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A note on plane trees with decreasing labels
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abstract

This note derives asymptotic upper and lower bounds for the number of planted plane

trees on n nodes assigned labels from the set {1, 2, . . . , k} with the restriction that on any

path from the root to a leaf, the labels must strictly decrease. We illustrate an application

to calculating the largest eigenvalue of the adjacency matrix of a tree.
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1. Introduction

In this note, we count the number of planted plane trees (also sometimes called ordered

trees) on n nodes, each node is given a label from the set {1, 2, . . . , k}, and labels must

strictly decrease on any path from the root to a leaf. Let Gn,k denote this count for given

positive integers n and k. It is clear that G1,1 = 1 and Gn,1 = 0 for all n ≥ 2. Then,

letting C(n) denote the set of all compositions of n, we have the recurrence formula

Gn,k = Gn,k−1 +
∑

S∈C(n−1)

∏
s∈S

Gs,k−1, (1)

for k ≥ 2. The �rst term Gn,k−1 corresponds to the number of labellings that do not

use the label k. For the second term, the root label must be k, the children of the root

have subtrees with a total of n − 1 nodes, and each subtree must only use labels from

{1, 2, . . . , k − 1}. Note that (1) is valid for n = 1 as well (with the summation equal

to 1), since C(0) = ∅. The sequence Gn,k has two parameters, which suggests the use

of a bivariate generating function in its analysis (see, e.g., [12] for a detailed account
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of methods related to multivariate generating functions). However we found that the

nature of our speci�c recurrence made it easiest to work with a sequence of single-variable

generating functions instead. For k ≥ 1, let Gk(z) be the generating function

Gk(z) =
∞∑
n=1

Gn,kz
n.

Immediately we see that G1(z) = z, and from the recurrence (1), we have

Gk(z) = Gk−1(z) +
z

1−Gk−1(z)
, (2)

for k ≥ 2. For any �xed k the function Gk(z) is rational, with nonnegative integers Gn,k

as coe�cients. Hence by Pringsheim's theorem [4], if the radius of convergence of Gk(z)

is Rk, then Rk is a singularity of the function Gk(z). From the formula (2), it is clear

that any pole of Gk−1(z) as well as any solution z to Gk−1(z) = 1 is a pole of Gk(z).

For convenience, we de�ne Sk(z) = 1−Gk(z). The functions Sk(z) satisfy the recurrence

Sk(z) = Sk−1(z)−
z

Sk−1(z)
, (3)

with S1(z) = 1 − z. We de�ne z∗k to be the smallest positive real root of Sk(z); hence

we must have Sk(z) > 0 for z ∈ [0, z∗k). Furthermore, the formula (3) implies that

Sk(z) ≤ Sk−1(z) for z ∈ [0, z∗k−1), so z∗k is a nonincreasing sequence of positive numbers.

We now give a lower bound for z∗k and show that Sk(z) is small at a point close to this

lower bound.

Lemma 1.1. For every k ≥ 1,

z∗k ≥ k −
√
k2 − 1, (4)

and

Sk

(
1

2k

)
≤

(
1

4k

)1/4

. (5)

Proof. Squaring both sides of (3) yields

Sk(z)
2 − Sk−1(z)

2 = −2z + z2

Sk−1(z)2
, (6)

and by telescoping, we have

Sk(z)
2 = (1− z)2 +

k∑
j=2

(
Sj(z)

2 − Sj−1(z)
2
)

= (1− z)2 − 2(k − 1)z +
k∑

j=2

z2

Sj−1(z)2

= 1− 2kz + z2 +
k−1∑
j=1

z2

Sj(z)2
. (7)
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Thus the lower bound Sk(z)
2 ≥ 1 − 2kz + z2 is immediate, and since 1 − 2kz + z2

is positive for 0 ≤ z < k −
√
k2 − 1, we must have z∗k ≥ k −

√
k2 − 1. This proves

the �rst claim. From the bound just proved, we �nd that 1/(2k) ∈ [0, z∗k], so by our

earlier observation, the sequence Sj (1/(2k)) is nonincreasing in j. Moreover, we have

Sj(z) ≤ Sj(0) = 1 for all j ≥ 1; from this we obtain

Sk

(
1

2k

)2

= 1− 2k

(
1

2k

)
+

(
1

2k

)2

+
k−1∑
j=1

1

4k2Sj (1/(2k))
2

≤ 1

4k2
+

k − 1

4k2Sk (1/(2k))
2

≤ 1

4kSk (1/(2k))
2 . (8)

Solving the inequality gives Sk (1/(2k)) ≤ (1/(4k))1/4, as desired.

Next, we derive an upper bound for z∗k.

Lemma 1.2. For all k ≥ 1,

z∗k ≤
1

2k (1− (1/(4k))1/4)
. (9)

Proof. First we observe that Sk is a concave function on [0, z∗k]. This follows from the fact

that Gk is a power series with positive coe�cients and no constant term, so Sk = 1−Gk

has constant term 1 and all other coe�cients negative. Moreover, as Gk is a rational

function, it is analytic within its radius of convergence, hence all of its derivatives are

well-de�ned and negative on [0, z∗k]. Concavity of Sk gives us

Sk

(
1

2k

)
≥ 1

2kz∗k
Sk(z

∗
k) +

(
1− 1

2kz∗k

)
Sk(0) = 1− 1

2kz∗k
, (10)

and applying Lemma 1 now yields(
1

4k

)1/4

≥ 1− 1

2kz∗k
, (11)

and the result follows upon rearranging.

We can now describe the �rst-order asymptotic behaviour of Gn,k.

Theorem 1.3. Let Gn,k denote the number of planted plane trees with decreasing labels.

Then for all k ≥ 1, there exist real numbers ck and αk such that

Gn,k = ckα
n
k (1 + o(1)) , (12)

as n→∞, where

2(k − 1)

(
1− 1√

2(k − 1)1/4

)
≤ αk ≤ k − 1 +

√
(k − 1)2 − 1. (13)

In particular, αk = 2k + o(k) as k →∞.
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Proof. As we did previously, for all k ≥ 1 let z∗k denote the solution to Gk(z
k) = 1. We

know that for k ≥ 2, Gk(z) has only one pole on the domain |z|≤ z∗k − 1, namely, z∗k−1.

We claim that this is a simple pole. Since G1(z) = z and

Gk(z) =
Gk−1(z)−Gk−1(z)

2 + z

1−Gk−1(z)
, (14)

for k ≥ 2, we see that Gk(z) is a rational function. Thus

lim
z→z∗k−1

(z − z∗k−1)Gk(z) =
Gk−1(z

∗
k−1)−Gk−1(z

∗
k−1)

2 + z∗k−1

−G′
k−1(z

∗
k−1)

=
z∗k−1

−G′
k−1(z

∗
k−1)

. (15)

The function Gk−1(z) is analytic on the domain |z|≤ zk−1 and its power series has

nonnegative coe�cients. Since the constant term in the power series G′k − 1(z) is

[z]Gk−1(z) = G1,k−1 = k − 1 > 0, (16)

the above limit is �nite. This means that zk−1 is a pole of order 1 of the function Gk(z).

Letting αk = 1/z∗k − 1, by a standard result on the coe�cient asymptotics of rational

functions, we have

Gn,k = ckα
n
k (1 + o(1)) , (17)

where ck is a constant depending on k only. The claimed bounds on αk follow from the

two previous lemmas.

We also note the following explicit upper bound. As Gk(z
∗
k) = 1, we immediately have

Gn,k ≤
(

1

z∗k

)n

= αn
k+1.

This is weaker than (17), but only slightly so, as αk+1/αk → 1 as k →∞.

The regular leaning tree of order k. Consider the sequence T0, T1, T2, . . . of trees de-

�ned recursively as follows. Let T0 be a single root node with no children, and for

k ≥ 1, we de�ne Tk to be the tree with a root node having k children whose subtrees are

Tk−1, Tk−2, . . . , T0. We shall call Tk the regular leaning tree of order k. For all k ≥ 0,

the tree Tk has 2
k nodes. The following algorithm gives a mapping from the set of closed

walks of length 2n starting at the root of Tk and n-node planted plane trees with root

label k + 1 and decreasing labels.

Algorithm 1.4 (Algorithm P). (Build planted plane tree). Given a closed walk

σ = (u0, u1, . . . , u2n),

of length 2n in Tk, this algorithm outputs a planted plane tree labelled with positive

integers.

P1. [Initialize.] Set i← 0 and initialize the tree P with a root node v and set LABEL(v)←
k + 1.
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P2. [Child.] If ui+1 is the parent of ui, go to step P3. Otherwise, suppose that ui+1 is

the root of a subtree isomorphic to Tj for some j < LABEL(v). Append a child

with label j + 1 to v and update v to point to this child. Go to step P4.

P3. [Parent.] Set v ← PARENT(v).

P4. [Loop.] Increment i by one. If i < 2n, go to step P2; otherwise terminate the

algorithm with the tree P as output.

The root of the output planted plane tree has label k + 1, and every time we move

downward in Tk along the path σ and encounter the root of Tj for some j ≤ k, we append

a node with label j + 1. This implies that the output of Algorithm P is a planted plane

tree with decreasing labels and root label k + 1. We also know that this output tree has

n + 1 nodes, since we start with one root node, and in the walk σ, half of the 2n edges

must go down in the tree and half must go up (to return to the root), and we add a node

to P when (and only when) going down. The tree P is built up in depth-�rst preorder, so

it is easy to write an algorithm that recovers the walk from a tree P output by Algorithm

P.

Algorithm 1.5 (Algorithm W). (Build walk in Tk). Given a planted plane tree P with

decreasing labels and root label k+1, we build a walk σ starting at the root in Tk. Suppose

we have a function NEXT(v) of getting the node that follows a given node v ∈ P in a

depth-�rst traversal of P (in this traversal, nodes may be visited multiple times).

W1. [Initialize.] Let u0 be the root of Tk. Set i← 0 and let v be the root of P .

W2. [Child.] Let w ← NEXT(v). If w is the parent of v, go to step W3. Otherwise,

let ui+1 be the child of ui that is the root of the subtree isomorphic to Tj, where

j = LABEL(w)− 1. Go to step W4.

W3. [Parent.] Set ui+1 ← PARENT(ui).

W4. [Loop.] Set v ← w and increment i by one. (An invariant we have maintained is

that ui is the root of a subtree isomorphic to Tj, where j = LABEL(v) − 1. This

makes step W2 possible in the next iteration.) If i < 2n, go to step W2; otherwise,

terminate the algorithm with output σ = (u0, u1, . . . , u2n).

Fig. 1. A planted plane tree with root label 5 and its corresponding walk in T4
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An example of a tree P and its corresponding walk in Tk is illustrated in Figure 1. The

parallel structures of Algorithms P and W make it clear that if Algorithm P terminates

with output P upon being given input σ, then Algorithm W returns the walk σ upon the

input P . We have thus furnished a bijective proof of the following theorem.

Theorem 1.6. Let n and k be positive integers. The number W2n(Tk) of closed paths in

Tk of length 2n that begin and end at the root is equal to the number Gn+1,k+1−Gn+1,k of

(n+ 1)-node planted plane trees with decreasing labels and root label equal to k + 1.

The top eigenvalue of a regular leaning tree. Let Γ = (V,E) be a connected graph, let

A = A(Γ) be its adjacency matrix, and let λ1(A) denote the largest eigenvalue of A. By

the trace method, we have

λ1(A) = lim
n→∞

(
tr(A2n)

)1/2n
= lim

n→∞

(
max
v∈V

W2n(v,Γ)

)1/2n

= lim
n→∞

(
min
v∈V

W2n(v,Γ)

)1/2n

, (18)

where W2n(v,Γ) denotes the number of closed walks of length 2n in Γ starting at the

vertex v. It is well known that if Γ = T is a tree and A is its adjacency matrix, then the

largest eigenvalue λ1(A) of A satis�es
√
∆ ≤ λ1(A) ≤ 2

√
∆− 1, (19)

where ∆ ≥ 2 is the maximum vertex degree of T . (The lower bound is trivial and the

upper bound is a result of D. Stevanovi'c [13].) Theorems 3 and 4 together tell us that

largest eigenvalue of the adjacency matrix of a leaning tree of order k (which has maximum

vertex degree k + 1) does not tend towards either of these bounds as k →∞.

Lemma 1.7. Let k ≥ 1 and let Ak denote the adjacency matrix of the regular leaning

tree Tk. Then the largest eigenvalue λ1(Ak) is
√

2k + o(k).

The Ulam�Harris number. We can extend the above result to arbitrary trees as follows.

We give the root the label 0, and for any node with label r and s children, we label the

children r + 1, r + 2, . . . , r + s. We de�ne the Ulam�Harris number UH(T ) of a planted

plane tree T to be the maximum label in the tree. (There is a standard notion of the

Ulam�Harris labelling of a tree (see, e.g., Section 6 of [5]), in which one assigns a vector

of positive integers to each node. Our Ulam�Harris number is the maximum sum of

coordinates, taken over all Ulam�Harris labels in the tree.) For an unordered tree T , we

can let UH(T ) be the minimum of UH(T ′) over all planted plane trees T ′ obtained from

T by choosing orderings for the children of each node.

Theorem 1.8. Let T be a rooted unordered tree, and let A be the adjacency matrix of T .

Then λ1(A) ≤ λ1(AUH(T )), where AUH(T ) is the adjacency matrix of the regular leaning

tree of order UH(T ).
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Proof. Consider T as a labelled planted plane tree, with maximum label UH(T ). Replace

each label j with UH(T )− j. Then the root has label UH(T ), all labels are nonnegative

and decreasing both as one descends in the tree, and as one goes from left to right among

siblings. Furthermore, the new label of each node is strictly greater than the number of

children it has, so we can embed T into the regular leaning tree TUH(T ), and the claim

follows.

Let T be a tree with maximum vertex degree ∆ and adjacency matrix A. Since a node

and its children must all have di�erent labels, we must have UH(T ) ≥ ∆; the regular

leaning tree of order k attains this bound with equality. Lemma 1.7 and Theorem 1.8

together supply an upper bound of roughly
√
2UH(T ) on λ1(A). In the scenario where

UH(T ) < 2∆ − 2 (as in Figure 2, for instance), this improves upon Stevanovi'c's bound

of 2
√
∆− 1.

Fig. 2. A planted plane tree with Ulam�Harris number equal to 4

2. Related work

In this paper we have considered trees with decreasing labels, but in the literature it

has been somewhat more common to count trees with increasing labels (by re�ecting the

values of the nodes, there are exactly as many increasing trees with maximum label k as

there are decreasing ones). There is a classical bijection between permutations of 1, . . . n

and increasing binary trees on n nodes using each label from 1 through n exactly once.

A 2020 paper of Bodini et al. [2] relaxed the stipulation that all the labels 1 through n

must appear, requiring instead that for some 1 ≤ k ≤ n, all the labels 1 through k must

appear (labels must still strictly increase down the tree). A later paper of Bodini et al.

[3] describes a more general approach that applies to more families of trees.

In 1987, Blieberger [1] counted the number of Motzkin trees with labels that increase,

but not necessarily strictly. Kemp showed in 1993 [7] that the planted plane trees labelled

similarly are in bijection with monotonically extended binary trees. In 2011, Janson, Kuba

and Panholzer [6] drew a link between generalized Stirling permutations and k-ary trees

with (strictly) increasing labels. A generalization of labelled trees, in which nodes can

receive multiple labels, was introduced in 2016 by Kuba and Panholzer [10] and this

generalization is shown to imply various hook-length formulas for trees.

Other authors have considered the average shape [8] and the degree distribution [9] of
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various tree families with increasing labels. The expectation and variance of the size of the

ancestor tree as well as the Steiner distance of increasingly labelled trees were determined

by Morris in 2004 [11].
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