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Abstract. We define the (random) k-cut number of a rooted graph to
model the difficulty of the destruction of a resilient network. The process
is as the cut model of Meir and Moon [14] except now a node must be cut
k times before it is destroyed. The first order terms of the expectation and
variance of X, the k-cut number of a path of length n, are proved. We
also show that X, after rescaling, converges in distribution to a limit By,
which has a complicated representation. The paper then briefly discusses
the k-cut number of general graphs. We conclude by some analytic results
which may be of interest.
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1 Introduction and Main Results

1.1 The k-cut Number of a Graph

Consider G,,, a connected graph consisting of n nodes with exactly one node
labeled as the root, which we call a rooted graph. Let k be a positive integer. We
remove nodes from the graph as follows:

1. Choose a node uniformly at random from the component that contains the
root. Cut the selected node once.

2. If this node has been cut k times, remove the node together with edges
attached to it from the graph.

3. If the root has been removed, then stop. Otherwise, go to step 1.

We call the (random) total number of cuts needed to end this procedure the
k-cut number and denote it by K(G,,). (Note that in traditional cutting models,
nodes are removed as soon as they are cut once, i.e., £k = 1. But in our model, a
node is only removed after being cut k times.)

One can also define an edge version of this process. Instead of cutting nodes,
each time we choose an edge uniformly at random from the component that
contains the root and cut it once. If the edge has been cut k-times then we
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remove it. The process stops when the root is isolated. We let K.(G,,) denote
the number of cuts needed for the process to end.

Our model can also be applied to botnets, i.e., malicious computer net-
works consisting of compromised machines which are often used in spamming
or attacks. The nodes in G,, represent the computers in a botnet, and the root
represents the bot-master. The effectiveness of a botnet can be measured using
the size of the component containing the root, which indicates the resources
available to the bot-master [6]. To take down a botnet means to reduce the size
of this root component as much as possible. If we assume that we target infected
computers uniformly at random and it takes at least k attempts to fix a com-
puter, then the k-cut number measures how difficult it is to completely isolate
the bot-master.

The case k = 1 and G,, being a rooted tree has aroused great interests among
mathematicians in the past few decades. The edge version of one-cut was first
introduced by Meir and Moon [14] for the uniform random Cayley tree. Janson
[12,13] noticed the equivalence between one-cuts and records in trees and studied
them in binary trees and conditional Galton-Watson trees. Later Addario-Berry,
Broutin, and Holmgren [1] gave a simpler proof for the limit distribution of one-
cuts in conditional Galton-Watson trees. For one-cuts in random recursive trees,
see [7,11,15]. For binary search trees and split trees, see [9,10].

1.2 The k-cut Number of a Tree

One of the most interesting cases is when G,, = T,,, where T,, is a rooted tree
with n nodes.

There is an equivalent way to define K(T,,). Imagine that each node is given
an alarm clock. At time zero, the alarm clock of node v is set to ring at time 77 ,,
where (T} 4)i>1,0eT, are i.i.d. (independent and identically distributed) Exp(1)
random variables. After the alarm clock of node v rings the i-th time, we set
it to ring again at time 7511 ,. Due to the memoryless property of exponential
random variables (see [8, pp. 134]), at any moment, which alarm clock rings next
is always uniformly distributed. Thus, if we cut a node that is still in the tree
when its alarm clock rings, and remove the node with its descendants if it has
already been cut k-times, then we get exactly the k-cut model. (The random
variables (T} ,);>1 can be seen as the holding times in a Poisson process N (t),
of parameter 1, where N (t), is the number of cuts in v during the time [0, ¢] and
has a Poisson distribution with parameter ¢.)

How can we tell if a node is still in the tree? When node v’s alarm clock rings
for the r-th time for some r < k, and no node above v has already rung k times,
we say v has become an r-record. And when a node becomes an r-record, it must
still be in the tree. Thus, summing the number of r-records over r € {1,...,k},
we again get the k-cut number K(T,,). One node can be a l-record, a 2-record,
etc., at the same time, so it can be counted multiple times. Note that if a node
is an r-record, then it must also be a i-record for i € {1,...,r —1}.
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To be more precise, we define IC(T,,) as a function of (7} ,)i>1,0>1. Let

r
def
Gr,v: § Ti,vy
=1

i.e., Gr, is the moment when the alarm clock of node v rings for the r-th
time. Then G, , has a gamma distribution with parameters (r, 1) (see [8, Theo-
rem 2.1.12]), which we denote by Gamma(r). Let

Iy def [Gro < min{Gj,y, : u € Ty, u is an ancestor of v}], (1.1)
where [-] denotes the Iverson bracket, i.e., [S] = 1 if the statement S is true
and [S] = 0 otherwise. In other words, I, is the indicator random variable for
node v being an r-record. Let

Kr(T)E 3 Lwe KT E ST (Th).

vET,, r=1

Then K, (T,,) is the number of r-records and K(T,,) is the total number of records.

1.3 The k-cut Number of a Path

Let P,, be a one-ary tree (a path) consisting of n nodes labeled 1,...,n from the
root to the leaf. To simplify notations, from now on we use I ;, G ;, and T} ; to

represent I, ., G, and T, , respectively for a node v at depth i.

Let X, déflC([Pn) and &, , = K,(P,). In this paper, we mainly consider X,

and we let k£ > 2 be a fixed integer.

The first motivation of this choice is that, as shown in Sect.4, P, is the
fastest to cut among all graphs. (We make this statement precise in Lemma4.)
Thus X, provides a universal stochastic lower bound for X(G,,). Moreover, our
results on &), can immediately be extended to some trees of simple structures: see
Sect. 4. Finally, as shown below, X, generalizes the well-known record number in
permutations and has very different behavior when k£ = 1, the usual cut-model,
and k > 2, our extended model.

The name record comes from the classic definition of records in random
permutations. Let o1, ..., 0, be a uniform random permutation of {1,...,n}. If
0; < mini<<; 05, then ¢ is called a (strictly lower) record. Let R,, denote the
number of records in o4, ...,0,. Let W1,..., W, be i.i.d. random variables with
a common continuous distribution. Since the relative order of Wy,..., W, also
gives a uniform random permutation, we can equivalently define o; as the rank
of W;. As gamma distributions are continuous, we can in fact let W; = Gy ;.
Thus, being a record in a uniform permutation is equivalent to being a k-record
and R, é?fn,k- Moreover, when k =1, R, é)(n.

Starting from Chandler’s article [5] in 1952, the theory of records has been
widely studied due to its applications in statistics, computer science, and physics.
For more recent surveys on this topic, see [2].
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A well-known result of R,, (and thus also &), k) [16] is that (Ix j)i1<j<n are
independent. It follows from the Lindeberg—Lévy—Feller Theorem that

E a.s. n -1
Rol g Boesy p(Ruzlomn) a gy
logn logn Vlogn

where A (0,1) denotes the standard normal distribution.

In the following, Theorem 1 gives the expectation of X, , which implies that
the number of one-records dominates the number of other records. Subsequently
Theorems 2 and 3 estimate the variance and higher moments of &, ;.

Theorem 1. For all fired k € N,

1_r
e TE (1<r<k),
B %) {logn (r=k),

where the constants 1y, are defined by

act (K I (f)
—r I(r)’

Nke,r

ol

where I'(z) denotes the gamma function. Therefore E [X,] ~ E [X,, 1]. Also, for
k=2,
E X, ~ E[X,:1] ~ V2mn.

Theorem 2. For all fivred k € {2,3,...},

where
(2 N7
Ve = (15)—(1) + 2\,
and
t(ZYT(2) (kN7
meot (7) I' (§) (k)% k> 2,
Ay = 7T22(l<:—2)(k—1)
i -9
1 k
Therefore

Var (X, 1) ~ (fyk — 77,%71) n? %,

In particular, when k = 2

2
Var (X, 1) ~ (2 +2- 27r) n.
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Theorem 3. For all fized k € {2,3,...} and £ € N

X1\ def AN N1/k m™-1\*
~ 7 < pra =10 +1- - — (k) Fsin { - :
llfbnsupE (nl_llc) < pge =0T (f 1 k) (k(k: ) sin (k) )

The upper bound is tight for £ =1 since pr1 = Nk1-

The above theorems imply that the correct rescaling parameter should be
nl=%. However, unlike the case £ = 1, when k& > 2 the limit distribution of

Xn /nl_% has a rather complicated representation By defined as follows: Let
Ui, E1,Us, Es, ... be mutually independent random variables with E; £ Exp(1)
and U; £ Unif[0, 1]. Let

==

SEANR ST vi) B |
1<s<p \s<j<p
-4
def
B, = (1-0Up) H Uj Sp;
1<j<p
BkdéfZBzm
1<p

where we use the convention that an empty product equals one.
Remark 1. An equivalent recursive definition of .S, is

" Uy SE L+ KB, >

=
—~
I
)
S~—

Theorem 4. Let k € {2,3,...}. Let L(By) denote the distribution of By,. Then

c ( f_”) L L(By).

n

Thus, by Theorems 1, 2 and 3, the convergence also holds in LP for all p > 0 and

E [Bi] = nk,1, E [BI%] =Tk E[B}] € [ni,ppk,p] (p €N).
Remark 2. 1t is easy to see that Xy, i, (Pr+1) £x, by treating each edge
on a length n 4+ 1 path as a node on a length n path.

The rest of the paper is organized as follows: Sect.2 sketches the proofs
for the moment results Theorems 1, 2, and 3. Section 3 deals with the distribu-
tional result Theorem 4. Section 4 discusses some easy results for general graphs.
Finally, Sect. 5 collects analytic results used in the proofs, which may themselves
be of interest. For detailed proofs, see the full version of this paper [3]. For k-cuts
in complete binary trees, see our follow-up paper [4].



k-cuts on a Path 117

2 The Moments

2.1 The Expectation
Lemma 1. Uniformly for alli > 1 and r € {1,...,k},

R . l ._r
Bll] = (1+0(i7%)) 5= RO
PT’OOf. By (1.1), E [Ir’i+1] =P {Gk,l > Gr,i+17 ey Gk,i > Grﬂqu}. CODditiODing

on Griy1 = a yields E[I;41] = [ 2" te /T (r)P {Gr1 > z}" dz. Lemma 1
thus follows from Lemma 7.

Proof (Proof of Theorem 1). A simply computation shows that for a € (0,1)
1 1 1—a
> =g o,
1<i<n
It then follows from Lemmal that for r € {1,...,k —1}.

Bl = 3 Bl = Ol Tt vo(umioi) ron

0<i<n k

k
When r =k, E[X,, ;] = E[R,] ~ log(n) is already well-known.

2.2 The Variance

In this section we prove Theorem 2.
Let E; ; denote the event that [I1 ;41[1 ;41 = 1]. Let A, , denote the event
that (G141 = £ NG j+1 = y]. Then conditioning on A ,

E;, ;= ﬂ Grs > Vy| N[Grit1 >yl N ﬂ Grs >yl ,
1<s<i i+2<s<j

where zVy def max{x, y}. Since conditioning on A, , Gk it1 £ Gamma(k—1)+z,

Gh,s £ Gamma(k) for s ¢ {i+ 1,5 + 1}, and all these random variables are
independent, we have

P{E;;j|Ay )} = P{Gr 11 +2 >y} P{Gr1>aVy}) P{Gr1 >y """,

It follows from G141 £ G1,j+1 £ Exp(1) that
P{Ei,j} = / / S = {Ei7j|Aw,y} dz dy
0 y

0 ry
w0 [ e (Bl dody
0 0
def

= Ay + Az

Thus Theorem 2 follows from X, 1(X,1 — 1) =2 Zl<i<j<n I ;I ; and the fol-
lowing two lemmas whose proofs rely on Lemmas 8, 9, 10.
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Lemma 2. Let k € {2,3,...}. We have

= (10(74) B0 (7)1

Lemma 3. Letk € {2,3,...}. Leta=i and b= j —i— 1. Then for alla > 1
and b >1,

XN

Ay = &k(a,b) —S—O((a—ﬁ +b_ﬁ) (a_% —I—b‘%)),

0 o0 k k
def 2k oy
&r(a,b) = /0 /y exp (—a o bk!) dz dy.

2.3 Higher Moments

where

The computations of higher moments of X, ; are rather complicated. However,
an upper bound is readily available. Let 1 <141 < io < --- < iy < n. Then

EL L, D) <ELG)E[Ly o] E [l

The above inequality holds since if 7, is a one-record in the whole path, then it
must also be a one-record in the segment (i;_1 + 1,...,4;) ignoring everything
else, and what happens in each of such segments are independent. Theorem 3
follows easily from this observation.

3 Convergence to the k-cut Distribution

By Theorem 1 and Markov’s inequality, X, ,/n!"% 20 for r € {2,...,k}. So it
suffices to prove Theorem4 for X}, ; instead of X},. Throughout Sect. 3, unless
otherwise emphasized, we assume that £ > 2.

The idea of the proof is to condition on the positions and values of the k-
records, and study the distribution of the number of one-records between two
consecutive k-records.

We use (R, p)p>1 to denote the k-record values and (P, ,),>1 the positions

of these k-records. To be precise, let R, o déf0, and P, o def +1; for p > 1, if
P, 1> 1, then let
def . .
R,p=min{Gy,;:1<j<P,,_1},
P, o argmin{Gy ; : 1 < j < P, 1},

i.e., P, p is the unique positive integer which satisfies that Gy p, , < Gi,; for all
1 <4 < P, p—1; otherwise let P, , =1 and R, , = 0o. Note that R,, ; is simply
the minimum of n i.i.d. Gamma(k) random variables.
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According to (P, p)p>1, we split &), 1 into the following sum

A1 = Z Iy = Xk +ZZHPn,p71 >j > Popl i = n,k +ZB”’P'

1<j<n 1<p1<j 1<p
(3.1)
Figurel gives an example of (B, ,)p>1 for n = 12. It depicts the positions of
the k-records and the one-records. It also shows the values and the summation
ranges for (B, p)p>1-

Pn,3 Pn,? Pn,l n Pn,O
Q k-record [ ] one-record ® node

Fig. 1. An example of (Bn,p)p>1 for n = 12.

Recall that Tmé Exp(1), is the lapse of time between the alarm clock
of j rings for the (r — 1)-st time and the r-th time. Conditioning on
(Rups Pop)n>1,p>1, for j € (P p, Pap-1), we have

E [ILJ] = P{TLJ' < anp ‘de > Rn,p—l }

Then the distribution of B,, , conditioning on (R, p, Py p)n>1,p>1 is simply that
of

Bin (P p-1— Pop — 1L, P{T1; < Ry p|Grj > Rup-1}),

where Bin(m, p) denotes a binomial (m,p) random variable. When R, ,_; is
small and P, ,—1 — P, is large, this is roughly

Bin (P, 1 — Pupy P{T1; < Rpp}) £ Bin (P,y 1 — Py 1 —e o). (32)

Therefore, we first study a slightly simplified model. Let (T}

r,j)r217j21 bei.i.d.
Exp(1) which are also independent from (7} ;)r>1,j>1. Let

 def ) . . . 5 def *
Ij < [[Tl,j <m1n{Gkﬂ'11§Z§J}]]a X, = Z Ij'
1<j<n

We say a node j is an alt-one-record if I7 = 1. As in (3.1), we can write

Xi= 3 L= [Pup1>i2 Pyl ;=Y B,

1<j<n 1<p 1< 1<p
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B:’3 = 2 B;;Q == 2 B':;,l = 4

-/ /N A\ o

-{@)—e o (0o o [0 o o 6 o o o -
o 1 2 3 4 5 6 T 8 9 10 11 12 13
Pn,3 Pn,2 Pn,l n Pn,O

O k-record [ ] one-record Aalt-one—record ® node

Fig. 2. An example of (B}, ,)p>1 for n = 12.

Then conditioning on (R, p, Pnp)n>1, p21, By

n.p has exactly the distribution as
(3.2). Figure2 gives an example of (B}, ,),>1 for n = 12. It shows the positions

of alt-one-records, as well as the values and the summation ranges of(B;; ,)p>1-
The main part of the proof for Theorem 4 consist of showing the following

Proposition 1. For all fizted p € N and k > 2,

B* B
c nl o 2 ) ) Lo ((By,.. . By)),
nl=% nl=%

which implies by the Cramér—Wold device that

*

e[ ¥ )i S B,

1<j<p 1<j<p

Then we can prove that p can be chosen large enough so that qu B;"l’j/nk%
is negligible. Thus,

ﬁ(ﬁkl)dd (Z1<13_ > ZB def (By) .

1<)

Following this, we can use a coupling argument to show that X, ; /nl_% and
X*/n'~% converge to the same limit, which finishes the proof of Theorem 4.

4 Some Extensions

4.1 A Lower Bound and an Upper Bound for General Graphs

Let G,, be the set of rooted graphs with n nodes. It is obvious that P, is the
easiest to cut among all graphs in G,,. We formalize this by the following lemma:
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Lemma 4. Let k € N. For all G, € G,,, X, déf/C([Pn) =< K(G,,). Therefore,

(k!ﬁ 1 -4
Jnin EX(G,) > BEX, ~q k—1" \k v (k> 2),
ne n

logn k=1),

by Theorem 1.

The most resilient graph is obviously K,,, the complete graph with n vertices.
Thus, we have the following upper bound:
Lemma 5. Let k € N.

(i) Let Y £ Gamma(k), Z£ Poi(Y), and WE Z Ak, i.e., W= min{Z, k}.
Then

£<’C(7ﬂjn)> iC(E[W|Y]):£<F(k+1’y)k!_e_yyk+l +k>7

where I'(£, z) denotes the upper incomplete gamma function. Note that when
k =1, the right-hand-side is simply Unif[0, 1].
(it) For all G, € G,,, K(G,) = K(K,,). Therefore,

1 (2K
< ~ ~ 59k :
Gl?eaé(n E]C(Gn) > E]C([Kn) k <1 22k <k )) n

4.2 Path-Like Graphs

If a graph G,, consists of only long paths, then the limit distribution 1C(G,,)
should be related to By, the limit distribution of K(P,)/n'~*% (see Theorem 4).
We give two simple examples with & € {2,3,...}.

Ezample 1 (Long path). Let (G,,)n>1 be a sequence of rooted graphs such that G,
contains a path of length m(n) starting from the root with n—m(n) = o(n'~#).
Since it takes at most k(n —m(n)) cuts to remove all the nodes outside the long
path,

IC(Pm(n)) = K(Gn) = ’C(Pm(n)) + ko(nlil/k)'
Thus, by Lemma4, this implies that X(G,,) /nl’% converges in distribution to
By

5 Some Auxiliary Results

Lemma 6. Let Gy £ Gamma(k). Let ozdéf% (% + I%i—l) and xo fm=a. Then
uniformly for all x € [0, x0],
k

P{G,>a}" = (FFU;]’C;”)Y = (1+0(m ) exp ("Zf) :

where I'(¢, z) denotes the upper incomplete gamma function.
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Lemma 7. Let Gy, £ Gamma(k). Let a > 0 and b > 1 be fived. Then uniformly
form >1,

/oOo 7 le PGy, > 2} do = (1 + O(m_ﬁ)) (kgz ! (Z>m_

Lemma 8. Fora>0,b>0 and k > 2,

e [ [ gy
2
I'(2) [k 2 1 1 b
=k F 1+ 25 ——
k (a) (k k’ +k a)’

where F' denotes the hypergeometric function. In particular,

& (a,b) = arctan <\/E> (ab)*%,

Lemma 9. Fora>0,b>0 and k > 2,

o

ok
r(3) (k*

Moreover, & (a,b) is monotonically decreasing in both a and b.

(a+b)7F < ér(a,b) Saf 4 b7E.

Lemma 10. For k > 2, let

1 1-s
Ap & / / €n(s,t) dt ds.
0 0

Then
t(Z) I (2) (kDNF
mco (k) (k)< )* k> 2,
A = W22(k—2)(k—1)
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