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Abstract. Consider a density f on [0, 1] that must be estimated from an i.i.d.

sample X1, ..., Xn drawn from f . In this note, we study binary-tree-based his-

togram estimates that use recursive splitting of intervals. If the decision to split

an interval is a (possibly randomized) function of the number of data points in

the interval only, then we speak of an estimate of complexity one. We exhibit

a universally consistent estimate of complexity one. If the decision to split is a

function of the cardinalities of k equal-length sub-intervals, then we speak of an

estimate of complexity k. We propose an estimate of complexity two that can

estimate any bounded monotone density on [0, 1] with optimal expected total

variation error O(n−1/3).
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1. Introduction

We are concerned with the estimation of an unknown density f on [0, 1] based

on an i.i.d. sample X1, ..., Xn drawn from it. In particular, given a recursive

partition of the space into intervals, one can simply use the partition-based

histogram estimate: on a fixed interval C, f is estimated by

fn(x) =
N(C)

nλ(C)
, x ∈ C,

where C is the unique interval to which x belongs, λ(C) is the length (or

Lebesgue measure) of C, and N(C) is the number of Xi’s falling in C. We

impose two further design restrictions, one for convenience, and one motivated

by distributed computation.

The only partitions of [0, 1] allowed are dyadic. This lets us view each of the

allowed partitions as a binary tree. The root represents [0, 1], the two children
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of the root represent [0, 1/2] and [1/2, 1], and at level i in the tree, we have an

equi-partition of [0, 1] into 2i intervals of length 1/2i. The leaves in the tree

correspond to intervals whose union is [0, 1]. (We abuse the term partition, as

we allow intervals to overlap in a border point.) To estimate f , it suffices to

construct this tree given the data. The data mining community (Schmidberger,

2009 [14]; Ram and Gray, 2011 [13]; Anderlini, 2016 [2]) refers to this general

method as “density estimation trees”. We note that in the event where the tree

is not full, the resulting partition’s bins can have different lengths.

Our second restriction is motivated by distributed computation. At the root,

we may decide to either split the root interval or make it a leaf. If it is split,

the data travel to their respective sub-trees. So, the data flow down the tree

according to where they belong. Every node in the tree must act similarly, so

we will refer to nodes as cells. The decision to split has a complexity parameter

κ. When κ = 1, the decision can only depend upon N , the number of points

that fall in the node’s interval, C. In particular, that decision can’t depend

upon the original n, and can be handled by an autonomous computer, or “cell”.

For κ > 1, the decision only depends upon N1, . . . , Nk, the cardinalities of the

k equal-length sub-intervals of C. This view was also eschewed by Biau and

Devroye (2013) [5].

Many things can go awry. For one thing, we could end up with an infinite

tree without any leaves. Or we could end up with just one node, the root. In the

former case, the estimate is not defined. In the latter case, one gets consistency

only if f itself is uniform [0, 1]. The study here is a small first step into this new

model of “cellular” estimators (meaning those which satisfy our restrictions),

noting that generalizations in many directions are possible. Most importantly,

one could consider 2d-ary trees to partition [0, 1]d for general d. Computing will

likely become more distributed and miniaturized, making our model relevant.

We begin with the description of an estimate of complexity one that is uni-

versally consistent, i.e., for all densities f on [0, 1],∫
|fn − f | → 0

in probability as n→∞.

Then we exhibit an estimate of complexity two that consistently estimates

every bounded monotone decreasing density on [0, 1] at an optimal rate in n.

The decision to split is made when N1 − N2 > γ
√
N1 +N2 for fixed universal

design constant γ > 0. We will show that

E

{∫ 1

0

|fn(x)− f(x)| dx
}

= O

(
B2/3

n1/3

)
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where B = f(0) is the value at the mode, and fn is the histogram estimate on the

partition induced by the leaves. Also, when B = ∞, we still have consistency,

i.e., E{
∫
|fn − f |} → 0 as n→∞.

It is noteworthy that if MB denotes the class of all monotone densities on

[0, 1] bounded by B, then

inf
all estimators fn

sup
f∈MB

E

{∫ 1

0

|fn(x)− f(x)| dx
}
≥ α

(
log(1 +B)

n

)1/3

for a universal constant α > 0 (Birgé, 1983 [6]; see also Devroye and Györfi,

1985 [8]). Our estimate achieves the minimax rate in n, albeit with a sub-

optimal constant multiplicative factor. Several estimates achieve the minimax

rate with the correct multiplicative factor, notably Grenander’s histogram esti-

mate (Grenander, 1956 [9]) (which uses a partition based on the smallest concave

majorant of the distribution function) and Birgé’s histogram estimate (Birgé,

1983 [6]) (which uses a partition of exponentially increasing widths). Standard

histogram estimates of equal bin widths can at best achieve a rate proportional

to (B/n)1/3.

Our simple estimate does not use additional information that one may know

about the density. Prior knowledge of the smoothness, for instance, is com-

pletely ignored. With explicit knowledge of smoothness in terms of Hölder

coefficient β ≥ 1, the minimax rate can be of the order of n−β/(2β+1), surpass-

ing n−1/3 if β > 1. This rate can be achieved with the kernel density estimate

(Wasserman, 2006 [15]).

This paper aims to present the most straightforward and most general esti-

mate using the design restriction outlined above, to showcase what can still be

achieved despite this hurdle. For this reason, we do not give much importance

to the smoothness issue discussed in the previous paragraph. After stating the

main results announced above, we discuss the size of the tree obtained for the

monotone density estimate and address the computational complexity. We note

the importance of Galton–Watson trees in the analysis: as every density is lo-

cally nearly uniform, the performance of our splitting rule on a uniform density

f explains the behaviour near the bottom of the tree. We will show for exam-

ple that for uniform f , the binary tree is essentially an extinct Galton–Watson

tree of constant expected size. We end the paper with extensions of the design

principle to estimate densities with special structures such as convex or concave

densities, log-concave or log-convex densities, and unimodal densities spring to

mind.
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2. A universally consistent estimate of complexity one

Any deterministic splitting rule of complexity κ = 1 is doomed because one

can’t decide which number of points N(C) in a given interval is large enough

to stop splitting. However, randomization can be used in the design. Assume

that we have a non-increasing function φ : Z → [0, 1], and that our estimate of

complexity one is:

do not split C when U ≤ φ(N),

where N = N(C) is the cardinality of the interval C and U is an independent

uniform [0, 1] random variable. In this case, we obtain universal consistency:

Theorem 1. Let f be a probability density function on [0, 1]. Then∫ 1

0

|fn − f | → 0

in probability as n→∞, provided that

lim
n→∞

φ(n) = 0

and

lim
n→∞

φ(n) log2(n) =∞.

Proved in the Appendix, Theorem 1 raises new questions regarding the tree’s

size, which measures the total computation time. One would also need informa-

tion on the expected number of steps required to find the partition to which a

point x belongs, as that would be proportional to the expected time to compute

the density estimate at one point. In addition, the height of the tree would be

of interest. Finally, the choice of φ within the bounds outlined in Theorem 1

should be studied.

3. An estimate of complexity two for monotone densities

When f is monotone on [0, 1] and non-increasing, an interval C with equal-

length sub-intervals C1 and C2 of cardinalities N1 and N2 can be split by the

following rule of complexity two:

split C when N1 −N2 > γ
√
N1 +N2

for fixed universal design constant γ > 1, noting that one would expect N1 ≥ N2

by monotonicity of f . For the resulting estimate fn we obtain an explicit upper

bound on the total variation error:
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Theorem 2. Let f be a bounded non-increasing probability density function on

[0, 1] with B = f(0). Then

sup
f∈MB

E

{∫ 1

0

|fn(x)− f(x)|dx
}
≤ β

(
B2/3

n1/3

)
for a universal constant β and large enough n.

Remark 1. Note that if we partition [0, 1] into k equal intervals, and let fn be

the standard histogram estimate for these k intervals, then

E

{∫ 1

0

|fn − f |
}
≤ E

{∫ 1

0

|fn −Efn|
}
+

∫ 1

0

|Efn − f |,

where E{fn(x)} = p(C)/λ(C), x ∈ C, and p(C) =
∫
C
f . Thus, E{fn(x)} =

kp(C). A simple shifting argument shows that∫ 1

0

|Efn − f | ≤ B

k
.

Also,

E

{∫ 1

0

|fn −Efn|
}

=
∑
C

E

{∣∣∣∣N(C)

n
− p(C)

∣∣∣∣}

≤

√√√√∑
C

1 ·
∑
C

E

{∣∣∣∣N(C)

n
− p(C)

∣∣∣∣2}

≤
√

k

n

∑
C

p(C) =

√
k

n
,

and therefore, taking k = ⌈(2B)2/3n1/3⌉ to optimize the sum, we obtain

sup
f∈MB

E

{∫ 1

0

|fn − f |
}
≤
(

1

22/3
+ 21/3 + o(1)

)(
B

n

)1/3

.

Note that without knowledge of B, the histogram estimate does not have a

better convergence rate than our handicapped estimate.

4. Monotone density estimate: algorithm and time complexity

From an algorithmic standpoint, the splitting described above amounts to a

branching process that constructs a binary tree. For any x ∈ R and sorted list

of numbers L, let i(L, x) denote the index of x if it were inserted into L. Given

a sorted list of size n whose elements are an i.i.d. sample X1, ..., Xn drawn from

an unknown density f on [a, b] ⊆ R, the following recursive algorithm constructs

a partition tree of [a, b] according to our splitting rule.

While not strictly necessary, the assumption that [X1, ..., Xn] is sorted allows

us to decide whether or not to split in logarithmic time by using binary search to
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Algorithm 1 Interval partitioning using a binary tree

1: function BuildTree(r, [X1, ..., Xn], [a, b]) ▷ r is a tree node

2: L ← i([X1, ..., Xn], (a+ b)/2) ▷ L is the number of data points in the

left half of [a, b]

3: R ← n− L ▷ R is the number of data points on the right half of [a, b]

4: if L−R > γ
√
n then ▷ γ is a parameter in (0,∞)

5: BuildTree(r.left, [X1, ..., XL], [a, (a+ b)/2])

6: BuildTree(r.right, [XL+1, ..., Xn], [(a+ b)/2, b])

7: else

8: r.value ← [a, b]

9: end if

10: end function

11: Initialize new tree node r

12: BuildTree(r, [X1, ..., Xn], [a, b])

13: return r

compute the number of points on the left and right halves of [a, b]. It also greatly

simplifies the algorithm’s pseudo-code to construct left and right sub-lists when

we perform a recursive call.

As a corollary to the results shown later in the paper, we can derive the

following sub-linear upper bound on the expected runtime of our algorithm.

Corollary 3. This algorithm’s expected runtime is O(n1/3 log2(n)) if the input

data are sorted.

Proof. See appendix. ■

5. Monotone density estimate: Galton–Watson trees and the uniform

case

We recall the definition of a Galton–Watson tree (see, e.g., Athreya and

Ney, 1972 [3]): the number of offspring of each node in the tree is random and

distributed as Z, where Z ≥ 0 has a fixed distribution. All realizations of Z are

independent. If EZ = m < 1, then the expected size of the tree is 1/(1 −m).

See, e.g., Lyons and Peres, 2016 [11].

As previously discussed, our splitting procedure can be viewed as a (ran-

domly generated) binary tree of intervals which we will henceforth denote by Tn.

An elegant connection to the theory of branching processes can be established

when our data are sampled from a uniform distribution. More specifically, one

can show that the resulting tree would closely resemble a Galton–Watson tree
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whose nodes have two children with probability p2 = P{N (0, 1) > γ} := Φ(γ)

and no children with probability p0 = 1−p2 (where N (0, 1) is a standard normal

and γ is the parameter chosen in the algorithm, which is assumed to be ≥ 1 in

this section).

Let C be an arbitrary sub-interval of [0, 1] and assume that C contains N

data points. The number of points in the left and right halves of C, denoted by

N1 and N2, respectively, are binomial random variables with parameters N and

1/2. Noting that 2N1 −N = N1 −N2, the probability of splitting the interval

is

P{N1 −N2 > γ
√
N} = P

{
N1 −N/2√

N/4
> γ

}
,

which by the Berry-Esseen theorem (Berry, 1941 [4], see also Petrov, 1975 [12])

is equal to Φ(γ) + θ/
√
N =: p2 for some |θ| ≤ 1.

Let ϵ > 0 be arbitrary, and let T ′
n be the subtree of Tn in which all nodes C

(we refer to C as a node as well as an interval associated with that node) contain

at least Nϵ := ⌈1/(ϵ · Φ(γ))2⌉ points. Then for these nodes, the probability p2

of splitting is smaller than

(1 + θ · ϵ)Φ(γ).

We infer that for ϵ small enough,

E{|T ′
n|} ≤

1

1− 2(1 + ϵ)Φ(γ)
.

Furthermore, every leaf of T ′
n is either a leaf of Tn or an internal node

containing less than Nϵ points. In the latter case, we can derive a uniform

upper bound for the expected size of sub-trees that hang from such leaves as a

function of ϵ.

Assuming γ ≥ 1, our splitting criterion is such that any interval with a single

point is never split. By analyzing the expected minimum distance between any

two points in an interval, we can determine an upper bound for the expected

height (and in turn size) of a tree.

Consider Nϵ uniformly distributed points on an interval (without loss of

generality, [0, 1]). Let D be an integer random variable taking value i when the

minimum distance between two points of the interval lies in (2−i−1, 2−i].

We split [0, 1] dyadically until each interval has 0 or 1 point (as depicted in

figure 1). The expected number of internal nodes of this tree is

∞∑
ℓ=0

2ℓ·P

{[
0,

1

2ℓ

]
contains at least 2 points

}

≤
∞∑
ℓ=0

2ℓ ·
(
Nϵ − 1

2

)
1

22ℓ
≤ (Nϵ − 1)2

2

∞∑
ℓ=0

1

2ℓ
= (Nϵ − 1)2
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0 1(Nϵ − 1) points

Figure 1. Dyadic splitting until each interval con-

tains at most one point.

where ℓ is the level number in the tree.

Thus, the expected size is ≤ 2(Nϵ−1)2+1 < 2N2
ϵ since the number of leaves

equals the number of internal nodes plus one.

We conclude that, under the assumption of uniformly distributed data, the

expected tree size is finite and uniformly bounded over all values of n:

E{|Tn|} ≤ inf
ϵ>0

1

1− 2(1 + ϵ)Φ(γ)
· 2N2

ϵ

≤ inf
ϵ>0

2

1− 2(1 + ϵ)Φ(γ)
·

(
1(

ϵ · Φ(γ)
)2 + 1

)2

def
= φ(γ) <∞.

Similar reasoning yields the following theorem.

Theorem 4. Let f = 1 on [0, 1] and f = 0 elsewhere. Then if Φ(γ)+ 1
γ < 1/2,

E

{∫ 1

0

|fn(x)− f(x)|dx
}

= O

(
1√
n

)
.

Remark 2. Any choice of γ ≥ 3 ensures that this condition is satisfied.

Proof. Fix x ∈ [0, 1]. Conditioning on the height h of the leaf to which x belongs

(in the partition tree defining fn) and using Cauchy-Schwarz, we get

E{|fn(x)− f(x)|} ≤
∑
ℓ≥0

√
P{h = ℓ}E{|fn(x)− f(x)|2 |h = ℓ}

=
1√
n

∑
ℓ≥0

√
2ℓP{h = ℓ}.

We know that for any node containing N points, the probability of it splitting

is bounded by pN = Φ(γ) + 1/
√
N . However, the condition on γ implies that
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pN < 1/2 uniformly. It follows that P{h = ℓ} < (1/2)ℓ, and the summation

above is O(1) as a geometric series. Applying Tonelli’s theorem to E{
∫
|fn−f |}

thus yields the desired result. ■

6. The deterministic infinite tree

6.1. Notation, setup and main proposition

Towards our goal of proving Theorem 2, we begin with the analysis of the

infinite full binary tree depicted in figure 3 and denoted by T∞. It is analogous

to Tn in that each node of T∞ is associated with a sub-interval of [0, 1]; more

specifically, if C1, ..., C2ℓ are T∞’s level ℓ nodes labelled left to right, then Ci

corresponds to the interval [(i− 1)/2ℓ, i/2ℓ] for any 1 ≤ i ≤ 2ℓ. It helps to view

the random tree Tn as a subset of this infinite deterministic tree.

As in the introduction, the left and right halves of a node C ∈ T∞ are

denoted by C1 and C2, respectively. It is said to be balanced (and is uncoloured

in figure 3) if it satisfies

p(C1)− p(C2) ≤ γ

√
p(C)

n
, (1)

where γ is the parameter previously defined for the algorithm (0) and, as above,

p(C) =
∫
C
f . The set of all such nodes is denoted by B. All other (coloured)

nodes are said to be unbalanced and belong to Bc, the complement of B. Simi-

larly, for any positive real number α, we denote by B(α) the set of nodes satisfying

p(C1)− p(C2) ≤ αγ

√
p(C)

n
,

noting that B = B(1). The integer ℓ∗ is defined as

ℓ∗ = min

{
ℓ ∈ Z>0 :

B

2ℓ+1
≤ γ · 2ℓ/2

√
B

n

}
.

We denote by Pj(T∞) = Pj the set of nodes of T∞ with exactly j balanced

ancestors. Lastly, for any node C, the average value of f on C is denoted by

f(C).

Note that if we were to truncate T∞ by deleting nodes that fall below those

belonging to B ∩ P0, the resulting tree (with leaf set B ∩ P0) would be the tree

generated by the algorithm (0) if every interval C contained its expected number

of data points, np(C) (in which case our splitting rule becomes the negation of

(1)). If this were the case, the density estimate extracted from this tree would

therefore, on each leaf C, be equal to f(C). We begin by showing that Theorem

2 holds for this function, as stated in the following proposition.
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f(x)

fn(x)

0

Figure 2. An estimate fn using a finite,

random tree Tn.

0 1

Figure 3. A depiction of

an infinite tree T∞.

Proposition 5. Let f be a bounded decreasing probability density function on

[0, 1] with B = f(0) <∞, and let Fn be the function that takes the value f(C)

on every C ∈ P0 ∩ B. Then the L1 distance between these two functions does

not exceed c0 · (B2/3/n1/3) for some constant c0 ∈ R>0 that does not depend on

B or n.

6.2. Preliminary results and lemmas

The following three lemmas are needed to prove Proposition 5.

Lemma 6. For any C ∈ T∞,

p(C1)− p(C2) ≤
∫
C

|f − f(C)| ≤ 2
(
p(C1)− p(C2)

)
.

Proof. Let x0 := sup{x ∈ C : f(x) ≥ f(C)}. Without loss of generality, assume

C = [0, 1] and p(C) > 0. Our result is clear when f is constant on C, so we

assume otherwise. Assume first that x0 < 1/2, and define

A :=

∫ x0

0

(
f − f(C)

)
, B1 :=

∫ 1/2

x0

(
f(C)− f

)
, B2 :=

∫ 1

1/2

(
f(C)− f

)
.

Our assumption on f guarantees that A, B1 and B2 are all positive. It is clear

that
∫
c
|f − f(C)| = A + B1 + B2 and p(C1) − p(C2) = A + (B2 − B1), which

shows the leftmost inequality. Note that B2 ≥ B1, since otherwise we would

have

p(C1)− p(C2) = A+ (B2 −B1) < A,

which would only be possible |x0 − 1/2| ≥ 1/2, forcing x0 = 0, A = 0 and f to

be constant. Using the fact that A = B1 +B2 (by definition of x0),

2
(
p(C1)− p(C2)

)
= A+B1 +B2 + 2(B2 −B1) ≥

∫
C

|f − f(C)|.

The case x0 > 1/2 can be taken care of similarly. ■
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Lemma 7. Let ℓ ∈ Z+ be fixed, and let Aℓ be the set of nodes in T∞ of depth

ℓ. Then ∑
C∈Aℓ

(
p(C1)− p(C2)

)
≤ B

2ℓ+1
.

Proof. Let {Ci}2
ℓ

i=1 be an enumeration of Aℓ from left to right (where the left-

most node has 0 as one of its interval endpoints). We have

∑
C∈Aℓ

(
p(C1)− p(C2)

)
=

2ℓ∑
i=1

(
p(C ′

i)− p(C ′′
i )
)

≤ p(C ′
1)− p(C ′′

2ℓ) ≤ p(C ′
1) ≤

B

2ℓ+1
.

■

Lemma 8. Let ℓ ∈ Z+ be fixed, and let Aℓ be the set of nodes in T∞ of depth

ℓ. Then ∑
C∈Aℓ

√
p(C)

n
≤ 2ℓ/2

√
B

n
.

Proof. By Jensen’s inequality,
√
f(C) ≤

∫
C

√
f/λ(C) and

√
p(C) =

√
λ(C)f(C) ≤

∫
C

√
f√

λ(C)
.

It follows that ∑
C∈Aℓ

√
p(C)

n
≤ 2ℓ/2

1√
n

∫
C

√
f ≤ 2ℓ/2

√
B

n
.

■

6.3. Proof of proposition 5

Armed with these lemmas, we may now prove Proposition 5.

Proof. The L1 distance between f and fn on the whole of [0, 1] can be computed

by summing the error over the leaf set B ∩ P0, and is thus equal to∑
C∈B∩P0

∫
C

|f − f(C)|.

Using Lemma 6 and the definition B ∩ P0, we can upper bound this quantity

and write∑
C∈B∩P0

∫
C

|f − f(C)| ≤ 2 ·
∑

C∈B∩P0

(
p(C1)− p(C2)

)
≤ 2 ·

∑
C∈B∩P0

γ

√
p(C)

n
.

(2)
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By Lemmas 7 and 8,

∑
C∈B∩P0

∫
C

|f − f(C)| ≤ 2 ·
∞∑
ℓ=0

min

(
B

2ℓ+1
, γ · 2ℓ/2

√
B

n

)
. (3)

Recall that ℓ∗ = min{ℓ ∈ Z>0 : B/2ℓ+1 ≤ γ · 2ℓ/2
√

B/n} and note that ℓ∗ is

within 1 of

log2

{(
Bn

4

)1/3(
1

γ

)2/3
}
,

and that the summation in (3) is bounded above by

2

(
ℓ∗−1∑
ℓ=0

γ

√
B

n
2ℓ/2 +

∞∑
ℓ=ℓ∗

B

2ℓ+1

)
≤ 2γ

√
B

n
2(ℓ

∗−1)/2

(
1

1− 1/
√
2

)
+

2B

2ℓ∗

≤ γ2/3B2/3

n1/3

(
27/6

(
√
2− 1)

+ 25/3
)
.

This non-asymptotic bound is uniform over all bounded monotone densities f .

■

6.4. Additional results regarding the infinite tree

We conclude this section by stating a few properties of T∞ in the following

lemmas, which are proved in the appendix. The first is a deterministic bound

on the number of unbalanced nodes, both at a given level ℓ ≥ ℓ∗ (equation (4))

and in general (equations (5), (6)). The second is a bound on the number of

nodes in T∞ with exactly j balanced ancestors for a given positive integer j.

Lemma 9. Let Aℓ denote the set of nodes in T∞ of depth ℓ. If ℓ ≥ ℓ∗,

|Aℓ \ B| ≤
2
√
2

γ

√
Bn

2ℓ/2
, (4)

and

|Bc| ≤ 5B1/3n1/3

γ2/3
. (5)

Furthermore,

sup
α>0

α
∣∣(B(α))c∣∣ ≤ 5B1/3n1/3

γ2/3
. (6)

Lemma 10. Recall that B is the subset of balanced nodes and that Bc is the

subset of unbalanced nodes of T∞. For any j ∈ Z>0, define Pj = Pj(T∞) to be

the set of nodes of T∞ with exactly j ancestors in B, then

|Pj | ≤ (|Bc|+ 1) · 2j .
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7. Proof of Theorem 2

Using the results above, we return to the proof of Theorem 2. The expected

L1 distance between f and fn (as defined previously) is computed by summing

over Tn’s leaf set, denoted by L. By Scheffé’s identity (see Devroye and Györfi,

1985 [8]), we have

E

{∫ 1

0

|f − fn|
}

= 2 ·E
{∫ 1

0

(f − fn)+

}
(7)

where (x)+ := max(x, 0). Now, (7) is bounded from above by

2E

{∑
C∈L

∫
C

(f − f(C))+

}
︸ ︷︷ ︸

(I)

+2E

{∑
C∈L

∫
C

(
f(C)− N(C)/n

λ(C)

)
+

}
︸ ︷︷ ︸

(II)

.

Here N(C) is the number of data points in C. We bound each of these terms

separately.

We view Tn as a sub-tree of T∞. This allows us to recycle most of the

notation introduced above. For instance, leaves of Tn with depth ℓ are the

elements of L ∩ Aℓ, while leaves that are balanced are elements of L ∩ B.

7.1. Upper bound for (I)

We begin with a few preliminary results.

Lemma 11. Let C be any non-leaf node of Tn with depth ℓ and let D ⊆ L be

the set of leaves of the sub-tree rooted at C, then∑
C∗∈D

∫
C∗

(
f − f(C∗)

)
+
≤
∫
C

(
f − f(C)

)
+
.

Proof. See appendix. ■

Lemma 12. Let C ∈ Tn \B(
√
2), and ξ(C) := p(C1)−p(C2)−γ

√
2p(C)/n > 0.

Then for such C, we have

P{C ∈ L} ≤ 2p(C)

2p(C) + nξ(C)2
+

4

np(C)
.

Proof. See appendix. ■

Using these lemmas, we prove the following proposition.

Proposition 13.

sup
f∈MB

E

{∑
C∈L

∫
C

(f − f(C))+

}
≤ B2/3

n1/3
c1(γ) + o(n−1/3)

13



C1 C2

f(C1)

f(C)

f(C2)

A

B

C

x1 x2

Figure 4. Definitions used in the proof of Lemma

11.

where

c1(γ) :=

(
4γ2/3 +

2
√
2(γ +

√
γ2 + 1)

γ1/3

)
is a strictly positive constant depending only upon γ.

Proof. The term we are trying to bound can be viewed as the expected L1

distance between f and the estimator obtained by taking the (random) partition

of [0, 1] given by Tn, and estimating f by its average value on each interval in

the said partition. Informally, one notices that if the branching process that

generated Tn behaved “as expected”, this estimator would be more or less equal

to Fn from Proposition 5.

Deeper leaves in Tn yield a finer partition of [0, 1]. Taking intuition from the

Riemann integral, one would guess that since we approximate f by its average

value on each interval of this partition, a finer partition would help us minimize

L1 distance. Conversely, we can use a coarser partition to upper bound said

distance, as shown by Lemma 11.

Thus, we can use the partition given by Tn truncated below level ℓ∗ to derive

our upper bound. By Lemmas 6 and 11, we have

(I) ≤ E

{
ℓ∗∑
ℓ=0

∑
C∈L∩Aℓ

∫
C

(
f − f(C)

)
+

}
+ 2 ·E

{ ∑
C∈Aℓ∗

(
p(C1)− p(C2)

)}
, (8)

and an application of Lemma 7 yields

E

{ ∑
C∈Aℓ∗

(
p(C1)− p(C2)

)}
≤ B

2ℓ∗+1
≤ 2

B2/3γ2/3

n1/3
. (9)

14



Next, we recall that B(
√
2) is the set of nodes of T∞ satisfying

p(C1)− p(C2) ≤ γ

√
2p(C)

n
,

as defined earlier. Any node C belonging to the complement of B(
√
2) satisfies

p(C1)− p(C2) = γ

√
2p(C)

n
+ ξ(C)

where ξ(C) := p(C1)− p(C2)− γ
√
2p(C)/n is a strictly positive real number.

We use Lemma 6 once more to bound the leftmost term in (8), writing

E

{
ℓ∗∑
ℓ=0

∑
C∈L∩Aℓ

∫
C

(
f − f(C)

)
+

}

= E

{
ℓ∗∑
ℓ=0

∑
C∈Aℓ

∫
C

(
f − f(C)

)
+
1[C∈L]

}

≤
ℓ∗∑
ℓ=0

( ∑
C∈B(

√
2)∩Aℓ

γ

√
2p(C)

n

+
∑

C∈Aℓ\B(
√

2)

min
(
γ

√
2p(C)

n
+ ξ(C), p(C1)− p(C2)

)
P{C ∈ L}

)
.

(10)

Applying Lemma 8, we find that the first of the two inner summations in (10)

is bounded above by

γ

√
B

n
2(ℓ+1)/2. (11)

To bound the second summation, we use Lemma 12 as well as the fact that

p(C1)− p(C2) ≤ p(C) to write∑
C∈Aℓ\B(

√
2)

min

(
γ

√
2p(C)

n
+ ξ(C), p(C1)− p(C2)

)
P{C ∈ L}

≤
∑

C∈Aℓ\B(
√

2)

((
γ

√
2p(C)

n
+ ξ(C)

) 1

1 + ξ(C)2/(2p(C)/n)
+

4

n

)
.

(12)

For any positive real numbers a and b, the following identity holds:

a+ b

1 + b2
≤
√
a2 + 1.

Using it with a = γ and b = ξ(C)/
√
2p(C)/n inside the summation in (12), we

have∑
C∈Aℓ\B(

√
2)

(√
2p(C)

n

( a+ b

1 + b2

)
+

4

n

)
≤

∑
C∈Aℓ\B(

√
2)

(√
2p(C)

n

√
γ2 + 1 +

4

n

)
.

(13)
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Since we are only bounding the quantity above for values of ℓ that are smaller

than ℓ∗, we have

|Aℓ \ B(
√
2)| ≤ |Aℓ| ≤ |Aℓ∗ | ≤ 2ℓ

∗
.

By definition of ℓ∗, this yields

|Aℓ \ B(
√
2)| ≤ 2ℓ

∗
≤ 2(Bn)1/3

γ2/3
.

Lemma 8 implies that for any ℓ ≤ ℓ∗,

∑
C∈Aℓ\B(

√
2)

(√
2p(C)

n

√
γ2 + 1 +

4

n

)
≤
(√

γ2 + 1
)√B

n
2(ℓ+1)/2 +

8B1/3

(γn)2/3
.

Invoking equations (9) and (11), our bound on (I) in (8) becomes

(I) ≤ 4B2/3γ2/3

n1/3
+

ℓ∗∑
ℓ=0

((
γ +

√
γ2 + 1

)√B

n
2(ℓ+1)/2 +

8B1/3

(γn)2/3

)

≤ B2/3

n1/3
c1(γ) +

8(ℓ∗ + 1)B1/3

(γn)2/3
.

So, ℓ∗/n2/3 = O(log2(n)/n
2/3) uniformly over all monotone densities bounded

by B. This completes the proof of Proposition 13. ■

7.2. Upper bound for (II)

Our upper bound for (II) is given in Proposition 15 below. Its proof relies

on the following preliminary result.

Lemma 14. Assume that γ > 1. Then for any 0 < α < 1 − 1/γ and C ∈
B(α) ∩ Pj, we have

E

{(
p(C)− N(C)

n

)
+
1[C∈L]

}
≤ c2(γ, α)

j/2

√
p(C)

n
,

where c2(γ, α) := 1/(1 + (γ(1− α))2) < 1/2.

Proof. See appendix. ■

Proposition 15. Assume that γ > 1. Then we have

E

{∑
C∈L

∫
C

(
f(C)− N(C)/n

λ(C)

)
+

}
≤ c3(γ)

B1/6

n1/3
+ o(n−1/3),

where

c3(γ) = inf
0<α<1−1/γ

γ−1/3
√
5 ·
(

1√
α
+

1

1−
√
2c2(γ, α)

)
.
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Proof. We start by writing

E

{∑
C∈L

∫
C

(
f(C)− N(C)/n

λ(C)

)
+

}
=E

{∑
C∈L

(
p(C)− N(C)

n

)
+

}
. (14)

Let 0 < α < 1−1/γ be arbitrary. We partition nodes C ∈ L according to which

Pj they belong to, as well as whether or not they belong to B(α), seeing that

lemmas 9 and 10 provide upper bounds to the number of elements in these sets.

We write

E

{∑
C∈L

(
p(C)− N(C)

n

)
+

}

≤
∞∑
j=0

∑
C∈B(α)∩Pj

E

{(
p(C)− N(C)

n

)
+
1[C∈L]

}
+

∑
C/∈B(α)

√
p(C)

n
, (15)

and then use the Cauchy-Schwarz inequality to obtain

∑
C/∈B(α)

√
p(C)

n
≤

√√√√( ∑
C/∈B(α)

1

)( ∑
C/∈B(α)

p(C)

n

)

≤ 1√
n

√∣∣(B(α))c∣∣ · ∑
C/∈B(α)

p(C)

≤ 1√
n

√∣∣(B(α))c∣∣.
By Lemma 9, the latter is dominated by√

5

α
· B1/6

γ1/3n1/3
.

Further, we can use Lemma 14 to write

∞∑
j=0

∑
C∈B(α)∩Pj

E

{(
p(C)− N(C)

n

)
+
1[C∈L]

}

≤
∞∑
j=0

∑
C∈B(α)∩Pj

c2(γ, α)
j/2

√
p(C)

n

≤ 1√
n

∞∑
j=0

c2(γ, α)
j/2

√
|Pj | ·

∑
C∈Pj

p(C)

(by Jensen’s inequality)

≤ 1√
n

∞∑
j=0

c2(γ, α)
j/2
√
(5 · γ−2/3B1/3n1/3 + 1) · 2j

(by Lemmas 9 and 10)

≤

√
5 ·B1/3n1/3 + 1

γ2/3n
· 1

1−
√
2c2(γ, α)

=

√
5

1−
√
2c2(γ, α)

· B1/6

γ1/3n1/3
+ o(n−1/3),
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and the claim follows since α was picked arbitrarily in (0, 1− 1/γ). ■

Theorem 2 is a direct consequence of propositions 13 and 15.

8. Conclusion

Within the same framework, we can replace the histogram on each set of

the partition by a linear estimate with some parameters (slope and intercept

at the center point of an interval, for example) only depending upon N1, N2,

and λ(C). Such estimates should adapt better to the smoothness of the density

and should be studied for the larger class of bounded monotone densities with

bounded first derivative.

Estimates of complexity κ > 2 could lead to nice and simple estimates for

convex, concave, log-convex and log-concave densities. For a concave density,

for instance, we sketch how one could decide to split a fixed interval C. Consider

four equal–sized sub-intervals Ci, 1 ≤ i ≤ 4, of C, and let Ni be the cardinality

of Ci. If C is not split, we estimate f on C by a linear segment with a slope

proportional to (N3 + N4) − (N1 + N2). If the true density were linear on C,

then (N2+N3)− (N1+N4) would be of stochastic order
√∑

i Ni, for otherwise

it would be positively biased. So, a natural splitting rule would be to split C if

(N2 +N3)− (N1 +N4) > γ

√∑
i

Ni

for a fixed design parameter γ.

Finally, one can easily picture extensions to [0, 1]d for monotone densities

(e.g., monotone in each coordinate when all others are fixed). Splitting decisions

would then depend upon the 2d cardinalities of all equal quadrants that partition

a cell C. The splits can be binary (along a preferred dimension) or 2d-ary. In

the latter case, one would obtain random quadtrees.

9. Appendix A1: proof of Theorem 1

Following Devroye and Györfi (1985, [8]) and Devroye (1987, [7]), it suffices

to show that for all Lebesgue points x with f(x) > 0 that fn(x) → f(x) in

probability. Here we use the fact that almost all x on [0, 1] are Lebesgue points

with f(x) > 0 (Wheeden and Zygmund, 1977 [16], 2015 [17]), and recall that x

is a Lebesgue point for f if

lim
r↓0

sup
y:x−r≤y≤x+r

1

r

∫ y+r

y

f = f(x).

We fix such an irrational Lebesgue point x in (0, 1), and introduce the notation

C0, C1, . . . for the intervals containing x at levels 0, 1, . . . in the binary tree.
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Thus, C0 = [0, 1], C1 is either [0, 1/2] or [1/2, 1], and so forth. Let Ni = N(Ci)

be the cardinality of interval Ci. Let K be the level at which we find the first

leaf on the path to x in the binary tree. Also, let U0, U1, . . . be the sequence

of uniform random variables used for the randomized splitting at each level. In

other words, CK is the first un-split interval, i.e., the sole leaf interval on that

path. We first show that K →∞ and n/2K →∞ in probability as n→∞.

Note that for any large but fixed integer k, we have for any integer m,

P{K ≤ k} ≤ E

{
k∑

i=0

φ(Ni)

}
≤ (k + 1)E {φ(Nk)}

≤ (k + 1)P{Nk ≤ m}+ (k + 1)φ(m).

We can pick m large enough to make the last term as small as desired. Since Nk

is binomial (n, pk), where pk =
∫
Ck

f , we have P{Nk ≤ m} = o(1). Therefore,

K →∞ in probability.

Next, for any large but fixed integer k, we have for any positive integer m

P{n/2K ≤ k} = P{K ≥ log2(n/k)}

≤ E

 ∏
i<log2(n/k)

(1− φ(Ni))


≤ E

exp

− ∑
i<log2(n/k)

φ(Ni)


≤ E

exp

− ∑
log2(n/(km))≤i<log2(n/k)

φ(Ni)


≤ E

{
exp

(
− log2(m)φ

(
N⌊log2(n/(km))⌋

))}
.

Now,

φ (Ni) ≥ φ(ℓ)

if Ni ≤ ℓ, where i = ⌊log2(n/(km))⌋. Thus,

P{n/2K ≤ k} ≤ P{Ni > ℓ}+ e− log2 m×φ(ℓ).

By the Lebesgue density theorem, 2i
∫
Ci

f → f(x) as n (and thus i) tends to

∞. Therefore, there exists a finite constant c such that supi
∫
Ci

f ≤ c/2i, and

thus,

E{Ni} = n

∫
Ci

f ≤ cn

2i
≤ 2ckm.
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By Markov’s inequality,

P{n/2K ≤ k} ≤ E{Ni}
ℓ

+ e− log2 m×φ(ℓ)

≤ 2ckm

ℓ
+ e− log2 m×φ(ℓ).

We take ℓ = m2 and pick m large enough to make the first term small. Since

log2(m
2)φ(m2)→∞, the second term can also be made as small as desired by

picking m large enough. We conclude that n/2K →∞ in probability.

Let us denote the histogram estimate at x based on the i-th level interval

Ci by

gi(x) = 2i
Ni

n
.

For ϵ > 0 and integer k, we have

P {|fn(x)− f(x)| > ϵ}

≤ P{K ≤ k}+P{K ≥ log2(n)− k}

+P
{
∪log2(n)−k
i=k [|gi(x)− f(x)| > ϵ]

}
.

By choice of k, the first term can be made as small as desired, while the second

term is o(1). The third term is controlled by the union bound,

log2(n)−k∑
i=k

P{|gi(x)− f(x)| > ϵ}.

Note that

|E{gi(x)} − f(x)| =
∣∣∣∣2i ∫

Ci

f − f(x)

∣∣∣∣ ≤ ϵ

2

when k (and thus i) is large enough. Using V to denote the variance, we have

V{gi(x)} =
22i

n2
V{Ni}

≤
22i
∫
Ci

f

n

≤ 2i(f(x) + ϵ/2)

n
.

So, by Chebyshev’s inequality,

log2(n)−k∑
i=k

P{|gi(x)− f(x)| > ϵ} ≤
log2(n)−k∑

i=k

P{|gi(x)−E{gi(x)}| > ϵ}

≤ 4

ϵ2

log2(n)−k∑
i=k

V{gi(x)}

≤ 4

ϵ2

log2(n)−k∑
i=k

2i(f(x) + ϵ/2)

n

≤ 8(f(x) + ϵ/2)

2kϵ2
,
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and this is as small as desired by picking k large enough. This concludes the

proof of Theorem 1.

10. Appendix A2: proof of Lemma 9

List the unbalanced nodes ofAℓ in order from right to left, where the leftmost

node is that for which the left interval endpoint is the smallest. Denote this list

{Ci}ki=1, where k = |Aℓ \ B|.
By the monotonicity of f , we have p(C0) ≤ p(C1) ≤ · · · ≤ p(Ck), and

we can therefore write p(Ci) =
∑i

j=0 qj for every i, where q1, . . . , qk are non-

negative. Since every Ci is unbalanced, we have p(C ′
i) − p(C ′′

i ) > γ
√
p(Ci)/n

which, combined with the fact that p(Ci) = p(C ′
i) + p(C ′′

i ), yields 2p(C ′
i) ≥

γ
√

p(Ci)/n+ p(Ci) and in turn

p(Ci+1) ≥ γ

√
p(Ci)

n
+ p(Ci)

for any 1 ≤ i ≤ k. We use this fact to prove that for any 1 ≤ i ≤ k, qi ≥
(γ2/4n)(i + 1). If i = 0, we have q0 = p(C0) ≥ γ2/n ≥ γ2/(4n). Now assume

that the claim regarding qi holds for some i, then

qi+1 = p(Ci+1)− p(Ci)

≥ γ

√
p(Ci)

n

≥ γ√
n

( γ2

4n

(i+ 1)(i+ 2)

2

)1/2
≥ γ2

4n
(i+ 2)

and the claim follows by induction. Therefore,

p(Ck) =

k∑
i=1

qk ≥
γ2

4n

k∑
i=1

(i+ 1) ≥ γ2k2

8n
,

and the first part of the lemma follows since p(Ck) ≤ B/2ℓ. The upper bound

on |Bc| follows from the fact that it is no larger than 2ℓ
∗
+
∑

ℓ≥ℓ∗ |Aℓ\B|. Lastly,
an identical argument yields the upper bound for |(B(α))c|.

11. Appendix A3: proof of Lemma 10

We begin by noticing that all but finitely many nodes of T∞ are in B. It

follows that for any i ∈ Z>0, |Pi| ≤ |Pi+1| since any node in Pi is the root of a

tree that contains at least one balanced node in Pi+1.

Next, we examine how switching a balanced node with its parent affects the

various |Pi|’s. Let C be an arbitrary balanced node of T∞, D be its parent
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C
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Figure 5. Switching a balanced

node with its parent.

Balanced

Unbalanced

Figure 6. Tree for which |Pj |
is maximized (for all j).

and a be the number of balanced ancestors of D. We may assume that D

is unbalanced since switching D and C would leave the tree unaffected. Our

operation is depicted in figure 5. If we let T be the sub-tree of T∞ rooted at

C’s sibling, then switching C and D applies the map

|Pj | 7→

|Pj | if j ≥ a

|Pj | − |Pj(T )|+ |Pj+1(T )| if j < a

to every |Pj |.
Since |Pj(T )| ≤ |Pj+1(T )| for any j, this map’s output is always greater

than or equal to |Pj |. In other words, the node configuration that maximizes

|Pj | for every j is such that all the unbalanced nodes are pushed to the top.

This forms a tree of unbalanced nodes whose leaves are the roots of full, infinite

binary trees where all nodes are balanced.

In this configuration, it is clear that |P0| ≤ (|Bc|+1|) and that |Pj+1| ≤ 2|Pj |,
from which the lemma follows.

12. Appendix A4: proof of Lemma 11

It suffices to show that for all pairs of disjoint intervals C1, C2 ⊆ C such that

C1 ∪ C2 = C∫
C1

(
f − f(C1)

)
+
+

∫
C2

(
f − f(C2)

)
+
≤
∫
C

(
f − f(C)

)
+
.

The lemma then follows by induction. Without loss of generality, assume that

C = [0, 1].

Let C1, C2 be an arbitrary such pair and note that f(C2) ≤ f(C) ≤ f(C1)

since f is decreasing. Let x1 := sup{x : f(x) ≥ f(C1)}, x2 := sup{x : f(x) ≥
f(C2)}, and let A :=

∫ x1

0
(f − f(C1)) and B :=

∫ 1

x2
(f − f(C2)) as depicted in

figure 4. Then it is obvious that

A+B =

∫
C1

(
f − f(C1)

)
+
+

∫
C2

(
f − f(C2)

)
+
≤
∫
C

(
f − f(C)

)
+
.
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13. Appendix A5: proof of Lemma 12

Let C ∈ Tn be arbitrary. Recall that N(C) is the number of data points

lying in C (similarly, N(C1) and N(C2) are the number of points lying in the

left/right halves of C respectively). Notice that N(C)
L
= Bin(n, p(C)) (where

L
=

denotes equivalence in law and Bin(n, p) a binomial n, p). For C to be a leaf,

we must have decided not to split its node. Therefore

P{C ∈ L} ≤ P
{
N(C1)−N(C2) < γ

√
N(C)

}
≤ sup

m≥np(C)/2

P

{
N(C1)−N(C2) < γ

√
N(C)

∣∣∣ N(C) = m

}
+P

{
|N(C)− np(C)| > np(C)/2

}
. (16)

A simple application of Chebyshev’s inequality gives

P
{
|N(C)− np(C)| > np(C)/2

}
≤ 4(1− p(C))

np(C)
≤ 4

np(C)
.

Next, given N(C) = m, N(C1)
L
= Bin(m, p(C1)/p(C)). Note that

p(C1) + p(C2) = p(C)

p(C1)− p(C2) = γ

√
2p(C)

n
+ ξ(C)

so that
p(C1)

p(C)
=

1

2
+

1

2
γ

√
2

np(C)
+

1

2

ξ(C)

p(C)
.

Using these observations and the fact that N(C1)−N(C2) = 2N(C1)−N(C),

we find that

P

{
N(C1)−N(C2) < γ

√
N(C)

∣∣∣ N(C) = m

}
= P

{
Bin

(
m,

p(C1)

p(C)

)
−m

p(C1)

p(C)
< γ

√
m

2
− γ

m

2

√
2

np(C)
− m

2

ξ(C)

p(C)

}

≤ P

{
Bin

(
m,

p(C1)

p(C)

)
−m

p(C1)

p(C)
< −m

2

ξ(C)

p(C)

}
if m ≥ np(C)/2, which is the case in the supremum taken in (16). Using the

Chebyshev-Cantelli inequality (see Lugosi, Massart and Boucheron, 2013 [10])

and the fact that the variance of a binomial n, p is at most n/4, we have

P

{
Bin

(
m,

p(C1)

p(C)

)
−m

p(C1)

p(C)
< −m

2

ξ(C)

p(C)

}

≤ m/4

m/4 + m2ξ(C)2

4(p(C))2

≤ 2p(C)

2p(C) + nξ(C)2

(
since m ≥ np(C)

2

)
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and the lemma follows.

14. Appendix A6: proof of Lemma 14

Using the Cauchy-Schwarz inequality, we write

E

{
1[C∈L]

(
p(C)− N(C)

n

)}
≤
√
P{C ∈ L,N(C) ≤ np(C)} ·

√
p(C)

n
.

We claim that

P{C ∈ L,N(C) ≤ np(C)} ≤ c2(γ, α)
j ,

where c2(γ, α) is defined in the lemma’s statement. This bound does not depend

on the level ℓ at which the node is located. To prove this, it suffices to show

that for any balanced node C ∈ B(α), if N(C) ≤ np(C),

P{N(C1)−N(C2) > γ
√

N(C) | N(C)} ≤ c2(γ, α),

since consecutive splits are independent given N(C). For simplicity, temporarily

denote N(C), N(C1) and N(C2) by N,N1 and N2 respectively, and similarly

for p, p1, p2. Then observe that

P
{
N1 −N2 > γ

√
N
∣∣∣ N}

≤ P

{
N1 −N2 −N

(p1 − p2
p

)
> γ
√
N −N

(p1 − p2
p

) ∣∣∣∣ N}
≤ 1[N(p1−p2)/p≥γα

√
N ] +P

{
N1 −N2 −N

(p1 − p2
p

)
> γ(1− α)

√
N

∣∣∣∣ N}

≤ 1[
√
N>(γα)(p/(p1−p2))]

+P

N1 −N2 −N · p1−p2

p√
4N · p1

p
p2

p

> γ(1− α)
p/2
√
p1p2

∣∣∣∣ N
 .

By definition of B(α), we have p1 − p2 < (γα)
√

p/n. If the indicator in the

expression above were one, this would imply that
√
N >

√
np which cannot be

true since N ≤ np, hence the indicator is equal to 0. As for the probability

term, notice that √
4N · p1

p

p2
p

is the conditional variance of

N1 −N2 −N · p1 − p2
p

,

which is a random variable with mean 0 and unit variance. Noting that p/2 ≥
√
p1p2 and that γ(1 − α) > 1 by assumption, we can apply the Chebyshev-

Cantelli inequality to get

P

N1 −N2 −N · p1−p2

p√
4N · p1

p
p2

p

> γ(1− α)
p/2
√
p1p2

∣∣∣∣ N
 ≤ 1

1 + (γ − αγ)2
def
= c2(γ, α)

and c1(γ, α) < 1/2.
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15. Appendix A7: proof of corollary 3

The decision to split an interval containing k points can be made in order

log2(k) time, which is the time taken to determine which points lie on the left

and right halves of the interval, respectively, via binary search. It therefore

suffices to show that the expected number of leaves of the tree generated by

the algorithm is of the order of n1/3. Letting L denote the tree’s leaf set and

α = (γ − 1)/2γ, we have

E{|L|} ≤ E
{∣∣(B(α))c∣∣}+E

{∣∣L ∩ B(α)∣∣}
= E

{∣∣(B(α))c∣∣}+ ∞∑
j=0

∑
C∈B(α)∩Pj

E
{
1[C∈L]

}
.

The first term is O(n1/3) by Lemma 9 and the second by the proofs of Propo-

sition 15 and Lemma 14.
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l’estimation. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Ge-

biete, pages 181–237, 1983.

[7] L. Devroye. A Course in Density Estimation. Boston, Birkhäuser Verlag,
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