Burning Random Trees

Luc Devroye^{*}

Austin Eide^{\dagger}

Paweł Prałat[‡]

Abstract

January 31, 2025

Let \mathcal{T} be a Galton-Watson tree with a given offspring distribution ξ , where ξ is a $\mathbb{Z}_{\geq 0}$ -valued random variable with $\mathsf{E}[\xi] = 1$ and $0 < \sigma^2 := \mathsf{Var}[\xi] < \infty$. For $n \geq 1$, let T_n be the tree \mathcal{T} conditioned to have n vertices. In this paper we investigate $b(T_n)$, the burning number of T_n . Our main result shows that asymptotically almost surely $b(T_n)$ is of the order of $n^{1/3}$.

1 Introduction

Graph burning is a discrete-time process that models influence spreading in a network. Vertices are in one of two states: either *burning* or *unburned*. In each round, a burning vertex causes all of its neighbours to burn and a new *fire source* is chosen: a previously unburned vertex whose state is changed to burning. The updates repeat until all vertices are burning. The *burning number* of a graph G, denoted b(G), is the minimum number of rounds required to burn all of the vertices of G.

Graph burning first appeared in print in a paper of Alon [2], motivated by a question of Brandenburg and Scott at Intel, and was formulated as a transmission problem involving a set of processors. It was then independently studied by Bonato, Janssen, and Roshanbin [5, 6] who, in addition to introducing the name graph burning, gave bounds and characterized the burning number for various graph classes. The problem has since received wide attention (e.g. [3, 4, 11, 14, 15, 16]), with particular focus the so-called Burning Number Conjecture that each connected graph on n vertices requires at most $\lceil \sqrt{n} \rceil$ turns to burn. This conjecture is best possible, as $b(P_n) = \lceil \sqrt{n} \rceil$ for a path on n vertices.

Clearly, $b(G) \leq b(T)$ for every spanning tree T of G. Hence, the Burning Number Conjecture can be stated as follows:

Conjecture 1.1. For any tree T on n vertices, $b(T) \leq \lceil \sqrt{n} \rceil$.

^{*}School of Computer Science, McGill University, Montreal, Canada

[†]Department of Mathematics, Toronto Metropolitan University, Toronto, Canada

[‡]Department of Mathematics, Toronto Metropolitan University, Toronto, Canada

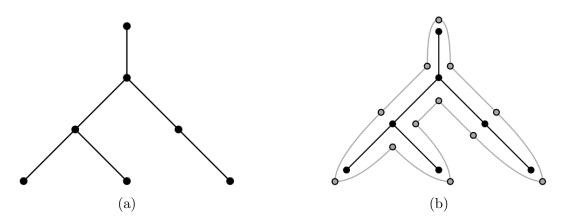


Figure 1: A tree T (a) and a cycle corresponding to a depth-first search of T (b). Any burning sequence for the cycle projects to a burning sequence for the tree.

Although the conjecture feels obvious, it has resisted attempts at its resolution. It is easy to couple the process on any tree T on n vertices (n - 1 edges) with the process on $C_{2(n-1)}$, a cycle on twice as many edges. (See Figure 1.) This yields

$$b(T) \le \left\lceil \sqrt{2(n-1)} \right\rceil = \sqrt{2n} + O(1) \qquad (\sqrt{2} \approx 1.41421).$$

In [4], it was proved that

$$b(T) \le \sqrt{\frac{12}{7}n} + 3$$
 $(\sqrt{12/7} \approx 1.30931).$

This bound was consecutively improved in [11] to

$$b(T) \le \left\lceil \frac{\sqrt{24n+33}-3}{4} \right\rceil = \sqrt{\frac{3}{2}n} + O(1) \qquad (\sqrt{3/2} \approx 1.22475),$$

and currently, the best explicit upper bound, proved in [3], is

$$b(T) \le \left\lceil \sqrt{\frac{4}{3}n} \right\rceil + 1 \qquad (\sqrt{4/3} \approx 1.15470).$$

Arguably, the strongest result in this direction shows that the conjecture holds asymptotically [16], that is,

$$b(T) \le (1+o(1))\sqrt{n}.$$

We intend to investigate the burning number of random trees. Let \mathcal{T} be a Galton-Watson tree with a given offspring distribution ξ , where ξ is a $\mathbb{Z}_{\geq 0}$ -valued random variable with

$$\mathsf{E}[\xi] = 1, \qquad \text{and} \qquad 0 < \sigma^2 := \mathsf{Var}[\xi] < \infty. \tag{1}$$

In other words, the Galton-Watson tree is critical, of finite variance, and satisfies $\mathbb{P}(\xi = 1) < 1$. 1. In particular, it implies that $0 < \mathbb{P}(\xi = 0) < 1$.

For $n \geq 1$, let T_n be the tree \mathcal{T} conditioned to have *n* vertices. The resulting random trees are essentially the same as the simply generated families of trees introduced by Meir and Moon [13]. This family contains many combinatorially interesting random trees such as uniformly chosen random plane trees, random unordered labelled trees (known as Cayley trees), and random *d*-ary trees. For more examples, see, Aldous [1] and Devroye [7].

Our main result shows that, with high probability, $b(T_n)$ is of the order of $n^{1/3}$.

Theorem 1.2. Let T_n be a conditioned Galton-Watson tree of order n, subject to (1). For any $\epsilon = \epsilon(n)$ tending to 0 as $n \to \infty$, we have

$$\Pr\left((\epsilon n)^{1/3} \le b(T_n) \le (n/\epsilon)^{1/3}\right) = 1 - O(\epsilon).$$

The paper is structured as follows. First, we make a simple observation that the burning number can be reduced to the problem of covering vertices of the graph with balls, a slightly easier problem; see Section 2. Section 3 is devoted to the lower bound for the burning number whereas the upper bound is provided in Section 4. We finish the paper with a few natural questions; see Section 5.

2 Covering a Graph with Balls

In this section, we show a simple but convenient observation that reduces the burning number to the problem of covering the graph's vertices with balls. Let G = (V, E) be any graph. For any $r \in \mathbb{N}_0$ and vertex $v \in V$, we denote by $B_r(v)$ the ball of radius r centered at v, that is, $B_r(v) = \{u \in V : d(u, v) \leq r\}$, where d(u, v) denotes the distance between u and v.

First, note that since the burning process is deterministic, a fire source v makes all vertices in $B_t(v)$ burn after t rounds but only those vertices are affected. As a result, the burning number can be reformulated as follows:

$$b(G) = \min\left\{k \in \mathbb{N} : \exists v_0, v_1, \dots, v_{k-1} \in V \text{ such that } \bigcup_{r=0}^{k-1} B_r(v_r) = V\right\}.$$

Dealing with balls of different radii is inconvenient so we will simplify the problem slightly by considering balls of the same radii. Let $\hat{b}(G)$ be the counterpart of b(G) for this auxiliary covering problem, that is,

$$\hat{b}(G) = \min\left\{k \in \mathbb{N} : \exists v_1, v_2, \dots, v_k \in V \text{ such that } \bigcup_{r=1}^k B_k(v_r) = V\right\}$$

Covering with k balls of increasing radii (in particular, all of them of radii at most k-1) is not easier than covering with k balls of radius k. Hence, $\hat{b}(G) \leq b(G)$. On the other hand, covering with 2k balls of increasing radii (in particular, k of them of radii at least k) is not more difficult than covering with k balls of radius k implying that $b(G) \leq 2\hat{b}(G)$. We conclude that $\hat{b}(G)$ and b(G) are of the same order: **Observation 2.1.** For any graph G = (V, E),

$$\hat{b}(G) \le b(G) \le 2\hat{b}(G).$$

In particular, we may prove the bounds in our main result (Theorem 1.2) for b(G) instead of b(G), which will be slightly easier.

3 Lower bound

For an arbitrary tree τ and $i \in \mathbb{N}$, let

$$P_i(\tau) := \left| \left\{ \{v, w\} : v, w \in V(\tau), \, d(v, w) = i \right\} \right|.$$

In other words, $P_i(\tau)$ counts the number of unordered pairs of vertices which are distance *i* apart in τ . We have the following result from [8] that upper bounds the expected number of such pairs in the random tree T_n :

Theorem 3.1 ([8, Theorem 1.3]). There exists a constant c > 0, dependent on the distribution of ξ , such that for all $n \in \mathbb{N}$ and $i \in \mathbb{N}$, $\mathsf{E}[P_i(T_n)] \leq cni$.

We use Theorem 3.1 to prove the following:

Proposition 3.2. Let $k = k(n) = (\epsilon n)^{1/3}$, where $\epsilon = \epsilon(n) \to 0$ as $n \to \infty$. With probability $1 - O(\epsilon)$, $\hat{b}(T_n) \ge k$, that is, there is no partition of the vertices of T_n into k disjoint sets U_1, U_2, \ldots, U_k such that diam $(U_j) \le 2k$ for all $1 \le j \le k$.

Since $b(T_n) \ge \hat{b}(T_n)$ (Observation 2.1), Proposition 3.2 implies the corresponding lower bound in Theorem 1.2.

Proof. Let $Q_j(T_n) = \sum_{i=1}^j P_i(T_n)$, that is, $Q_j(T_n)$ counts pairs of vertices in T_n which are at most distance j apart. From Theorem 3.1, for all $n, j \in \mathbb{N}$,

$$\mathsf{E}[Q_j(T_n)] = \sum_{i=1}^j \mathsf{E}[P_i(T_n)] \le cn \sum_{i=1}^j i \le cnj^2.$$

For a contradiction, suppose there is a partition U_1, U_2, \ldots, U_k of the vertices of T_n as described in the statement of the proposition. Since every pair of vertices in a given U_j is at most distance 2k apart, we must have

$$Q_{2k}(T_n) \ge \sum_{j=1}^k \binom{|U_j|}{2} = \sum_{j=1}^k \left(\frac{|U_j|^2}{2} - \frac{|U_j|}{2}\right) = \frac{1}{2} \sum_{j=1}^k |U_j|^2 - \frac{n}{2}.$$

By Jensen's inequality, we get

$$\frac{1}{k} \sum_{j=1}^{k} |U_j|^2 \ge \left(\frac{1}{k} \sum_{j=1}^{k} |U_j|\right)^2 = \left(\frac{n}{k}\right)^2$$

and therefore

$$Q_{2k}(T_n) \ge \frac{n^2}{2k} - \frac{n}{2} = \frac{n^2}{2k} \left(1 - O(k/n)\right) = \frac{n^2}{2k} \left(1 - o(n^{-2/3})\right).$$

On the other hand, $\mathsf{E}[Q_{2k}(T_n)] \leq 4cnk^2$. Thus, by Markov's inequality,

$$\Pr\left(Q_{2k}(T_n) \ge \frac{n^2}{2k} - \frac{n}{2}\right) \le \frac{\mathsf{E}[Q_{2k}(T_n)]}{\frac{n^2}{2k}} \left(1 + o(n^{-2/3})\right)$$
$$= O\left(\frac{k^3}{n}\right) = O(\epsilon).$$

It follows that a partition of $V(T_n)$ with the stated properties exists with probability $O(\epsilon)$, which finishes the proof of the proposition.

4 Upper bound

For any rooted tree τ with root r, for $i \in \mathbb{N}_0$ we write $\ell_i(\tau) := \{v \in V(\tau) : d_\tau(r, v) = i\}$ for the set of vertices at depth i. Let $h(\tau) \in \mathbb{N}_0 \cup \{\infty\}$ be the height of τ , that is, $h(\tau) := \sup\{i : \ell_i(\tau) \neq \emptyset\}$. For any $v \in V(\tau)$, let τ_v the (full) sub-tree of τ rooted at v. For $k \in \mathbb{N}$, and $j \in \{0, 1, \ldots, k-1\}$, let

$$\mathcal{C}_k^j(\tau) := \bigcup_{i=0}^{\infty} \Big\{ v \in \ell_{ik+j}(\tau) : h(\tau_v) \ge k \Big\}.$$

So $\mathcal{C}_k^j(\tau)$ consists of all vertices whose depth is j modulo k with subtrees of height at least k.

We first show that placing balls of radius 2k at the root and at each vertex in $C_k^j(\tau)$ covers the vertices of τ .

Lemma 4.1. Let τ be a tree rooted at r. For any $k \in \mathbb{N}$ and $j \in \{0, 1, \dots, k-1\}$ we have

$$V(\tau) = \bigcup_{v \in \mathcal{C}_k^j(\tau) \cup \{r\}} B_{2k}(v)$$

Proof. Fix $k \in \mathbb{N}$ and $j \in \{0, 1, \ldots, k-1\}$. Let $v \in V(\tau)$ and let *i* be the smallest nonnegative integer such that d(r, v) < ik+j and let *a* be the unique ancestor of *v* in $\ell_{(i-2)k+j}(\tau)$, or a = r if $i \in \{0, 1\}$. Then *a* is either the root *r*, or $d(r, a) \equiv j \pmod{k}$ and $h(\tau_a) \geq k$. In either case, $a \in \mathcal{C}_k^j(\tau) \cup \{r\}$. Since $d(a, v) \leq 2k$, we have $v \in B_{2k}(a)$. This finishes the proof of the lemma. \Box

Lemma 4.1 provides a scheme to cover a general rooted tree τ with balls of radius 2k. Observe that for any j, $|\mathcal{C}_k^j(\tau)| \leq 2k - 1$ implies that $\hat{b}(\tau) \leq 2k$, and hence $b(\tau) \leq 4k$ by Observation 2.1. In particular, we conclude the following:

if
$$\min_{j} |\mathcal{C}_{k}^{j}(\tau)| \leq 2k - 1$$
, then $b(\tau) \leq 4k$. (2)

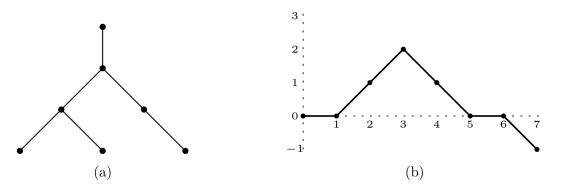


Figure 2: A rooted tree τ with preorder degree sequence (1, 2, 2, 0, 0, 1, 0) (a) and its lattice path representation (b).

Our next lemma estimates the probability that a vertex selected uniformly at random from the random tree T_n has height at least k.

Lemma 4.2. Consider the random tree $\tau = T_n$ on n vertices. Then there exists a constant c > 0, dependent on the distribution of ξ , such that the following property holds. Let u be a vertex selected uniformly at random from $V(\tau)$, and let its subtree be denoted by τ_u . Then, for all $k \ge 0$,

$$\Pr(h(\tau_u) \ge k) \le c\left(\frac{1}{k} + \frac{1}{\sqrt{n}}\right).$$

To prove Lemma 4.2 we require some standard tools for conditioned Galton Watson trees, which we introduce now. Given a tree τ with *s* vertices, let v_1, v_2, \ldots, v_s be the vertices of τ in depth-first search (DFS) order. We write d_i for the number of children of v_i and refer to (d_1, d_2, \ldots, d_s) as the *preorder degree sequence* of τ . The preorder degree sequence gives rise to a representation of τ as a lattice path $(j, y_j)_{j=0}^s$ started from $(0, y_0) = (0, 0)$ with *s* steps, where the *j*th step is given by $y_j = y_{j-1} + (d_j - 1)$. See Figure 2 for an example.

Note that the lattice path corresponding to a tree with s vertices always ends at the point $(s, y_s) = (s, -1)$ and has a height strictly greater than -1 before then, evidenced by the fact that the height of the path at step j is one less than the number of vertices in the "queue" of the DFS of the tree after j vertices have been explored. As the next lemma summarizes, there is a bijective correspondence between ordered trees with s vertices and lattice paths of this type.

Lemma 4.3 ([9, Lemma 15.2]). A sequence $(d_1, d_2, \ldots, d_s) \in \mathbb{N}_0^s$ is the preorder degree sequence of a tree if and only if

$$\sum_{i=1}^{j} d_i \ge j \quad \forall j \in \{1, 2, \dots, s-1\}$$

and

$$\sum_{i=1}^{s} d_j = s - 1.$$

We also have the following useful property.

Lemma 4.4 ([9, Corollary 15.4]). If $(d_1, d_2, \ldots, d_s) \in \mathbb{N}_0^s$ satisfies $\sum_{i=1}^s d_i = s - 1$, then precisely one of the cyclic permutations of (d_1, d_2, \ldots, d_s) is the preorder degree sequence of a tree.

Let $(\xi_1^{(s)}, \xi_2^{(s)}, \ldots, \xi_s^{(s)})$ be the preorder degree sequence of a Galton-Watson tree T_s with offspring distribution ξ conditioned to have s vertices, and let $(\tilde{\xi}_1^{(s)}, \tilde{\xi}_2^{(s)}, \ldots, \tilde{\xi}_s^{(s)})$ be a uniformly random cyclic permutation of $(\xi_1^{(s)}, \xi_2^{(s)}, \ldots, \xi_s^{(s)})$. Let ξ_1, ξ_2, \ldots be a sequence of i.i.d. copies of ξ , and define, for any $j \ge 1$, $S_j = \sum_{i=1}^j \xi_i$. Lemmas 4.3 and 4.4 yield the following corollary:

Corollary 4.5. The sequence $(\widetilde{\xi}_1^{(s)}, \widetilde{\xi}_2^{(s)}, \ldots, \widetilde{\xi}_s^{(s)})$ has the same distribution as the sequence $(\xi_1, \xi_2, \ldots, \xi_s)$ conditioned on $S_s = s - 1$.

Define the span of ξ as

$$h = \gcd\{i \ge 1 : \Pr(\xi = i) > 0\}.$$

We will use the following local limit theorems (see [10, Lemma 4.1 and (4.3)] and the sources referenced therein).

Lemma 4.6. Suppose ξ satisfies (1) and has span h. Then, as $s \to \infty$, uniformly for $m \equiv 0 \pmod{h}$,

$$\Pr(S_s = m) = \frac{h}{\sqrt{2\pi\sigma^2 s}} \left(e^{-(m-s)^2/2s\sigma^2} + o(1) \right).$$

If \mathcal{T} is the Galton-Watson tree with offspring distribution ξ , then for $s \equiv 1 \pmod{h}$, as $s \to \infty$,

$$\Pr(|\mathcal{T}| = s) = \frac{h}{\sqrt{2\pi\sigma^2 s^3}}(1 + o(1)).$$

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. Throughout the proof, we will use c_1, c_2, \ldots for non-explicit positive constants which do not depend on n (but may depend on the distribution of ξ). Implicitly, we will assume throughout that $n \equiv 1 \pmod{h}$, where h is the span of ξ , so that $\Pr(S_n = n-1) > 0$.

We identify the random vertex u with a random index of the DFS order on T_n . Consider $(\xi_u^{(n)}, \xi_{u+1}^{(n)}, \ldots, \xi_n^{(n)}, \xi_1^{(n)}, \ldots, \xi_{u-1}^{(n)})$. It is clear that this sequence has the same distribution as $(\tilde{\xi}_1^{(n)}, \tilde{\xi}_2^{(n)}, \ldots, \tilde{\xi}_n^{(n)})$, which, in turn, has the same distribution as $(\xi_1, \xi_2, \ldots, \xi_n)$ conditioned on $S_n = n - 1$ by Corollary 4.5.

For $k \in \mathbb{N}$ and $s \geq k$, let \mathfrak{T}_s^k be the set of ordered trees with s vertices and height at least k. For a sequence $(d_1, d_2, \ldots, d_s) \in \mathbb{N}_0^s$, we write $(d_1, d_2, \ldots, d_s) \in \mathfrak{T}_s^k$ if (d_1, d_2, \ldots, d_s)

is the preorder degree sequence of a tree in \mathfrak{T}_s^k . Note that for any $(d_1, d_2, \ldots, d_s) \in \mathfrak{T}_s^k$, we have $\sum_{i=1}^s d_i = s - 1$. Then,

$$\Pr(h(\tau_u) \ge k) = \sum_{s=k}^{n} \Pr((\tilde{\xi}_1^{(n)}, \tilde{\xi}_2^{(n)}, \dots, \tilde{\xi}_s^{(n)}) \in \mathfrak{T}_s^k)$$

$$= \sum_{s=k}^{n} \Pr((\xi_1, \xi_2, \dots, \xi_s) \in \mathfrak{T}_s^k | S_n = n - 1)$$

$$= \sum_{s=k}^{n} \frac{\Pr((\xi_1, \xi_2, \dots, \xi_s) \in \mathfrak{T}_s^k) \cdot \Pr(\sum_{i=s+1}^{n} \xi_i = n - s)}{\Pr(S_n = n - 1)}$$

$$= \sum_{s=k}^{n} \frac{\Pr((\xi_1, \xi_2, \dots, \xi_s) \in \mathfrak{T}_s^k) \cdot \Pr(\sum_{i=s+1}^{n} \xi_i = n - s)}{\Pr(S_n = n - 1)}$$

$$= \sum_{s=k}^{n} \frac{\Pr((\xi_1, \xi_2, \dots, \xi_s) \in \mathfrak{T}_s^k) \cdot \Pr(S_{n-s} = n - s)}{\Pr(S_n = n - 1)}.$$
(3)

By Lemma 4.6, there is a constant $c_1 > 0$ such that for $s \in \{1, 2, \dots, \lfloor n/2 \rfloor\}$, we have

$$\frac{\Pr(S_{n-s}=n-s)}{\Pr(S_n=n-1)} \le c_1$$

Thus,

$$\begin{split} \sum_{s=k}^{\lfloor n/2 \rfloor} \frac{\Pr((\xi_1, \xi_2, \dots, \xi_s) \in \mathfrak{T}_s^k) \cdot \Pr(S_{n-s} = n - s)}{\Pr(S_n = n - 1)} &\leq c_1 \sum_{s=k}^{\lfloor n/2 \rfloor} \Pr((\xi_1, \xi_2, \dots, \xi_s) \in \mathfrak{T}_s^k) \\ &\leq c_1 \sum_{s=k}^{\infty} \Pr((\xi_1, \xi_2, \dots, \xi_s) \in \mathfrak{T}_s^k) \\ &= c_1 \Pr(h(\mathcal{T}) \geq k), \end{split}$$

where, recall, \mathcal{T} is the unconditioned Galton-Watson tree with offspring distribution ξ . By Kolmogorov's Theorem [12, Theorem 12.7], there is a constant $c_2 > 0$ so that for any $k \ge 1$, we have $\Pr(h(\mathcal{T}) \ge k) \le c_2/k$, and thus $c_1 \Pr(h(\mathcal{T}) \ge k) \le c_3/k$ for some constant $c_3 > 0$. This bounds the partial sum of (3) where $k \le s \le n/2$.

For the other partial sum, we first observe that

$$\Pr((\xi_1,\xi_2,\ldots,\xi_s)\in\mathfrak{T}_s^k)\leq\Pr(|\mathcal{T}|=s).$$

By Lemma 4.6, there is a constant $c_4 > 0$ so that

$$\frac{\Pr(|\mathcal{T}|=s)}{\Pr(S_n=n-1)} \le \frac{c_4}{n}$$

for all $n \ge 1$ and $\lceil n/2 \rceil \le s \le n$. Using Lemma 4.6 again, we get that for all $j \ge 1$

$$\Pr(S_j = j) \le \frac{c_5}{\sqrt{j}}$$

for some constant $c_5 > 0$. It follows that

$$\sum_{i=\lceil n/2\rceil}^{n} \Pr(S_{n-s} = n-s) = \sum_{j=0}^{n-\lceil n/2\rceil} \Pr(S_j = j)$$

$$\leq 1 + c_5 \sum_{j=1}^{n-\lceil n/2\rceil} \frac{1}{\sqrt{j}}$$

$$\leq c_6 \sqrt{n}$$

for some constant $c_6 > 0$, where the bound in the last line follows from a straightforward comparison of the sum with an integral. In all, we get that the partial sum of (3) with $n/2 \leq s \leq n$ is at most c_7/\sqrt{n} (for some constant $c_7 > 0$) for all n.

Finally, combining the two bounds, we conclude that (3) is upper bounded by $c_8\left(\frac{1}{k} + \frac{1}{\sqrt{n}}\right)$ for some constant $c_8 > 0$, as desired. This finishes the proof of the lemma.

We now have all the ingredients to finalize the upper bound. The next theorem, as discussed earlier (see (2)), implies that $b(\tau) \leq 4k = O((n/\epsilon)^{1/3})$ with probability $1 - O(\epsilon)$.

Theorem 4.7. Let $\epsilon = \epsilon(n) \to 0$ as $n \to \infty$, and let $k = \lfloor \left(\frac{n}{\epsilon}\right)^{1/3} \rfloor$. Then, with probability $1 - O(\epsilon)$, we have

$$\min_{j \in \{0,1,\dots,k-1\}} |\mathcal{C}_k^j(T_n)| \le 2k - 1.$$

Proof. Let $X_j = |\mathcal{C}_k^j(T_n)|$ for $j \in \{0, 1, \dots, k-1\}$, and let Y be the number of vertices v in $\tau = T_n$ such that $h(\tau_v) \ge k$. Clearly, we have the identity $Y = \sum_{j=0}^{k-1} X_i$.

Now, observe that

$$\min_{j \in \{0,1,\dots,k-1\}} X_j \le \frac{1}{k} \sum_{j=0}^{k-1} X_j = \frac{Y}{k}$$

By Lemma 4.2, $\mathsf{E}[Y] \leq c \left(\frac{n}{k} + \sqrt{n}\right)$. Therefore, by Markov's inequality,

$$\Pr\left(\frac{Y}{k} > 2k - 1\right) \le \frac{\mathsf{E}[Y]}{(2k - 1)k} \le \frac{c}{2k - 1}\left(\frac{n}{k^2} + \frac{\sqrt{n}}{k}\right) = O\left(\frac{n}{k^3}\right) = O(\epsilon).$$

This completes the proof of the theorem.

5 Future Directions

In this paper we showed that asymptotically almost surely (a.a.s.) $b(T_n)$ is close to $n^{1/3}$, that is, a.a.s. $n^{1/3}/\omega \leq b(T_n) \leq n^{1/3}\omega$, provided that $\omega = \omega(n) \to \infty$ as $n \to \infty$. Is it true that a.a.s. $b(T_n) = \Theta(n^{1/3})$, that is, a.a.s. $c_1 n^{1/3} \leq b(T_n) \leq c_2 n^{1/3}$ for some constants $c_2 > c_1 > 0$? It is possible that there exists a constant $c_3 > 0$ (possibly depending on σ^2) such that a.a.s. $b(T_n) = c_3 n^{1/3} (1 + o(1))$.

6 Acknowledgement

Part of this work was done during the 18th Annual Workshop on Probability and Combinatorics, McGill University's Bellairs Institute, Holetown, Barbados (March 22–29, 2024).

References

- David Aldous. The continuum random tree. ii. an overview. Stochastic Analysis, 167:23– 70, 1991.
- [2] Noga Alon. Transmitting in the *n*-dimensional cube. Discrete Applied Mathematics, 37:9–11, 1992.
- [3] Paul Bastide, Marthe Bonamy, Anthony Bonato, Pierre Charbit, Shahin Kamali, Théo Pierron, and Mikaël Rabie. Improved pyrotechnics: Closer to the burning graph conjecture. arXiv preprint arXiv:2110.10530, 2021.
- [4] Stéphane Bessy, Anthony Bonato, Jeannette Janssen, Dieter Rautenbach, and Elham Roshanbin. Bounds on the burning number. *Discrete Applied Mathematics*, 235:16–22, 2018.
- [5] Anthony Bonato, Jeannette Janssen, and Elham Roshanbin. Burning a graph as a model of social contagion. In Algorithms and Models for the Web Graph: 11th International Workshop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings 11, pages 13-22. Springer, 2014.
- [6] Anthony Bonato, Jeannette Janssen, and Elham Roshanbin. How to burn a graph. Internet Mathematics, 12(1-2):85–100, 2016.
- [7] Luc Devroye. Branching processes and their applications in the analysis of tree structures and tree algorithms. In *Probabilistic Methods for Algorithmic Discrete Mathematics*, pages 249–314. Springer, 1998.
- [8] Luc Devroye and Svante Janson. Distances between pairs of vertices and vertical profile in conditioned Galton–Watson trees. *Random Structures & Algorithms*, 38(4):381–395, 2011.
- [9] Svante Janson. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. *Probability Surveys*, 9:103, 2012.
- [10] Svante Janson. Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton–Watson trees. Random Structures & Algorithms, 48(1):57–101, 2016.
- [11] Max R Land and Linyuan Lu. An upper bound on the burning number of graphs. In Algorithms and Models for the Web Graph: 13th International Workshop, WAW 2016,

Montreal, QC, Canada, December 14–15, 2016, Proceedings 13, pages 1–8. Springer, 2016.

- [12] Russell Lyons and Yuval Peres. Probability on Trees and Networks, volume 42. Cambridge University Press, 2017.
- [13] Amram Meir and John W Moon. On the altitude of nodes in random trees. Canadian Journal of Mathematics, 30(5):997–1015, 1978.
- [14] Dieter Mitsche, Paweł Prałat, and Elham Roshanbin. Burning graphs: a probabilistic perspective. *Graphs and Combinatorics*, 33:449–471, 2017.
- [15] Dieter Mitsche, Paweł Prałat, and Elham Roshanbin. Burning number of graph products. *Theoretical Computer Science*, 746:124–135, 2018.
- [16] Sergey Norin and Jérémie Turcotte. The burning number conjecture holds asymptotically. Journal of Combinatorial Theory, Series B, 168:208–235, 2024.