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Abstract
The Colijn–Plazzotta ranking is a bijective encoding of the unlabeled binary rooted
trees with positive integers. We show that the rank f (t) of a tree t is closely related to
its height h, themaximal path length from a leaf to the root.We consider the rank f (τn)
of a random n-leaf tree τn under each of three models: (i) uniformly random unlabeled
unordered binary rooted trees, or unlabeled topologies; (ii) uniformly random leaf-
labeled binary trees, or labeled topologies under the uniform model; and (iii) random
binary search trees, or labeled topologies under the Yule–Harding model. Relying on
the close relationship between tree rank and tree height, we obtain results concerning
the asymptotic properties of log log f (τn). In particular, we find E{log2 log f (τn)} ∼
2
√

πn for uniformly random unlabeled ordered binary rooted trees and uniformly
random leaf-labeled binary trees, and for a constantα ≈ 4.31107,E{log2 log f (τn)} ∼
α log n for leaf-labeled binary trees under the Yule–Harding model. We show that the
mean of f (τn) itself under the three models is largely determined by the rank cn−1
of the highest-ranked tree—the caterpillar—obtaining an asymptotic relationship with
πncn−1, whereπn is amodel-specific function of n. The results resolve open problems,
providing a new class of results on an encoding useful in mathematical phylogenetics.
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1 Introduction

The Colijn–Plazzotta rank f (t) of a binary rooted tree t is defined recursively as
follows (Colijn and Plazzotta 2018): if �(t) and r(t) are the left and right subtree,
respectively, arranged in such a way that f

(
�(t)

) ≥ f
(
r(t)

)
, then

f (t) = f
(
�(t)

) (
f (�(t)) − 1

)

2
+ 1 + f

(
r(t)

)
.

The rank 1 is assigned to a tree with a single leaf.
In the study of evolutionary trees, statistical summaries of trees are often used for

characterizing the outcomes of evolutionary models and for statistical inference of
the processes that have given rise to the trees (Fischer et al. 2023). Colijn–Plazzotta
rank, or CP rank, has been used as a summary of tree shape in empirical scenarios
in which trees of biological relationships are unconcerned with leaf labels, such as
in examples with trees of sequences from the same pathogenic organism (Colijn and
Plazzotta 2018).

Informally, for a fixed number of leaves, the CP rank is lowest for balanced trees
and greatest for unbalanced trees. It has therefore been proposed as a measure of
tree balance (Fischer et al. 2023; Rosenberg 2021). In a compilation of mathematical
results for tree balance indices that capture many different features of rooted trees,
Fischer et al. (2023) have listed a set of basic properties that are of interest for any
balance index. Among these are the minimal and maximal values of the index across
all trees with a fixed number of leaves, and the mean and variance of the index under
the twomost frequently used probabilistic models inmathematical phylogenetics. One
is the uniform model, also sometimes known as the proportional-to-distinguishable-
arrangements or PDA model, which assigns equal probability to all binary rooted
labeled trees with a fixed number of leaves. The other is the Yule–Harding model,
also sometimes known as the equal-rates Markov or ERMmodel or simply as the Yule
model, inwhich, conditional on the number of leaves, the probability of a binary rooted
labeled tree is proportional to the number of sequences of bifurcations that can give
rise to the tree. The mathematical properties of balance indices assist in characterizing
the way that balance indices relate to one another and how they perform in empirical
settings.

The trees of minimal and maximal CP rank for a fixed number of leaves have been
characterized (Rosenberg 2021), and indeed the asymptotic CP ranks of these trees in
terms of the number of leaves have also been obtained (Doboli et al. 2024; Rosenberg
2021). The mean and variance under the uniform and Yule–Harding models have been
listed as open problems (Fischer et al. 2023, p. 243).

We showhere that the asymptoticmean and variance under theYule–Hardingmodel
can be obtained by a connection between this model in the phylogenetics setting and
the nearly equivalent formulation of random binary search trees in computer science.
First, we show that the order of magnitude of the CP rank of a tree is determined
by the height of the tree, the greatest distance from the root to a leaf. By connecting
the CP rank to tree height and in turn to probabilistic results for the height, we obtain
distributional properties of the CP rank under the Yule–Hardingmodel.We also obtain
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related results on the closely related uniform model on labeled binary rooted trees and
the uniform model on unlabeled binary rooted trees.

2 Tree Height and the Colijn–Plazzotta Rank

We consider all trees to be binary and rooted. The height of a tree is the maximal path
length in edges from the root to a leaf. Two special families of binary treeswith n leaves
play a key role in our analysis: the caterpillars, and the pseudocaterpillars (Figure 1).
In a caterpillar with n leaves, n ≥ 1, every non-leaf has at least one leaf child. This
condition forces each caterpillar to consist of a chain of n − 1 internal (i.e. non-leaf)
nodes to which a layer of external nodes is added. The pseudocaterpillars (Rosenberg
2007) (or 4-pseudocaterpillars in the terminology of Alimpiev and Rosenberg (2021))
can be constructed as follows for n ≥ 4: start with a chain of n−3 internal nodes. Give
the bottom node in the chain two children, and finally, complete the tree by adding a
layer of n external nodes. Caterpillars have height n − 1, and pseudocaterpillars have
height n − 2.

Among binary rooted trees with a fixed number of leaves, Rosenberg (2021, Corol-
lary 10) found that the tree with the largest CP rank was the caterpillar. The CP rank of
the caterpillar tree with n leaves can be computed recursively via a sequence termed
bn by Rosenberg (2021, Theorem 9). It is convenient to shift the index of the sequence
by 1 so that here, we will use ck to correspond to the CP rank of the caterpillar with
height k and k + 1 leaves. The sequence ck begins 1, 2, 3, 5, 12, 68, 2280 starting at
k = 0, matching OEIS A108225 (OEIS Foundation Inc. 2025) for k ≥ 1.

Lemma 1 Let the sequence ck be defined by c0 = 1 and ck+1 = ck(ck − 1)/2 + 2 for
k ≥ 0. For every tree t of height h, we have

ch ≤ f (t) < ch+1.

Proof The proof proceeds by induction on h. For h = 0, the tree consists of a single
leaf, and we have 1 = c0 = f (t) < c1 = 2. Thus, the statement holds in this case,
and we can proceed with the induction step.

For a tree t of height h, suppose h� < h and hr < h are the heights of subtrees
�(t) and r(t), respectively. From the induction hypothesis for trees of height less than
h and the left–right arrangement so that f

(
�(t)

) ≥ f
(
r(t)

)
, it follows that

chr ≤ f (r(t)) ≤ f (�(t)) < ch�+1.

The sequence ck is increasing (Rosenberg 2021, Lemma 8), so that hr < h� + 1, and
hence, hr ≤ h�.

Because h = max(h�, hr ) + 1, it follows that h� = h − 1. Thus, we have, again by
the induction hypothesis,
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f (t) = f
(
�(t)

) (
f
(
�(t)

) − 1
)

2
+ 1 + f

(
r(t)

)

≥ f
(
�(t)

) (
f
(
�(t)

) − 1
)

2
+ 1 + 1

≥ ch−1(ch−1 − 1)

2
+ 2

= ch,

which proves the lower bound. On the other hand,

f (t) = f
(
�(t)

) (
f (�(t)) − 1

)

2
+ 1 + f

(
r(t)

)

≤ f
(
�(t)

) (
f (�(t)) − 1

)

2
+ 1 + f

(
�(t)

)

= f
(
�(t)

) (
f
(
�(t)

) + 1
)

2
+ 1

≤ (ch − 1)ch
2

+ 1

= ch+1 − 1,

proving the upper bound. This completes the induction. ��
We conclude that the behavior of the height is to a great extent responsible for the

behavior of the Colijn–Plazzotta rank of a tree. Indeed, because the CP rank is bijective
with the positive integers (Rosenberg 2021, Proposition 2), the lemma implies that as
the positive integers are traversed, for each h ≥ 0, the ranking proceeds through trees
with height h, then proceeds to those with height h + 1, and so on. We immediately
obtain the following corollaries (which are well known, see Harary et al. (1992)).

Corollary 2 For h ≥ 0, the number of unlabeled binary rooted trees with height at
most h is ch+1 − 1.

Corollary 3 For h ≥ 0, the number of unlabeled binary rooted trees with height exactly
h is ch+1 − ch.

The sequence ch+1 − 1 begins at h = 0 with values 1, 2, 4, 11, 67, 2279 (OEIS
A006894). The sequence ch+1 − ch begins at h = 0 with values 1, 1, 2, 7, 56, 2212
(OEIS A002658).

According to Rosenberg (2021, Corollary 14), ck ∼ 2γ 2k for a constant γ ≈
1.11625 as k → ∞; note that γ = β2 for the constant β in Rosenberg (2021), owing
to the shift by 1 in ck relative to the indexing in Rosenberg (2021). We immediately
obtain the following result.

Corollary 4 Uniformly over all trees t with height h, we have,

2h + O(1) ≤ logγ f (t) ≤ 2h+1 + O(1),
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and thus, for h > 0,

log2 logγ f (t) = log2 log f (t) + O(1) = h + O(1).

In other words, the difference | log2 logγ f (t)−h| is bounded by a universal constant.
We now analyze the behavior of the CP rank of random trees, which is mainly

determined by the height. Indeed, we proceed bymaking use of extensive probabilistic
results available on tree height under different sets of assumptions.

3 Uniformly RandomUnlabeled Binary Trees

Consider an unlabeled binary rooted tree on n leaves. Each node possesses either 0
offspring (leaves) or 2 offspring (internal nodes). Note that binary trees in which each
node possesses either 0 or 2 (and not 1) offspring are sometimes termed full binary
trees; here, all binary trees are “full” except where specified. A distinction exists
between binary trees in which the left–right order of the children matters (ordered
binary trees), and those in which the order is irrelevant (unordered binary trees, or
unlabeled topologies in the terminology of mathematical phylogenetics, orOtter trees
after Otter (1948)).

Let τn be a uniformly random ordered binary tree on n ≥ 1 leaves, also called a
random Catalan tree because the number of such trees is

kn−1 = 1

n

(
2n − 2

n − 1

)
,

where kn is the n-th Catalan number (Stanley 2015, Exercise 5). Catalan trees, viewed
as ordered binary trees with n leaves, in which each node has 0 or 2 offspring, can be
placed in bijection with trees with n−1 nodes in which the left–right order matters and
each node has 0, 2, or 1 offspring. For the bijection, we consider the latter type of tree,
treating its n−1 nodes as internal nodes, and add descendant leaves so that each node
that started with 0 or 1 offspring now has 2 offspring. Catalan trees are an example of
a simply generated family of trees, and the random Catalan tree is also a special case
of a conditioned Galton–Watson tree, with an offspring distribution whose support is
{0, 2}. See, for example, Sedgewick and Flajolet (1996, p. 224) and Drmota (2009,
Section 1.2.7). We denote the CP rank of a random Catalan tree byCn (C for Catalan).

Let τ ′
n be a uniformly random unordered binary tree, a uniformly random Otter

tree. The number of such trees can be calculated recursively. The exact value un
(Wedderburn–Etherington number, OEIS A001190) for the number of such trees on
n leaves follows

un =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, n = 1,
∑(n−1)/2

j=1 u jun− j , odd n ≥ 3,(
∑n/2−1

j=1 u jun− j

)
+ un/2(un/2+1)

2 , even n ≥ 2.

(1)
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The asymptotic approximation follows (Harding 1971; Otter 1948)

un ∼ (
1 + o(1)

) 1

κn3/2ρn
, (2)

where κ ≈ 3.13699 and ρ ≈ 0.40270. The CP rank of a random Otter tree is denoted
by On (O for Otter).

To understand Theorem 5, we define a theta random variable as a random variable
with distribution function (Devroye 1997)

F(x) = 4π5/2

x3

∞∑

j=1

j2e−π2 j2/x2 =
∞∑

j=−∞
(1 − 2 j2x2)e− j2x2 , x > 0. (3)

CP rank is defined for unordered binary trees. To extend the CP rank to ordered binary
trees, we compute the CP rank of the unordered binary tree associated with an ordered
binary tree.

Theorem 5 (i) Let τn be a uniformly random unlabeled binary tree with n leaves,
with CP rank Cn = f (τn). Then

E{log2 logCn} ∼ 2
√

πn,

and
log2 logCn

2
√
n

converges in distribution to a theta random variable as defined by (3).
(ii) Let τ ′

n be a uniformly random unlabeled unordered binary tree with n leaves, with
CP rank On = f (τ ′

n). Then, with κ as in (2),

E{log2 log On} ∼ κ
√
n,

and
log2 log On

κ
√
n/π

converges in distribution to a theta random variable as defined by (3).

Proof (i) The statement on τn is a consequence of a result of Flajolet and Odlyzko
(1982, Theorem B) about the height Hn of τn : E{Hn}/√n → 2

√
π as n → ∞,

and Hn/(2
√
n) tends in distribution to a theta random variable. By Corollary 4, the

difference | log2 logCn − Hn| is (deterministically, thus almost surely) bounded
by a universal constant, so that

log2 logCn − Hn

2
√
n
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is O(n−1/2); for any sequence of random trees of increasing size, this quantity
goes to 0 (almost sure convergence, and hence, convergence in probability). The
statement on the expected value now follows from the linearity of expectation
and the statement on convergence in distribution follows from Slutsky’s theorem
applied to the convergence in distribution of Hn/(2

√
n) and the convergence in

probability to 0 of (log2 logCn − Hn)/(2
√
n).

(ii) The statement on τ ′
n follows in the same fashion from the results of Broutin and

Flajolet (2008, Theorem 1 and Theorem 5; 2012, Theorem 1 and Theorem 3) on
the height of unlabeled unordered binary trees. These state that the height H ′

n of a
random unlabeled unordered binary tree with n leaves satisfies E{H ′

n}/
√
n → κ ,

and that H ′
n/(κ

√
n/π) tends in distribution to a theta random variable. We remark

here that our notation differs slightly fromBroutin andFlajolet (2012): our constant
κ ≈ 3.13699 corresponds to the constant denoted 2

√
π/λ in Broutin and Flajolet

(2012), and our distribution function F(x) in (3) is 1 − �(2x) in the notation of
Broutin and Flajolet. ��

4 Uniformly Random Leaf-Labeled Binary Trees

A leaf-labeled binary tree with n leaves is a binary tree in which the leaves are bijec-
tively labeled from 1 to n, and in which each internal node has two children. The
children are unordered. Such trees are also called labeled topologies or cladograms.

We consider a uniformly random cladogram τn . The number of such trees is

(2n − 3) · (2n − 5) · · · 3 · 1 = 1

2n−1

(2n − 2)!
(n − 1)! , (4)

all of which are equally likely under this model of randomness (OEIS A001147). The
CP rank of a random cladogram is denoted by Ln (L for labeled).

A model of uniformly random cladograms is a special case of more general mod-
els on the cladograms, such as Ford’s alpha-splitting model (Ford 2005, 2006) and
Aldous’s beta-splitting model (Aldous 1996, 2001). In particular, Aldous (1996,
Proposition 4, β = − 3

2 case) showed that the expected height of a random clado-
gram satisfies

E {Hn} ∼ 2
√

πn.

It is worth pointing out that this result (including the constant 2
√

π ) is the same
as for uniformly random unlabeled ordered binary trees (compare to Theorem 5i).
This is no coincidence: for every unlabeled ordered binary tree on n leaves, there are
n! possibilities to label the leaves and turn it into a leaf-labeled ordered binary tree.
Likewise, precisely 2n−1 possibilities turn a labeled unordered binary tree on n leaves
into a labeled ordered binary tree (by switching the order of the children at the internal
nodes). For this reason, the distribution of the height and any other parameters that do
not depend on labels or order is the same for three uniformmodels: unlabeled ordered,
labeled unordered, and labeled ordered binary trees (Disanto et al. 2022, Section 3.1).
In particular, the following result is equivalent to part (i) of Theorem 5.
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Theorem 6 Let τn be a uniformly random leaf-labeled binary tree with n leaves, with
CP rank Ln = f (τn). Then

E{log2 log Ln} ∼ 2
√

πn,

and
log2 log Ln

2
√
n

converges to a theta distribution.

Aldous’s beta-splitting model for random binary trees has a shape parameter β ∈
[−2,∞], encompassing a limiting unbalanced model (β = −2), a limiting balanced
model (β = ∞), the Yule model (β = 0), and the uniform model in Theorem 6
(β = − 3

2 ). Generally, Aldous (1996, Proposition 4) proved the following results on
the height Hn :

• Forβ > −1, the ratio Hn/ log n tends in probability and in expectation to a constant
g(β). There is no explicit expression for this constant, but numerical values can
be determined from an implicit equation given by Aldous (1996, Proposition 4).
To mention some examples, g(∞) = 1/ log 2 ≈ 1.44270, and we obtain g(1) ≈
3.19258, g(0) ≈ 4.31107, and g(− 1

2 ) ≈ 6.38090 from the implicit equation (note
that Aldous (1996) only gives two digits each).
The case β = 0 corresponds to the Yule model (see Section 5 below for more
information). For β = ∞, all internal nodes split their subtrees (almost) precisely
in half: the difference of the subtree sizes is at most 1.

• For β = −1,E{Hn} ≥ (
6/π2+o(1)

)
(log n)2. Aldous’s proposition did not report

a result for E{Hn}with β = −1, but this inequality follows quickly from Aldous’s
results reported in the proposition for related quantities. Recently, Aldous and
Pittel (2025, Theorem 1.5) showed that Hn ≤ (γ + ε)(log n)2 with probability
approaching 1 with increasing n, where ε > 0 and γ ≈ 42.9.

• For β ∈ (−2,−1), n1+β
E{Hn} → g(β), and n1+βHn has a non-degenerate limit

distribution.

These results on tree height for cladograms under the beta-splitting model directly
impact the Colijn–Plazzotta rank. For example, for β ∈ (−2,−1), we have for
Aldous’s beta-splitting tree τn with n leaves

E{log2 log f (τn)} ∼ g(β)

n1+β
.

5 Yule–Harding Trees, Random Binary Search Trees

Among the probability distributions that could be placed on the leaf-labeled binary
trees with n leaves, perhaps the most frequently considered, along with the uniform
distribution of Section 4, is the β = 0 case of the beta-splitting model. This model
corresponds to the random binary search trees, which are identical to Yule or Yule–
Harding trees in phylogenetics (Fuchs 2025), except for the convention that random
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binary search trees are typically indexed by the number of internal nodes and Yule–
Harding trees are indexed by the number of leaves. We index trees by the number of
leaves, considering random binary search trees in which all internal nodes have two
children so that the total number of internal nodes is n − 1 when the number of leaves
is n.

To be precise, we start with a standard random binary search tree on n−1 (internal)
nodes and attach a layer of n external nodes, i.e., we give a second child to all (internal)
nodes having one child, and give two children to all leaves. The random CP rank of a
tree under this model is denoted by Sn (S for search tree).

For these trees, the height Hn satisfies (Devroye 1986, Theorem 5.1)

Hn

log n
p−→ α,

where α ≈ 4.31107 is the unique solution in (2,∞) of the equation

α log(2e/α) = 1.

Setting

β = 3α

2α − 2
≈ 1.95303,

Reed (2003) and Drmota (2003) showed that Hn − α log n + β log log n is tight, i.e.,

lim sup
x↑∞

[
sup
n

P {|Hn − α log n + β log log n| ≥ x} ] = 0. (5)

One way to see this result is as follows: Reed (2003, Theorem 1) states that

E{Hn − α log n + β log log n} = O(1)

and
V{Hn − α log n + β log log n} = V{Hn} = O(1),

from which tightness follows by a standard application of the Chebyshev inequality.
Alternatively, one can use Lemmas 8 and 10 of Reed (2003), which provide explicit
tail bounds.

Theorem 7 Let τn be a random leaf-labeled binary tree with n leaves following the
Yule–Harding distribution, with CP rank Sn = f (τn). Then

E{log2 log Sn} ∼ α log n,

and
log2 log Sn

log n
p→ α.
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Proof The proof is similar to Theorem 5. By Corollary 4, the difference between
log2 log Sn and the height Hn is bounded, so

log2 log Sn − Hn

log n

goes to 0 (almost surely, thus also in probability). The second part of the result follows

immediately via Slutsky’s theorem from the fact that Hn/ log n
p→ α; the first part

follows from the fact that E{Hn/ log n} → α as n → ∞ (Devroye 1986). ��
Theorem 8 Let τn be a random leaf-labeled binary tree with n leaves following the
Yule–Harding distribution, with CP rank Sn = f (τn). Then

(log n)β log 2 log Sn
nα log 2

is a tight sequence of random variables.

Proof By Corollary 4, there exists an absolute positive constant K such that K ·2Hn ≥
log Sn . Thus,

(log n)β log 2 log Sn
nα log 2 ≥ x

implies

2Hn ≥ xnα log 2

K (log n)β log 2 ,

or

Hn − α log n + β log log n ≥ log(x/K )

log 2
.

This means that

P

{∣∣∣
(log n)β log 2 log Sn

nα log 2

∣∣∣ ≥ x
}

= P

{ (log n)β log 2 log Sn
nα log 2 ≥ x

}

≤ P

{
Hn − α log n + β log log n ≥ log(x/K )

log 2

}

≤ P

{
|Hn − α log n + β log log n| ≥ log(x/K )

log 2

}
.

By (5), this expression goes to 0 if we take supn and then lim supx↑∞, showing that
the sequence is indeed tight.

6 Mean and Variance of the Colijn–Plazzotta Rank

Sections 3–5 focus on properties of the distribution of log log f (τn) under various
models of randomness; in this section, we focus on the distribution of the random CP
rank f (τn) itself. In particular, we study the first-order asymptotics of the mean and
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variance of the Colijn–Plazzotta rank under the models of randomness from Sections
3–5, investigating Cn , On , Ln , and Sn . As pointed out in Section 4, the models of uni-
formly random unlabeled ordered binary trees (Catalan trees) and uniformly random
labeled unordered binary trees are equivalent for our purposes, so that the distributions
of Cn and Ln are the same.

We give a general theorem on the mean and variance of the Colijn–Plazzotta rank
applicable to all random tree models specifying a certain condition. We then obtain
first-order asymptotics for the means and variances of Cn , On , Ln and Sn as simple
corollaries. The desired means and variances are determined mainly by the extreme
cases for Colijn–Plazzotta ranks.

Lemma 9 (i) Among all unlabeled binary rooted trees with n leaves, n ≥ 1, the Colijn–
Plazzotta rank is maximized by the caterpillar. (ii) Among all unlabeled binary rooted
trees with n leaves and height n − 2 or less, n ≥ 4, the Colijn–Plazzotta rank is
maximized by the pseudocaterpillar.

Proof (i) This result was proven in Corollary 20 of Rosenberg (2021).
(ii) This result follows by induction and Lemma 1. For n = 4, the pseudocaterpillar

is the only tree with height at most n − 2 = 2. Suppose for induction that for all
k, 4 ≤ k ≤ n − 1, the pseudocaterpillar has the maximal Colijn–Plazzotta rank
among trees with k leaves and height k − 2.
Among trees t with n leaves and height at most n − 2, by definition of the Colijn–
Plazzotta rank, the rank f (t) is maximized by choosing its left subtree �(t) to
have f

(
�(t)

)
as large as possible. The left subtree �(t) has at most n − 1 leaves

and height at most n − 3, so that the inductive hypothesis applies: �(t) is the
pseudocaterpillar with n − 1 leaves, the right subtree r(t) is a single leaf, and t is
the pseudocaterpillar with n leaves. ��
For the following theorem, we recall Rosenberg’s (2021) sequence for the maximal

Colijn–Plazzotta rank ch among trees with height h ≥ 0 and h + 1 leaves: c0 = 1,
and

ch+1 =
(
ch
2

)
+ 2, h ≥ 0. (6)

Equivalently, ch is the Colijn–Plazzotta rank of a caterpillar of height h. Recall that
c2 = 3, c3 = 5, c4 = 12, and c5 = 68.

We also let dh be the corresponding rank of a pseudocaterpillar of height h. Then
d2 = 4, and

dh+1 =
(
dh
2

)
+ 2, h ≥ 2. (7)

The sequences ch and dh obey identical recursions, only with different starting points.
Sequence dh begins with d2 = 4, d3 = 8, d4 = 30, and d5 = 437.
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Theorem 10 For a given probability model for random binary rooted trees Tn with n
leaves, let

πn = P {Tn is a caterpillar} ,

and let Pn be the Colijn–Plazzotta rank of Tn. If πn = o(1) and

log(1/πn) = o(2n), (8)

then

E {Pn} ∼ πncn−1,

V {Pn} ∼ E

{
P2
n

}
∼ πnc

2
n−1.

The idea of the result is that under the conditions specified, the CP rank of the n-leaf
pseudocaterpillar—the tree of second-largest CP rank among those with n leaves—
grows sufficiently slowly that the CP ranks of this tree and all other non-caterpillar
trees are negligible in relation to that of the n-leaf caterpillar. The mean and variance
of the CP rank of a random tree then depend only on the probability that a tree is a
caterpillar and the CP rank of the caterpillar.

Proof We distinguish two events. If Tn is a caterpillar of height n−1, then Pn = cn−1.
Otherwise, if Tn is some other tree, then its CP rank Pn has upper bound dn−2, the CP
rank of a pseudocaterpillar of height n − 2. These values yield the trivial bounds

πncn−1 ≤ E {Pn} ≤ πncn−1 + dn−2, (9)

πnc
2
n−1 ≤ E

{
P2
n

}
≤ πnc

2
n−1 + d2n−2. (10)

By taking the ratio of (9) with πncn−1, to verify E {Pn} ∼ πncn−1, it suffices to show

lim
n→∞

dn−2

πncn−1
= 0. (11)

Similarly, becausedn−2 < cn−1 so that (dn−2/cn−1)
2 < dn−2/cn−1, by taking the ratio

of (10) andπnc2n−1, verifying condition (11) suffices for verifyingV {Pn} ∼ E
{
P2
n

} ∼
πnc2n−1; we see first that E

{
P2
n

} ∼ πnc2n−1, and then V {Pn} = E
{
P2
n

} − E {Pn}2 ∼
E

{
P2
n

}
follows by recalling that πn = o(1).

We will show that (8) implies (11). We first prove by induction that dh−1 <

0.92
h−3

ch for all h ≥ 3. This statement is readily verified for h = 3 and h = 4.
Now assume that the inequality holds for some positive integer h ≥ 4, and write
Qh = 0.9−(2h−3) > 1, so that ch > Qhdh−1. It follows from the recursions (6) and
(7) that

dh
ch+1

= d2h−1 − dh−1 + 4

c2h − ch + 4
<

d2h−1 − dh−1 + 4

Q2
hd

2
h−1 − Qhdh−1 + 4
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A B

Fig. 1 Caterpillar and pseudocaterpillar trees. (A) Caterpillar tree with n = 8 leaves. The height of the tree
is n − 1 = 7. (B) Pseudocaterpillar tree with n = 8 leaves. The height of the tree is n − 2 = 6

= 1

Q2
h

− (Qh − 1)(Qhdh−1 − 4Qh − 4)

Q2
h(Q

2
hd

2
h−1 − Qhdh−1 + 4)

.

The final fraction is positive since Qh > 1 and dh−1 ≥ d3 ≥ 8. Thus,

dh
ch+1

<
1

Q2
h

= 0.92
h−2

,

completing the induction.
It follows (for n ≥ 4) that

log
dn−2

πncn−1
≤ log

( 1

πn
0.92

n−4
)

= 2n−4 log 0.9 − logπn = 2n−4 log 0.9 + o(2n)

by the assumption (8). Because this last expression goes to−∞ as n increases without
bound, we have verified (11). This completes the proof. ��

The theorem finds that the asymptotic mean is simply the product of the CP rank of
the caterpillar and the probability that a tree is a caterpillar. In all four types of random
trees that we consider, we verify that πn satisfies (8), so that the theorem applies.
This verification amounts to demonstrating that caterpillars are sufficiently probable
as n grows large; if πn were to decrease too quickly, then the condition would not be
satisfied.

The number of caterpillar cladograms is n!/2, so that for a random cladogram (and
equivalently, for a random Catalan tree), (4) gives

πn = n!
2

1

(2n − 3)!! = 2n−2

1
n

(2n−2
n−1

) ∼ 2n−2

π−1/2n−3/24n−1 ∼ n3/2
√

π

2n
. (12)

For a random Otter tree on n leaves, we have no simple explicit expression for πn .
However, we have the asymptotic probability from (2) that a random Otter tree is the
unique caterpillar:

πn= 1

un
∼ κn3/2ρn . (13)
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Table 1 CP rank f (tn) and probability under three models for all unlabeled unordered binary trees tn with
n leaves, 1 ≤ n ≤ 7. For unlabeled uniform unordered trees, the probability is the reciprocal of the number
of such trees, the Wedderburn–Etherington number defined by (1). For leaf-labeled uniform trees, it is the
ratio of n!/2s(tn ) (the number of ways of labeling shape tn , where the number of symmetric nodes s(tn) is
the number of internal nodes whose two descendant subtrees have the same unlabeled shape) and (2n−3)!!,
the number of leaf-labeled trees with n leaves (4). For leaf-labeled Yule–Harding trees, it is the ratio of
[n!/2s(tn )][(n−1)!/ ∏n

r=2(r −1)dr (tn )] and n!(n−1)!/2n−1, where dr (tn) is the number of internal nodes

of tn with r descendant leaves, (n − 1)!/ ∏n
r=2(r − 1)dr (tn ) gives the number of labeled histories of a

leaf-labeled tree (the number of sequences in which the tree can be produced by a sequence of bifurcations),
and n!(n − 1)!/2n−1 is the total number of labeled histories for n labeled leaves

Model
n tn f (tn) Height Unlabeled

uniform
unordered

Leaf-labeled
uniform

Leaf-labeled
Yule–Harding

1 1 0 1 1 1

2 2 1 1 1 1

3 3 2 1 1 1

4 5 3 1/2 4/5 2/3

4 4 2 1/2 1/5 1/3

5 12 4 1/3 4/7 1/3

5 8 3 1/3 1/7 1/6

5 6 3 1/3 2/7 1/2

6 68 5 1/6 8/21 2/15

6 30 4 1/6 2/21 1/15

6 17 4 1/6 4/21 1/5

6 13 4 1/6 4/21 4/15

6 9 3 1/6 1/21 2/15

6 7 3 1/6 2/21 1/5

7 2280 6 1/11 8/33 2/45

7 437 5 1/11 2/33 1/45

7 138 5 1/11 4/33 1/15
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Table 1 continued

Model
n tn f (tn) Height Unlabeled

uniform
unordered

Leaf-labeled
uniform

Leaf-labeled
Yule–Harding

7 80 5 1/11 4/33 4/45

7 38 4 1/11 1/33 2/45

7 23 4 1/11 2/33 1/15

7 69 5 1/11 4/33 1/9

7 31 4 1/11 1/33 1/18

7 18 4 1/11 2/33 1/6

7 14 4 1/11 4/33 2/9

7 10 3 1/11 1/33 1/9

Finally, for a random binary search tree (Slowinski 1990, p. 92),

πn = n!
2

1
n! (n−1)!
2n−1

= 2n−2

(n − 1)! ∼
(
2e

n

)n √
n

4
√
2π

. (14)

Verifying in (12), (13), and (14) that condition (8) is satisfied, we have shown the
following theorem.

Theorem 11 Withπn as in (12), (13), and (14), andwith Pn corresponding to either Cn

(the random Catalan tree), On (the random Otter tree), Ln (the random cladogram),
or Sn (the random binary search tree), we have

E {Pn} ∼ πncn−1,

V {Pn} ∼ E

{
P2
n

}
∼ πnc

2
n−1.

7 Numerical Computations

We informally examine the extent to which the asymptotic approximations for
E{log2 log f (τn)}, E{ f (τn)}, and V{ f (τn)} agree with the exact values for small n.
First, Tables 1 and 2 show the CP rank and the probabilities of all unlabeled unordered
binary trees for n = 1 to 8 under each of three models: uniformly random unlabeled
unordered trees, uniformly random leaf-labeled trees, and Yule–Harding leaf-labeled
trees. The much larger CP rank for the caterpillar compared to the pseudocaterpillar
(and all other trees) is already visible for n = 8.
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Table 2 CP rank f (tn) and probability under three models for all unlabeled unordered binary trees tn with
n leaves, n = 8. The table design follows Table 1

Model
n tn f (tn) Height Unlabeled

uniform
unordered

Leaf-labeled
uniform

Leaf-labeled
Yule–Harding

8 2598062 7 1/23 64/429 4/315

8 95268 6 1/23 16/429 2/315

8 9455 6 1/23 32/429 2/105

8 3162 6 1/23 32/429 8/315

8 705 5 1/23 8/429 4/315

8 255 5 1/23 16/429 2/105

8 2348 6 1/23 32/429 2/63

8 467 5 1/23 8/429 1/63

8 155 5 1/23 16/429 1/21

8 93 5 1/23 32/429 4/63

8 47 4 1/23 8/429 2/63

8 2281 6 1/23 32/429 4/105

8 438 5 1/23 8/429 2/105

8 139 5 1/23 16/429 2/35

8 81 5 1/23 16/429 8/105

8 39 4 1/23 4/429 4/105

8 24 4 1/23 8/429 2/35

8 70 5 1/23 32/429 2/21

8 32 4 1/23 8/429 1/21

123



Tree Height and the Asymptotic Mean of the Colijn–Plazzotta Rank… Page 17 of 22   172 

Table 2 continued

Model
n tn f (tn) Height Unlabeled

uniform
unordered

Leaf-labeled
uniform

Leaf-labeled
Yule–Harding

8 19 4 1/23 16/429 1/7

8 16 4 1/23 16/429 4/63

8 15 4 1/23 8/429 4/63

8 11 3 1/23 1/429 1/63

Table 3 Summary of the main asymptotic results under three models. τn refers to a random tree with n
leaves under the model, and f (τn) is the associated random CP rank. Properties of random trees are the
same for uniformly random leaf-labeled unordered trees and for uniformly random unlabeled ordered trees

Model
Property Unlabeled Leaf-labeled Leaf-labeled

uniform unordered uniform Yule–Harding

E{log log f (τn)} Theorem 5 Theorem 6 Theorem 7

log f (τn) - - Theorem 8

E{ f (τn)} Theorem 10 Theorem 10 Theorem 10

V{ f (τn)} Theorem 10 Theorem 10 Theorem 10

Figure 2 plots the values of E{log2 log f (τn)}, the mean height Hn , and the asymp-
totic approximation forE{log2 log f (τn)} under the threemodels. For each of the three
models, we can observe similar shapes in plots for its three quantities. The values are
greatest for the uniformly random leaf-labeled trees, with asymptotic approximation
2
√

πn ≈ 3.54491
√
n, followed by the uniformly random unlabeled unordered trees,

with asymptotic approximation 3.13699
√
n, andfinally, theYule–Harding leaf-labeled

trees, with asymptotic approximation 4.31107 log n.
Figures 3 and 4 plot the exact mean and variance of f (τn) under the three models

alongside the asymptotic approximation based on the contribution of the caterpillar
tree, taking the log2 log of these quantities to produce a comparable scale to Figure 2.
In the figure, we observe that even for quite small n, the exact mean and variance are
closely approximated by the asymptotic πncn−1. The mean and variance are greatest
for the uniformly random leaf-labeled trees, for which πn ∼ √

π(n3/2)(0.5n) (12),
followedby theuniformly randomunlabeledunordered trees,with asymptotic approxi-
mationπn ∼ κn3/2ρn ≈ 3.13699(n3/2)(0.40270n) (13). For theYule–Hardingmodel,
caterpillars are least probable (14).
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Fig. 2 Expected value of the double logarithm of CP rank, E{log2 log f (τn)}, under three models, for
n = 2 to 20: uniformly random unlabeled unordered binary trees, uniformly random leaf-labeled binary
trees, and Yule–Harding leaf-labeled binary trees. Exact values ofE{log2 log f (τn)} (open symbols) appear
alongside exact values of the expected tree height E{Hn} (open symbols superimposed with crosses) under
the threemodels and the asymptotic expressions (closed symbols, dashed lines): κ

√
n for unlabeled uniform

unordered (Theorem 5ii), 2
√

πn for leaf-labeled uniform (Theorem 6), and α log n for leaf-labeled Yule–
Harding (Theorem 7). κ ≈ 3.13699, α ≈ 4.31107 (color figure online)

8 Discussion

We have analyzed the Colijn–Plazzotta rank of rooted binary trees, showing that the
rank of a tree is largely determined by its height. Indeed, the ranking proceeds through
all trees of a given height h before moving on to trees of height h + 1. We have also
obtained asymptotic properties of the trees under three different models for selecting
random trees, finding in particular the asymptotics of E{log2 log f (τn)} for random
trees τn . The asymptotic mean and variance of the CP rank across trees with n leaves
depend only on the probability and CP rank of the n-leaf caterpillar, as the product of
the probability and the CP rank of the caterpillar grows faster than the next-highest
rank. A summary of mathematical results appears in Table 3.

Numerical investigations clarify a pattern observable in the mathematical results,
namely that the “uniform” model—uniformly random leaf-labeled trees—has CP
ranks greater than the Yule–Harding model on leaf-labeled trees (Figures 2–4). This
observation can be viewed as a consequence of the greater probability of the caterpillar
shape in the uniform (12) than in the Yule–Harding model (14).
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Fig. 3 Expected value of the CP rank, E{ f (τn)}, under three models, for n = 2 to 10: uniformly ran-
dom unlabeled unordered binary trees, uniformly random leaf-labeled binary trees, and Yule–Harding
leaf-labeled binary trees. Exact values of log2 logE{ f (τn)} (open symbols) appear alongside asymptotic
expressions log2 log(πncn−1) from Theorem 10 (closed symbols, dashed lines), where πn follows (12) for
leaf-labeled uniform and (14) for leaf-labeled Yule–Harding and cn−1 is the CP rank of the caterpillar with
n − 1 internal nodes and n leaves (6). For unlabeled uniform unordered, πn is computed as the exact 1/un ,
where un is the Wedderburn–Etherington number defined by (1) (color figure online)

It has been suggested that CP rank can serve as a measure of tree balance and
imbalance in empirical studies (Fischer et al. 2023; Rosenberg 2021). We have found
that as n grows, the CP rank of the caterpillar grows so fast that for both the uniform
and Yule–Harding models on leaf-labeled trees, the mean CP rank across trees with
n leaves is asymptotically determined by the contribution of the caterpillar. Hence,
as a balance statistic beyond the smallest tree sizes, the use of CP rank f (τ ) would
amount primarily to distinguishing caterpillars from non-caterpillars. A potentially
more suitable statistic is log2 log f (τ ), which places the CP ranks of different trees on
a similar scale. Due to its extremely large values, the CP rank has been omitted from
an empirical comparison of tree balance statistics (Kersting et al. 2025); we suggest
that this problem could be resolved by including its double-logarithm in its place.

The results have been obtained by connecting studies of CP rank as a quantity
of mathematical phylogenetics to the extensive literature on tree height in studies
grounded in theoretical computer science. As has been demonstrated here, such appli-
cations of theoretical computer science results on tree properties have the potential to
provide solutions to unsolved problems in mathematical phylogenetics.
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Fig. 4 Variance of the CP rank, V{ f (τn)}, under three models, for n = 2 to 10: uniformly random unla-
beled unordered binary trees, uniformly random leaf-labeled binary trees, and Yule–Harding leaf-labeled
binary trees. Exact values of log2 logV{ f (τn)} (open symbols) appear alongside asymptotic expressions
log2 log(πnc

2
n−1) from Theorem 10 (closed symbols, dashed lines), where πn follows (12) for leaf-labeled

uniform and (14) for leaf-labeled Yule–Harding and cn−1 is the CP rank of the caterpillar with n−1 internal
nodes and n leaves (6). For unlabeled uniform unordered, πn is computed as the exact 1/un , where un is
the Wedderburn–Etherington number defined by (1) (color figure online)

Although we have obtained the asymptotics of the mean and variance of the CP
rank under the uniform and Yule–Harding models—the two models for which the
mean and variance were noted by Fischer et al. (2023) as open problems—we have
not commented on the exact mean and variance. For practical applications of CP
rank, an understanding of the asymptotics likely suffices, but we note that the precise
determination of the mean and variance of the CP rank remains an open problem.
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