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Abstract. We define the (random) k-cut number of a rooted graph to
model the difficulty of the destruction of a resilient network. The process
is as the cut model of Meir and Moon [14] except now a node must be cut
k times before it is destroyed. The first order terms of the expectation and
variance of Xn, the k-cut number of a path of length n, are proved. We
also show that Xn, after rescaling, converges in distribution to a limit Bk,
which has a complicated representation. The paper then briefly discusses
the k-cut number of general graphs. We conclude by some analytic results
which may be of interest.
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1 Introduction and Main Results

1.1 The k-cut Number of a Graph

Consider Gn, a connected graph consisting of n nodes with exactly one node
labeled as the root, which we call a rooted graph. Let k be a positive integer. We
remove nodes from the graph as follows:

1. Choose a node uniformly at random from the component that contains the
root. Cut the selected node once.

2. If this node has been cut k times, remove the node together with edges
attached to it from the graph.

3. If the root has been removed, then stop. Otherwise, go to step 1.

We call the (random) total number of cuts needed to end this procedure the
k-cut number and denote it by K(Gn). (Note that in traditional cutting models,
nodes are removed as soon as they are cut once, i.e., k = 1. But in our model, a
node is only removed after being cut k times.)

One can also define an edge version of this process. Instead of cutting nodes,
each time we choose an edge uniformly at random from the component that
contains the root and cut it once. If the edge has been cut k-times then we
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remove it. The process stops when the root is isolated. We let Ke(Gn) denote
the number of cuts needed for the process to end.

Our model can also be applied to botnets, i.e., malicious computer net-
works consisting of compromised machines which are often used in spamming
or attacks. The nodes in Gn represent the computers in a botnet, and the root
represents the bot-master. The effectiveness of a botnet can be measured using
the size of the component containing the root, which indicates the resources
available to the bot-master [6]. To take down a botnet means to reduce the size
of this root component as much as possible. If we assume that we target infected
computers uniformly at random and it takes at least k attempts to fix a com-
puter, then the k-cut number measures how difficult it is to completely isolate
the bot-master.

The case k = 1 and Gn being a rooted tree has aroused great interests among
mathematicians in the past few decades. The edge version of one-cut was first
introduced by Meir and Moon [14] for the uniform random Cayley tree. Janson
[12,13] noticed the equivalence between one-cuts and records in trees and studied
them in binary trees and conditional Galton-Watson trees. Later Addario-Berry,
Broutin, and Holmgren [1] gave a simpler proof for the limit distribution of one-
cuts in conditional Galton-Watson trees. For one-cuts in random recursive trees,
see [7,11,15]. For binary search trees and split trees, see [9,10].

1.2 The k-cut Number of a Tree

One of the most interesting cases is when Gn = Tn, where Tn is a rooted tree
with n nodes.

There is an equivalent way to define K(Tn). Imagine that each node is given
an alarm clock. At time zero, the alarm clock of node v is set to ring at time T1,v,
where (Ti,v)i≥1,v∈Tn are i.i.d. (independent and identically distributed) Exp(1)
random variables. After the alarm clock of node v rings the i-th time, we set
it to ring again at time Ti+1,v. Due to the memoryless property of exponential
random variables (see [8, pp. 134]), at any moment, which alarm clock rings next
is always uniformly distributed. Thus, if we cut a node that is still in the tree
when its alarm clock rings, and remove the node with its descendants if it has
already been cut k-times, then we get exactly the k-cut model. (The random
variables (Ti,v)i≥1 can be seen as the holding times in a Poisson process N(t)v
of parameter 1, where N(t)v is the number of cuts in v during the time [0, t] and
has a Poisson distribution with parameter t.)

How can we tell if a node is still in the tree? When node v’s alarm clock rings
for the r-th time for some r ≤ k, and no node above v has already rung k times,
we say v has become an r-record. And when a node becomes an r-record, it must
still be in the tree. Thus, summing the number of r-records over r ∈ {1, . . . , k},
we again get the k-cut number K(Tn). One node can be a 1-record, a 2-record,
etc., at the same time, so it can be counted multiple times. Note that if a node
is an r-record, then it must also be a i-record for i ∈ {1, . . . , r − 1}.
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To be more precise, we define K(Tn) as a function of (Ti,v)i≥1,v≥1. Let

Gr,v
def=

r∑

i=1

Ti,v,

i.e., Gr,v is the moment when the alarm clock of node v rings for the r-th
time. Then Gr,v has a gamma distribution with parameters (r, 1) (see [8, Theo-
rem 2.1.12]), which we denote by Gamma(r). Let

Ir,v
def= !Gr,v < min{Gk,u : u ∈ Tn, u is an ancestor of v}", (1.1)

where !·" denotes the Iverson bracket, i.e., !S" = 1 if the statement S is true
and !S" = 0 otherwise. In other words, Ir,v is the indicator random variable for
node v being an r-record. Let

Kr(Tn)
def=

∑

v∈Tn

Ir,v, K(Tn)
def=

k∑

r=1

Kr(Tn).

Then Kr(Tn) is the number of r-records and K(Tn) is the total number of records.

1.3 The k-cut Number of a Path

Let Pn be a one-ary tree (a path) consisting of n nodes labeled 1, . . . , n from the
root to the leaf. To simplify notations, from now on we use Ir,i, Gr,i, and Tr,i to
represent Ir,v, Gr,v and Tr,v respectively for a node v at depth i.

Let Xn
def= K(Pn) and Xn,r = Kr(Pn). In this paper, we mainly consider Xn

and we let k ≥ 2 be a fixed integer.
The first motivation of this choice is that, as shown in Sect. 4, Pn is the

fastest to cut among all graphs. (We make this statement precise in Lemma4.)
Thus Xn provides a universal stochastic lower bound for K(Gn). Moreover, our
results on Xn can immediately be extended to some trees of simple structures: see
Sect. 4. Finally, as shown below, Xn generalizes the well-known record number in
permutations and has very different behavior when k = 1, the usual cut-model,
and k ≥ 2, our extended model.

The name record comes from the classic definition of records in random
permutations. Let σ1, . . . ,σn be a uniform random permutation of {1, . . . , n}. If
σi < min1≤j<i σj , then i is called a (strictly lower) record. Let Rn denote the
number of records in σ1, . . . ,σn. Let W1, . . . ,Wn be i.i.d. random variables with
a common continuous distribution. Since the relative order of W1, . . . ,Wn also
gives a uniform random permutation, we can equivalently define σi as the rank
of Wi. As gamma distributions are continuous, we can in fact let Wi = Gk,i.
Thus, being a record in a uniform permutation is equivalent to being a k-record
and Rn

L=Xn,k. Moreover, when k = 1, Rn
L=Xn.

Starting from Chandler’s article [5] in 1952, the theory of records has been
widely studied due to its applications in statistics, computer science, and physics.
For more recent surveys on this topic, see [2].
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A well-known result of Rn (and thus also Xn,k) [16] is that (Ik,j)1≤j≤n are
independent. It follows from the Lindeberg–Lévy–Feller Theorem that

E [Rn]
log n

→ 1,
Rn

log n
a.s.→ 1, L

(
Rn − log n√

log n

)
d→N (0, 1),

where N (0, 1) denotes the standard normal distribution.
In the following, Theorem1 gives the expectation of Xn,r which implies that

the number of one-records dominates the number of other records. Subsequently
Theorems 2 and 3 estimate the variance and higher moments of Xn,1.

Theorem 1. For all fixed k ∈ N,

E [Xn,r] ∼
{

ηk,rn
1− r

k (1 ≤ r < k),
log n (r = k),

where the constants ηk,r are defined by

ηk,r
def=

(k!) r
k

k − r

Γ
(
r
k

)

Γ (r)
,

where Γ (z) denotes the gamma function. Therefore E [Xn] ∼ E [Xn,1]. Also, for
k = 2,

E [Xn] ∼ E [Xn,1] ∼
√
2πn.

Theorem 2. For all fixed k ∈ {2, 3, . . . },

E [Xn,1(Xn,1 − 1)] ∼ E
[
(Xn,1)

2
]

∼ γkn
2− 2

k ,

where

γk =
Γ
(
2
k

)
(k!) 2

k

k − 1
+ 2λk,

and

λk =






π cot
(

π
k

)
Γ
(
2
k

)
(k!) 2

k

2 (k − 2) (k − 1)
k > 2,

π2

4
k = 2.

Therefore

Var (Xn,1) ∼
(
γk − η2

k,1

)
n2− 2

k .

In particular, when k = 2

Var (Xn,1) ∼
(

π2

2
+ 2 − 2π

)
n.
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Theorem 3. For all fixed k ∈ {2, 3, . . . } and ' ∈ N

lim sup
n→∞

E

[(
Xn,1

n1− 1
k

)"
]

≤ ρk,"
def= '!Γ

(
' + 1 − '

k

)−1(π

k
(k!)1/k sin

(π

k

)−1
)"

.

The upper bound is tight for ' = 1 since ρk,1 = ηk,1.

The above theorems imply that the correct rescaling parameter should be
n1− 1

k . However, unlike the case k = 1, when k ≥ 2 the limit distribution of
Xn/n1− 1

k has a rather complicated representation Bk defined as follows: Let
U1, E1, U2, E2, . . . be mutually independent random variables with Ej

L= Exp(1)
and Uj

L= Unif[0, 1]. Let

Sp
def=



k!
∑

1≤s≤p




∏

s≤j<p

Uj



Es





1
k

,

Bp
def= (1 − Up)




∏

1≤j<p

Uj




1− 1

k

Sp,

Bk
def=

∑

1≤p

Bp,

where we use the convention that an empty product equals one.

Remark 1. An equivalent recursive definition of Sp is

Sp =

{
k!E1 (p = 1),
(
Up−1Sk

p−1 + k!Ep

) 1
k (p ≥ 2).

Theorem 4. Let k ∈ {2, 3, . . . }. Let L(Bk) denote the distribution of Bk. Then

L
(

Xn

n1− 1
k

)
d→L(Bk).

Thus, by Theorems 1, 2 and 3, the convergence also holds in Lp for all p > 0 and

E [Bk] = ηk,1, E
[
B2
k

]
= γk, E [Bp

k] ∈ [ηp
k,1, ρk,p] (p ∈ N).

Remark 2. It is easy to see that X e
n+1

def= Ke(Pn+1)
L=Xn by treating each edge

on a length n+ 1 path as a node on a length n path.

The rest of the paper is organized as follows: Sect. 2 sketches the proofs
for the moment results Theorems 1, 2, and 3. Section 3 deals with the distribu-
tional result Theorem4. Section 4 discusses some easy results for general graphs.
Finally, Sect. 5 collects analytic results used in the proofs, which may themselves
be of interest. For detailed proofs, see the full version of this paper [3]. For k-cuts
in complete binary trees, see our follow-up paper [4].
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2 The Moments

2.1 The Expectation

Lemma 1. Uniformly for all i ≥ 1 and r ∈ {1, . . . , k},

E [Ir,i+1] =
(
1 +O

(
i−

1
2k

)) (k!) r
k

k

Γ
(
r
k

)

Γ (r)
i−

r
k .

Proof. By (1.1),E [Ir,i+1] = P {Gk,1 > Gr,i+1, . . . , Gk,i > Gr,i+1}. Conditioning
on Gr,i+1 = x yields E [Ir,i+1] =

∫∞
0 xr−1e−x/Γ (r)P {Gk,1 > x}i dx. Lemma1

thus follows from Lemma7.

Proof (Proof of Theorem 1). A simply computation shows that for a ∈ (0, 1)
∑

1≤i≤n

1
ia

=
1

1 − a
n1−a +O(1).

It then follows from Lemma1 that for r ∈ {1, . . . , k − 1}.

E [Xn,r] =
∑

0≤i<n

E [Ir,i+1] =
(k!) r

k

k

Γ
(
r
k

)

Γ (r)
1

1 − r
k

n1− r
k +O

(
n1− r

k − 1
2k

)
+O(1).

When r = k, E [Xn,k] = E [Rn] ∼ log(n) is already well-known.

2.2 The Variance

In this section we prove Theorem2.
Let Ei,j denote the event that [I1,i+1I1,j+1 = 1]. Let Ax,y denote the event

that [G1,i+1 = x ∩ G1,j+1 = y]. Then conditioning on Ax,y

Ei,j =




⋂

1≤s≤i

Gk,s > x ∨ y



 ∩ [Gk,i+1 > y] ∩




⋂

i+2≤s≤j

Gk,s > y



 ,

where x∨y def= max{x, y}. Since conditioning onAx,y,Gk,i+1
L= Gamma(k−1)+x,

Gk,s
L= Gamma(k) for s /∈ {i + 1, j + 1}, and all these random variables are

independent, we have

P {Ei,j |Ax,y} = P {Gk−1,1 + x > y}P {Gk,1 > x ∨ y}i P {Gk,1 > y}j−i−1 .

It follows from G1,i+1
L=G1,j+1

L= Exp(1) that

P {Ei,j} =
∫ ∞

0

∫ ∞

y
e−x−yP {Ei,j |Ax,y} dxdy

+
∫ ∞

0

∫ y

0
e−x−yP {Ei,j |Ax,y} dxdy

def= A1,i,j +A2,i,j .

Thus Theorem2 follows from Xn,1(Xn,1 − 1) = 2
∑

1≤i<j≤n I1,iI1,j and the fol-
lowing two lemmas whose proofs rely on Lemmas 8, 9, 10.
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Lemma 2. Let k ∈ {2, 3, . . . }. We have

A2,i,j =
(
1 +O

(
j− 1

2k

)) (k!) 2
k

k
Γ

(
2
k

)
j− 2

k .

Lemma 3. Let k ∈ {2, 3, . . . }. Let a = i and b = j − i − 1. Then for all a ≥ 1
and b ≥ 1,

A1,i,j = ξk(a, b) +O
((

a− 1
2k + b− 1

2k

)(
a− 2

k + b− 2
k

))
,

where

ξk(a, b)
def=

∫ ∞

0

∫ ∞

y
exp

(
−a

xk

k!
− b

yk

k!

)
dxdy.

2.3 Higher Moments

The computations of higher moments of Xn,1 are rather complicated. However,
an upper bound is readily available. Let 1 ≤ i1 < i2 < · · · < i" ≤ n. Then

E [I1,i1I1,i2 · · · I1,i! ] ≤ E [I1,i1 ]E [I1,i2−i1 ] · · ·E
[
I1,i!−i!−1

]
.

The above inequality holds since if ij is a one-record in the whole path, then it
must also be a one-record in the segment (ij−1 + 1, . . . , ij) ignoring everything
else, and what happens in each of such segments are independent. Theorem3
follows easily from this observation.

3 Convergence to the k-cut Distribution

By Theorem1 and Markov’s inequality, Xn,r/n1− 1
k

p→ 0 for r ∈ {2, . . . , k}. So it
suffices to prove Theorem4 for Xn,1 instead of Xn. Throughout Sect. 3, unless
otherwise emphasized, we assume that k ≥ 2.

The idea of the proof is to condition on the positions and values of the k-
records, and study the distribution of the number of one-records between two
consecutive k-records.

We use (Rn,p)p≥1 to denote the k-record values and (Pn,p)p≥1 the positions
of these k-records. To be precise, let Rn,0

def= 0, and Pn,0
def= n + 1; for p ≥ 1, if

Pn,p−1 > 1, then let

Rn,p
def= min{Gk,j : 1 ≤ j < Pn,p−1},

Pn,p
def= argmin{Gk,j : 1 ≤ j < Pn,p−1},

i.e., Pn,p is the unique positive integer which satisfies that Gk,Pn,p ≤ Gk,i for all
1 ≤ i < Pn,p−1; otherwise let Pn,p = 1 and Rn,p = ∞. Note that Rn,1 is simply
the minimum of n i.i.d. Gamma(k) random variables.
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According to (Pn,p)p≥1, we split Xn,1 into the following sum

Xn,1 =
∑

1≤j≤n

I1,j = Xn,k +
∑

1≤p

∑

1≤j

!Pn,p−1 > j > Pn,p" I1,j
def= Xn,k +

∑

1≤p

Bn,p.

(3.1)
Figure 1 gives an example of (Bn,p)p≥1 for n = 12. It depicts the positions of
the k-records and the one-records. It also shows the values and the summation
ranges for (Bn,p)p≥1.

Fig. 1. An example of (Bn,p)p≥1 for n = 12.

Recall that Tr,j
L= Exp(1), is the lapse of time between the alarm clock

of j rings for the (r − 1)-st time and the r-th time. Conditioning on
(Rn,p, Pn,p)n≥1,p≥1, for j ∈ (Pn,p, Pn,p−1), we have

E [I1,j ] = P {T1,j < Rn,p |Gk,j > Rn,p−1 } .

Then the distribution of Bn,p conditioning on (Rn,p, Pn,p)n≥1,p≥1 is simply that
of

Bin (Pn,p−1 − Pn,p − 1,P {T1,j < Rn,p |Gk,j > Rn,p−1 }) ,

where Bin(m, p) denotes a binomial (m, p) random variable. When Rn,p−1 is
small and Pn,p−1 − Pn,p is large, this is roughly

Bin (Pn,p−1 − Pn,p,P {T1,j < Rn,p})
L= Bin

(
Pn,p−1 − Pn,p, 1 − e−Rn,p

)
. (3.2)

Therefore, we first study a slightly simplified model. Let (T ∗
r,j)r≥1,j≥1 be i.i.d.

Exp(1) which are also independent from (Tr,j)r≥1,j≥1. Let

I∗
j

def= !T ∗
1,j < min{Gk,i : 1 ≤ i ≤ j}", X ∗

n
def=

∑

1≤j≤n

I∗
j .

We say a node j is an alt-one-record if I∗
j = 1. As in (3.1), we can write

X ∗
n =

∑

1≤j≤n

I∗
j =

∑

1≤p

∑

1≤j

!Pn,p−1 > j ≥ Pn,p" I∗
j

def=
∑

1≤p

B∗
n,p.
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Fig. 2. An example of (B∗
n,p)p≥1 for n = 12.

Then conditioning on (Rn,p, Pn,p)n≥1,p≥1, B∗
n,p has exactly the distribution as

(3.2). Figure 2 gives an example of (B∗
n,p)p≥1 for n = 12. It shows the positions

of alt-one-records, as well as the values and the summation ranges of(B∗
n,p)p≥1.

The main part of the proof for Theorem4 consist of showing the following

Proposition 1. For all fixed p ∈ N and k ≥ 2,

L
((

B∗
n,1

n1− 1
k

, . . . ,
B∗

n,p

n1− 1
k

))
d→L ((B1, . . . Bp)) ,

which implies by the Cramér–Wold device that

L




∑

1≤j≤p

B∗
n,j

n1− 1
k



 d→L




∑

1≤j≤p

Bj



 ,

Then we can prove that p can be chosen large enough so that
∑

p<j B
∗
n,j/n

1− 1
k

is negligible. Thus,

L
(

X ∗
n

n1− 1
k

)
def= L

(∑
1≤j B

∗
n,j

n1− 1
k

)
d→L




∑

1≤j

Bj



 def= L (Bk) .

Following this, we can use a coupling argument to show that Xn,1/n1− 1
k and

X ∗
n/n

1− 1
k converge to the same limit, which finishes the proof of Theorem4.

4 Some Extensions

4.1 A Lower Bound and an Upper Bound for General Graphs

Let Gn be the set of rooted graphs with n nodes. It is obvious that Pn is the
easiest to cut among all graphs in Gn. We formalize this by the following lemma:
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Lemma 4. Let k ∈ N. For all Gn ∈ Gn, Xn
def= K(Pn) + K(Gn). Therefore,

min
Gn∈Gn

EK(Gn) ≥ EXn ∼






(k!) 1
k

k − 1
Γ

(
1
k

)
n1− 1

k (k ≥ 2),

log n (k = 1),

by Theorem1.

The most resilient graph is obviously Kn, the complete graph with n vertices.
Thus, we have the following upper bound:

Lemma 5. Let k ∈ N.

(i) Let Y
L= Gamma(k), Z

L= Poi(Y ), and W
L= Z ∧ k, i.e., W

L= min{Z, k}.
Then

L
(
K(Kn)

n

)
d→L (E [W |Y ]) = L

(
Γ (k + 1, Y ) − e−Y Y k+1

k!
+ k

)
,

where Γ (', z) denotes the upper incomplete gamma function. Note that when
k = 1, the right-hand-side is simply Unif[0, 1].

(ii) For all Gn ∈ Gn, K(Gn) + K(Kn). Therefore,

max
Gn∈Gn

EK(Gn) ≤ EK(Kn) ∼ k

(
1 − 1

22k

(
2k
k

))
n.

4.2 Path-Like Graphs

If a graph Gn consists of only long paths, then the limit distribution K(Gn)
should be related to Bk, the limit distribution of K(Pn)/n1− 1

k (see Theorem4).
We give two simple examples with k ∈ {2, 3, . . . }.

Example 1 (Long path). Let (Gn)n≥1 be a sequence of rooted graphs such that Gn

contains a path of length m(n) starting from the root with n−m(n) = o(n1− 1
k ).

Since it takes at most k(n−m(n)) cuts to remove all the nodes outside the long
path,

K(Pm(n)) + K(Gn) + K(Pm(n)) + ko
(
n1−1/k

)
.

Thus, by Lemma4, this implies that K(Gn)/n1− 1
k converges in distribution to

Bk.

5 Some Auxiliary Results

Lemma 6. Let Gk
L= Gamma(k). Let α

def= 1
2

(
1
k + 1

k+1

)
and x0

def= m−α. Then
uniformly for all x ∈ [0, x0],

P {Gk > x}m =
(

Γ (k, x)
Γ (k)

)m

=
(
1 +O

(
m− 1

2k

))
exp

(
−mxk

k!

)
,

where Γ (', z) denotes the upper incomplete gamma function.
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Lemma 7. Let Gk
L= Gamma(k). Let a ≥ 0 and b ≥ 1 be fixed. Then uniformly

for m ≥ 1,
∫ ∞

0
xb−1e−axP {Gk > x}m dx =

(
1 +O

(
m− 1

2k

)) (k!) b
k

k
Γ

(
b

k

)
m− b

k .

Lemma 8. For a > 0, b > 0 and k ≥ 2,

ξk(a, b)
def=

∫ ∞

0

∫ ∞

y
e−axk/k!−byk/k! dxdy

=
Γ
(
2
k

)

k

(
k!
a

) 2
k

F

(
2
k
,
1
k
; 1 +

1
k
;− b

a

)
,

where F denotes the hypergeometric function. In particular,

ξ2(a, b) = arctan

(√
b

a

)
(ab)−

1
2 .

Lemma 9. For a > 0, b > 0 and k ≥ 2,

(a+ b)−
2
k ≤ k

Γ
(
2
k

)
(k!)

2
k

ξk(a, b) ≤ a− 2
k + b− 2

k .

Moreover, ξk(a, b) is monotonically decreasing in both a and b.

Lemma 10. For k ≥ 2, let

λk
def=

∫ 1

0

∫ 1−s

0
ξk(s, t) dtds.

Then

λk =






π cot
(

π
k

)
Γ
(
2
k

)
(k!) 2

k

2 (k − 2) (k − 1)
k > 2,

π2

4
k = 2.
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