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Abstract. This note derives asymptotic upper and lower bounds for the

number of planted plane trees on n nodes assigned labels from the set

{1, 2, . . . , k} with the restriction that on any path from the root to a leaf,

the labels must strictly decrease. We illustrate an application to calculat-

ing the largest eigenvalue of the adjacency matrix of a tree.
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In this note, we count the number of planted plane trees (also sometimes called
ordered trees) on n nodes, each node is given a label from the set {1, 2, . . . , k},
and labels must strictly decrease on any path from the root to a leaf. Let Gn,k

denote this count for given positive integers n and k.
It is clear that G1,1 = 1 and Gn,1 = 0 for all n ≥ 2. Then, letting C(n)

denote the set of all compositions of n, we have the recurrence formula

Gn,k = Gn,k−1 +
∑

S∈C(n−1)

∏

s∈S

Gs,k−1 ()

for k ≥ 2. The first term, k, corresponds to the number of labellings that do not
use the label k. For the second term, the root label must be k, the children of
the root have subtrees with a total of n − 1 nodes, and each subtree must only
use labels from {1, 2, . . . , k − 1}. Note that () is valid for n = 1 as well (with
the summation equal to 1), since C(0) = {∅}.

The sequence Gn,k has two parameters, which suggests the use of a bivariate
generating function in its analysis (see, e.g., [12] for a detailed account of methods
related to multivariate generating functions). However we found that the nature
of our specific recurrence made it easiest to work with a sequence of single-
variable generating functions instead.

For k ≥ 1, let Gk(z) be the generating function

Gk(z) =
∞
∑

n=1

Gn,kz
n.

Immediately we see that G1(z) = z, and from the recurrence (), we have

Gk(z) = Gk−1(z) +
z

1−Gk−1(z)
()
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for k ≥ 2. For any fixed k the function Gk(z) is rational, with nonnegative
integers Gn,k as coefficients. Hence by Pringsheim’s theorem [4], if the radius of
convergence of Gk(z) is Rk, then Rk is a singularity of the function Gk(z). From
the formula (), it is clear that any pole of Gk−1(z) as well as any solution z to
Gk−1(z) = 1 is a pole of Gk(z).

For convenience, we define Sk(z) = 1 − Gk(z). The functions Sk(z) satisfy
the recurrence

Sk(z) = Sk−1(z)−
z

Sk−1(z)
, ()

with S1(z) = 1− z.

We define z∗k to be the smallest positive real root of Sk(z); hence we must
have Sk(z) > 0 for z ∈ [0, z∗k). Furthermore, the formula () implies that Sk(z) ≤
Sk−1(z) for z ∈ [0, z∗k−1), so z∗k is a nonincreasing sequence of positive numbers.

We now give a lower bound for z∗k and show that Sk(z) is small at a point
close to this lower bound.

Lemma 1. For every k ≥ 1,

z∗k ≥ k −
√

k2 − 1 ()

and

Sk

(

1

2k

)

≤
(

1

4k

)1/4

. ()

Proof. Squaring both sides of () yields

Sk(z)
2 − Sk−1(z)

2 = −2z + z2

Sk−1(z)2
, ()

and by telescoping, we have

Sk(z)
2 = (1− z)2 +

k
∑

j=2

(

Sj(z)
2 − Sj−1(z)

)2

= (1− z)2 − 2(k − 1)z +
k

∑

j=2

z2

Sj−1(z)2

= 1− 2kz + z2 +

k−1
∑

j=1

z2

Sj(z)2
.

()

Thus the lower bound Sk(z)
2 ≥ 1−2kz+z2 is immediate, and since 1−2kz+z2

is positive for 0 ≤ z < k−
√
k2 − 1, we must have z∗k ≥ k−

√
k2 − 1. This proves

the first claim.
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From the bound just proved, we find that 1/(2k) ∈ [0, z∗k], so by our earlier
observation, the sequence Sj

(

1/(2k)
)

is nonincreasing in j. Moreover, we have
Sj(z) ≤ Sj(0) = 1 for all j ≥ 1; from this we obtain

Sk

( 1

2k

)2

= 1− 2k

(

1

2k

)

+

(

1

2k

)2

+
k−1
∑

j=1

1

4k2Sj

(

1/(2k)
)2

≤ 1

4k2
+

1

4k2
· k − 1

Sk

(

1/(2k)
)2

≤ 1

4kSk

(

1/(2k)
)2 .

()

Solving the inequality gives Sk

(

1/(2k)
)

≤ 1/(4k)1/4, as desired.

Next, we derive an upper bound for z∗k.

Lemma 2. For all k ≥ 1,

z∗k ≤
1

2k
(

1− 1/(4k)1/4
) . ()

Proof. First we observe that Sk is a concave function on [0, z∗k]. This follows from
the fact that Gk is a power series with positive coefficients and no constant term,
so Sk = 1−Gk has constant term 1 and all other coefficients negative. Moreover,
as Gk is a rational function, it is analytic within its radius of convergence, hence
all of its derivatives are well-defined and negative on [0, z∗k].

Concavity of Sk gives us

Sk

(

1

2k

)

≥ 1

2kz∗k
Sk(z

∗

k) +

(

1− 1

2kz∗k

)

Sk(0) = 1− 1

2kz∗k
, ()

and applying Lemma 1 now yields

(

1

4k

)1/4

≥ 1− 1

2kz∗k
, ()

and the result follows upon rearranging.

We can now describe the first-order asymptotic behaviour of Gn,k.

Theorem 3. Let Gn,k denote the number of planted plane trees with decreasing

labels. Then for all k ≥ 1, there exist real numbers ck and αk such that

Gn,k = ckαk
n
(

1 + o(1)
)

, ()

as n→∞, where

2(k − 1)

(

1− 1√
2(k − 1)1/4

)

≤ αk ≤ k − 1 +
√

(k − 1)2 − 1. ()

In particular, αk = 2k + o(k) as k →∞.
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Proof. As we did previously, for all k ≥ 1 let z∗k denote the solution toGk(z
∗

k) = 1.
We know that for k ≥ 2, Gk(z) has only one pole on the domain |z| ≤ z∗k−1,
namely, z∗k−1. We claim that this is a simple pole. Since G1(z) = z and

Gk(z) =
Gk−1(z)−Gk−1(z)

2 + z

1−Gk−1(z)
()

for k ≥ 2, we see that Gk(z) is a rational function. Thus

lim
z→z∗

k−1

(z − z∗k−1)Gk(z) =
Gk−1(z

∗

k−1)−Gk−1(z
∗

k−1)
2 + z∗k−1

−G′

k−1(z
∗

k−1)
=

z∗k−1

−G′

k−1(z
∗

k−1)
.

()
The function Gk−1(z) is analytic on the domain |z| ≤ z∗k−1 and its power series
has nonnegative coefficients. Since the constant term in the power series G′

k−1(z)
is

[z]Gk−1(z) = G1,k−1 = k − 1 > 0, ()

the above limit is finite. This means that z∗k−1 is a pole of order 1 of the function
Gk(z). Letting αk = 1/z∗k−1, by a standard result on the coefficient asymptotics
of rational functions, we have

Gn,k = ckαk
n
(

1 + o(1)
)

, ()

where ck is a constant depending on k only. The claimed bounds on αk follow
from the two previous lemmas.

We also note the following explicit upper bound. As Gk(z
∗

k) = 1, we imme-
diately have

Gn,k ≤
(

1

z∗k

)n

= (αk+1)
n
.

This is weaker than (), but only slightly so, as αk+1/αk → 1 as k →∞.

The regular leaning tree of order k. Consider the sequence T0, T1, T2, . . . of
trees defined recursively as follows. Let T0 be a single root node with no children,
and for k ≥ 1, we define Tk to be the tree with a root node having k children
whose subtrees are Tk−1, Tk−2, . . . , T0. We shall call Tk the regular leaning tree

of order k. For all k ≥ 0, the tree Tk has 2k nodes.
The following algorithm gives a mapping from the set of closed walks of

length 2n starting at the root of Tk and n-node planted plane trees with root
label k + 1 and decreasing labels.

Algorithm P (Build planted plane tree). Given a closed walk

σ = (u0, u1, . . . , u2n)

of length 2n in Tk, this algorithm outputs a planted plane tree labelled with
positive integers.
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P1. [Initialize.] Set i ← 0 and initialize the tree P with a root node v and set
LABEL(v)← k + 1.

P2. [Child.] If ui+1 is the parent of ui, go to step P3. Otherwise, suppose
that ui+1 is the root of a subtree isomorphic to Tj for some j < LABEL(v).
Append a child with label j+1 to v and update v to point to this child. Go
to step P4.

P3. [Parent.] Set v ← PARENT(v).

P4. [Loop.] Increment i by one. If i < 2n, go to step P2; otherwise terminate
the algorithm with the tree P as output.

The root of the output planted plane tree has label k + 1, and every time
we move downward in Tk along the path σ and encounter the root of Tj for
some j ≤ k, we append a node with label j + 1. This implies that the output of
Algorithm P is a planted plane tree with decreasing labels and root label k + 1.
We also know that this output tree has n+1 nodes, since we start with one root
node, and in the walk σ, half of the 2n edges must go down in the tree and half
must go up (to return to the root), and we add a node to P when (and only
when) going down.

The tree P is built up in depth-first preorder, so it is easy to write an
algorithm that recovers the walk from a tree P output by Algorithm P.

Algorithm W (Build walk in Tk). Given a planted plane tree P with decreasing
labels and root label k+1, we build a walk σ starting at the root in Tk. Suppose
we have a function NEXT(v) of getting the node that follows a given node v ∈ P
in a depth-first traversal of P (in this traversal, nodes may be visited multiple
times).

W1. [Initialize.] Let u0 be the root of Tk. Set i← 0 and let v be the root of P .

W2. [Child.] Let w ← NEXT(v). If w is the parent of v, go to step W3. Otherwise,
let ui+1 be the child of ui that is the root of the subtree isomorphic to Tj ,
where j = LABEL(w)− 1. Go to step W4.

W3. [Parent.] Set ui+1 ← PARENT(u).

W4. [Loop.] Set v ← w and increment i by one. (An invariant we have
maintained is that ui is the root of a subtree isomorphic to Tj , where
j = LABEL(v) − 1. This makes step W2 possible in the next iteration.) If
i < 2n, go to step W2; otherwise, terminate the algorithm with output
σ = (u0, u1, . . . , u2n).

An example of a tree P and its corresponding walk in Tk is illustrated in
Fig. 1. The parallel structures of Algorithms P and W make it clear that if Algo-
rithm P terminates with output P upon being given input σ, then Algorithm W
returns the walk σ upon the input P . We have thus furnished a bijective proof
of the following theorem.
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Fig. 1. A planted plane tree with root label 5 and its corresponding walk in T4.

Theorem 4. Let n and k be positive integers. The number W2n(Tk) of closed
paths in Tk of length 2n that begin and end at the root is equal to the number

Gn+1,k+1−Gn+1,k of (n+1)-node planted plane trees with decreasing labels and

root label equal to k + 1.

The top eigenvalue of a regular leaning tree. Let Γ = (V,E) be a con-
nected graph, let A = A(Γ) be its adjacency matrix, and let λ1(A) denote the
largest eigenvalue of A. By the trace method, we have

λ1(A) = lim
n→∞

(

tr
(

A2n
)

)1/2n

= lim
n→∞

(

max
v∈V

W2n(v,Γ)
)1/2n

,

= lim
n→∞

(

min
v∈V

W2n(v,Γ)
)1/2n

,

()

where W2n(v,Γ) denotes the number of closed walks of length 2n in Γ starting
at the vertex v.

It is well known that if Γ = T is a tree and A is its adjacency matrix, then
the largest eigenvalue λ1(A) of A satisfies

√
∆ ≤ λ1(A) ≤ 2

√
∆− 1, ()

where ∆ ≥ 2 is the maximum vertex degree of T . (The lower bound is trivial and
the upper bound is a result of D. Stevanović [13].) Theorems 3 and 4 together
tell us that largest eigenvalue of the adjacency matrix of a leaning tree of order k
(which has maximum vertex degree k+1) does not tend towards either of these
bounds as k →∞.

Lemma 5. Let k ≥ 1 and let Ak denote the adjacency matrix of the regular

leaning tree Tk. Then the largest eigenvalue λ1(Ak) is
√

2k + o(k).



A NOTE ON PLANE TREES WITH DECREASING LABELS 7

3 4 4

2 3 4 4

1 2 3

0

Fig. 2. A planted plane tree with Ulam–Harris number equal to 4.

The Ulam–Harris number. We can extend the above result to arbitrary trees
as follows. We give the root the label 0, and for any node with label r and s
children, we label the children r+1, r+2, . . . , r+ s. We define the Ulam–Harris

number UH(T ) of a planted plane tree T to be the maximum label in the tree.
(There is a standard notion of the Ulam–Harris labelling of a tree (see, e.g.,
Section 6 of [5]), in which one assigns a vector of positive integers to each node.
Our Ulam–Harris number is the maximum sum of coordinates, taken over all
Ulam–Harris labels in the tree.) For an unordered tree T , we can let UH(T )
be the minimum of UH(T ′) over all planted plane trees T ′ obtained from T by
choosing orderings for the children of each node.

Theorem 6. Let T be a rooted unordered tree, and let A be the adjacency

matrix of T . Then λ1(A) ≤ λ1

(

AUH(T )

)

, where AUH(T ) is the adjacency matrix

of the regular leaning tree of order UH(T ).

Proof. Consider T as a labelled planted plane tree, with maximum label UH(T ).
Replace each label j with UH(T )− j. Then the root has label UH(T ), all labels
are nonnegative and decreasing both as one descends in the tree, and as one goes
from left to right among siblings. Furthermore, the new label of each node is
strictly greater than the number of children it has, so we can embed T into the
regular leaning tree TUH(T ), and the claim follows.

Let T be a tree with maximum vertex degree ∆ and adjacency matrix
A. Since a node and its children must all have different labels, we must have
UH(T ) ≥ ∆; the regular leaning tree of order k attains this bound with equality.
Lemma 5 and Theorem 6 together supply an upper bound of roughly

√

2UH(T )
on λ1(A). In the scenario where UH(T ) < 2∆ − 2 (as in Fig. 2, for instance),
this improves upon Stevanović’s bound of 2

√
∆− 1.

Related work. In this paper we have considered trees with decreasing labels,
but in the literature it has been somewhat more common to count trees with
increasing labels (by reflecting the values of the nodes, there are exactly as many
increasing trees with maximum label k as there are decreasing ones). There is a
classical bijection between permutations of {1, . . . n} and increasing binary trees
on n nodes using each label from 1 through n exactly once. A 2020 paper of
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O. Bodini, A. Genitrini, B. Gittenberger, and S.Wagner [2] relaxed the stipu-
lation that all the labels 1 through n must appear, requiring instead that for
some 1 ≤ k ≤ n, all the labels 1 through k must appear (labels must still strictly
increase down the tree). A later paper of O. Bodini, A. Genitrini, M. Naima,
and A. Singh describes a more general approach that applies to more families of
trees [3].

In 1987, J. Blieberger counted the number of Motzkin trees with labels
that increase, but not necessarily strictly [1]. R. Kemp showed in 1993 that
the planted plane trees labelled similarly are in bijection with monotonically
extended binary trees [7]. In 2011, S. Janson, M. Kuba, and A. Panholzer drew
a link between generalized Stirling permutations and k-ary trees with (strictly)
increasing labels [6]. A generalization of labelled trees, in which nodes can receive
multiple labels, was introduced in 2016 by M. Kuba and A. Panholzer, and this
generalization is shown to imply various hook-length formulas for trees [10].

Other authors have considered the average shape [8] and the degree dis-
tribution [9] of various tree families with increasing labels. The expectation
and variance of the size of the ancestor tree as well as the Steiner distance of
increasingly labelled trees were determined by K. Morris in 2004 [11].
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