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5.1 Distribution estimation 

The classical nonparametric example is the problem estimating a distribution function F(x) from 

i.i.d. samples X1 ,X2, .. . Xn taking values in 1(d (d ~ 1). Here on the one hand the construction 

of the empirical distribution function Fn (x) is distribution-free, and on the other hand its uniform 

convergence, the Glivenko-Cantelli Theorem holds for all F (x): 

lim sup IFn(x)- F(x)l = 0 a.s. 
n-too X 

The Glivenko-Cantelli Theorem is really distribution-free, and the convergence in Kolmogorov

Smirnov distance means uniform convergence, so virtually it seems that there is no need to go 
further. However, if, for example, in a decision problem one wants to use empirical distribution 

functions for two unknown continuous distribution functions for creating a kind of likelihood 

then these estimates are useless. It turns out that we should look for stronger error criteria. 

For this purpose it is obvious to consider the total variation: if J1 and v are probability measures 

on 1(d then the total variation of J1 and vis defined by 

V(p,v) = suplp(A) -v(A)I, 
A 

where the supremum is taken over all Borel sets A. 

However, if J1 stands for the common distribution of {Xi} and Jln denotes the empirical distri

bution then for nonatomic J1 

a.s., so the empirical distribution is a bad estimate in total varition. 

L. Györfi (ed.), Principles of Nonparametric Learning
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One may expect to find a more sophisticated sequence {.u~} of distribution estimates of 11 

which is consistent in total variation: 

lim V(p,p~) = 0 a.s. 
n~oo 

Theorem 5.1. (DEVROYE AND GYORFI (1990)) Given any sequence of distribution estima

tors {p~} there always exists a probability measure pfor which 

V(p,p~) > 1/4 for all n a.s. 

PROOF. This negative finding means that the total variation is a much stronger error criterion 

than the Kolmogorov-Smimov distance such that it is impossible to construct a distribution 

estimate with distribution-free consistency in total variation. The proof borrows some arguments 

from Devroye (1983) and Renyi (1959). First, we need a rich family of singular continuous 

probability measures. The family of probability measures considered here is parametrized by 

a number bE [0, 1] with binary expansion b = O.b(t)b(2)b(3) ... , b(i) E {0, 1 }. Let the binary 

random variables Y(l), Y(2), ... be i.i.d. and uniformly distributed on { 0, 1}. We define the random 

variable X = X (Y, b) by setting X = O.X(l )X(2)X(3) ... in the ternary radix system used for Y = 

O.Y(l)y(2)y(3) ... , where 

x(k) = { 
0, if b(k) = 0, 

y(k)• if b(k) = 1. 

Let /lb denote the probability measure of X= X(Y,b). If in the binary expansion of b there are 

finitely many (L) zeros, then /lb is absolutely continuous and distributes its mass uniformly on 

a set of Lebesgue measure 2-L.If in the binary expansion of b there are finitely many (L) ones, 

then /lb is discrete and puts its mass uniformly on a set of cardinality 2L. In other cases, /lb is 

singular. 

We writeX(Yt,b), ... ,X(Yn,b) to denote a sample drawn from the distribution of X(Y,b). We 

will replace b at a crucial step in the argument by a uniform [0, 1] random variable B, which is 

independent of Yt, ... Yn. Put 

Ak = {0.X(l)X(2) · · · : X(i) E {0, 1} for all i; X(k) = 0}. 

Then 

(A)-{ 1, ifb(k)=O, 
/lb k - 1/2, if b(k) = 1. 

Let 11~ be an arbitrary distribution estimate based upon X(Yt,b), ... ,X(Yn,b). Let us now define 

the parameter estimate bn = O.bntbn2 ... by its binary expansion with bits 

bnk = { 
0, 

1, 
if p~(Ak) > 3/4, 

otherwise. 
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Then 

Therefore 

sup infV (.u~, Jib) 
b n 

supinfsup l.u~(A)- .Ub(A)i 
b n A 

> supinfsupl.u~(Ak) -.ub(Ak)i 
b n k 

> supinfsup 1/4I{bnkf-b(k)}· 
b n k 

Replace b by B and resulting bnk by Bnk· Then 

supinfV(,u~,.Ub) > infsup 1/4I{s kf-B(kJ} 
b n n k n 

1/4infZn. 
n 
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Our theorem is proved if we can show that Zn = 1 almost surely for all n. Put ZNn = I{uN [B -i-B l}. 
k=l nkr (k) 

Then ZNn t Zn = I{u;;=1 [Bnkf-B(k)]}· Therefore it suffices to show that 

lim J!D{uf=l [Bnk # B(k)]} = 1. 
N-+~ 

But J!D{Uf=1 [Bnk # B(k)]} is the error probability of the decision (Bni, ... ,BnN) on (B(!), ... B(N)) 
for the observations x,, ... ,Xn. For this decision problem the Bayes decision is 

Thus, 

Bnk = { O, 
1' 

if xi(k) = 0 for all i = 1' ... 'n, 
otherwise. 

JID{ZNn = 1} J!D{Uf=l [Bnk # B(k)]} 
N -> J!D{Uk=l [Bnk # B(k)]} 

1-(1--1 )N 
2·2n 

t 1. 

D 

For distribution estimation we may consider other error criteria. Such error criteria can be 

derived from dissimilarity measures of probability measures, like /-divergences introduced by 

Csisz:ir (1967) (see also Liese, Vajda (1987) and Vajda (1989)). The three most important/

divergences in mathematical statistics are the total variation, the information divergence and the 
x2 -divergence. 
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If Jl and v are probability measures on 1{ d then the information divergence (or I -divergence, 

relative entropy, Kullback-Leibler number) of Jl and vis defined by 

Jl(A ·) 
l(Jl,V) =sup LJl(Aj)log (A~)' 

{Aj} j V J 

where the supremum is taken over all finite Borel measurable partition {Aj} of 1{d. 

If Jl and v are discrete distributions then 

( ~ . Jl({j}) 
I Jl, v) = 7Jl( {J} )log v( {j}). 

The following inequality, also called Pinsker's inequality, upperbounds the total variation in 

terms ofl-divergence (cf. Csiszar (1967), Kemperman (1969) and Kullback (1967)): 

2{V(J1, v)}2 ~ l(Jl, v) (5.1) 

If Jl~ = Jl~(.;X!, ... ,Xn) is a distribution estimate of Jl, then {Jl~} is said to be consistent in 

information divergence if 

lim l(Jl,Jl~) = 0 a.s. 
n..-+oo 

By Pinsker's inequality (5.1), the information divergence dominates the total variation, so it 

follows from Theorem 5.1 that given any sequence of distribution estimators {Jl~} there always 

exists a probability measure Jl for which the sequence {Jl~} is not consistent in information 

divergence. The situation is even worse, a discrete distribution with known support cannot be 

estimated consistently in information divergence: 

Theorem 5.2. (GYORFI, PALl AND VANDERMEULEN (1994)) Assume that J1 is a probability 

measure on the set of positive integers. Given any sequence of distribution estimators {Jl~} there 

always exists a probability measure Jl with finite Shannon entropy 

for which 

00 

H(Jl) =- LJl({i})logJl({i}) 
j=l 

I{Jl,Jl~) = oo a.s. 

5.2 The density estimation problem 

HOW TO MEASURE CLOSENESS. A random variable X on 1{d has a density f if, for all Borel sets 

A of 1{d, JAf(x) dx = JP>{X E A}. It thus serves as a tool for computing probabilities of sets. As it 
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is a function that reveals the local concentration of probability mass, it may be used to visualize 

distributions of random variables. The statistician's problem, then, is to estimate f from an i.i.d. 

sampleX1, ... ,Xn drawn from f. A density estimate is simply a mapping fn: !ltd x (!R...d)n---* !ltd 
(we write fn(x;XI, ... ,Xn) or fn(x)). It is the global closeness of fn to f that interests us. The 

choice of a density estimate is governed by a number of factors, like consistency, smoothness, 

ease of computation, interpretability, flexibility, robustness, versatility, and optimality for certain 

criteria. The early work in the field approached the problem largely as a functional estimation 

problem: f was treated as any function, and tools from function approximation theory came to 

the rescue in the analysis of the performance of density estimates-Taylor series expansions 

played a key role, for example. The view we take in nonparametric density estimation is that 

f is largely unknown and that no assumptions can be made about its properties. Methods or 

properties that are valid for all densities are said to be universal. It is quite surprising that there 

are density estimates that can approximate any density f asymptotically in an appropriate sense. 

We see in section 5.3 that the histogram has this property. Other examples will follow. 

The quality of a density estimate is measured by how well it performs the task at hand, esti

mating probabilities. In this respect, the total variation criterion is a natural distance: 

sup 1 r fn - r ~1 . 
AE11 }A }A 

where '13 is the class of Borel sets of !It d. If this is smaller than e, then all probabilities will be 

estimated with errors not exceeding e. We measure the closeness of two densities f and g by 

their L1 distance f if- gi. There are many reasons for this, but all more or less follow from 

Scheffe's identity (Theorem 5.4 below): supAE1lifAfn- fAfi = (1/2) f if- fni· We can thus 
compare the performance of density estimates on an absolute scale, and L1 distances indeed 

have a physical interpretation: if we know that I if- gi < 0.04, then we know that differences 

in probabilities are at most 0.02. In contrast, the interpretation of the inequalities involving 

other metrics such as the L2 metric (example: I(!- g)2 :::; 0.04) or the Kullback-Leibler metric 

(example: I flog(ffg):::; 0.04) in terms of probabilities is less obvious. 

THE COUPLING DISTANCE. There is an interpretation of the L1 distance in terms of samples that 

is interesting in its own right. Let X1, ... ,Xn and Y1, ... , Yn be independent samples of identically 

distributed random variables, the former having density f, and the latter having density g. It 

should be clear that with probability one, all 2n are different. However, if we allow the X and Y 
samples to be dependent (while maintaining independence within each sample), it is possible to 

have Xi = Yi for many i's. Let us introduce the Hamming distance 

n 

Hn = ~)(X;#Y;] . 
i=l 



216 L. Devroye and L. Gyorfi 

It is the number of X;' s we need to change to tum the X -sample into the Y -sample. Iff = g, then 

we can obviously take identical samples and achieve Hn = 0. Let :F denote all possible joint 

distributions of X1, ... ,Xn, Y1, ... , Yn such that X1, ... ,Xn is i.i.d. and drawn from f and f1, ... , Yn 
is i.i.d. and drawn from g. :F is called a coupling. Define the coupling distance by 

Cn = inf!E{ Hn} . 
1' 

The coupling distance measures the minimal expected Hamming distance over all possible de

pendencies between samples. It is interesting to note that 

Thus, I If- gl/2, a number between 0 and 1, is the fraction of a sample we need to alter in 

order to tum it in a sample with the other density. To see why this is true, consider the functions 

m =min(!, g),(!- g)+ and (g- f)+, and note thatf = m+ (!-g)+, g = m+ (g- f)+· Also, 

IU- g)+= I(g- f)+= (1/2) I If- gl, and I m = 1- (1/2) I If- gl. We can generate our two 

samples in sta,ges. First we generate a binomial (n, (1/2) I If- gl) random variable N, which 

decides what fraction of each sample is drawn from(!- g)+ or (g- f)+· The remainder, n- N, 

is drawn from m, and as it is common, we may make those values identical in both samples. 

If the samples are generated in this way, we have Hn = N, and IE{Hn} = (n/2) I If- gl. This 

shows that there is a coupling that achieves Cn. To see that we cannot improve over it, observe 

that(!- g)+ and (g- f)+ are functions of disjoint support. 

INVARIANCE TO TRANSFORMATIONS. The total variation is invariant with respect to monotone 

transformations of the axes. In fact, let T : !l{_d -t S ~ !l{_d be a bijection and a Borel-measurable 

mapping. Let X andY be random variables with densities f and g, respectively. Then the total 

variation distance is 

supllP'{X EB}-IP'{Y EB}I. 
B 

If T is a bijection, this is equal to 

sup IIP'{T (X) E T(B)} -IP'{T(Y) E T(B)}I, 
B 

which is nothing but the total variation distance between T(X) and T(Y), provided that {T(B) : 
BE 'B} coincides with the Borel sets of S = T(!l{.d). We leave this easy verification as an exer

cise. 

The implications of this fact are tremendous. For example, if we know that a certain density 

estimate performs very well when the data belong to a compact set such as [ -1, 1], then we might 

apply the monotone mapping T: x -t x/(1 + lxl), estimate the density of T(X), and obtain an 

estimate of the density of X by well-known back-transformation methods. Such estimates are 
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called transformed density estimates. Here is another variation on the same theme: assume that 

we wish to visualize the densities f and g to get an idea of the size and the location of the 

error. Computer screens cannot show infinite tails, but by showing the graphs of the transformed 

densities (for a transformation to a compact set), we can make do, as the total variation distance 

remains unchanged. 

THE LEBESGUE DENSITY THEOREM. Note that two densities f and g are identical if f8 f = f8 g 

for all Borel sets B, that is, if and only if J If-gl = 0. Thus, we may alter f on a set of zero 

Lebesgue measure, and still be in the same equivalence class of densities. This immediately 

makes criteria such as lf(x)- g(x)l (pointwise error) or supx lf(x)- g(x)l (the supremum er

ror) suspect, unless we replace these criteria by quantities that are defined in terms of these 

equivalence classes. Some help in this respect comes from the following theorem. 

Theorem 5.3. (THE LEBESGUE DENSITY THEOREM) Let Qbe a subclass of the Borel sets of 
'l(_d with the property that 

I..(Q*) 
sup-- <c<oo 
QEQ A(Q) -

for some constant c, where Q* is the smallest cube centered at the origin that contains Q, and 

A(·) denotes the volume of a set. (Here a/0 is treated as oo for all a~ 0.) Let~ be the subclass 

of Q containing only sets Q with I..(Q) ~ r. Let f be any density on 'I(_ d. Let z + Q denote the 

translation of Q by z. Then for almost all x: 

lim sup 1 ~(~ ) r f(y)dy- f(x) 1 = o. 
r.j.O QEQ. II. Q Jx+Q 

The points x at which this convergence takes place are called Lebesgue points for f. Classes 
that satisfy the condition are the classes of all cubes, or all balls of'!(_ d. 

This theorem is typically applied to balls Bx,r of radius r centered at x. Let us define g(x) = 

liminfr.j.O f8x,J ji..(Bx,r ). The Lebesgue density theorem says that g is in the equivalence class 

of f. And in fact, it is easy to see that all members of that equivalence class lead to the same g, 

and thus, g may be considered as the representative of that class. We will call it the Lebesgue 

representative, denoted temporarily by L{f). Now, of course, we may return to the pointwise 

criterion, and use IL{f)(x)- L(g)(x)l instead of lf(x)- g(x)l. And we may use supx IL{f)(x)
L(g)(x)l as the new definition of supremum distance. 

The Lebesgue density theorem states that for every density, without exception, for almost all 

x, f(x) is close to an integral over a small ball centered at x. But integrals can be approximated 

by empirical measures based on data, and thus, the Lebesgue density theorem permits us to 

construct estimates that converge for all densities in the L1 sense. Differentiation of measures, 

and approximation of functions by convolutions, is dealt with at length by Stein (1970), de 

Guzman (1975, 1981), and Wheeden and Zygmund (1977). 
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Because of the following theorem, a distribution J1 can be consistently estimated in total vari

ation if it has a density. 

Theorem 5.4. (SCHEFFE (1947)) JfJl andv are absolutely continuous with respect to a a-finite 

measure f... with densities f and g respectively, then 

PROOF. Note that 

II!- gil:= { lf(x)- g(x)lf...(dx) = 2V(J1, v). 
}'1\.d 

V(Jl,V) supiJl(A) -v(A)I 
A 

supl { Jdf...- { gdf...l 
A }A }A 

sup I { (!- g)df...l 
A }A 

{ (f-g)df... 
lt>g 

{ (g- f)df... 
}g>f 

~j11 -gldt... 

The Scheffe Theorem results in a way of distribution estimation consistent in total variation 

via L1-consistent density estimation: assume that fn is L1-consistent, i.e. 

lim II/- !nil= 0 a.s. 
n-+~ 

Introduce the distribution estimate induced by the density estimate fn: 

Jl~(A) = 1 fn(x)f...(dx), 

then 

lim V(Jl,Jl~) = 0 a.s. 
n-+~ 

5.3 The histogram density estimate 

The standard examples for L1-consistent density estimates are the histogram and the kernel 

estimates. 
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Let Pn be a partition of 'l(d with cells {An,J} of positive and finite Lebesgue measure. Then 

the histogram is as follows: 

where An(x) =An,} if x E An,}· 

.Un(An(x)) 
fn(x) = A.(An(x)) ' 

Theorem5.5. (ABOU-JAOUDE (1976)) Assume that .u has a density f. /ffor each sphereS 

centered at the origin 

(5.2) 

and 
lim l{j: An,J ns =f: 0}1 = O 
n--too n 

(5.3) 

then 

lim IEIIJ- !nil= 0 
n--too 

and 

lim II!- !nil= 0 a.s. 
n--too 

The beauty of Theorem 5.5 is that L1-consistency is possible without any condition on the 

density f, thus we can have distribution estimate consistent in total variation if .u is absolutely 

continuous with respect to the Lebesgue measure. The histogram can be extended to distribution 

estimates consistent in total variation if the nonatomic part of .u is absolutely continuous with 

respect to a known a-finite measure A. (Barron, Gyorfi and van der Meulen (1992)). 

The proof of Theorem 5.5 uses a denseness lemma: 

Lemma 5.1. The set of continuous functions of bounded support is dense in L1 {A.). 

PROOF. We prove that for any f E L1 (A.) and E > 0 there is a continuous function g with compact 

support such that 

J if(x)- g(x) IA.(dx) ::; E. 

Without loss of generality assume that f 2:':: 0. The case for arbitrary f can be handled similarily 

as the case f 2:':: 0 by using the decomposition f = j+- f- where j+ = max{f,O} and f- = 

-min{f,O}. f E L1 (A.) implies that there is a closed sphereS= So,R centered at the origin with 

radius R and K > 0 such that 

jlf(x) -min{f(x),K}IxEsiA.(dx)::; E/2, 

therefore it suffices to show that there is a continuous function g with support in S such that 

fsimin{f(x),K}- g(x)IA.(dx)::; E/2. 
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Put 

f*(x) = min{f(x),K}lxES 

then using the technique of Lusin 's Theorem we show that there is a continuous function g with 

support in S such that 0 :S g :S K and 

/..{x E S;f*(x) =J g(x)} :S E/(2K). 

Obviously this will imply the lemma since 

Is if*(x)- g(x)i/..(dx) :S K/..{x E S;f*(x) =J g(x)} :S KEj(2K) = Ej2. 

We have now that 0 :Sf* :S K. Without loss of generality we may assume that K = I. A functions 

is called a simple function if its range consists of finitely many points in [0, oo ). We can construct 

a monotonically increasing sequence of simple functions SJ :S s2 :S · · · :Sf* such that sn(x) ----* 

f* (x) as n ----* oo, for every x E S. Indeed, for n = 1, 2, ... , and for I :S i :S 2n, define sets 

{ i-l i} 
En,i = XES: ln :S f*(x) < 2n 

and the simple function 
2" i- I 

Sn ="'-I£·· £... 2n n,1 
i=l 

Sets En,i are inverses images of half open intervals through a measurable function and thus are 

measurable. Clearly sequence Sn is monotonically increasing and Sn :S f*. 
Now define t1 = SJ and tn = Sn :._ Sn-1, n = 2, 3, .... Then 2ntn is the indicator function of a set 

Tn C Sand 

f*(x) = L tn(x). 
n=l 

Then there exist compact sets Un and open sets Vn such that Un C Tn C Vn C Sand /..(Vn- Un) < 
2-nE/4. Next we need a special version of Urysohn's Lemma which states that for any compact 

set U and open set V such that U c V there exists a continuous function h : S ----* [0, I] such that 

h(x) =I for x E U and h(x) = 0 for x E vc, where vc denotes the complement of V. In order to 

show this special case of Uryshon's Lemma for any set A introduce the function 

d(x,A) = infllx-zll· 
zEA 

Then d(x,A) is continuous, and d(x,A) = 0 iff x lies in the closure of A. Such function h can be 

defined as 
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Thus by Uryshon's Lemma there are continuous functions hn that assume value 1 on Un and are 

zero outside Vn. Let 
co 

g(x) = L. rnhn(x). 
n=I 

Since hn are bounded by 1 this series converges uniformly on S and thus g is continuous. Also 

its support lies inS. Since 2-nhn(x) = tn(x) except in Vn- Un, we obtain g(x) = f*(x) except in 

U(Vn- Un), but 
co co 

J.(u(Vn- Un)) ::; L J.(Vn- Un) ::; E/2 L rn = E/2. 
n=I n=I 

D 

PROOF OF THEOREM 5.5. By triangle inequality 

IIJ- fnll :S IIJ -lEfnll + lllEfn- fnll· 

The first term of the right hand side is called bias, and the second one is the variation term. 

JEF ( )=lEJln(An(x)) =Jl(An(x)) = fAn(x)f(z)J.(dz) =·T.f() 
:Jn X J.(An(x)) J.(An(x)) J.(An(x)) · n X • 

Iff is uniformly continuous with bounded support then because of (5.2) 

IITnf- Jll ---+ 0. 

For arbitrary f, according to Lemma 5.1 choose continuous 1 with bounded support such that 

Then by the choice of 1 

Moreover 

IIJ-111 <E. 

11Tn1-111---+ 0. 

I fAn(x) 1(z)J.(dz) fAn(x) f(z)J.(dz) 
J.(An(x)) - J.(An(x)) J.(dx) 

= L { fAn(x)J(z)J.(dz) _ fAn(x)f(z)J.(dz) J.(dx) 
j JAn,j J.(An(x)) J.(An(x)) 

= ~I f _1(z)J.(dz)- f . f(z)J.(dz) I 
j }An,J }An,J 

< t 1n,i ll{z)- f(z)IJ.(dz) 

111-!11· 
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Thus 

IIJ -!Efnll = llf-Tnfll 
< II/- 111 + 11Tn1- 111 + 11Tn1- Tnfli 
< 211/-111 + 11Tn1- 111 
---+ 211!-111 
< 2E, 

therefore the bias term tends to zero. Observe that 

II1Efn - fn II = I I p(An(x)) _ Jln(An(x)) I A.(dx) 
A.(An(x)) A.(An(x)) 

= L lp(An,j) - Jln (An,j) I· 
j 

Fix a sphereS centered at the origin such that p(Sc) < E, and without loss of generality assume 

that { An,j} are indexed such that An,j n S =f. 0 for j = 1, 2, ... , mn and An,j n S = 0 otherwise. Put 

By (5.3) 

mn 

mn O ----+ 
n 

II!Efn- fnll < L lp(An,j)- Jln(An,j)l + p(An) + Jln(An) 
j=l 

mn 

< L IJJ(An,j) -pn(An,j)l + lp(An) -JJn(An)l +2p(An) 
j=l 

mn 

< L IJJ(An,j)- Jln(An,j)l + lp(An)- Jln(An)l + 2E. 
j=l 
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By the Cauchy-Schwarz and Jensen inequalities 

mn 
lEjjlEJn- fnll < L lEj,u(An,j)- ,Un(An,j)l + lEj,u(An)- .Un(An)l + 2£ 

j=l 

< I. VlEI,u(An,j)- .Un(An,j)il + VlEI,u(An)- .Un(An)il + 2£ 
j=l 

< l V ,u(An,j) jn + J ,u(An) jn + 2£ 
j=l 

< J(mn + l)/n+2£ 

---+ 2£. 
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Concerning the a.s. convergence, let ~ be the family of sets whose elements are the unions of 

An,!, ... ,An,mn and An then by the Scheffe Theorem and Hoeffding's inequality 

IP'{iilEfn- !nil> 3e} :::; IP'{% l,u(An,J -,un(An,JI + l,u(An) -,un(An)i > e} 

1P' { 2 sup l,u(A)- .Un(A) I > e} 
AE~ 

< 2m"+1 sup!P'{j,u(A)- .Un(A)i > e/2} 
AE~ 

< 2mn+12e-2n(E/2}2 

-n(E2 /2-ln2 mn+Z} 
e n ' 

which is summable, therefore applying the Borel-Cantelli Lemma the variation term tends to 
zero a.s. D 

In the proof of Theorem 5.5, in fact, we have shown that 

Using McDiarmid's inequality (Theorem 1.8) Devroye(1991) proved that for the histogram and 

the kernel density estimates (see Section 5.6) 

(5.4) 

Using large deviation techniques the L1 error of the histogram can be characterized as follows: 

Theorem 5.6. (BEIRLANT, DEVROYE, GYORFI, VAJDA (2001)) Assume (5.2). If there is a 
sequence of spheres Sn centered at the origin such that Sn t 'l(_d and 

lim i{An,j nSn-# 0}1 = O 
n-t-oo n 

(5.5) 
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then for all 0 < E < 2 

lim ~logJP>{IIJ- !nil> E} = -g(E), 
n-too n (5.6) 

where 

g(E)= min (plog p 12 +(1-p)log 1 
1-p 12 ). 

O<p< 1-E/2 p + E - p - E 

Note that in Theorem 5.6 there is no condition on f, and so (5.6) holds for all f, and the rate 

function g(E) does not depend on f. 
(5.4) implies that for consistent fn 

lim sup ~log JP>{ II! - fn II > E} ::; -E2 /2, 
n-too n 

thus 

g(E) ~ E2 /2. 
We can get upper bound g( E) on g( E) if in the definition of g( E) we substitute p by 1-;/2 . Then 

A E 2+E 
g(E) = 21og 2 _E ~ g(E). 

(Vajda (1970)). Further bounds can be found on p. 294-295 in Vajda (1989). For small E the 

upper and the lower bounds on g(E) are close to each other, and are approximately equal to 

E2j2. 
In the proof of Theorem 5.6 we apply some lemmas, where we shall use the function 

a 1-a 
D(ali~) = alogj3 +(1-a)log 1 _ ~. (5.7) 

Lemma 5.2. (SANOY (1957), SEEP. 16 IN DEMBO, ZEITOUNI (1992), OR PROBLEM 1.2.11 

IN CSISZAR AND KORNER (1981)). Let I.= {1,2, ... ,m} be a .finite set (alphabet), Ln be a 

set of types (possible empirical distributions) on I., and let r be a subset of Ln. If Z1, ... Zn are 

I.-valued i.i.d. random variables with empirical distribution f.ln then 

l ~logJP>{f.ln E r}+min/(-c,p)l::; logiLnl 
n ~r n 

(5.8) 

where ILnl denotes the cardinality of Ln. 

PROOF. We shall prove that 

and 
JP>{p E r} > _1_e-nmincerl('t.JI). 

n -ILnl 
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Because of our assumptions 

i=l 

i=l 

eLl=llogJI(Z;) 

= eLl=tL}::1lz;=jlogJI(z;) 

eLl= I rj=, Iz;=j IogJI(j) 

eLj=1 nJinU)IogJI(j) 

e-n(H(Jln)+I(Jln,JI)) 
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For any probability distribution t E £, we can define a probability distribution IP\ (zl) in this 

way: 

Put 

then 

therefore 

which implies the upper bound: 

JP>{Jln E r} 

Tn(t) = {zj: Jln{zi) = t}, 

141 max ITn{t) le-n(H(t)+l(t.Jl)) 
tEr 

< I.Lnlmaxe-n/(t.Jl) 
tEr 

= I.L,Je-nmin,Er/(t,JI). 
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Concerning the lower bound notice that for any probability distribution v E Ln 

IP>,; {.Un = 1:} 
JP>, {.Un = V} 

ITn( 't) I fLEl: 't( a )m(a) 

ITn(v) I fLEl: 't(a)nv(a) 

n (nv(a))! 't(at('t(a)-v(a)) 

aEl: (m(a))! 

> 1. 

This last inequality can be seen as follows: the terms of the last product are of the forms 
1 ( 1 )1-m . I 1 7,· n . It IS easy tO check that 7,· ~ zm- , therefore 

n (nv(a))! 't(at('t(a)-v(a)) > n nn('t(a)-v(a)) = nn(LaEL't(a)-LaELV(a)) = 1. 
aEl: (n't(a))! - aEl: 

It implies that 

and thus 

1 = L,JP>,{.Un = V} :S: ILrz IJP>,{.Un = 't} = ILrziiTn( 1:) le-nH('t), 
v 

consequently 

IT. (1:)1 > _I_enH('t). 
n - ILrzl 

This implies the lower bound: 

IP'{.Un E r} 

> maxJP>p{.Un = 1:} 
'tEr 

max ITn( 1:) le-n(H('t)+I('t,p)) 
'tEr 

> - 1- maxe-nl('t,p) 
ILnl 'tEr 

I~ I e-nmintEr/('t,p). 

Lemma 5.3. (BEIRLANT, DEVROYE, GYORFI, VAJDA (2001)) Consider 

mn 
ln = L l,u(An,j) -.un(An,J)I, 

j=i 

based on a finite partition Pn ={An, I, ... ,An,mn}, (n ~ 2), of !/(d. Assume 

lim mn = oo 
n--+oo 

(5.9) 
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and 

then for all 0 < E < 2 

1. mn 0 tm-= 
n-too n 

lim ~log!P{ln > e} = -g(e). 
n-too n 

PROOF. We apply (5.8) for 

I:= {An, I, • · · ,An,mn} 

such that 

Then, according to (5.8), 

l ~log!P{ln ~e}+ inf /('t,-M)I::; logiLnl. 
n tErn.c., n 

Barron (1989) observed that 

where On--+ 0, provided (5.10). Thus, under (5.10), 

lim ~log!P{ln > e} =-lim inf /('t, -M)· 
n-too n n-too tErn.c., 

It now remains to show that 

lim inf /('t, -M) = g(e). 
n-too tErn.c., 
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(5.10) 

The distributions in Ln are possible empirical distributions, having components of the form ~, 

where r is integer. Because of (5.9) and because of the continuity of V('t, -M) and /('t, -M) 

Here 

Put 

L = {j : Jl(An,j) > 't(An,i)} 

and 

An = U iEIAn,j · 

Then 
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and, by the definition ofl-divergence, 

where the equality holds iff t((~n,j)) is constant both on L and F. Thus 
J1 n,J 

lim inf /('t, -M) = inf D('t(An)IIJ.l(An)), 
n---+oo 2V( t,[ln)"2E O<p< l-Ej2:t(An )=p,Jl(An)=p+E/2 

inf (plog p + (1-p)log 1 - p ) 
O<p<l-E/2 p+E/2 1-p-E/2 

= g(E), 

and Lemma 5.3 is proved. 

PROOF OF THEOREM 5 .6. Let mn and An be as in the proof of Theorem 5.5. Put 

mn 

An= L IJ.l(An,j)- J.ln(An,j)l + IJ.l(An)- J.ln(An)l. 
j=l 

Then by Jensen's inequality 

11/n- /II = j~ Ln,j lfn(x)- f(x)lf..(dx) 

> ~ Ln,j lfn(x)- f(x)lf..(dx) 

+ 1. f L . fn(x)f..(dx)-. f L . f(x)f..(dx)l 
J=mn+l n,J J=mn+l n,J 

> ~ ILn,i fn(x)f..(dx)- Ln,i f(x)f..(dx)l 

+ ILn fn(x)f..(dx)- Ln f(x)f..(dx)l 

mn 

L IJ.l(An,j)- J.ln(An,j) I+ IJ.l(An} -pn(An) I 
j=l 

An. 
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On the other hand 

I lin- !II < I lin -lEfn II+ II1Efn -!II 
00 

= L lp(An,j)- Jln(An,j)l + lllEfn- Jll 
j=l 

mn 
< L lp(An,j) - Jln (An,j) I+ lp(An) - Jln (An) I 

j=l 

+2p(An) + lllEfn- !II 

Lin+ 2p(An) + II1Efn- !II· 
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By definition An C S~. and by assumption Sn t !l{_d, therefore p(An) ---t 0, so because of IIIEfn

Jil-t 0 

2p(An) + lllEfn -!II ---to, 

and consequently Theorem 5.6 is proved if 

lim ~logJP>{Lln > £} = -g(e), 
n-+oo n 

(5.11) 

which follows from Lemma 5.3 for In = Lln. 

For cubic partition assume that the density f has a compact support and is continuously dif

ferentiable, then for consistent histogram fn 

If hn = cn-l/(d+2) then 

IE(IIfn- !II) ::; cn-l/(d+2). 

(Devroye, Gyorfi (1985) and Beirlant, Gyorfi (1998)). For consistent histogram fn 

ll!n- !11-IEIIfn- !II ~ ~(o 1) 
Jvar(llfn- !II) ' ' 

and 

lim sup nVar(llfn- !II) ::; 1- ~ 
n-+oo X 

(Beirlant, Gyorfi and Lugosi (1994), Berlinet, Devroye and Gyorfi (1995) and Beirlant and 

Gyorfi (1998)). 

If Jl and v are absolutely continuous with respect to a a-finite measure A. with densities f and 

g respectively, then the !-divergence of p and v becomes the so-called divergence between f and 

g, i.e. 

J(p,v) = f f(x)logf((x))A.(dx) =D(f,g). 
}~d g X 

Theorem 5.2 implies a negative result on density estimation for a dominated class: 
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Theorem 5.7. (GYORFI AND VANDERMEULEN (1994 )) Given any sequence of density esti

mators Un} there always exists a density f with finite differential entropy 

H(f) =-J f(x) logf(x)dx 

and with arbitrary many derivatives such that 

D(f,Jn) = oo a.s. 

Barron ( 1988) was one of the first to consider the problem of estimating a probability density 

function such that the density estimate is consistent in 1-divergence. His results were generalized 

in Barron, Gyorfi and van der Meulen (1992) showing that if one imposes a certain condition 

on the class of distributions from which we are estimating the unknown one, namely that there 

exists a known probability measure v such that l(Jl, v) < oo, then one can construct a distribution 

estimator which is a.s. consistent in information divergence for all distributions in the class. As 

it is well-known, the condition l(Jl, v) < oo implies that J1 is absolutely continuous with respect 

to v, so it is reasonable to create a distribution estimate, which has a density with respect to v. 

Introduce the notation 
d)l 

f(x) = d)x) 

and for a partition Pn = {An, I ,An,2, ... ,An,mJ, 0 < mn < n, n 2: 2, assume that v(An,i) 2: hn = 
I/ mn. For a given sequence {an}, 0 < an < I with 

consider the following density estimate: 

For the choice 
1 

an=--
nhn + 1 

fn becomes a density estimator introduced by Barron ( 1988). 

Theorem 5.8. (BARRON, GYORFI AND VANDERMEULEN (1992)) If l(Jl, v) < oo and 

and 

then 

lim hn = 0, lim nhn = oo, 
n-too n---too 

lim sup - 1- < 1 
nhnan -

lim D(f,Jn) = 0 a.s. 
n->~ 

(5.12) 

(5.13) 
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The asymptotic normality of !-divergence of Barron's estimate has been proved by Berlinet, 

Gyorfi and van der Meulen (1997). 

Berlinet (1995) made a comprehensive review on the asymptotic normality of the various 

global errors for nonparametric estimates. 

5.4 Choosing Between Two Densities 

Consider the following simple situation: gn and fn are two density estimates, and we must select 

the best one, that is, argmin(J lin- JI,J lgn- fl). More precisely, given the sample Xt, ... ,Xn 
distributed according to density f, we are asked to construct a density estimate l!>n such that 

jll!>n- /I ~min (jlfn- /I, /lgn- 11) · 

This simple problem turns out to be surprisingly difficult, even if the estimates fn and gn are 

fixed densities, not depending on the data. 

The solution we propose here is fundamental, and is at the heart of the matter. First we intro

duce some notation. The empirical measure J.ln (A) of p(A) ~fA f is the measure that gives mass 

J.ln(A) = {1/n) Lt=l ][[X;EA] to set A. The set A= A{!n,gn) = {x: fn(x) > gn(x)} will be called 

the Scheffe set for the ordered pair (fn,gn). as we recall Scheff6's identity, 

valid whenever f fn = f gn = 1. 
We define the Scheffe estimate J; as follows: 

J; = { fn ifiJAJ~-J.ln(A)I < IJAgn-J.ln(A)I, 
gn otherwise. 

Note that this is not a symmetric definition in fn and gn! The situations in which we wish to 

carry out a selection are innumerable: we may want to pick the best of two bandwidths in kernel 

estimates, or the best of two summation sizes in series or wavelet estimates, or the best of a 

histogram and a kernel estimate, or the best of a parametric gamma density estimate and a non

parametric unimodal Grenander estimate. Scheff6's theorem was at the basis of our approach. 

The idea for selecting sets of the form f > g when dealing with Lt norms in density estimation 

was grabbed from Yatracos (1985) and developed by Devroye and Lugosi (1996, 1997) in the 

context of kernel density estimation. 

Theorem 5.9. Let fn and gn be two density estimates with f fn = f gn = 1. For the Scheffe 
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estimate J;, we have 

fit:- tl ~ 3min (fitn- tl, fign- tl) +4TEallh t -.un(A)I, 

where 5l = {{in > gn}, {gn > fn} }. 

PROOF. Denote by ~n the best density estimate: 

Clearly, 

~n = { fn if flfn_- Jl < flgn- Jl, 
gn otherwise. 

fit: -!I < fi~n -!I + fi~n- t: I 

fi~n -/I+ fiJn - gn IJI~n=fn.J,i=gn] 

+ fifn - gn IJI~n=gn.J.i=fn] 
ctef I+II+III. 

We consider II. Let E = [~n = fn,J; = gn] and A =A(fn,gn): 

II = / lfn - gn I lie 

= 21Lfn- Lgnlj[E 

21L fn- .Un(A)I 1Ie+21L gn- .Un(A)I lie 

< 41L fn- .Un(A) IJie 

< 4 L l~n- JIII[E] +41L f -.un(A)I ][[EJ 

< 2fi~n-ti+41Lt-.un(A)I· 
For the middle step above, consider the cases fAin> .Un(A) > fAgn and fAin> fAgn > .Un(A) 
separately. Similarly, by switching fn and gn, we see that 
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Thus, 

j11:- fl ~ 3min (jlfn- Jl, /lgn- 11) +41~~ IL f- Jln(A)I· 

The Scheffe estimate thus has an error that is within 

En ~ 4 sup I { f- Jln (A) I 
AE~ }A 
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D 

of three times the best possible error. Note that this exceedance En only depends upon fn and gn 
through the shape of the set A. 

EXAMPLE: CHOOSING BETWEEN TWO NORMAL DENSITIES. Assume that fn and gn are both 

normal densities (perhaps determined by the data), and we must decide between them. Then A 

is either of the form (a, b) or [a,b]c, and thus, .91. is contained in the collection fJh of unions of 

two intervals. But then, 

sup I { f-Jin(A)I ~2supiFn(x)-F(x)l, 
AE~ }A x 

where F is the distribution function for F, and Fn is the empirical distribution function. But we 

know from Massart's tightening (1990) of the Dvoretzky-Kiefer-Wolfowitz inequality (1956) 

that 

lE{ s~piFn(x) -F(x)l} ~ Jn· 
Therefore, if we use the empirical measure Jln, using the same data that were used in obtaining 

fn and gn, regardless of the dependence of fn and gn upon these data, we have 

for all n. While the coefficient "3" may not be acceptable to some, we should stress nevertheless 

the simplicity of the procedure. Indeed, the set A= {fn > gn} is very easily determined by 

the solution of a quadratic equation, and Jln(A) is indeed easy to compute. Furthermore, the 

inequality above applies to any normal density estimate, with arbitrary dependence on the data, 

and to all densities. 

Consider a more sophisticated situation, in which a normal density estimate fn is challenged 

by a histogram estimate gn having k bins (of data-dependent widths, and data-dependent heights 

in the bins). Then both A= A(fn,gn) and A(gn,Jn) consist of unions of at most k+ 2 disjoint 

intervals (we call the collection of such sets 'Bk+2). Thus, by the argument presented above, 

sup 11 f -Jin(A)I ~ 2(k+2)supiFn(x) -F(x)l. 
AE21k+2 A x 
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Therefore, by Massart's inequality, 

lE {I If: - fl- 3 min (I lfn - fl, I lgn - fl) } 

:S 8(k + 2)lE { s~p IFn (x)- F(x) I} 
8(k+2) 

::; Vn . 

This inequality, while useful, is much too weak in general, when k grows with n. This may be 

explained by noting its generality: it remains valid if a mean-spirited adversary is allowed to 

select the bins and bin heights in the worst possible manner so as to produce the worst possible 

selection J;. If Jln (A) in the definition of J; is based upon an independently drawn sample of size 

m, then in the two examples above, Jl would consist of two sets, and by the Cauchy-Schwarz 

inequality, for any fixed A E Jf.: 

Conditioning and then unconditioning, we have 

We must think of m as a part of the data set aside for testing purposes, and will call these data 

test data. Typically, of course, m is much smaller than n. In the former example (normal versus 

normal), this test data approach does not help. However, in the second example (normal versus 

any-histogram), the obtained bound is better than the previous one as soon as m/n 2: 1/(k+ 2) 2• 

So we distinguish between Jln based on the original data and Jln based on test data. Mostly, for 

simple parametric density estimates, the original data approach is best. 

THE FACTOR THREE. One may wonder whether the factor three is necessary. It turns out that it 

cannot be removed as the following result from Devroye and Lugosi (2001) shows. 

Theorem 5.10. For any t < 1, £ > 0, there exist three densities, g, h,j, such that if fn = h, gn = g, 

then the Schejje estimate J; based upon a sample of size n drawn from f has the following lower 

bound: 
limn-too lE{f IJ; - fl} 2 

min (Jig- JI,Jih- fl) > -£. 

Furthermore, limn-too lEJ IJ; -!I = t. 
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WHY NOT MAXIMUM LIKELIHOOD? In spite of the necessity of a constant factor larger than 

one, the Scheffe estimate is the only one we know for which the estimate is guaranteed to 

be within a constant factor of the smaller error plus a uniformly controllable term. One may 

wonder why we decided not to use another method of selection, such as the maximum likelihood. 

This is simply because the maximum likelihood criterion, even when applied under idealized 

circumstances, does not minimize L1. Consider the real line, with two density estimates: fo = 

1/zll[-1,1] and gil= IT[Il,l+ll]• where o E (0, 1) is to be picked. Assume that the true density f is the 

uniform density on [0, 1]. If the data areX1, ... ,Xn, the maximum likelihood choice <l>n would be 

defined by 

Clearly, everything depends uponN, the number of data points in [O,o), a binomial (n,o) random 

variable. We note that gil is picked if and only if N = 0. Also, f l!o- !I = 1, f lgs-!I = 2o. Let 

o < 1/z so that gs is the better estimate. Clearly, 

(I-2o)Jt»{N > o} 

( 1 - 2o) ( 1 - ( 1 - on 

--+ 1- 2o, 

as n --t oo, Thus, while for small o the expected error for the best density is a respectable 2o, the 

maximum likelihood estimate makes, with probability tending to one, a catastrophic blunder. 

WHY NOT LEAST SQUARES? Others maywanttominimize fUn- !)2, theL2 distance. But even 

if we were given f, and even if that f were square integrable, we might still make catastrophic 

choices. Consider this situation: f is once again the uniform density on [0, I], and we are indeed 

given this information. Let £ be a small positive number, and assume that both density estimates 

ignore the data: fe is our catastrophic candidate-it is 1-£ on [0, 1], and £3 on [1, 1 + 1/£2] 

(a long skinny tail, if you wish). Now, g£ = 1 on [-£2, 1- £2]. Verify that f lge- fl = 2£2 < 
2£ = f lie- fl, so that the choices are not even close! However, f(fe- j)2 = £2 + £4 < 2£2 = 
f (ge - !)2, so that minimizing the L2 error, even with f given, picks the wrong density from the 

set {fe,ge}! Therefore, for universal properties in density estimation, criteria that are based on 

the square integrated distance are doomed. In contrast, the Scheffe estimate does not make such 

bad mistakes. 

SELECTION FROM A FINITE SET. Consider now the selection problem with k candidates fni, 1 ~ 

i ~ k, such that f fni = 1 for all i. Let Aij, i < j, denote the Scheffe set A Uni, fni) = { x : fni > fni}. 
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We say that fni wins against fnj when 

Of course, for each pair i < j, if J; denotes the winner, we have by Theorem 5.9: 

jiJ:-JI 

:::;3min(fi!ni-!l,jlfnj-/1)+4 sup I r !-Jln(A)I 
AE{A;j,Aj;} jA 

= 3min (/Ifni- /I, jlfnj- 11) +4il, 

where 

Ll= sup 1'!-Jln(A)I· 
AE{Aij,Aji;l::;i<j::;k} }A 

Let us thus run a little competition with k(k-1)/2 matches, one for each ordered pair i < j. 
For each fni• we total the number of wins, and declare the density estimate with the maximum 

number of wins the Scheffe tournament winner. Ties are broken by picking the smallest index. 

Theorem 5.11. For the Scheffe tournament winner J;, we have 

fit:- !I :::; 9rnjn /Ifni- !I+ 1M. 

PROOF. Let m =mini J Ifni- fl. Group the density estimates as follows: in group 0, we place 

all those with f Ifni -!I = m; in group 1, those with f Ifni -!I E ( m, 3m+ 4il); in group 2, those 

with J Ifni- !I E (3m+ 4Ll, 9m +1M); in group 3, those with J Ifni- fl > 9m +1M. Let the 

number of density estimates in each group be denoted by no,nt,n2, and n3, respectively. From 

Theorem 5.9, it is clear that any group 0 estimate must win against any group 2 or 3 estimate, and 

thus, their number of wins is at least n2 + n3. Any group 3 estimate must lose to any group 0 or 1 

estimate, and thus, its number of wins is at most n2 + n3 - 1. Therefore, the Scheffe tournament 

winner cannot be from group 3. D 

We may also declare another winner. We define 

Lli =sup I r fni- Jln(A)I' 
AE.9l jA 

where .91. = {Aij,Aji: 1:::; i < j:::; k}. The minimum distance estimate 'l'n is that fni of smallest 

index that minimizes Lli. It is called a minimum distance estimate because it minimizes the 

distance to the empirical measure in a metric that is reminiscent of the total variation or Lt 
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distance-it would be the total variation distance if .91. were replaced by the class of Borel sets, 

'13. Only, the total variation distance 

sup I r f -JJn(B)I = 1 
BE'll jB 

for any density f and any empirical measure Jln: just let B = {Xt, ... ,Xn}. for example. If each 

computation of fA fni requires one time unit, then the computation of the Scheffe tournament 

winner requires k( k- 1) /2 time units, while that for the minimum distance estimate requires 

k2 ( k- 1) /2 time units-it is about k times computationally more intensive. This extra cost of 

course draws benefits, as is shown in the next theorem. 

Theorem 5.12. For the minimum distance estimate 'fin· we have 

I I 'lin - fl -:; 3 rn{n I Ifni -/I + 4A. 

PROOF. Let 'fin = fni and let fnj be any density estimate minimizing J If nl-!I over all£. Assume 

that j i= i. Then, clearly, 

I l'l'n- Jl-s; I lfnj- fl +I Ifni- fnjl· 

Now, assuming without loss of generality that i < j: 

I Ifni - /nj I = 2 sup I r fni - r fnj I 
AE{Aij,Aji} jA jA 

< 2 sup 1 r fni - r fnj 1 
AE.it }A }A 

< 2supl { fni-Jln(A)I+2supl { fnj-Jln(A)I 
AE.it jA AE.it jA 

< 4 sup I r fnj- Jln(A)I (by definition Of 'fin= fni) 
AE.it jA 

< 4!~~~1/nj- Lti+4!~~~Lf-JJn(A)I 
< 4;~~~k/nj- L/1+4A 

2 lltnj-!I+4A 

which together with the first inequality is all that is needed. D 
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SELECTING A NORMAL ESTIMATE. If we continue our examples, we note that if we are given 

any number k of normal density estimates, then the class .91. ~ ~. the class of intervals or 

complements of intervals. Thus, we have 

sup I r f -.un(A)I ~ 2supiFn(x) -F(x)l, 
AE'Bz lA x 

where F is the distribution function for F, and Fn is the empirical distribution function, we have, 

for t > 0, if .Un is the standard empirical measure, 

lllb~!Lt-,.(A)i} < lll{:~t!Lt-p,(A)I} 
< IE{2s~piFn(x)-F(x)l} 

< 

Thus, for the minimum distance estimate 'Jin: 

Note, in particular, that this bound does not depend upon k. In fact, we may select the best among 

k arbitrary normal density estimates, and regardless of the value of k, we will obtain the same 

performance guarantees. In fact, Theorem 5.12 applies also to the infinite selection problem, 

although computations become a nightmare. With a selection from a possibly uncountably infi

nite class of densities, we can no longer index by integers i, and we can no longer be sure that 

minima are attained. The set-up must therefore be slightly modified. Also, we can no longer run 

Scheffe tournaments. Luckily, the minimum distance method remains valid. 

5.5 The Minimum Distance Estimate 

Let our density estimates be parametrized by e E 0, where e could represent the mean-variance 

pair in a normal density estimate, or the bandwidth in a kernel estimate, or the number of terms 

in a wavelet estimate. Let fn,e denote the density estimate with parameter e. Let 

Define 

.91. = {{fn,e > fn,e'}: e E 0,e' E 0,e -=f. e'}. 

Lle =sup I r fn,e- .Un(A)I· 
AE.i'l }A 
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We define the minimum distance estimate 'Jin as any density estimate selected from among those 

density estimates fn,e with 

Lle < inf Lle• + 1/n. 
8*EEl 

The 1 j n here is added to ensure the existence of such a density estimate. 

Theorem 5.13. Let Un,e : e E e} be an arbitrary class of density estimates satisfying I fn,e = 1. 

For the minimum distance estimate 'Jin as defined above for an infinite selection problem, we 

have 

I I 'lin- fl::; 3 inf jlfn e- fl +4L1+ ~' 
SEE> ' n 

PROOF. Mimic the proof of Theorem 5.12. The details are left to the reader as an easy exercise. 

0 

The theorem above makes a crucial connection between the error of the selected density esti

mate and the supremum error Ll for empirical probability measures over certain classes of sets. 

This permits us thus to use the rich theory of the uniform convergence of empirical measures 

initiated by Vapnik and Chervonenkis to density estimation. 

Define :J = Un = fe : e E 8}. The Yatracos class 5t is the collection of all sets of the form 

{x: fe(x) > fe,(x)}, e # e', and Jln is the standard empirical measure based on the sample 

X1, ... ,Xn. Then Theorem 5.12 asserts that for all f: 

! lin -!I ::; 3 inf /lie -!I + 4 sup I { f- Jln (A) I + ~ · 
8E8 AE..sl: }A n 

In particular, if f E :J, then 

l lfn-fl ::;4supl { f-Jln(A)~+~ 
AE..sl: ~ n 

The right-hand side of the last inequality is of the order ofn- 112 whenever 5t has a finite Vapnik

Chervonenkis dimension. The problem from this point on is purely combinatorial. In the rest of 

this section we work out examples for different classes. 

SERIES ESTIMATES. Let 'JII, ... , 'Jik be fixed basis functions from 'l(d to '1(_ such that J'JI; = r; 

for all 1 ::; i ::; k. We define the class :Fk as the class of all linear combinations of the basis 

functions fe = I.}=1 a;'JI; with coefficient vector 9 = (a1, ... ,ak) satisfying I.}=1 a;r; = 1. The 

latter condition assures that all candidates fe have integral equal to one, a necessary condition 

to apply Theorem 5.12 for the performance of the minimum distance estimate. In this case, all 
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sets Ae,e' = {x: /e(x) >fat (x)} are of the form 

{" tbi'lfi(x) > + 
where e' =(a~' ... ,aD. and bi = ai- a:. Lemma 1.6 shows that the Vapnik-Chervonenkis di

mension of Yl. is at most k, so invoking section 1.4.5, we obtain, for the minimum distance 

estimate fn: 

Ejlfn- /I:::; 3 inf Jig- /I +c 0_ + ~. 
gE!Jk V;; n 

where cis a universal constant. For a survey on orthogonal series estimates and their L1 aspects, 

we refer to Chapter 12 of Devroye and Gyorfi (1985). Surveys of approximation properties of 

orthogonal series may be found in Butzer and Nessel (1971). 

PARAMETRIC ESTIMATES: EXPONENTIAL FAMILIES. Assume that the data are believed to be 

drawn from a normal density on the real line. This leads us to the construction of the class 

:J = {tma(x) = ~e-(x-m)2/2a2: mE 1(.,a > o}. 
' av21t 

To determine the performance of the minimum distance estimate, we must estimate the Vapnik

Chervonenkis dimension of the corresponding Yatracos class Yf.. Note that every set in Yl. may 

be written in the form of {x: ax2 +bx+c ~ 0} for some coefficients a,b,c E 1(., that is, Yl. 

contains either closed intervals, or the union of two closed half-infinite intervals. The Vapnik

Chervonenkis dimension of this class is easily seen to be three. 

The argument above may be significantly generalized as follows. A family :F of densities on 

1<_d is called an exponential family if each density in :F may be written in the form 

fa(x) = ca(e)~(x)eLf=I1t;(e)v;(x), 

where e belongs to some parameter set e, 'Ill' ... ' 'Ilk : 1(.d-+ 1(., ~: 1(.d-+ [0, 00 ), a, 1tj' ... '1tk : 

e -+ 1(. are fixed functions, and c is a normalizing constant. Examples of exponential families 

include classes of Gaussian, gamma, beta, Rayleigh, and Maxwell densities. 

Theorem 5.14. Let :F be an exponential family of densities defined as above, and let fn be the 

minimum distance estimate based on this class. Then for any f E :F: 

I fk+T 3 
lE lfn- /I :::; cy ~-n- + ;;• 

where c is a universal constant. Moreover, for any density f: 

I I f¥+1 3 
lE lin -/I :::; 3 inf lie- /I + c - + - · 

6E6 n n 
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PROOF. Note that fa(x) > fe,(x) if and only if 

k , a.(e) 
~(1t;(O) -1t;(O ))'l';(x) +log a.(O') > 0. 

The class of functions appearing on the left-hand side spans a (k+ I)-dimensional vector space, 

and so Lemma 1.6 implies that the Vapnik-Chervonenkis dimension of .91. is at most k + 1. D 

NEURAL NETWORK ESTIMATES. A feed-forward one-hidden-layer neural network (or simply 

neural network) with k hidden nodes is a function <1> : '}( d --+ '}( of the form 

k 

<l>(x) = 'La;cr(bf x+c;), 
i=l 

where cr: '}(--+'}(is a fixed activation function, a;,c; E '}(, and b; E 'l(d, i = 1, ... ,k, are the 

parameters of the network, and bf x denotes the usual inner product of the vectors b; andx E '}(d. 

In order to generate a class eligible for the minimum distance method, we must require that 

J cr < oo. Define 1' as the set of neural networks <j>. Once again, to obtain a performance bound 

for the minimum distance density estimate, we need upper bounds for the Vapnik-Chervonenkis 

dimension of the associated Yatracos class. Each set in the class is of the form 

{" ~ ( a,<J(bT x+c;)- d,<J(ii,T x+d,)) > 0}. 
Observe that .91. is a subclass of the class of all sets of the form {x: 'lf(x) > 0}, where 'I' is 

a neural network of 2k hidden nodes. Computation of the Vapnik-Chervonenkis dimension of 

such classes of sets has been the subject of intensive research in pattern recognition and learning 

theory. It is known that the Vapnik-Chervonenkis dimension may be finite or infinite, depending 

on the activation function cr. The monograph of Anthony and Bartlett (1999) contains, among 

other things, the following useful result. 

Theorem 5.15. (ANTHONY AND BARTLETT, 1999) Let 8 C '}( m be a parameter set, and con

sider a class of functions ge : 'l(d --+ '}(parametrized by e. Assume that for each 0 E 8 and 

x E 'l(d, ge(x) may be computed by at most t steps of an algorithm which in each step executes 

one of the following operations: the arithmetic operations+,-,·, and f on real numbers; the 

exponential function tr on real numbers; an indicator function of the form ][~>a]• ][~:?:a]• ][~<a]• 

][~::;a]• ][~=a]• ][~fa]• for a E '}(. Then the Vapnik-Chervonenkis dimension V of the class of sets 
{ {x: ge > 0} : 0 E 8} is at most 

If the exponential function is evaluated at most q times for each pair (x, 0 ), then 

V ~ m2(q+ 1)2 + llm(q+ 1)(t+log2(9m(q+ 1))). 
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The above theorem guarantees the finiteness of the Vapnik-Chervonenkis dimension of the 

neural network class for a whole host of all activation functions, though in many cases it does 

not provide the best possible bound. Theorem 5.15 may be used in many other situations, not 

just for neural network classes. Related results appear in Anthony and Bartlett ( 1999), who build 

on work of Goldberg and Jerrum (1995), Khovanskii (1991), Karpinsky and Macintyre (1997), 

Macintyre and Sontag (1993), and Koiran and Sontag (1997). Several related results are also 

surveyed in Devroye, Gyorfi, and Lugosi ( 1996). 

MIXTURE CLASSES, RADIAL BASIS FUNCTION NETWORKS. Consider first the class of all 

mixtures of k normal densities in '!(, that is, the class of all densities of form 

where (PJ, ... ,pk) is a probability vector, crJ, ... ,crk are positive numbers, and mJ, ... ,mk are 

arbitrary real numbers. The corresponding Yatracos class contains all sets of the form 

This class of sets may be written in the form given in Theorem 5.15 with m = 6k, where the pa

rameter set 8 is a subset of the 6k-dimensional vector space of the parameters p;,p:,m;,m:,a;,a:, 

i = 1, ... , k. Simple counting reveals that given x and the vector of parameters, each function may 

be computed with no more than t = 17k operations admitted by Theorem 5.15. Hence, we ob

tain that the Vapnik-Chervonenkis dimension of the Yatracos class based on all mixtures of k 

univariate normal densities is bounded by a constant times k4 • We suspect that this estimate is 

loose. Nevertheless, the finiteness of the Vapnik-Chervonenkis dimension implies that the error 

of the minimum distance estimate is not more than a constant times k2 / yn, whenever the true 

density f is, in fact, a mixture of k normals. 

The same argument may be generalized to the multivariate setting. Consider now the class :F 
of all mixtures of k normal densities over 'R._ d: 

k p I T I <!>(x) = L. i e-2(x-m;) :Ej (x-m)' 
i=l J (21t)d det(Li) 

where (Ph ... , pk) is a probability vector, LJ, ... , Lk are positive definite d x d matrices, and 

m1, ... ,mk are arbitrary elements of 'R._d. Then it is clear from Theorem 5.15 that the Vapnik

Chervonenkis dimension of the corresponding Yatracos class is finite, and it is a matter of 

straightforward counting to obtain an explicit upper bound. In any case, if f is a mixture of 
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k normal densities, and is estimated by the minimum distance estimate based on the class de

fined here, then 

where Ck,d is a constant depending on k and d. Radial basis function networks originated in the 

work of Poggio and Girosi (1990) and were analyzed in a series of subsequent papers, such as 

in Krzyzak and Linder (1998). 

MIXTURES OF EXPONENTIALS. Often one may obtain much sharper estimates by direct meth

ods. As an illustration, consider the class :F of all mixtures of k exponential densities (i.e., trans

lations and scales of e-x,x ~ 0). Again, it suffices to bound the Vapnik-Chervonenkis dimension 

of 

.9l = {x: f(x) > g(x);f,g E :f}. 

A member set in this class is thus of the form 

{ X: fa;e-b;xf[x>q] > 0}, 
1=1 

where a;,c; E !!{and b; > 0 are free parameters. Now clearly, we have at most k+ 1 intervals 

defined by the thresholds c;. On the other hand, on each of these intervals, a set of the form 

{x: ::£;!1 a;e-b;x > 0} defines at most 2k+ 1 intervals (try showing this!). Therefore, each set 

in the class .9l is the union of at most (2k+ 1)(k+ 1) intervals, and the Vapnik-Chervonenkis 

dimension of .9l is not more than 2(2k+ 1)(k+ 1) = O(k2). Contrast this with the O(k4 ) bound 

obtainable by Theorem 5.15. 

5.6 The Kernel Density Estimate 

In this section, we get our first taste of real analysis, starting with some results on the approxima

tions of functions in L1. The problem is that f cannot be approximated in L1 by f.ln, the empirical 

measure, as the total variation distance between any density f and any atomic measure (like f.ln) 

is 1. Thus, the approximation itself must have a density. The kernel estimate provides this: it 

smooths the empirical measure fln· 

We define the convolution density f * K as the density of X+ Y, where X has density f and Y 
has density K on !l{d. Think of this as a perturbation Y applied to X. We note that 

f*K(x) = J f(z)K(x-z)dz. 

The definition above also holds when f and/or K are absolutely integrable functions, and in that 

case we have 

jlf*KI ~ /ltl X /IKI, 
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a fact that is easy to check by change of integration, and will be referred to as Young's inequality. 

The convolution operation too lowers the total variation distance: for any densities J,g and for 

any integrable function K: 

/If* K-g* Kl ::; /IKI /If-gl. 

To see this, we merely apply Young's inequality: 

It is clear that if Y (with density K) is concentrated near 0, then f * K should be close to f. 
Indeed, we have the following fundamental approximation theorem from real analysis. 

Theorem 5.16. Let K be an arbitrary integrable function on 9(d (i.e., I IKI < oo), and let f be 
a density on 9(d. Denoting Kh(x) = (1/hd)K(x/h), x E 9(d ,h > 0, we have 

PROOF. We may assume without loss of generality that IKE { 0, 1}. We will prove the statement 
when I K = 1, leaving the I K = 0 case as an easy exercise. Assume first that the statement is 

true for a dense subspace of functions g. Then 

jlf*Kh-!1 < jiJ-gl*IKhl+ jlf-gl+ fig*Kh-gl 

< (j1KI+1)/1J-gl+o(l) 

ash--+ 0. Here we made use of Young's inequality: 

/If* gl ::; /1!1·/lgl 

valid for any integrable functions f,g. The first term on the right-hand side can be made as small 

as desired by the choice of g and the finiteness of I IKI. So, we only need to prove the theorem 
for a dense subclass, such as the class of Lipschitz densities of compact support (cf. Lemma 5.1). 

Thus, let fbe Lipschitz with constant C (i.e., lf(x)- f(y) I::; Cilx-yll, x,y E 9(d), and supported 

on [-M,M]d for finite M. Let L =KIA where I is the indicator function, and A= [-r,r]d is a 
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large cube of our choice. Then, by Young's inequality, 

jlf*Kh- fi 

:::; lk*Lh- f I Lhl+ fi!ifiKh-Lhi+ fi!*(Kh-Lh)i 

:::; ffi!(x-y)-f(x)liLh(y)idydx+2/IK-Li 

:::; f (/CIIYIIILh(y)idy) dx+2/IK -Li 
1[-M-r,M+r]d 

:::; (2M +2r)dCrhVd fiLl +2/IK -LI 

:::; (2M+2r)dCrhv'd fiKI+2/IK -Li 

=o(1)+2/IK-LI, 

which is as small as desired by choice of r (and thus L ). 
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D 

If our goal is to find a density estimate for which I ifn - fl is small, we might make use of 

the fact that I if *Kh- fi is small when his small and I K = 1. Functions K with I IKI < oo and 
I K = 1 will be called kernels. Indeed, f *Kh may in tum be approximated by lln *Kh, where lln 
is the empirical measure. More explicitly, lln * Kh is 

1 n 1 n (x-X) .fn(x) =- l,Kh(x-X,·) = -hd l,K -h 1 

ni=l n i=l 

which is nothing but the kernel estimate first proposed and developed by Akaike ( 1954 ), Parzen 
( 1962), and Rosenblatt (1956). We may pick h and K as a function of n and/or the data and write 

h = h(XI. ... ,Xn), for example. 

Theorem 5.17. (CONSISTENCY) Let K be a fixed kernel, and let h depend on n only.lfh--. 0 

and nhd --. oo as n --. oo, then lE{f l.fn - fi} __. 0. 

PROOF. Note that 

fi!n- fi:::; jlf*Kh- fl + filln *Kh- f*Khi· 

The first term on the right-hand side, also called the bias term, tends to 0 by Theorem 5.16. 
There are two tools that we will use repreatedly in the text. First of all, if v is any probability 

measure, and K and L are kernels, then, by Young's inequality, I lv * Kh - v * Lh I :::; I IK- Lj. 
This inequality applies in particular when v is f and when it is lln· Thus, 

filln *Kh- f*Khi:::; jlfln*Lh- f*Lhi +2/IK -Li. 
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The last term can be made as small as desired by choice of L from among bounded kernels 
with support on a compact hypercube. The second trick uses the fact that J v * Kh = 1 for any 
probability measure v and kernel K. Thus, 

and therefore 

lE{fiJln *Lh- f *Lhi} 

= jlE{iJln *Lh- f*Lhi} 

=2/JE{(f*Lh-Jln*Lh)+} 

= 2/ min(f*Lh,JE{(f *Lh -Jln *Lh)+}) 

::; 2/ min (t*Lh, VlE{(f *Lh -Jln *Lh)2}) 

::; 2/ min (t,VlE{(f*Lh -Jln*Lh)2}) +2/if*Lh- !I 
= o{1). 

The last step follows from nhd -too, the dominated convergence theorem, and Theorem 5.16. 
Here we used the fact thatJln *Lh- f*Lh = I.j=1 Zi, where the Zi's are i.i.d. zero mean random 
variables that have variance bounded by (Lh)2 *ffn2• Thus, lE{(Jln *Lh- f*Lh) 2} is bounded 
by (L2 )h * f /(nhd), which is(! J L2 +o(1 ))/(nhd) at all Lebesgue points for x. D 

The remarkable thing about Theorem 5.17 is that it is valid whenever the kernel J K = 1. 
For example, if we take K to be the density that is uniformly distributed on the ball of radius 
1 centered at {1000,0, ... ,0), then the average f*Kh calculates an integral that does not even 
include the origin. Furthermore, it is not even necessary that K be a density. Also, there is no 
possiblity of improving the conditions h -t 0 and nhd -t oo (Devroye, 1983; Devroye and Gyorfi, 
1985). In some cases, we have bandwidths that depend upon the data. The proof of the following 
theorem is left as an exercise. 

Theorem 5.18. Let K be a fixed kernel. Let the bandwidth H be an arbitrary function of the data 
such that H -t 0 and nHd -too in probability as n -too (i.e., for every£> 0, limn--tooJP>{H + 
1/(nHd) > £} = 0). Then JE{J ifn- fl} -t 0. 

Consider the quantity J ifn - gi where g is an arbitrary function of x and may be substituted 
by f or f * Kh. This quantity is very stable in the sense that if one Xi changes value and the other 
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n- 1 data points remain fixed (and denoting the new kernel estimate by J;), then J l!n- J; I :::; 
2 J IKI/n. By the bounded difference inequality (Theorem 1.8), we thus have 

In particular, we have 

Theorem 5.19. (DEVROYE, 1987, 1988A, 1991) If ylnJF..f lfn- fl-+ oo, then 

J lfn - Jl 1 . b b"l" J I I -+ m pro a 1 1ty. 
lE fn- f 

The concentration inequality in Theorem 5.19 shows that J lfn- !1-JF..f lfn- !I is of the 
order of 0(1/ yin). In fact, yln(J l!n- fi-JF..f lfn- fi) tends to a normal limit (Csorgo and 
Horvath, 1988; Beirlant and Mason, 1995). 

Theorem 5.19 thus establishes the relative stability of the L 1 error for kernel estimates. It 
implies that the expected L1 error is a good measuring stick because the actual error never 
deviates substantially from it. We will see further on that for all nonnegative kernels, the yin 
condition is satisfied. 

CHOOSING THE BANDWIDTH. In bandwidth selection, one is interested in functions 

H = H(XJ, ... ,Xn) such that J l!n,H- fl comes close to infh J l!n,h- Jl, where fn,h makes the 
dependence upon h explicit. A bandwidth H with the property that 

. lE{f l!n,H- !I} ( ) 
h~__;;~p infh lE{f lfn,h - fl} :::; C f 

for some finite C(f) is called a universal bandwidth. It is uniformly universal with constant C if 
we may replace C(f) by C for all f. This problem has been attacked by many. However, many 
attempts can be discarded from the outset. Some authors suggested minimizing f(fn,h- !)2 

with respect to h. Even if f were known, and even if f were square integrable, the bandwidth 
thus selected would not be universally useful. For example, let us denote by H a data-dependent 
bandwidth for which f(fn,H- f) 2 "'infhf(fn,h- f) 2 (so that His the L2-optimal choice; for 
bounded densities, Stone (1984) shows how one can do this; Wegkamp (2000) provides a newer 
proof). Assume that K is the uniform density on [-1, 1]. For the Cauchy density 1/(7t(1 +x2 )), 

H"' cjn115 in probability, yet one can check that JE{f l!n,H- !1}/infhlF..{f l!n,h- !I}-+ oo 

as the optimal bandwidth for L1 is larger than n-1/5 . In other words, even within the class of 
ultra-smooth densities (such as the Cauchy density), minimizing L2 is just the wrong thing to 
do-intuitively, squaring tends to squash errors in the tails and make them unimportant. 

Others have attempted to pick h by maximum likelihood, for example by maximization of 
I1~ 1 fn-J,i,h(X;), where fn-J,i,h is the kernel estimate based on then- 1 data points obtained 
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after deleting X;. While for densities with compact support on '1{, the maximizing H is indeed 

consistent, i.e., H + 1/(nHd)-+ 0 in probability (Devroye and Gyorfi, 1985), there is again no 

relationship with the total variation criterion. If the density f has heavier than exponential tails, 

the method is not even consistent. The maximum likelihood cross-validation method was studied 

in detail by Broniatowski, Deheuvels and Devroye (1989). 

Hall and Wand (1988) looked at the asymptotic expansion of lE.{f l!n,h- !I} and minimized 

the main asymptotic terms to obtain a recipe for has a function of n, f and K. They then esti

mate the unknown quantity involving f from the data, and propose this as a plug-in bandwidth 

estimate. For sufficiently smooth and small-tailed densities, and for positive kernels, they were 

able to show that JE.{f l!n,H- !I}"' infhlE.{f l!n,h- !I}. However, their method, and all other 

plug-in methods we are aware of, are not universal bandwidths. 

The double kernel method uses a pair of kernels, K and L, and picks H = argminh I l!n,h
gn,h I, where fn,h and gn,h are the kernel estimates with kernels K and L, respectively. Assume that 

d = 1. If the characteristic functions of K and L do not coincide on an open interval about the 

origin, then the choice H is consistent (Devroye, 1989a). Furthermore, if K and L are symmetric, 

bounded kernels of compact support, K 2: 0, I :x2 L(x) dx = 0, if both K and L are L1-Lipschitz 

(i.e., I IK1 - Khl ::; C{h- 1) for some C < oo and all h > 1, and similarly for L), and iff is 

absolutely continuous, andf' is absolutely continuous, I If" I< oo and I .JsupiYI~If(x+y) dx < 

oo, then 
r JE.{I l!n,H- !I} < 1 + p 
1~_!~P infhlE.{f l!n,h- fl} - 1-P 

where p = 4.J I £2/ I /(2 is a constant that can be made as small as desired by choice of L. 

The behavior outside the smoothness class described above is unknown: for example, we do 

not know whether the double kernel bandwidth is universal, let alone uniformly universal. The 

methodology studied in this lecture series and in Devroye and Lugosi (2001) is meant to fill the 

gap. It allows us to obtain a uniformly universal bandwidth with constant 3, and in fact, to obtain 

even stronger nonasymptotic uniformity: 

Note in particular that this result does not depend on the dimension, and that the bound is uni

form over all f. Bandwidth selection methods are surveyed by Berlinet and Devroye (1994), 

Cao, Cuevas and Gonzalez-Manteiga (1994), and Devroye (1997). A detailed study of the L1 

behavior of the kernel estimate in '1{ d is provided by Holmstrom and KlemeUi ( 1992). 

CHOICE OF THE KERNEL. The selection of the pair ( h, K) may be tackled as one problem, and 

indeed, h may be absorbed into K as a scale factor. Asymptotic evidence for smooth densities 

shows that for large sample sizes, the shape of the optimal kernel is unique. For example, for 



Distribution and density estimation 249 

2(1, classical L2 theory (Watson and Leadbetter, 1963) shows that for L2 errors, among all pos

itive kernels, the Epanechnikov kernel (Epanechnikov, 1969) K(x) = max(%(1-~),0) is best 

possible. For 2(d, Deheuvels (1977) showed the L2 optimality of cmax((1-llxll2)d, 1). For the 

L1 error, there is evidence that the Epanechnikov kernel is also best among all positive kernels 

(see the discussion in the next section). For these reasons, authors have typically decoupled the 

choices of K and h, and picked K fixed as one of these asymptotically optimal kernels. 

RATES OF CONVERGENCE. The rate of convergence of the L1 error of the standard kernel es

timate is well understood in 2( but much less so in 2(d. For simplicity, we stick to 2( in this 

section. In that case, we note the following: 

A. inft liminfninfhn215JE{f l!nh- fl} 2': A(K) where A(K) 2': 0.86 is a function of K only, 

and is minimized for the Epanechnikov kernel K(x) = %(1-x2)+ (Devroye and Penrod, 

1984; see also Devroye and Gyorfi, 1985). The n-215 rate is thus a universal lower bound 

beyond which we cannot go within the class of standard kernel densities. 

B. There is no uniform rate of convergence: sup1 infh!E{f l!nh- fl} = 2. 

C. There is no universal rate of convergence for individual densities: for any sequence an+ 0, 

there exists a density f such that for all n large enough, 

i~f!E J lfnh - fl > an· 

See Birge (1986), Devroye (1983, 1995). 

5.7 Additive Estimates and Data Splitting 

Assume that we are given a class of density estimates parametrized by e E 8, such that fn,e de

notes the density estimate with parameter e. Our goal is to construct a density estimate fn whose 

L1 error is (almost) as small as that of the best estimate among the fn,e, e E e. Applying the 

minimum distance estimate directly to this class is often problematic because of the dependence 

of each estimate in the class and the empirical measure lln· Consider, as a basic example, the 

class of kernel estimates 

fn,h (x) = n!d ~ K (X ~X;) 

parametrized by the smoothing factor hE (O,oo), where K is a fixed nonnegative function with 

J K = 1. It is easy to see that if 

J1e = ..9f = { Un,h > fn,h'} : h, h' E (0, 00 ), h f. h1}, 
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then 

sup I r !n,h -lln(A)I = 1 
AE.9l }A 
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for all h, so the minimum distance method selects a degenarate estimate. 

We remedy this problem by introducing artificial independence between the estimates and 

the empirical measure. This may be achieved by holding out m samples from the design of the 

density estimates, and using the empirical measure based on the held-out samples to construct 

the minimum distance estimate. More precisely, let m < n, and define Jle as the Yatracos class 
of subsets of !l{_d (corresponding to the family of density estimates fn,e. e E 8) as the class of all 

sets of the form 

Aehe2 = {X: fn-m,e, (x) > fn-m,ez (x)}' el' e2 E e. 
We select a parameter en from e by minimizing the distance 

de= sup I r fn-m,e -llm(A)I· 
AE.9le }A 

over all e E 8, where llm denotes the empirical measure defined by the subsampleXn-m+l, ... ,Xn. 
If the minimum does not exist, we select en such that den < infe·Eede• + 1/n. Define fn = 

fn-m,en· Using Theorem 5.13 conditionally, we immediately obtain: 

Theorem 5.20. If I fn-m,e = 1 for all e E e, then for the minimum distance estimate fn as 
defined above, we have 

where 

l lfn - fl S 3 inf jlfn-m e- fl + 4d + ~, 
eEe ' n 

d = sup I r f -llm(A)I· 
AE.9le }A 

In order to use Theorem 5.20, first we have to make sure that infeEe I lfn-m,e- !I is not much 

larger than infeEe I l!n,e -!I, that is, holding out m samples does not hurt. In the next section we 

will see that for many important families of estimates, this is indeed the case. The second part 

of the analysis is then purely combinatorial, as upper bounds for the value of d may be obtained 

by bounding the shatter coefficients of the class Jfe. 

Many classical nonparametric density estimates are additive estimates, that is, they can be 

written in the form 
1 n 

gn(x) =- LK(x,Xi), 
ni=l 

where K: !l{_d x !l{_d ~!!{_is a measurable function, and I K(x,y)dx = 1 for ally. We say that 

the additive estimate gn is regular if for each x, lE{IK(x,X)I} < oo. Examples of additive es

timates include the kernel, histogram, series, and wavelet estimates. Theorem 5.21 below is a 

straightforward extension of a slightly less general inequality in Devroye and Lugosi (1996). 
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Theorem 5.21. Let 0 be a class of parameters, and assume that each density estimate fn,e(x) = 
(1/n) L-7=1 Ke(x,Xi) is additive and regular. Denote ln,e = f lfn,e- fl. If m > 0 is a positive 

integer such that 2m ~ n, then 

infeEelE{ln-m,e} 2m 8~ --:----::-----:::-::---';:- < 1 + --+ - 0 

infeEelE{ln,e}- n-m n 

This means that by decreasing the sample size to n - m, the performance of the best estimate 

in the class cannot deteriorate by more than a constant factor. If m is small relative to n, the 

loss in the L1 error is negligible. The proof uses some simple results about sums of independent 

random variables developed in Lemmas 5.4 through 5.6. 

Lemma 5.4. Let X andY be independent random variables, and let lE{Y} = 0. Then lE{IX + 
Yl} 2:: lE{IXI}. 

PROOF. We write X= lE{X + YIX}, and use Jensen's inequality: 

lE{IXI} = lE{IlE{X + YIX}I} ~ lE{IX + Yl}. 

D 

Lemma 5.5. (KHINCHINE'S INEQUALITY) Let a1, ... ,an be real numbers, and let 0"1, ... ,an 

be i.i.d. sign variables with IP'{ 0"1 = 1} = IP'{ 0"1 = -1} = Y2· Then 

lE{ ±aiO"i } 2:: ~ f[:i. 
t=I v2V;~(i 

The best constant in Khintchine's inequality is due to Szarek (1976) (see also Haagerup, 

1978). The basis of the proof given here is Lemma 7.1 in Devroye and Gyorfi (1985). 

Compare this with the closely related upper bound 

lE{ ±aiO"i } ~ 
l=l 

lE{ (~aiai) 2 } = f[:i. 
l=l v f:(i 

PROOF. The proof of the inequality may be found in Szarek (1976). Here we give a short proof 

with a suboptimal constant (1/v'J instead of l/-/2). First note that for any random variable X 

with finite fourth moment, 
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Indeed, for any a> 0, the function 1/x+ax2 is minimal on {O,oo) when x3 = 1/{2a). Thus, 

4 
x+ax > (2a)1/3 +_a_ = %(2a)1/3. 

x2 - {2a)2/3 

Replace x by lXI and take expectations: 

lE{IXI} 2: %{2a)113JE{X2} -alE{X4 }. 

The lower bound, considered as a function of a, is maximized if we take a= 1f2 (lE{X2}jlE{X4 } ) 3/2 

Resubstitution yields the claim. Applying the above inequality for X = }.:7=1 aicri gives 

lE{ i>·cr·} > (L~1a7)3/2 > _1 rv 
i=1 

1 1 
- JL7=1a1+3Li=fja7a]- V3V 6('i' 

where we used }.:~ 1 a1 +3Li=fja7a]::; 3{}.:7=1 ar)2. D 

Finally, we generalize the above inequality for general sums of independent random variables: 

Lemma 5.6. Let Y1, ... , Yn be i.i.d. zero mean random variables. Then 

lE{ ~Yi } 2: /ilE{IY1I}· 

PROOF. The proof uses symmetrization. We introduce the i.i.d. random variables Y{, ... , Y~. 
distributed as the Y;'s, and independent of them. Let cr1, ... , <5n be i.i.d. sign variables with 

JlD{ cr1 = -1} = JlD{ cr1 = 1} = %. independent of Y1, Y{, ... , Yn, Y~. Then 

JE{ ~Yi } = 1/2 ( lE{ ~Yi } +lE{ ~Yf } ) 

> %JE{ ~(Yi-Y;')} 

= \',IE{ ~cr;(Y;-Y{) } 

\',IEIE { ~ <>;(Y; - Y/) Y1o Y{, ••• , Y, Y;} 

> 2~ lE ~ (Yi- Y/)2 (by Lemma 5.5) 

> v'n JE{IY- Y.'l} 
2v'2 I I 

> 2~lE{IYil} (by Lemma 5.4). 
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D 

Lemma 5.7. For any density estimate 8n· 

rr..J if- 8nl ~ YzF..j l8n -!Egn I· 

PROOF. Sum the two inequalities 

JF..j if- 8n I ~ I if -!Egn I (Jensen's inequality), 

and 

lEI if- 8n I ~ lEI l8n -!Egn 1-I if -!Egn I (triangle inequality). 

D 

PROOF OF THEOREM 5.21. Note the following: 

inf JE{ ln-m 9} < inf JE{ ln,9} x sup ( JE~rm·9 } }) 
9EEl ' 9EEl 9EEl fn,9 

. f JE{l } ( 1 + lE{ ln-m,9 -JE{ ln,9}}) m n9 X sup { } . 
9EEl ' 9EEl lE ln,9 

The supremum is rewritten as follows: 

JE{ln-m 9 -JE{Jn 9 }} 
sup ' ' 
9EEl lE{ ln,9} 

JE{f ifn-m 9 - fn 91 dx} < sup ' ' 
9EEl lE{ ln,9} 

< 2 JE{J ifn-m,9- fn,9idx} 
~~~ lE{f ifn,9 -1Efn,9l dx} ' 

where we used Lemma 5.7. Fix x and e for now. Introduce 

li = K9(x,Xi) -JE{K9{x,X)}, 

and denote the partial sums of Y/s by Sj = Y1 + · · · + Yj. By assumption, for fixed x and e, the 

first absolute moment of Y1 is finite. Then observe the following: 

nifn-m,9- fn,91 = In: m (Yi + · · · + Yn-m)- (Yn-m+i + · · · + Yn) I 
so that 

lE{ nlfn-m,9- fn,9l} ~ n: m lE{ISn-ml} +lE{ISml}. 
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Also, nlfn,e -IEfn,e I = ISnl. which implies IE{ nlfn,e -IEfn,e I}= IE{ISn 1}. Still holding X and e 
fixed, we bound the following ratio: 

IE{Ifn-m,e- fn,el} 

IE{Ifn,e -IE/n,el} 
< (m/(n -m)IE{ISn-ml} +IE{ISml} 

IE{ISnl} 

< m IE{ISml} 
n-m + IE{ISnl} 

(because IE{ISnl} ~ IE{ISn-ml}) 

< ~ + IE{ISml} (by Lemmas 5.4 and 5.6) 
n-m Jln/mJ/81E{ISml} 

< ~ +4 {iji (if 2m:::; n). 
n-m y--;; 

This implies that for any fixed 9: 

IE I lfn-m,e - fn,e I dx :::; ( n: m + 4~) IE I lfn,e -IEfn,e I dx. 

The result now follows without work. 

Combining Theorems 5.20, 5.21 and 1.9, we readily obtain: 

Theorem 5.22. Let the set 8 determine a class of regular additive density estimates with 
f fn-m,e = 1 for all 8 E 8. Then for all n, m :<:; n /2, 8, and f: 

3 infiEI l!n,e- /I (1 + ~ +8 E) 
9E8 n-m V-;; 

+SE{ Vlog2~51e(m)} + ~-

0 

We note that §5le (m) is a random variable that depends upon X1, ... ,Xn-m• since the definition 

of 5le involves these data points. In most applications, 5le can be bounded uniformly over all 

values of X1, ... ,Xn-m· 

EXAMPLE: HISTOGRAM ESTIMATE. The simplest additive estimates are histograms. A his

togram density estimate based on a partition P of 1(. d is defined by 

.Un(Ap(x)) 
fn,P(x) = A.(Ap(x)) , 

where .Un is the empirical measure based on the sample X1, ... ,Xn, A is the Lebesgue measure on 

1(d, Ap(x) denotes the cell of the partition Pinto which x falls, and af oo is defined to be zero. 
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As a first application of Theorem 5.22, we consider the selection of a partition for a his

togram. Formally, let P be a family of partitions of !l(d, and to each partition P E P, assign 

the corresponding histogram estimate fn,P(x). We use the minimum distance estimate based on 

data splitting to select a partition from the class P, thus obtaining the density estimate fn· First 

observe that any histogram estimate is regular and additive. However, if P contains a cell with 

infinite Lebesgue measure, then fn,P does not necessarily integrate to one, which makes the 

use of Theorem 5.22 illegitimate. To fix this problem, we map !l(d to [0, l]d, and consider only 

partitions of the cube. 

To apply Theorem 5.22, we merely need to obtain upper bounds for the shatter coefficients 

§.!'Lp(m), where Jlp is the Yatracos class of all sets of the form 

As a prototype example, consider the class P of partitions of!!( into intervals of length h, where 

h = 2k for some integer k. The estimate fn,P based on such a partition is called a regular his

togram estimate. To be specific, assume that each partition is anchored at the origin, that is, 0 lies 

on the boundary of two cells. The parameter k may take infinitely many possible values, and our 

goal is to select a close-to-optimal value. The following combinatorial argument guarantees, via 

Theorem 5.22, that the minimum distance estimate may be successfully used for the selection 

of h from a dyadic collection of interval lengths. 

Lemma5.8. 

Also, for all n, m:::; n/2, and f, if fn is the regular histogram estimate picked by the minimum 

distance method for P, we have 

< 3 inf IE/ lfn e -/I ( 1 + ~ + 8 0.) 
6EP ' n-m V-;; 

+8 
log{2{m+ l)n2) 3 
---=-_.:___..:. _ ___:___:_ + - . 

m n 

PROOF. Each partition Pk in Pis indexed by a (possibly negative-valued) integer k. LetAk(x) be 

the cell of Pk containing x. Observe that the value of the vector 

can take at most n different values when we vary k but keep the yj's and X/s fixed. To see this, 

observe that there exists a large integer ko such that all data points fall in the same cell of Pko. 

Then for all k ~ ko the value of Zk is the same. As k decreases in steps of size one, Zk can only 
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change when there exists a cell [a, b) of Pk such that [a, (a+b)/2) and [(a+b)/2,b) both contain 

at least one data point among {XI, ... ,Xn-m,YI, ... ,ym}· But this can happen for at most n- 1 

different values of k. Thus, 

i{(Zk,Zl): k,i E {0,±1,±2, ... }}1 ~ n2. 

Ifw and w' are two possible values of the vector Zk, let Uw,w' be the set of all pairs (k,i) such that 

(Zk,Zl) = (w, w'). Fix w = (w1, ... , wm) and w' = (w;, ... , w:r,). If (k,i} E Uw,w'• then Yi E Ak,l = 
{x: fn-m,k(x) > fn-m,l(x)} if and only if 

Therefore, 

l{{yi, ... ,ym}nAk,l: (k,i) E U(w,w'J}I 

~ l{(li[wl~cw\J'"' ,R[wm~Cw'mJ): c > O}l ~ m+ 1. 

Thus, §Jtp(m) ~ (m+ 1)n2. D 

For various results on the regular histogram estimate we refer to Devroye and Gyorfi (1985). 

Consistency of the histogram estimate based on data-dependent partitions is investigated in Lu

gosi and Nobel (1996). Selection of the partition based on penalized maximum likelihood meth

ods is studied by Barron, Birge, and Massart (1999) and Castellan (2000). 

5.8 Bandwidth Selection for Kernel Estimates 

This section is about the choice of the bandwidth (or smoothing factor) hE (0, oo) of the standard 

kernel estimate 

fn,h(x) = n~d ~K ( x~X;) · 
We assume that K : ~ d -+ ~ is a fixed kernel with f K = 1. We study the minimum distance 

estimate based on data-splitting as described in the previous chapter, that is, we fix m ~ n/2, 
define a class of densities ~ = {fn-m,h : h > 0}, and project the empirical measure Jlm (defined on 

the held-out data Xm+I, ... ,Xn) on ~by the minimum distance method. Clearly, every estimate 

in ~ is additive, so if, in addition, K is a bounded function, then Theorem 5.22 applies. To apply 

the bound of this theorem, we need to compute useful upper bounds for the shatter coefficient 

§~(m) of the class 

5f. ~ { {x: fn-m,h(x) > fn-m,h'(x)}: h,h' > 0}. 
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Of course, this depends on n, m, and the kernel function K. Obtaining meaningful (i.e., polyno

mial in m and n) upper bounds may be difficult, or even impossible for general kernels. Thus, 

we begin our study with estimates based on simple kernels. The material of this section is based 

on Devroye and Lugosi ( 1997). We will not discuss implementation issues, for which we refer 

to Devroye (1997). 

We consider kernels of the form 

k 

K(x) = L a;llA;(x), 
i=l 

where k < oo, <XJ, ••• ,ak E 'R._, andAJ, ... ,Ak are Borel sets in 'R._d with the following property: 

the intersection of an infinite ray {x: x = txo,t 2: 0}, anchored at the origin, with any A; is an 

interval. 

Observe that all convex sets and all star-shaped sets satisfy the above requirement. (A set A 

is called star-shaped if x E A implies A.x E A for all A E [0, 1].) The A;'s need not be disjoint. 

Kernels of this type are called Riemann kernels of parameter k. Important special cases include 

the uniform densities on ellipsoids, balls, and hypercubes. The key combinatorial result is the 

following: 

Lemma 5.9. Let K = I~= 1 a;llA; be a Riemann kernel of parameter k. For all m 2: 1 we have 

§A(m) ~ (m+ 1)(1 +2km(n-m))2. 

PROOF. Let r = n- m. Define the vector 

( 
r (YI -K) r (y -K)) Zu = i~K -u-' , ... ,~K ~ E 'R._m. 

As we increase u from zero to infinity, each component of Zu changes every time (y i - X;) j u 

enters or leaves a set Aq, I ~ q ~ k for some X;, I ~ i ~ r. Note that for fixed (y1 - X;), the 

evolution is along an infinite ray anchored at the origin. By our assumption on the possible form 

of the sets Aq, the number of different values a component can take in its history (as u too) is 

bounded by 2kr. As there are m components, the cardinality of the set of different values of zu 
is bounded as 

l{zu: u > 0}1 ~ l +2kmr. 

Thus, 

l{(zu,Zv) : u, v > O}l ~ ( l + 2kmr)2• 

Let 'W = {(w, w'): (w, w') = (zu,Zv) for some u, v > 0}. For fixed (w,w') E 'W, let U(w,w') denote 

the collection of all (u, v) such that (zu,Zv) = (w, w'). For (u, v) E U(w,w')• we have 

Yi E Au,v if and only if w; 2: ( ~) d w;, 
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where w, w' have components w;, w;, respectively, 1 ~ i ~ m. Thus, 

I{{Yt, ... ,ym} nAu,v: (u, v) E U(w,w')}l 

~ I{ (][[wi;::.c~]' · · · ,][[wm;::.cw'ml) : C ~ 0} I ~ m+ 1. 

But then 

I{{YJ, ... ,ym}nAu,v: (u, v) > O}l 

~ (m+ 1)IU(w,w')l ~ (m+ 1){1 +2kmr)2• 

D 

For Riemann kernels, Lemma 5.9 is the last missing link. Plugging the upper bound of the 

lemma into Theorem 5.22, we obtain a nonasymptotic, density-free inequality. 

Most kernel functions used in practice are not Riemann kernels, and bounding the complex

ity of the Yatracos class based on such kernels is difficult. Luckily, most kernels can be well 

approximated by Riemann kernels, and this suggests the following solution for the bandwidth 

selection problem: first select a positive integer k and a Riemann kernel K' = I,f=I a;][A; such 

that 

jiK-K'I ~ ~-
Note that this is always possible if K is Riemann integrable. Now define the kernel estimates 

using the approximating kernel 

1 n-m 
fn-mh(x) = -- L K~(x-X;) 

' n-m i=i 

for all h > 0. Finally, select the smoothing factor H by the minimum distance estimate over this 

class, and define the density estimate 

1 n-m 
fn(x) =- L KH(x-X;). 

n-m i=i 

This His called the Riemann approximation bandwidth and fn is the Riemannian kernel esti

mate. The size of the smallest k for which this is possible depends on the kernel K. We call this 

the kernel complexity Kn of K: 

The main result of this section is the following performance bound for fn: 
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Theorem 5.23. Let K be a bounded kernel with kernel complexity Kn, and let m ~ n/2. Then 
for all densities f, the Riemannian kernel estimate fn satisfies 

3 (1 + ~ + 8 E) inflE/Ifn h- !I n-m y-;; h ' 

+ 8 log(2(m+1)(1+2Knm(n-m))2) + 31. 
m n 

PROOF. Observe that for each h, I lfn-m,h- ~~-m,h1 ~I IK- K'l· Thus, 

Ejlfn- fl 

~JE/l.fn-m,H- !I+ jiK -K'I 

~ 3 (1+~+8 E.\ infEjltnh- !I n-m y-;;} h ' 

+ 8 log(2(m+ 1)(1 +2Knm(n-m))2) +jiK -K'I + ~ 
m n 

(by the results of the previous section) 

~ 3 (1 + ~ +8 E.\ infEjlfnh- !I n-m y-;;} h ' 

+ 8 log(2(m+ 1)(1 +2Knm(n-m))2) 
m 

+ (1+3 (1+ n~m +8/fJ) /IK-K'I+~. 
0 

To understand the implications of Theorem 5.23, consider the simplest, though suboptimal 

choice m = L n /2 J. Then we obtain 

where cis a universal constant, independent off and K. Taking mas a smaller fraction of n, we 

may decrease the factor 43 to close to 3, at the expense of increasing the factor c in front of the 

second term. As we will see later, for most kernels the first term converges to zero much slower 

than Jlognfn for all densities. Therefore, the first term asymptotically dominates the second 

one if the kernel complexity Kn is a polynomial function of n. In the next section we show that 

this is the case for all important kernels. 
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KERNEL COMPLEXITY: UNIVARIATE EXAMPLES. In this section we provide a list of examples 

of kernels on 1t whose complexity Kn is bounded by a polynomial of n. Let us warm up with 

two toy examples: 

UNIFORM KERNELS. If K(x) = [A(x) for a star-shaped setA, then obviously Kn = 1 for all 

n > 1. 

ISOSCELES TRIANGULAR DENSITY. If K(x) = {1 -lxl)+, then elementary calculation 

shows that for all n, Kn :::; n + 1. 

Most important kernels are nonnegative, unimodal, and symmetric about the origin. For such 

kernels, the following bound is useful. 

SYMMETRIC UNIMODAL KERNELS. Consider a symmetric unimodal density (i.e., K ~ 0 and 

I K = 1) on the real line. Let~ be the last positive value for which I; K:::; 1/{4n). Partition 

[0,~] and [-~,0] into N = f4nK{O)~l equal intervals. On each interval, let K' be constant with 

value equal to the average of Kover that interval. Let y= I; K/K(~). and set K'(x) = K(~) on 

[~.~+Y] and [-~-y,-~]. Note that I K' = 1, IlK -K'I:::; 1/n, and that K' is Riemann with 

parameter k:::; 2N + 2:::; 8nK(O)~ + 10. Thus, Kn :::; 8nK{O)~ + 10. 

EXAMPLE 1 (BOUNDED COMPACT SUPPORT KERNELS). If K(x) :::; a[[-b,b] (x) and K 
is symmetric, nonnegative, and unimodal (such as the Epanechnikov kernel), then Kn :::; 

8nab+ 10. 

EXAMPLE 2 (THE NORMAL KERNEL). WhenK(x) =e-x'l/2 j../2ii, wehaveK{O) = 1j../2ic. 

Since for~~ 1, 

hoo _1_ -:? /2 d _1_.!.. -~2 /2 _1_ -~2 /2 
!'C. e x :::; !'C. A e :::; !'C. e , 

~ v .. m v 21t 1-' v 21t 

we may take~= V21og{4n/Vln). Thus, for all n > 1: 

8ny"'0g71 10 
Kn :::; .fit + . 

EXAMPLE 3 (THE CAUCHY KERNEL). Take K(x) = 1/{n{1 +x2)). Note that K{O) = 1/1t, 

and that~= nf(4n) will do. Therefore, 

32n2 
Kn :::; -2 + 10. 

1t 

EXAMPLE 4 (KERNELS WITH POLYNOMIAL TAILS). Note that if K is a symmetric uni

modal density, and IK{x)l :::; c/{1 + lxiY+l) for some c < oo, y > 0, then Kn = O(n1+11Y). In 

fact, for most cases of interest, Kn = O(na) for some finite constant <X> 0. 
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Sometimes it may be beneficial to use kernels which may take negative values. The next bound 

will be useful even for kernels that oscillate infinitely many times. 

LIPSCHITZ KERNELS WITH A POSSIBLY HEAVY TAIL. Let K be a univariate kernel that is 

Lipschitz with Lipschitz constant C, and assume that IK(x)l :S Dlx2 for another constant D. 

Then 

PROOF. Taker= 4Dn and note that ~xl>riKI :S 2Dir = 1l(2n). Partition [-r,r] into q equal 

intervals of length 2r I q each. Define a Riemann kernel K' of order q taking a constant value on 

each of these intervals, equal to the average of K over the intervals. By the Lipschitz condition, 

on any such interval A, fA IK- K'l :S C(2rlq)2 12 = 2Cr2lq2. Let y+ = (11 K(r))fr"" K andy-= 

(liK( -r))f_=-~K, and set K'(x) = K(r) on [r, r+y+] and K'(x) = K( -r) on [-r-y- ,r]. Thus, 

J K' = 1 and 

I 1 1 2Cr2 1 
IK-K I :S -+- :S-

2n q n 

0 

Finally, we mention a huge class of kernels, containing nearly every one-dimensional kernel. 

KERNELS OF BOUNDED VARIATION. If K is symmetric and a difference of two monotone func

tions, that is, K = K1- K2, K1 -!. 0, K2-!. 0 on [O,oo), then each K1,K2 may be approximated as 

above. Thus, in particular, if K is of bounded variation, and IK(x)l :S cl(l + lxiY+1) for some 

c < oo, y > 0, then we may approximate with Kn = O(n1+1IY). 

PRODUCT KERNELS. If K = K1 x · · · x Kd is a product of d univariate kernels, and if we ap

proximate K; with K; with parameter K~2 for all i (where K~2 is the kernel complexity of K; 

of precision 1 I ( nd) ), and form K' = K; x · · · x K~, then K' is a weighted sum of indicators of 

product sets, and it is Riemann with parameter not exceeding 11f=1 ~2- Furthermore, 

jiK-K'I < jiKIX···XKd-lxKd-KIX···XKd-IxK~I 
+ ... 

+ jiK1 xK~···xK~-K; xK~···xK~I 

n 

Thus, Kn is bounded by 11f= 1 K~2. 
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KERNELS THAT ARE FUNCTIONS OF llxll· Assume that K(x) =M(IIxll), where M is a bounded 
nonnegative monotone decreasing function on [O,oo). Then we may approximate M by a step

wise constant function M', and use the Riemann kernel K'(x) = M'(llxll) in the estimate as an 

approximation of K. Clearly, 

[IK(x) -K'(x)ldx= lo"" cdud-IIM(u) -M'(u)idu, 

where cd is d times the volume of the unit ball in 'I( d. We may define M' as follows. Let ~ 

be the largest positive number for which I; cdud- 1M(u) du ~ 1/(2n). Partition [0, ~] into N = 

f2ncdM ( 0) ~dl equal intervals. On each interval, let M' equal to the average of Mover that inter

val. Let y= I; cdud- 1M(u)du/M(~), and setM'(u) = M(~) on u E [~,~+y], and letM'(u) = 0 

for u > y. Clearly I K' = 1, and that K' is Riemann with parameter k = N + l ~ 2ncdK(O)pd + 2. 

Moreover, 

Thus, 

[IK(x)-K'(x)ldx 

= lo~ cdud-IIM(u) -M'(u)idu+ h"" cdud-IIM(u) -M'(u)idu 

~ __!__ +cdpd-l {~ IM(u) -M'(u)idu 
2n lo 

< __!__ +cdRd-1 M(O)~ 
- 2n P N 

1 < -. -n 

THE MULTIVARIATE STANDARD NORMAL KERNEL. We may apply the bound of the previous 

paragraph to the multivariate normal density. First note that it suffices to take ~ = 2J2logn. 
From this, we deduce that the kernel complexity is 

K'n = O(nlogd/2 n). 

ASYMPTOTIC OPTIMALITY. One important corollary of Theorem 5.23 is that asymptotically the 

error of the estimate stays within a factor of three of that of the kernel estimate with the best 

possible smoothing factor. 

Theorem 5.24. (DEVROYE AND LUGOSI, 1996, 1997) Let K be a bounded nonnegative ker
nel on the real line with complexity K'n bounded by some polynomial of n. If mjn ---* 0 and 
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m / ( n415 log n) -+ oo as n -+ oo, then for all densities f on '!(: 

The statement is an easy consequence ofthe fact that by Theorem 5.23, with the given choice 

ofm, 

IF.I lfn- !I :S: (3+o(1))i~fiE/ lfnh- /I +o(n-215), 

and the following lower bound due to Devroye and Penrod (1984). 

Lemma 5.10. Let K be a nonnegative kernel on the real line. Then for any density f: 

liminfn215 infiE/ l!nh- /I ~ 0.86. 
n-too h 
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