons to the close-palrs problem. First, we
can deflne a grid of hypercubes (buckets) with sldes dependent upon r 'The
dlsadvantage of this Is that when r changes, the bucket structure needs.to be
redefined. The advantage Is that when n changes, no such adjustment is

needed. In the second approach, the bucket slze de
0 ’ pends upon :
independent of r. ’ moonly: s

Neighboring buckets

Central cell

r 2

Figure 3.15.

In the r-dependent grid, 1t Is useful to make the sides equal to r/\/z
because any pair of polnts within the same bucket is within distance r of each
other. Furthermore, polats that are not In neighboring buckets cannot be within
distance r of each other. By nelghboring bucket, we do not mean a touching
bucket, but merely one which has a vertex at distance r or less of a vertex of the
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original bucket. A conservatlve upper bound for the number of nelghboring
buckets 1s (2\/2- +3)‘ . In any case, the number depends upon d only, and wlll
be denoted by v4. To Identify Isolated points, we first mark single polnt buck-
ets, 1.e. buckets with IV;==1, and check for each marked polnt all v4 nelghboring
buckets. The sum of distance computatlons Involved is

> = N;

i:N;=1 j:A, neighbor of A,

=N by 1
i {:N;==1, and A, neighbor of A,

< IN;
j
= V4 n.

The grid Initlallzation takes time n(r“) and O (mln(r" ,1)). In particular, the
entire algorithm i1s O (n) In the worst-case whenever rn 1/d > ¢ > 0 for some
constant ¢. For r much smaller than n~V “, the algorithm is not recommended
because nearly all the polnts are isolated points - the bucket slze should be made
dependent upon n Instead.

l Maximal gap l l
1“1“1 e D A A I
Figure 3.16.

Finding the maximal gap in a sequence of
n points by dividing the range into n+1 intervals.

Remark. [The maximal gap.]

The maximal gap ln a sequence of polnts =,, . . ., T, taking values on [0.1}
s the maximal lnterval Induced by these polnts on [0,1]. As In the case of iso-
lated polnts, the maximal gap can be found In worst-case time O (n). For exam-

. Thus,

1
ple, this can be done by observing that the maximal gap s at least oy
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if we organlze the data Into a bucket structure with n +1 Intervals, no two polnts
within the same bucket can deflne the maximal gap. Therefore, It 1s not neces-
sary to store more than two polnts for each bucket, namely the maximum and
the minimum. To flnd the maximal gap, we travel from left to right through the
buckets, and select the maximum of all differences between the minlmum of the
current bucket and the last max!mum seen untll now. This algorithm s due to
Gonzalez (1975).

Let us turn now to the close-palrs problem. The time needed for reporting
all close palrs Is of the order of

i j:A, neighbor of 4,

where the first term accounts for listing all pairs that share the same bucket, and
the second term accounts for all distance computations between points In nelgh-
boring buckets.

For thls problem, let us conslder a grid of m buckets. This at least guaran-
tees that the Initlalization or set-up-time 1s O (n +m ). The expected value of our
performance measure V is

E(V)=E(N;? + N, » N;)
¥ { J:A; neighbor of A,

and it 1s the last term which causes some problems because we do not have a full

double sum. Also, when p; = f f s large, pj Is likely to be large too since A;
Al

and A; are nelghboring buckets. The asymptotles for E (V') are obtalned In the

next t.heorem There are 3 sltuations when m =n: h

A. nr? - ocoasn — oo: the expected number of close pairs increases roughly
speaking faster than n.

B. nr? — 0asn — oco: the expected number of close palrs Is O (n), and the
probabllity that any given polint Is an I1solated polnt tends to 1.

c. nrd o B € (0,00) a3s n — oo: the expected number of close pairs Increases
as a constant times n. This Is the critical case.
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The upper bound In the theorem 1s vaild In all three cases. In fact, Theorem 3.3
also covers the situation that m%n: m and / or r are allowed to vay with n
in an arblitrary manner.

Theorem 3.3.

Let ¥y = ~(r, d, m) be the number or nelghboring buckets of a partlcular
bucket In a grid of size m deflned on [0, 1] where r Is used In the deflnltlon of
neighbor. Then

n?
E(V)Sn+-—(+1ff*.
Itm — o0, n — 00, r =0,
E(V)=n + 2+ 1+0@)ff?.

Note that if mr® — oo r — 0, A(r,d,m) ~ mr®V,; where V, Is the value of
the unit sphere In R 4. Thus,

E(V)=n +n22dV;(1+0Q)ff2.

It mr¢ — B € (0,00), then - osclllates but remalns bounded away from O and co
In the tall. In that case,

E(V)= O (n)

when fj' 2 < 00,m ~ cn. Note that E(V) = Q(n ) In all cases.
Finally, If mr% — 0, such that r > O for all n, m, then y— 3%-1, and

E(V)=n +ﬁmf-3‘f/2(1+o(1)).
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Proof of Theorem 3.3.

We will use the notatlon A (z) for the bucket A; to which z belongs.
Furthermore, B (z ) 1s the collectlon of nelghboring buckets of A (z). Define the
densities

d

[.(2)= IA( )IAj('z)/.x € [0,1]
—=— d
9a(z) |B(z)|5(f,)f" € [0.1)°.

Note that by the Lebesgue density theorem, !f m — oo, r — 0 (and thus
|[A(z) =0, [B(z) =0), folz)— [ (z) and g,(z) — g(z) for almost all z.
This result can be obtalned without trouble from Lemmas 5.10, 5.11, and the fact
that the definitlon of nelghboring bucket 13 data Independent and depends upon
r and m only.

The upper bound wlll be derilved first. The sum V 1s spiit lnr,o Vi+ V,
Only V, causes some problems since E (V) < n? Ep +n < ——f/ +n

=1
by Lemma 1.1. Note also for future reference that

2
E(Vv)yzn + (1+0(1))-z':;'fj'2 when m — oo - If we apply the Fatou lower

bound argument of the proof of Lemma 1.1. Turning to V2, we have, by Lemma
5.1,

E(V)= 3 >

p;ipj n(n-1)
i=1 j:A; neighbor of A,

< n? 2 AANB;) fa (z,)g,,(z,)(rora.ny:z €A, ..., 2, EAp)

f=1

I

1?5 [NB:) fa(@)0a (2 )de

i=1 A,
= "2'7>‘(A l)fjn In -
Since f, and g, are probably very close to each other, the integral In the last

expression Is probably very close to f S " 2, Therefore, little will be lost If the
Integral 1s bounded from above by the Cauchy-Schwartz inequality:
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ffngn < fonzfgnz

1 2 ____1_ 2yd
< \/f A (z))(,,{,)f )bz \/f x(B(z))(B{,)f e

(Jensen's lnequallity)

= \/—iffz 'ﬁsz
i=14, =14,

=12

To'treat [g, 2 we have argued as follows:

[ 025 [aa?

o,1)¢ R

2

= [|—— dy| dz
f( B E) B{z)f(y) y]

(where B(z) now refers to an infinite grid)

<f -)‘-(-El(-;j-)- (5 {z ) /Y dz (Jensen' s Inequallty)

x 1

2
=% J =Y P J1%y)dy dz

=1 A, 7 A, neighbor of A;A;

- ,_1 fyx(A B

f/’(y)[ fdz] dy

A, ne\ghbor of A,

]
=ff2.

Note also that

Mminf [[,g, > [Uminf f,g9, = [f?
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when m — o0, r — 0. This concludes the proof of the first two statements o
the theorem. The remalnder of the theorem Is concerned with the size of v as :
function of r and m, and foilows from elementary geometric principles.

‘We note for example that when m — oo, mré¢ — 0, the optilmal cholce fo.

m would be a constant times n\/sdffz - at least, this would minimize
Cm + E(V) asymptotically, where C 1s a glven constant. The minimizing

value Is a constant tlmes n 4/ 34 { / 2. The only situation In which E (V) 1s no
O(n) for m ~ ¢cn s when nr® — oo, l.e. each bucket has very many dat:
points. It can be shown that the expected number of close palrs grows as a con-
stant times n2r?¢, and this provides a lower bound for E (V). Thus, the
expected time for E (V') obtalned in Theorem 3.3 has an optlmal asymptotlc rate

Remark. [The all-nearest-neighbor problem.]

All nearest nelghbor palrs can be found In O(n log n) worst-case time
(Shamos and Hoey, 1975). Welde (1978) proposed a bucketing algorithm In
which for a glven X;, a “spiral search” 13 started In the bucket of X;, and con-
tinues in nelghboring cells, in a spiraling fashlon, until no data point outside the
buckets already checked can be closer to X; than the closest data polnt already
found. Bentley, Welde and Yao (1980) showed that Welde’s algorithm halts In
average time O (n ) when there exists a bounded open convex reglon B such that
the density f of X, is 0 outslde B and satisfles
o< X%r f) <L s%p f () < co. (This condition will be called the BWY condl-

tion.)
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Figure 3.17.
Spiral search for nearest neighbor.

Remark. [The closest palr problem.]

To find the closest palr In [0,1]" , one can argue geometrically and deduce an
absolute upper bound of the form C,;/n ¢ por the smallest distance between any
two polnts among X,, . . ., X, In [0,1]%. Here C; Is a constant depending upon
d only. It we construct a grid with buckets having sides C;/ n?, then we can
hope to “‘eatch’ the closest palr In the same bucket. Unfortunately, the closest
pair can be separated by a bucket boundary. This case can be elegantly covered
by shifting the grid appropriately a number of times so that for one of the shifted
grids there 1s a bucket which contalns the closest palr (Yuval, 1976). Ignoring
the dependence upon d, we see that with this strategy, the time complexlty 1s of

n
the form ¢,n + ¢, 3 ¥; 2 where the square accounts for the computatlons of all
i=1
pairwise distances within the same bucket, and ¢, ¢, > O are constants. It dls
easy to see that If X,, . .., X, are 1ld random vectors with density / on [0,1]%,
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then the shifted grid method takes expected time O(n)If and only If [ 2 <
Rabin (1878) chooses a small subset for which the closest palr is found. Tk
corresponding minimal distance is then used to obtain the overall closest palr }
linear expected time. It Is perhaps Interestlng to note that not much Is galne
over worst-case tlme under our computational model, since there exist algorithm

which can find the closest palr In worst case time O
n loglogn
Hopcroft, 1979). ( Elogn ) (Fortune an

Remark. [The Euclldean minimal spanning tree.]

For a graph (V,E)) Yao (1975) and Cheriton and Tarjan (1978) give algc
rithms for fAnding the minlmal spanning tree (MST) In worst-case tim
O ({E |log log| V' |). The Euclidean minlmal spanning tree (EMST) of n polnts I
R® can therefore be obtalned In O (n log log n) time If we can find a supe;
graph of the EMST with O(n ) edges in O (n log log n) time. Yao (1982) sug
gested to find the nearest nelghbor of each polnt in a critical number of direc
tlons; the resulting graph has O (n ) edges and contalns the MST. This neares
nelghbor search can be done by a slight modificatlon of spiral search (Weld:
(1978)). Hence, the EMST can be found In expected time O(n loglogn) fo
any d and for all distributlons satisfylng the BWY condition. The situation Is ¢
bit better In R2. We can find a planar supergraph of the EMST In expected tlm;
O (n) (such as the Delaunay triangulation (the dual of the Voronol dlagram), the
Gabriel graph, etc.) and then apply Cherlton and Tarjan’s (1978) O (n) ;.lgo
rithm for finding the MST of a planar graph. For a llnear expected tlme Vorono
dlagram algorithm, see Bentley, Welde and Yao (1980). Thus, In B2 and for the
class of BWY distributions, we can find the EMST in linear expected time.
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Chapter 4

THE MAXIMAL CARDINALITY

The expected value of the worst possible search time for an element In a

bucket data structure s equal to the expected value of M, = énai( N; times a
1<:1<m

constant. This quantity differs from the worst-case search tlme, which 1s the

largest possible value of max [V; over all possible data sets, l.e. n. In a sense,
1<i<m

the maximal cardlnality has taken over the role of the helght In tree structures.
Its maln !mportance 1s with respect to searching. Throughout the chapter, 1t 1s
cruclal to note the dependence of the maximal cardinality upon the density f of
the data polnts X,, . . ., X, , which for the sake of slmplicity are assumed to
take values on [0,1]4. The grid has m ~ cn cells for some constant ¢ > 0,
unless we specify otherwise.

In sectlon 4.1, we look at the properties of M, , and In particular of E(M,)
following analysis given in Devroye (1985). This Is then generallzed to E(g (M)
where ¢ Is a nonlinear work function (see sectlon 4.3). Such nonllnear functions
of M, are lmportant when one particular bucket 1s selected for further work, as
for example In a bucket-based selection algorithm (section 4.2). Occaslonally, the
maxlimal cardlnallty can be useful In the analysis of bucket algorithms in which
certaln operatlons are performed on a few buckets, where buckets are selected by
the data points themselves. In section 4.4, we will 1llustrate this on extremal
polnt problems in computational geometry.

4.1. EXPECTED VALUE AND INEQUALITIES.

For the unlform distributlon on [0,1], Gonnet (1981) has shown that when
m=n,

E(M,) ~TYn)
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where I' Is the gamma function. For example, when n = 40320, E (M, ) 1s neas
7.35 (Gonnet, 1981, table V). In other words, £ (M, ) 1s very small for all practl-
cal values of n. Addltlonal Informatlon Is given In Larson (1982). The sltuatior
studled by Gonnet pertalns malnly to hashing with separate chalning when a per-
fect hash functlon Is avatlable. As we know, order-preserving hash functlons lead
to non-uniform distributions over the locatlons, and we will see here how F (M,

depends upon f . This Is done In two steps. Flirst we will handle the case of
bounded f , and then that of unbounded | .

Theorem 4.1.

Assume that f* ==esssup f/ < oo (note: Mz :f@)y> 1%}
=0;Mz :f(z)>f*-€}>0torall €>0). Then, If m ~ cn for some
c >0,

E (Mn ) ~ ——log Z

log log n
and, In particular,
log n log n *e
EM)=—220_ 1 187" (150100 10g n + 1og(d%) + 0 (1)) .
loglog . (10g log n )2 ¢

Proof of Theorem 4.1.

We wlll use a Polssonlzation device. Assume first that we have shown the
statement of the theorem for M, * where M, * = max/V;* and N,* 1s the
H

number of X;’ s 1n X, ..., Xy belonging to A;, where N is a Polsson (n)
random varlable Independent of X ,,X gs++- -« NOW, for all € > 0, we have

M, * < n(1+e) T nly > n(1+e)

and

Mn iy Z Mn(1-e) = nIN < n(1-€)

where [ Is the indleator function, and where n (1+¢) and n (1-€) should be read
as “‘the smallest Integer at least equal to ...”. By Lemma 5.8,
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4
nP(N-n| > ne) < —

Defl b(n)=1+log(f */c)+ loglogn + log log log n,
efine

M. Thus, by assumptlon,

c(n)= iog n

4c{n
0(1) = EM, *)c(n)-b(n) < EM,q4e)c(n) + —a -b(n)

c(n)
¢ (n(1+¢)

< EM, (1+e))c (n (1+e€))

+o0 (-;-) _b (n (14¢€) + (b(n (1+€) = (n)).

Now, b(n(1+€)-b(n)=0(1), and, for n large enough, ¢ {(n)>c(n(1+€)

_logn > 1+€/log n ).
Zc(n)log(n(1+e)) > c{(n)/(
Thus,

b {n (1+€)+o (1)
¢ (n (14¢€))1+eflog 1)

E (Mn (1+£)) Z

_ b(n(te)to(1)
T e(n(14€)

inin
Simllarly, 1t can be shown that E(M,) < (b(n)+0(1))/c(n), and comblning
this gives us our theorem.

Lower bounds for M, *.
Let 7 > O be an arbltrary number, .
-2 log(l—-—2—e) (this will turn out to be 3 convenlent cholce for €).

*

and let ¢ > 0 be the solutlon of

et A
17:.—

= which Is positlve by definttlon
pe the set {z:f (z) > [ “-¢}, and let 6= [dz (

b (n )—_n . e ":S
of f*). Finally, let b = h, be the Integer part of —"==-==" We let p; keep

n
ed by
meaning from the Introduction, and note that the functlon f, on {0,1] defin
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Jalz)=mp; ,z €4, ,

Is a density. Because N,*,N,*, ... N, * are Independent Polsson random
varlables with parameters np ,np,, . . ., np,, respectlvely, we have the following
chaln of Inequalltles:

P(M,* <h)=T] P(N;*< h)

f=1

< TTO-P (N, *=h)

§=1

< exp(- f} P(N;*=h))

f =1

m ¢~
= exp [‘igl(nl’i ) A ]

) 2|

m

- exp[-mf[

By Lemmas 5.10 and 5.12,

n
—'fn n n
m 2, ng
f n e ™ > [ dzje
AT —(f *—2¢) A, fa>/f"-2¢
m
n ..
-—f
> e dz
A fa—f<e
n,.
Ly
= ™ (5— f dz]
A fa-f >

v
@
|
sis
-
ettt
o
|
B ey

If,.—fl]
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— f *
>e ™ (5-o0(1)
Thus,

h _Lf'
PM,* < h)Sexp[~%[%] f o e ™ (5o (1)

Using Stirling’s approximation for h!, we see that the exponent Is —~e® Wwhere

s =logm —h logh +h —%log(%rh)

*
+o()+ k log(—f—c_—%-)—-f%f’ + log §

= log n +-I%rz—7n-(1+log(—f——c‘—2£))
b(n)n b(nyn 1. b(n)}mn
- c(n) log( c(n) 210g( c(n) +i

*

+ log ¢ + o (1))

1
(where t = log § — —2—10g(27r) -

LA M- (1+1og(izc_ﬁ-)

=logn +
(log log n )?

—~loglog n + log log log n + o (1))

—%loglogn +%logloglogn +t +0(1)

log log log n 1+lo * e
_ _logn {0(1)+[1+ og log log g(f /)—n]

log log n log log n log log n

*
[1 + log(-f——_2-6—) ~loglogn +logloglogn + o (1)] + log log n]
[

_ _logn {Iog{f*_%]—log{f*]+n+0(1)l
log log n c ¢
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n log n
- —————— (all
3 Toz logz n (all n large enough)
because log(f *—2¢) — log(f *) = ——%.
2

Thus, for all n large enough,

EM,")2h P(M," 2 h)=h0-P(M,* < b))

log n

> h (1—exp(—exp(i
3loglogn

) 2 h(1-exp(-exp(log log n )))

—ha-ty> (dr)m o 10 b(n)mo()
(1 n),_( () 1)1 n) cn) .

This concludes the prootf of the lower bound, since 7 > O Is arbltrary.

Upper bounds for M, *.

Agaln, we let 7 be an arbltrary posltlve number, and choose & = h, as the

b(n)+
Integer part of —i—#’- Let k > h be some Integer. Then, for & > ¢, by

Lemma 5.9,

POM," 2 k)< PN 2 k)< ny el L
i=1 - i>k 7!

-t

< net* 6___]5_-{_—_1_
- k' k+1-c

Thus,

o —
EM, )< h+ 2 PM*>k)<h+ 3 net & kL
E=h Pt kYt k+1-c

< h + nch -6.:.. _.h__t_l_)2
- bt “h4i-c’
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By some stralghtforward analysis, one can show that

p o €e°¢ > _ 1 log n
log(ne h! ) Z ~(n+o (1)) log log n
and that
(A 2o d)
h+1-c h+1 h
Therefore,
I
EM,* <h F+2E 40 (1)) exp(~(n+0 (1)) —2m—)
h h log log n

1+0 (1) 2¢, 1 b{(n)+n 140 (1)
Sh+( log n )(H_hTo(h))S c(n) log n

_ b(n)tnto(n)
c(n) )

But 7 was arbitrary. This concludes the proof of the theorem.

For all bounded f , we have

log n

EM,) ~ log log n

whenever m ~ cn. In first approximation, the density does not influence
E(M,). The explanation is due to the fact that the expected value of the max-
imum of n Independent Polsson (A) random varlables Is asymptotic tO
log n / log log n for any constant X. The Influence of f * on E(M,) Is In the
third largest asymptotic expansion term only. The proof of Theorem 4.1 18 long
and tedlous because we want to obtaln rather reflned information. From here
onwards, we will content ourselves with maln asymptotlce terms only.

Theorem 4.1 remalns valld when the minimum and the maxlmum of the
X;’ s are used to determine an Initlal Interval, and the buckets are deflned by
dividing this Interval lnto n equal sub-intervals. The density [ Is assumed to
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have support contalned In [0,1] but not In [0, 1-€} or [¢,1] for any € > 0.

When f Is unbounded, the theorem glves very little informatlon about
E (M, ). Actually, the behavior of £ (M, ) depends upon a number of quantitles
that make a general statement all but Impossibie. In fact, any slow rate of con-
vergence that Is o(n) Is achlevable for E (M, ). Since N; 1s binomlal (n,p;)
where p; Is the Integral of f over the 1-th bucket, we have

max np; < E(max N;) = E(M,) .
t t

When f 1Is monotone nonincreasing, the left-hand-side of this Inequallty Is equal
to nF (—1—) where F s the distributlon function corresponding to f . Thus, since
n

any slow rate of decrease to O Is possible for F, when n — o0, any slow rate
o(n) Is achlevable for E(M,). The rate log n/log log n, achleved by all
bounded densitles, Is also a lower bound for E (M, ) for all densitles.

This note would not be complete if we did not mention how E (M, ) varles
when max np; diverges. Most of this Information can be deduced from the Ine-
t

) qualltles glven In Theorem 4.2 below. For example, we will see that
. E(M,)~ log n /log log n (the optimal rate achlevable) when ¢ diverges very

slowly, and that £ (M, ) ~ ﬂ-q when ¢ diverges rapldly.
m

Theorem 4.2.

Let ¢ = max mp;. Then
1<i<m

n n 1 n
1S EM,< gl +—t-(logm + - g(ef-t-1))

t
=dem ol Tl it >om > 3.
t m t

Proof of Theorem 4.2.

The lower bound follows directly from Jensen’s Inequality. To derive the
upper bound, we let U; = N;-np;, U = max U;. Note that U Is a nonnega-
3

tive random varlable. We have

M, Smaxnp,-+maxU,-=—n-q + U
7 7 m
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. Forr > 1, we can apply Jensen's Inequallty agaln:

ET(UYSEU)=E (miax U;") (u7 1s constdered slgn-preserving)

< m max E(U;7),) S m max E((—éf—t)’ew‘),allt > 0.

T 3 — .
Here we used the inequallty u,” < (—c——t)" e, t > 0, where u_=max(z,0)
Also,
tN,
)

- np. (e’ ~t-1)
E(eV)=E(e ™™y = e (epi+1-p,)" S e

< % g(et-t-1)
€

Thus,

1
n I exp(= L(et-t-1)).
E0,) < Zq + L7 exni -

n ¢
— ~t-1 ust
This bound s minimal with respect to r when r = log m + g(e*-t-1) (1

set the derlvatlon of the logarithm of the second term in the bound equal ;,lo Os)é
Resubstitution glve the desired result. The restriction r > 1 forces us to choo

m > 3.

Theorem 4.2 shows that there are many possible cases 1o be conslder;:ld1 wzlt;l;
~ s
respect to the rates of Increase of ¢ and m. Assume that m c¢n, whic

standard case. Then

n q
E(iw,.)'\’—m_q -~ =

C

when ¢ /log n — oc. To see this, observe that
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t2
el-t-1 < <—gt |
- 2

so that

EM)< I il I Y
(n)_mqtogm—i-que Lt > 0.

2m
Take { = —rzl—log m (this minlmizes the upper bound when e’ is neglected

), and note that

, . ~
E(M,,)qu +\/2;q10gm(1+o(1))~%q_

In this case, the bound of Theorem 4.2 Is tight.

Conslder a second case at the other end of the spectrum, the very small
g 1 ¢ = (log )’ (or: log g == o (log log n)). Then the upper bound is

EM,) < (1+o(1)) —28m _logn

log log n
o log m g log
—q
m
when we take t = log ogm) _ log log Iog“m
) n
m ? m 7

(note that thils choice of ¢ almost minimlizes the upper bound). Thus, Theorem

4.2 provides a considerable short-cut over Theorem 4.1 If one Is only interested in
first terms.

A third case occurs when ¢ = o (log n ), but ¢ s not necessarlly very small.
In that case, for the same cholce of ¢ suggested above, we have

EM,) < (1+0(1)) —28m _____ logn

logl log m] iog[ log n
n Y
—9q
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The only case not covered yet Is when ¢ ~ a log n for some constant a > 0. It
s easy to see that by taklng ¢ constant, both the upper and lower bound, for
E (M, ) vary 1n proportion to ¢. Slnce obvlously the bounds lmpliclt In Theorem
4.1 remaln valld when ¢ — co, we see that the only case In which there might be
a discrepancy between the rate of Increase of upper and lower bounds Is our
““third” case.

Remark 4.1. [The behavior of max mp; .|
1<i<m

The behavior of M, for unbounded densitles depends rather heavily on the

behavior of ¢ = max mp;. It Is useful to relate thls maximum to f . In par-
1<i<m

ticular, we need to be able to bound the maxlmum !n terms of f . One possible
polynomial bound is obtalned as follows: for any set A;, and any r > 1,

ff'

m < — )\(A 7 ff " (Jensen’s inequallty).

Thus,

1 1

= max mp; <m"' r
¢ = max mp; < dgror.

The less outspoken the peakedness of f 1s (l.e. the smaller f f7), the smaller the
bound. For densitles f with extremely small i{nfinlte peaks, the functional gen-
erating function ts fAnite: ¢¥(u ) == f e < oo, some u > 0. For such densltles,
even better bounds are obtalnable as follows:

ff

)\(A) = )\(A)

f exp(u [ )

eXxpiju

< m Yu)
Thus,

log m + log ¥(u )
max mp; < .
1<i<m u

The value of u for which the upper bound Is minimal Is typlcally unknown. If
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we keep u flxed, then the upper bound I1s O (log(m )), and we are almost In the

domaln 1n which E(M,) ~log n/loglog n. If ¥(z) < oo for all ¥ > O then

we can find a subsequence u,, T co such that ¥(u, ) < m for all m. It Is easy

to see that the maxlmum of the mp;’s s o(logm), so that
log n

EM,) < ———————(1+0(1)). jig Ploglog m) < m O, then

e log((lo%é )a) ( ( )=

E(M,)= O(—————). Thus, the functional generatlng function alds In
log log log n

the establishment of simple verlflable conditions for different domains of behavior
of E (M,).

Remark 4.2. [Double bucketing.]

It Is a rather stralghtforward exerclse to show that for bounded f on {O,l]d ,
if all buckets are further subdivided into grids of slzes N v - -, Ny, as s done
in sectlon 1.5 for example, then, when m ~ ¢n,

E(M,) ~ log log n
" log log log n

Here M, 1s the maximal cardinallty In any of the buckets In the small grids.
Intuitively, this can be seen as follows: for the original grid, Mn Is very close to
log n /log log n. For the buckets contalnlng about log n /log log n elements, we
obtaln an estimate of F (M, ) for the maximal cardinallty in 1ts sub-buckets by
applylng the results of this sectlon after replacement of n by log n /log log n.
Thus, as a tool for reducing the maximal cardinality In the bucket data structure,
double bucketing Is quite efficlent although not perfect (because E (M, ) — o).

Remark 4.3. [Poissonlzation.]

The proof of Theorem 4.1 Is based upon Polssonlzation of the sample size.
The technical advantage Is that M, , a maximum of dependent binomlal random
varlables, Is replaced by M, *, a maximum of independent Polsson random varl-
ables. In fact, we can do without the Polssonization by using speclal properties

of the muitinomlal distribution. To 1llustrate this, we could have used Mallows’
Inequallty:

m m
P(max Ny <o) S I] P S2)<exp-3 P(N; > 7).z >0
1<:<m

=1 f=1

(Mallows, 1968), from which one deduces without work that
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E( max N;)> E( max N;%)
1<i<m 1<ism

where, N,*, ..., N, * are independent binomilal random varlables, distrlbuted
Individually as N, ..., N,,. This can be used as a starting polnt for develop-
ing a lower bound.

Remark 4.4. [Historlcal remark.]

Kolchln, Sevast'yanov and Chistyakov (1978, pp. 94-111) have studled 1n
some detall how Ma behaves asymptotically for different rates of Increase of m,
and for the uniform denslty on [0,1]. Thelr results can be summarized quite sim-

ply. A critical parameter is _n_, the average occupancy of a cell. There are three
m

cases:
n
Case 1. If —————— — 0 as n — O, then
m log m

ltm P(M, = r-1) = ¢,
n =00

Iim P(M, =r)=1—e‘)‘,

n—C0

where \ Is a positive constant, and r = r, 1Is chosen In such a way that
n

( n ) e ™
r> 2 m —\. (Thus, asymptotically, M, puts all Its mass on two
m

points.)

Case 2.

— z € {0,00).
m log m

n

Case 3. I — 00, then M, /(-7%) — 1 1n probability.

m log m

Case 1 1s by far the most Important case because usually m ~ cn. In cases 2
and 3, the asymptotlc distribution of M, 1s no longer bl-atomlc because M,
spreads 1ts mass more out. In fact, In case 3, M, Is with high probablllty equal

to the value of the maximal cardlnality If we were to distribute the n p;)lnts
evenly (not randomly!) over the m buckets! The difference M, - - Is

~ 2i log m in probabillty praovided that m > n¢ for some ¢ > 0.
\/ m




108 CHAPTER 4

4.2. AN EXAMPLE : THE SELECTION PROBLEM.

Assume that a bucket structure Is used to find the k-th smallest of
X,, ..., X,, independent random varlables with density f on [0,1]. The m

buckets are of slze L each, but what will be sald below remalns valld if the m
m

buckets are defined on [min X;,max X;]. In the algorithm, we keep a count for
each bucket, so that in one additlonal pass, it Is possible to determine in which
bucket the k-th smallest polnt lles. Within the bucket, this element can be found
In several ways, e.g. via a linear worst-case comparison-based algorithm
(Schonhage, Paterson and Plppenger, 19768; Blum, Floyd, Pratt, Rivest and Tar-
jan, 1973), via a llnear expected tlme comparison-based algorithm (Floyd and
Rivest, 1975; Hoare, 1961), or via a comparison-based sorting method. In the
former two cases, we obtaln Illnear worst-case tlme and llnear expected time
respectively, regardless of how large or small m 1s - we mlght as well choose
m == 1. The constant In the tlme complexity might be smaller though for
m > 1. If the buckets have cardinalltles V,, . . . , IV, , then the time taken by
the linear worst-case algorithm 1s bounded by

V=0an +8 max N; +m
sm

1<i <

where a, 3, 7 > 0 are constants, and the middle term describes the contribution
of the llnear worst-case comparison-based selectlon algorithm. While we can
obviously bound all of this by (a+8)n +ym (which would lead us to the cholce
m =1), 1t Is Instructlve to minlmize EF(V). As we will see, It wlll be to our
advantage to take m proportlonal to V7 , so that E(Vy=an + 0(\/7 ) as
n — co.

The suggestlon to take m proportional to ﬁ was also made by Alllson and
Noga (1980), but their algorithm lIs different, in that within a selected bucket, the
algorithm 1s applied recursively. Note that the algorithm suggested here Is more
space efficlent (since 1t Is not recursive) but far less elegant (since 1t 1s a hybrid of
a bucket algorithm and a fairly complicated llnear comparison-based selection
algorithm).

We note here that max [V; Is used In the definitlon of V' because we do not
know beforehand which order statistic is needed. For example, the situation
would be quite different If we were to ask for an average time, where the average
s taken over all n possible values for £ - In that case, the middle term would
have to be replaced by ﬂZ‘Ni 2, and we can apply some of the analysis of chapter
1.

If sorting !s used within a bucket, then the total time for selectlon 1s
bounded by
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V=oan +§ max N; log(V; +1)+ym ,
1<i<m

or

V=an +§ max N;Z2+m ,
1<:<m

depending upon whether an n log n or a quadratlc sort 1s used. To obtain a
good estimate for E(V), we need good estimates for E (M, log (M, +1)) and
E(M,?), Le. for expected values of nonlinear functions of M, . Thils provides
some of the motlvation for the analysis of sectlon 4.3. In this sectlon, we will
merely apply Theorem 4.2 in the deslgn of a fast selectlon algorithm when a
llnear worst-case algorithm 1s used within buckets. The maln result Is given In
Theorem 4.3: this theorem applies to all bounded densitles on [0,1] without
exception. It Is for this reason that we have to appeal, once agaln, to the Lebes-
gue density theorem In the proof.

Theorem 4.3.
Define for positive a, 3, 7,

V=an +§ max N; +ym ,
1<i<m

where X,, . . ., X, are lld randem variables with bounded density f on [0,1] :
f@)< f* < coforall z. Then, for any ¢,m:

an + ym +ﬂ%q < E(V)

< an +m +ﬂ(—:—lq+ 2%1} log m \/1+es]

m .
where 35 = A /[ 2— log m .
nq !

If we choose
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then

1
4

E(VY<an +2VBmf* + O(n

log? n)

and, In fact

E(V)=an + 2V Bynf* (1+0(1)).

Proof of Theorem 4.3.

The proof of Theorem 4.3 Is based upon a ci‘uclal lemma.

ar Lemma 4.1.

l For any bounded denstty f on [0,1]%, and for any sequence m — oo,
. g = max mp; — [ " = esssup f.
. 1<i<m

Proof of Lemma 4.1.
We will use the fact that for such /, Im (f|f [")V/" = f * (see Wheeden
r —co
and Zygmund (1977, pp. 125-1268)). Defining the density

Im@)y=mp; ,z €A;,
on [0,1}¢, We note that
[*2 g =mx [p@)=essup [ 2 ([fn ) (anyr),

and thus

Im inf ¢ > f llm Inf [, " (Fatou’s lemma)
m —00 m —Cco

= [/ (Lemma 5.10)
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by cholce of r = r(e), for arbitrary € > 0. This concludes the proof of the
Lemma.

We contlnue now with the proof of Theorem 4.3. The starting polnt Is the
bound given Immedlately following the proof of Theorem 4.2. The cholce of ¢ Is
asymptotlcally optimai when ng /m log m — co. Slnce ¢ > 1 In all cases, this
foilows if n /m log m — oo, which Is for example satisfled when m ~ \/1_1-, a
cholce that wlll be convenlent Iln thls proof. The upper and lower bounds for

E (V'), 1gnoring lower order terms, are thus roughly an + vym + /3—n-q . Because

m
¢ — f* (Lemma 4.1), the choice m = |« / %n/ *] 1s agaln asymptoticaily

optimal. Resubtitution of this cholce for m glves us our result.

Remark 4.5. [Cholce of m .]

With the optimal cholce for m, we notlce that E(V)~ an, l.e. the
expected value of the tlme taken by the algorithm has only one maln contributor
- the set-up of the data structure. The other components, l.e. the traversal of the
buckets. and the selectilon within one particular bucket, take expected time
~ VpBynf * each. Since f * Is unknown, one could use m ~ vn instead,
without upsetting the expected tlme structure: we wlll still have

E(V)=oan + o(Vn ).

When f s not bounded, and / or m Is not of the order of vn , the upper
bound of Theorem 4.3 should still be useful In the majority of the cases. Recall
the inequallties for ¢ obtalned In Remark 4.1.

4.3. NONLINEAR FUNCTIONS OF THE MAXIMAL CAR-
DINALITY.

As we have seen in the study of the selectlon problem, and as we will see in
sectlon 4.4 (extremal polnt problems), 1t Is Important to derive the asymptotlc
behavlor of

E{g(a, M)
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where «, 1 1s a glven sequence of posltive Integers (most often «, == 1)

M, = énaic N;, and ¢(.) Is a work function satlsfying some regularity condi-
1<t m

tlons. The following condltions wlill be assumed throughout thils sectlion:

(1) ¢ 1s nonnegatlve and nondecreasing on [0,c0).
) g(z) >0forz >0
) ¢ (z) < e + bz® for some a,b,s >0, all £ >0.
(v) lm g(z)= o0
z —00

(v) g 1s convex.

(v1) g 1s regularly varylng at Infinlty, l.e. there exlsts a constant p > O such that
forallu € R ,

g (uz)

EALL R

z—o0 §(T)

Examples of such functions lnclude

g(z)=1z%

gz)=z",r 21
g(z)=1+ z log(i+z).

For the properties of regularly varylng functions, see Seneta (1978) and Dehaan
(1975) for example.

The maln result of this section Is:

Theorem 4.4.

Let g be a work function satisfying (I-1v, v1), let X,, . . . , X, be 1id random
vectors with bounded density f on {O,I]d , and let the grid have m ~ ¢n buck-
ets as n — oo for some constant ¢ > 0. Then, for a, as given above,

log(a, *tlm)

E(gla, M) S (1+0(1) gja, "
log log(a, *"im)

[ log(a,? ¥in )

K log log(a,; “'n)
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If in additlon, g (z) > b*u®** for some b* > 0, and all u > 0, then

log n ]

E(g(ay M,)) < (140 (1)) g{a" log log n

asn — 0.

If the work functlon satifies (-1, 1v-vi), then

log n
E(g (o, M) > g[a,. m]“*"“”-

If ¢ satlsfles (-v1), g (u) > b *u®*!, some b* > 0, all u > O, then

log n ]

E(gla, My ) ~ gianm

If the work function satisfies (1-v1), then

log n ]

E(gM,) ~ 9| it

Proof of Theorem 4.4.
Let us deflne

log(a im)
v = u, = (1+€)a, ——————
" " log log(attim)

where € > 0O Is arbltrary. We always have
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E(gla, M, )) S g(u)+ [ Plg(o, M) > t) dt
g(n)

=g(u)+ [ Pla, M, >v)g (v)dv

=g@)+ [ PM, >v)g (a,v)a, dv

u/al

oo
SS9+ [ (a+bavi)P(M, >v)a, dv

u/a,

iy n ym
-——q -v log(—=)
SS9+ [ (a+bafv)me ™ ¢ o dv

t/a,
by Lemma 5.5. If we can show that the integral I1s o (1), then we have
E(g(a, My) < g(s) + 0(1)

~ (1+€)f ¢

log(a,f *im ) ]

ettt
log log(e,f tim)

by conditlons (1v) and (vi) on ¢ . Slnce € was arbltrary, we have shown the upper
bound In the theorem. By convexlity of g, the lower bound follows easlly from
theorem 4.1, Jensen’s inequallty and (vi):

E(g(a, M,) > g(a, E(M,))

log n

~ glo
9( " log log n

)

This leaves us with the proof of the statement that the second term Is o(1).
Note that ¢ < f *, and that the bound of Lemma 5.5 remalns valld If ¢ s for-
mally replaced by [ *. It sufflces to show that

o0 um

€ a, ng dv — 0 (1)

Ly v log(
J e wsme ™
u/a,
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because u /a, | co. But the Integral can be viewed as a tail-of-the gamma
))*), and

u

8 s-10_ U s + (v—
Integral with respect to dv. Use v°® < 2°7%(( an) ( (an
u u
+ (v—
a, a,

) to obtaln an upper bound of the form

v =

LI um ) e—;q
8 53-1 Qg e Q. ng
a, mu®© 2 e p
log( )
ea, ng
um n
——lo| r—q
s +1 st e % g(ea,.nq m

+ ma, o et
(log(———))
ea, ng

The first of these two terms Is asymptotically dominant. It Is easlly seen that the
first term Is

u., B u um
[ log(m ai*h)+s log(-;:—)—;-q s log( R ) ]
ofe

Note that U remalns bounded away from O and oo. Trivial calculatlons show

ng
that for our cholce of u , the last expression Is o (1). .
Consider finally all the statements Involving the conditlon g (u) Zdboruo (1).
1t Is clear that If the upper bounds for the Integral are o (g (us)lllnstiao o s+1)t
then we are done. Thus, It suffices that the integrals are o (u ) © n

This follows If

u n u um _
— —— — 1o —..) — —CC ,
logm + s log( . ) —q P, g(eannq

log n

which Is satisfled for © = (1+¢€) m.




114 CHAPTER 4

Theorem 4.4 1s useful because we can basleally take the expected value
Inside ¢ . Recall that by Jensen’s Inequality E (g (M, )) > ¢ (E (M, )) whenever g¢
Is convex. The opposite lnequallty Is provided In Theorem 4.4, Le. E (g (M,)) s

1+0<1) times larger than g (£ (M, )), malnly because M, concentrates Its proba-
blllty mas near E (M, )as n — co.

The conditlons on ¢ may appear to be a bit restrictive. Note however that
all conditlons are satisfled for most work functions found In practice. Further-
more, If ¢ Is sufficlently smooth, then ¢’ (z) < a + bz°® and g(z) > h*z*+!
can both be satlsfled simultaneously.

A last word about Theorem 4.4. We have only treated bounded densitles
and grids of slze m ~ ¢n. The reader should have no difficuity at all to general-
1ze the techniques for use In other cases. For lower bounds, apply Jensen’s ine-
quallty and lower bounds for E (M, ), and for upper bounds, use the Inequalities
glven In the proof of Theorem 4.4.

4.4. EXTREMAL POINT PROBLEMS.

Extremal polnt problems are problems that are concerned with the
Identlficatlon of a subset of X, ..., X, which in some sense deflnes the outer

boundary of the ‘“*cloud” of points. The outer boundary is important ln many
appllcation, such as:

(1) pattern recognition: discrimination rules can be based upon the relative
posltion of a polnt with respect to the outer boundaries of the different
classes (see e.g. Toussalnt (1980, 1982)).

(1) image processing and computer vision: objects are often characterized
(stored) via the outer boundary.

(1) statistics: points on the outer boundary of a collection of d-dimensional
polnts can be considered as outllers, which need to be discarded before
further analysis is carried out on the data.

(Iv) computational geometry: The convex hull, one particularly simple outer
boundary, plays a key role In varlous contexts In computational geometry.
Often, ‘Information about the polnts can be derived from the convex hull
(such as the diameter of the collection of polnts).
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Outer layer

Figure 4.1. .
The convex hull and the outer layer of a cloud of points.

‘We will refer In this short sectlon to only two outer boungarles: the convex hull
(the collectlon of all X;’ s having the property that at least one hyperplane
through X,- puts all n -1 remalning polnts at the. same side of the hyperplane)l,,
and the outer layer, also called the set of maximal vectors (the collecr,lonlo

all X;’ s having the property that at least one quadrant centered at X; contal nrs1
no Xj, §5%1). Once again, we will assume that X, . S X, have a comlI:hOer
denslty f on [0,1]'1 . A grid of size m Is constructed 1n one of two ways, € e

by partitioning {0,1]“ or by partitioning the smallest closed rectangle cov;; i
X, .- .,X,. The second grid Is of course a data-dependent grid. We Wf gie
through the mechanics of reducing the analysis for the second grid to that o o
first grid. The reductlon Is that given In Devroye (1981). For simpllcity, we

consider only 4 =2.
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Figure 4.2,
Cell marking procedure.

For the outer layer In R?, we find the leftmost nonempty column of rectan-
gies, and mark the northernmost occupled rectangle In this column. Let lts row
number be 7 (row numbers Increase when we go north). Having marked one or
more ceils In column ¢, we mark one or more cells in column 7 +1 as follows: m
mark the cell at row number j, the highest row number marked up to that
polnt; (I1) mark all rectangles between row number 7 and the northernmost occu-
pled rectangle 1n column z+1 provided that Its row number Is at least J+1. In
thls manner a *“‘stalrcase’” of at most 2v'm rectangles Is marked. Also, any polnt
that is a maximal vector for the north-west quadrant must be in a marked rec-
tangle. We repeat this procedure for the three other quadrants so that eventually
at most 8\/? cells are marked. Collect all points in the marked cells, and find
the outer layer by uslng standard algorithms. The nalve method for example
takes quadratic tlme {compare each polnt with all other polnts). One can do
better by first sorting according to y-coordlnates. In an extra pass through the
sorted array, the outer layer Is found by keepling only partial extrema in the x-
directlon. 'If heapsort or mergesort 1s used, the time taken 1o find the outer layer
of n elements i1s O{n log n) In the worst-case.
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Direction [of traversal

./.— i—:er layer point |

Figure 4.3.
Finding the outer layer points for the north-west quadrant.

Thus, returning to the data-lndependent grid, we see that the outer layer can be
found In time bounded by

2
com +ein + o[ BN
ieB

com +en +cg TN log(3N; +1)
i€B i€B

where ¢y, €, €p €3 > O are constants and B 1s the collection of lndlges of

marked cells. The random component does not exceed c, (8Vm M,)* and

c38Vm M, log(1+8vm M, ) respectively. Clearly, these bounds are extremely

crude. From Theorem 4.4, we recall that when m ~ c¢n, [ 1S bounded,

E(M,? ~ (———log )2, and E (M, log(1+M,)) ~ log n. Thus, the expected
log log n

time 1s O (n (__lo_gﬁ_)z) In the former case, and com + ¢ n + 0 (Vn log n)
log log n
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in the latter case. In the latter case, we observe that the contrlbution of the
outer layer algorithm Is asymptotically negligible compared to the contribution loi’
the bucket data structure set-up. When we try to get rid of the boundedness
condition on f, we could argue as follows: first of all, not much Is lost by
replacing log( 37 /V; + 1) by log(n +1) because SN = ﬂ(\/ﬂT) and m ~ ¢n.

icB iCB
Thus,
E(N; log(N; +1))
i€B i€B
< E(3N;) log(n +1)
i€B
< 8vVm log(n+1) E(M,)
t_
< 8vm log(n +1) -k’%"l + 2q(s 1)] (all t > 0)
m
where ¢ = max(mp,, ..., mp, ) (Theorem 4.2). For constant {, we see that
the upper bound 1s o (n) + 8n log(n +1) -2 et This 1s O (n) for exam-
vm t

ple when ¢ = O v

), m ~ ¢n. This is the case when
log n

ff 2-+€ < oo
for some ¢ > O (Remark 4.1). See however the Important remark below.

Remark 4.8 [Optimlization with respect fo m .]
We can once agaln tallor our grid to the problem by choosing m . Recall
that an upper bound for the expected time complexity Is

1 : ef-1
cn + com + czvm log(n +1)( og m + %q( ;

are constants. We can first choose ¢ to approximately minimlze the bound: for
example, minlmization of

)) where ¢, ¢, €3t >0
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/ 2m log m
suggests the value t = —-—nqg—-— and we obtaln

ng logm+_r£_q]

cn + com + cyVm log(n +1){(2+0(1) om

==¢,n + c,m + cylog(n +1)(V2+o (1))Wng log m

n
+ ¢ q log(n+1)
8 Vm
n
¢ MIE™ o It we now minlmize ¢c,m + cg g log(n +1), we obtaln
vm
nq
the recipe
. 2/3
m = 2. ng log(n+1)

2¢,

Plugging this back into our condltion for the use of the bound, we note that it s
satisfled In all cases since ng — oo. The bound becomes

1
cym + 621/36 32/3[_

e T 2‘/3](nq log(n +1))*/®
2

+ 03[\/_%-+ o(l)] log n Vng log(ng) -

Which term s asymptotically domlnant depends upon the density f. 1t f 1s
bounded, then the upper bound Is ¢,;n + (K +0 (1)) f *¥3(n log n )*/® where K
does not depend upon f and f * 1s the bound for f . We can also design the
grid for a particular class of densities. For bounded densltles, we can take

2/3
C3 .
m = nf* logn ,
2¢c,

and for densitles with g, = ([ f 7)Y/7 < oo, We can take
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2/3

3
m=|—n m'"u. logn ,
2¢,

or, solving for m:

2r

™ ! Cg I 3r-2
== n og n .
2¢, My lOZ

This ylelds useful choices for r > 2. Uslng ¢ < u, m!/7, we obtaln the further
bound

2r
cm + O((n log n)3 2y,

The maln concluslon is that If m s growlng slower than n, then for certaln large
classes of densltles, the asymptotically most Important component In the
expected tlme complexity Is ¢,;n. For example, when f f* < oo, we have
c,n + o((n log n)¥%).

Of course, the same algorithm and discussion can be used for finding the
convex hull of X v , X, because for arbitrary polnts there exist simple
O(n log n) and O(n?) worst-case algorithms (see Graham (1972) , Shamos
(1978), Preparata and Hong (1977) and Jarvis (1973)) and all convex hull points
?re o;n;er layer polnts. In this form, the algorithm was suggested by Shamos
1979).

Remark 4.7. [Bucket structure In polar coordinates.]
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Support of density f

Internal point

Figure 4.4.
Points are ordered according to angular coordinates
for use in Graham's convex hull algorithm , bucket algorithm.

The bucket data structure can be employed In unexpected ways. For exam-
ple, to find the convex hulls In R2, it suffices to transform X,-z,....X, -z Into
polar coordinates where z 1S a point known to belong to the Interlor of convex
hull of X, ..., X, (note: we can always take X ==X ). The polnts are sorted
according to polar angles by a bucket sort as described I1n chapter 2. This ylelds
a polygon P. All vertices of P are visited 1n clockwlise fashion and pushed on a
stack. The stack Is popped when a non-convex-hull point Is identifled. In thils
manner, we can construct the convex hull from P !n linear tlme. The stack algo-
rithm s based upon ldeas first developed by Graham (1872). It Is clear that the
expected tlme of the convex hull algorithm s O(n) If f92 < oo or
fg log.g < oo where ¢ is the density of the polar angle of X;~z, 1 > 1. For
example, when X, ..., X, have a radlally symmetric density [, and z Is
taken to be the origin, the ¢ 1s the uniform density on [0,27], and the algorithm
takes O (n ) expected tlme. When z Itself Is a random vector, one must be care-
ful before concluding anythlng about the flniteness of f g% In any case, g Is
bounded whenever f Is bounded and has compact support.
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The results about E(M,), albelt very helpful, lead sometimes to rather
crude upper bounds. Some improvement Is possible along the llnes of Theorem
4.5 (Devroye, 1985).

Theorem 4.5.

Let X,, ..., X, be Independent random vectors with common denslty f
on [0,1]%, let the grid have m cells, and let ¢ = max(mp,, . . ., mp,, ). Then, If
B 1s the collection of Indices of marked cell In the extremal cell marking algo-
rithm, '

n
—q
E(EN) <s8vm —2—
i€EB L e
—€

In particular, if m ~ c¢n (for some constant ¢ > 0),

n

—-q

E(D V) < 8+0(1)) ——
‘eb 1-¢ o

and

1,1 1.1
E(EM)S(8+0(1))n2 ref 2
ieB =

1-¢ °©

Jrm

for all r > 1.

Proof of Theorem 4.5.

We note that each [V, s stochastlically smaller than a blnomlal (n,p;) ran-
dom variable condlitloned on the varlable belng at least 1. Thus,

t
2
A
A

1-{1-p;)" 7 1-e TP T =
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The first Inequallty follows trivially from this. The second Inequailty Is obvios,
and the third Inequality Is based upon the fact that ¢ < m /7 (ff ")V,

In the proof of Theorem 4.5, we have not used the obvious lnequallty
SIN; <8/mM,. It we find the outer layer or the convex hull by an
i€EB
O (n log n) worst-case tlme method, then under the condltions of Theorem 4.5,
with m ~ c¢n, the expected tlme Is bounded by

O(n)+ O(Wn gq)logn

and this does not improve over the bound obtained when the crude lnequality
was used. For example, we cannot guarantee llnear expected time behavlor when
ff?< oo, but only when a stronger conditlon such as [f**¢ < co (some
€ > 0) holds. {We can of course always work on m , see remark 4.8).

There Is, however, a further possible improvement along the lines of an outer
layer algorithm of Machll and Igarash! (1984). Here we elther find the outer
layers In all cells A;, + € B, or sort all polnts In the individual cells. Then, In
another step, the outer layer can be found in time linear in the number of polnts
to be processed. Thus, there are three components in the time complexity: n +m
(set-up), 33 N; log(N;+1) (or 3 N; %) (sorting), and ¥ N; (final outer layer).

{EB i€B ieB
It should be clear that a slmllar strategy works too for the convex hull. The
principle Is well-known: divide-and-conquer. It Is better to delegate the work to
the individual buckets, in other words. For example, we always have

E(3 N, log(V; + 1))
iEB
< 8Vm E(M, log(M, + 1))

< 8vVm log(n +1)E(M,),

and, If we use a more refined bound from the proof of Theorem 4.5 comblned
with Lemma 5.8,

E(E N; log(V; + 1))
{€B




124 CHAPTER 4

n n
—gq log(2 + —
g log( mq)

< s8vm U

,
l-e ™

For example, when m — oo, n/m — oo, f < f* < oo, the bound Is

8n

* log(
mf log(m)-

~

The optimal cholce for m Is proportional to (f *n log n)?/3, so that the
expected tlme complexity for the algorithm s cyn (for the set-up)

+ O((n log n)*3). In another example, If m ~ cn, ¢ — oo, the upper bound
is

8
~Vn Tc—-qlogq,

which In turn is O (n) when ¢ = O (vVn /log n )

‘We turn now to the problem of data-dependent grids, and in particular grids
of slze m formed by partitioning the smallest closed rectangle covering all the

polnts. For the convex hull and outer layer algorithms consldered here, the ran-
dom terms are either

T N; log(N; + 1)
ichB

or

3Nt

i€B

If divide-and-conquer s used, and

(3 N)log(oN; +1)
tE€B ie8
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or

(o NP

i€EB

otherwise. All these terms are bounded from above by g (a, M, ) where o, Is an
Integer, ¢ Is a work functlon and M, = . gaécmN,-. Unfortunately, our analysls
of M, and g (M, ) does not apply here because the grid 1s data-dependent. The
dependence 1s very weak though, and nearly all the results glven In this section
remaln valld if f has rectangular support [0,1]%. (Note: the rectangular support
of f 1s the smallest rectangle R with the property that fR f =1.) To keep
things simple, we will only be concerned with an upper bound for E (g (a, M, ))
that 1s of the correct order of lncrease in n - 1n other words, we will not be con-
cerned with the asymptotic constant. This case can easlly be dealt ;ﬂlth via a
“shifted grid” argument (Devroye, 1981). Partition [0,1]* (or [0,1]® for that
matter) into a grid of slze m /2% with member cells B;. Then conslder for ez‘xch
(§y - - -» Ja) € {01} the shifted grid with member cells B; (s, - ., Ja)

1<17 <%, where the shift vector Is
- =2

J1 J2 Jd
L a7 i
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Shifted grid

Original grid
Figure 4.5.
llustration of the shifted grid argument.

The key observation Is that every A; 1n the orlginal data-dependent grid Is con-
talned in some B (7,, ..., j;)- Thus,

M, < max M,*(jy ..., 5)
Ju -, Jd
where M, *(5,, ..., Jq4) 1s the maximal cardinalisy for the (Ji -, 7g) grid.
Thus,
g(anMn)S Z g(anMn*(]‘1;<~~:]-d))
Ju s da

Each individual term on the right hand side s for a data-independent grid, for
which we can derive several types of Inequalltles. Thus, typlcally, the expected
value of the right hand slde 1s about 2% tlmes the expected value of one term.
For example, If f s bounded and m ~ ¢n, then for &, ,J as In Theorem 4.4,
log n )

the expected value of the right hand side is < (140 (1))2d g (o, ————
—_— n
log log n
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Chapter 5

AUXILIARY RESULTS FROM
PROBABILITY THEORY

5.1. PROPERTIES OF THE MULTINOMIAL DISTRIBU-

TION.
A random vector (Y4, . . ., Y ) Is multinomial (n;p,, . . ., g ) When
. . koopj i"
P(lell, e, Yk_—“lk): n! H __'1’._’ ’
j=1 e
it 4t =mn,4; 20aly,
k
where Y p; =1 and all p]-’ s are nonnegative. Y, is sald to be blnomlal
j=1

(n.p )

Lemma 5.1. [Moments of the multinomial distributlon; see e.g. Johnson and
Kotz, 1969]
For Integer r,s > 1
E(Yi(Yi_l) T (Yz'—r+1)) = p{r n(n—l) T (n—r +1) »
E(K‘(Y,’—l) o (Y, =T +1)YJ'(_Y]'—1)...(YJ‘—S +1))

= p;7 P Sp{n-1)..(n-r—s+1), 1 77

Thus,
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E(Y;)=mnp; ,E(Y;:) = np; +n(n-1)p; 2,

E(Y:®)=np; +3n(n-1)p;% + n(n-1)(n-2)p; 3,

E(Y;Y)=np; + 7n(n-1)p;? + 8n(n-1)(n-2)p;2 + n (n-1)(n ~2)(n-3)p;*

and for 157,

E(Y;Y;)=n(n-1)p;p; ,

E(Y:(Y;-1)Y;(Y;-1)) = n(n-1)(n—2)(n-3)p, %p;?

’

and

E(Y;?Y;®%) = n(n-1)(n-2)(n-3)p; *p;?

+n (n _1)(n _2)(17{ pj 2+P,‘ 217] ) +n (n —l)pi p] .

Lemma 5.2. [Moment generating function of the multinomial distribution.}]
The random vector Y,, . .., Y, has moment generating function

k k
Elexp( X ¢ Y;) = (3 p; exp(¢; )" .

J=1 J=1

Lemma 5.3. [Uniform bounds for the moments of 2 binomial random varl-
able.]

If Y is blnomlal {n,p) and r > 0 Is a constant, then there exist a,b > 0
only depending upon r such that

E(Y"y<a(np) + 0 .

CHAPTER 5 .
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Proof of Lemma 5.3.

When r < 1, we have E(Y") < (np)", by Jensen's Inequality. We wlll
thus assume that r > 1. Anderson and Samuels {1965) have shown that for all
k> np+1, P(Y 2 k)< P(Z > k) where Z is a Polsson (np ) random vari-
able. Thus,

E(Yr) S (np +1)r + E(Yr IY_>_np+1) S (np +1)r + E(ZrIZan-H)

k
<mp+1y + ey + 3 k7 LEL o
k>np+r :

Because (u+v)" < 2"Y(u"+v7), the first two terms in the last sum are not
greater than a (np ) +b for some constants a,b only depending upon r. The
last sum can be bounded from above by

LR __(_TLLP_)_I‘_—’_ n ,
k>%+r(k-1‘) (k-r) e™ (np) .

Assume that np > 1. Then thls Is not greater than
(mp)" (14 ) < (k) (np )

For np < 1, we have E(Y") < 2" + E(Z") where Z 1s Poisson (1). Thils con-
cludes the proof of Lemma 5.3.

Lemma 5.4.
Let g{(u) be a nonnegatlve nondecreasing function on [0,c0), and let Y be
binomtal (n,p). Then if ¢ (v ) = 0 on (~c0,0),

E(g(Y)) 2 59 (np—Vmp ).

Ifp € (0.2, we have £(g(Y)) = 59 (lnp] ).
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If also g (u )/u'c | as 4 — co for some finlte constant &, then

E(g(Y)) < a max(g (np),g(1))
for some finite constant ¢ depending upon k£ only.

Proof of Lemma 5.4.

For any t > 0, we have E(g(Y)) > g(t)P(Y > t). Now, by the
Chebyshev-Cantelll inequallty,

Y-n 1 1
P(Y <np-vVnp(lp)=P(—=L_ <)< =1
p(i-p) ( np(1-p) — )< 1+1 2

Thus,

E(g(Y)) > %g(np ~Vrp (=) > %g (np —v/7p ).

The second inequallty follows directly from Theorem 2.1 in Slud (1977). Next,

EG@YN=E@(Y)y<np)+ E@(Y)ys,y)

S gmp)+E(g(Y)/Y*) YELy . ,p)

< g(mp) + LT2) gy
(np)

< g(w) + g(np)a + by (np)/(np )f
where a,b are the constants of Lemma 3.3. If np > 1, the last sum Is not
greater than g (np 1+a+b). If np <1, we have E(g(Y)) < E(g(Z))
N 1
< g(1)(1+a +b ) where Z is a blnomlal (n ,;) random variable. This concludes

the proof of Lemma 5.4.
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Lemma 5.5. [Maximum of a multinom!al random vector.]

Let B be a blnomial {(n,p ) random variable. Then, for arbltrary ¢ > O,

P(B > 1) < e (0
It N, ..., N, 1s mutinomlal (nipy, - - Pm b and z >4

= max(mp,, . . ., mp, ), then

Proof of Lemma 5.5.

For the first part, we use Chernofl’s boundlng method (Chernoff, 1952) and
note that for any { > O:

PB>1)<e®E(®)=(e'p +1-p) ™
< etz + np(ef-1)

“log(-2)z + np (1)
np np

= €

z -
where we took e’ = ——, since this cholce minimizes the upper bound. Note
n

P
that the upper bound remalns valld when B 1Is binomlal (n,p’ ), p’ < p. For
the multinomial distribution, we apply Bonferronl's inequality.

Lemma 5.68. [Logarithmlc moment of the binom!al distribution.]
Let Y be blnomlal {n,p ). Then

E(Y log(1+Y)) < np log(2+np ).
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Proof of Lemma 5.8.

1 Let Z be a binomlal (n-1,p ) random varlable. Then, by Jensen's lnequal-
ty?

E(Y log(14+Y)) = é [n] i log(i+1) p' (1-p )"~

f==1

n n-~1 . .
S (np) [ . ] p M a-p ) HEY fog(i 41)

=1 $ -

np F (log(Z +2))
< np log(E (Z)+2)

< np log{np +2).

5.2. PROPERTIES OF THE POISSON DISTRIBUTI(SN.

Lemma 5.7. [Exponential Inequallty for the Polsson tall.]
If Y is Polsson (\) distributed, then

PY-N2Xe) < 2 exp(-he?/2(1+€)) , all € > 0.

Proof of Lemma. 5.7.

By Chernoff’s bounding technique, we have

PY-XN>Xe) S E(efTNpetX-Nye-tre a4 0
— c(eX(e‘—l—t)_'_ek(e“—1+t))e-t>\e
—_ ek(e‘—l—t)e—t)\e (1+e)\(e"—1+t—e’+l+t))

< 9 ek(e‘—1—t—te)

where we used the fact that e < ef-2¢t. The exponent e’-1-f(1+¢) Is
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minimal If we take ¢ = log(1+¢€), and this glves the bound
2 exp(Me=(1+€)log(1+€))) < 2 exp(-Ae?/2(1+¢€)) .
Here we used the Taylor's serles with remalnder term to obtaln the last inequal-

1ty.

Lemma 5.8. [Fourth moment lnequallty for the Polsson tall.]
If Y is Poisson (A\) distributed, then

p(ly_)\|_>_)\5) < . ,alle > 0.
A2t

Proof of Lemma 5.8.
By Chebyshev’s inequality,

P(Y-\>Xe) < M

(re)*
_ A3 4
Tttt T 2%t

Lemma 5.9. [Precise estimates of the Polsson tall.]
Let Y be a Polsson (\) random variable, and let & be a fixed Integer. Then,
for k+1 > X,

PY>k) o _k+1
= P(Y=k) — k+1-x
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Proof of Lemma 5.9.

Observe that

Aol ok 2 3
2N TSN S B

J=0

A

7
lc-l-l) ’

5.3. THE LEBESGUE DENSITY THEOREM.

In this sectlon we give several forms of the Lebesgue density theorem, that
will enable us to obtaln theorems without contlnulty conditions on f . For

proofs and additional detalls, we refer to Wheeden and Zygmund (1977) and to
de Guzman (1975, 1981).

Lemma 5.10.

Let A be the class of all rectangles contalning the origln of R ¢ , and with

sides s, ...,s; satisfylng ¢; <s; < b; for some fixed posltive numbers
a; < b1 <0 < d.

There exists aset D C R? such that \(D¢) = 0 (D° 1s the complement of
D) and

sup | [ f/Mz+rA)-f(z)|—0 asr —o0,allz € D.
A€A z+r4

Proof of Lemma 5.10.
See Wheeden and Zygmund (1977) or de Guzman (1975, 1981).

Lemma 5.11.

Let C be a fixed rectangle of R with sldes ¢, ..., c;. Let {A, } bea
sequence of rectangles tending to C as n — oc. Let A . Dbe the collection of all

translates of A, that cover the origin. Then, for any sequence of positive
numbers r, | O,

5
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mm osup | [ f/Maz+r,A)-f(z)] =0, almost all z.

n—c0 ASAn  sir A

The set on which the convergence takes place does not depend upon the cholce of
the sequences A, and r,.

Lemma 5.12. [Scheffe's theorem (1947).]
Let {, be a sequence of densltles converging almost everywhere to a denslty
f on R%. Then

[lfa-f1—0

as n — oC.

Proof of Lemnma 5.12..
Note that

flfn_fl=2f(f—fn)+_’oy
where we used the almost everywhere convergence of f 5 tO f and the Lebesgue
domlnated convergence theorem.
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