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1. Introduction.

A uniform random recursive tree (or URRT) on n nodes is a tree recursively con-
structed by letting the i-th node pick its parent uniformly and at random from among
the first ¢ — 1 nodes. A uniform random recursive dag (or URRD) on n nodes starts this
process only at node m + 1, so that the first m nodes are roots. Furthermore, the i-th
node picks r nodes uniformly from among the first : — 1 nodes to be its “parents”, thus
creating a directed acyclic graph. The object of this note is to study the maximal degree
in these structures, as well as in certain subtrees rooted at the k-th node.

Na and Rapoport (1970), Moon (1974), Gastwirth (1977), Meir and Moon (1978),
Najock and Heyde (1982), Dondajewski and Szymanski (1982), Gastwirth and Bhat-
tacharya (1984), Devroye (1987, 1988), Szymanski (1987, 1990), Mahmoud (1992), Mah-
moud and Smythe (1991), and Pittel (1994), have studied the URRT in some detail. A
URRT of course is just a URRD with m = 1. Dags model expression trees in which the
symbols are the roots and the mathematical operators correspond to internal nodes. They
also model PERT networks, and represent partial orders in general. In the latter context,
random dags, different from the ones studied here, were suggested by Winkler (1985) and
Bollobés and Brightwell (1991). Key properties are obtained in these papers and by Bol-
lobéds and Winkler (1988) and Frieze (1991). In our model, both the number of roots (m)
and the number of parents (r) can be controlled to yield a rich family of random dags.

The degree of a node is the number of children. In a URRD, the number of parents
is m for all non-root nodes, and 0 for the roots. In a URRT, the degree sequence has been
studied by Na and Rapoport (1970), Gastwirth and Bhattacharya (1984), and Mahmoud
(1992). Let M, be the maximal degree in a URRT or URRD. Szymariski (1987, 1990)
showed that for the URRT,

<
0gy N

lim sup

Let T denote a URRD or URRT, and T}, be the subtree rooted at the k-th node. Quantities
studied in this note include M,,, the maximal degree in T, and M, s, the maximal degree
in T. Both are shown to be about a constant times logn. As the URRT model is a
natural asymptotic growth model, the strong convergence of various random parameters
does matter. For that reason, we will spend some time on almost sure convergence results.
Although some results for the URRT follow from those for the URRD, the proofs for the
URRT are more transparent, and will be given separately.

THEOREM 1. In a URRT, M, /log,n — 1 almost surely and lim,_,,, EM,/log,n = 1.
For a fixed integer k, M, 1/ log, n — 1 almost surely.



THEOREM 2. In a URRD, for fixed integers r and m with 1 < r <m,
M,

lim —— =1 almost surely.
n—00 10g1+1/r n

REMARK. If we define a random graph on n nodes by choosing n — 1 edges at random
from the n(n —1)/2 possible edges, then the maximal degree is in probability asymptotic
to logn/loglogn. This follows from arguments used in hashing (Gonnet, 1981; Devroye,
1985); see also Bollobés (1985, p. 72). Moon (1968) established a similar result for uniform
labeled trees, in which each of the n" 2 trees is equally likely. Szymanski (1987) showed
that for a nonuniform random recursive tree in which a node is selected with probability
proportional to its degree, EM,, > ED; ~ 2\/7%. In all these examples, the difference
with the URRT is quite remarkable.

2. Proof of Theorem 1.

Let R; be the node among {1,...,7 — 1} that is the parent of node j. Let D; be the
degree of node 7 in the URRT. We have

D=3 Ip-ipyi2 1.
Jj>i

By definition, Ry, ..., R, are independent. Also, for 7 > 1,

1
P{R;=i}=— 1<i<j

Denoting H, = ) 7_,(1/7), we have
ED;=H,_,— H;, 1 <i<mn,
and
Var{D;} = z”: L>< 1—L < ED;
Y-l j-1) ="
Jj=i+1
By Chebyshev’s inequality, we conclude that for all € > 0,

>e}:0,

where 0 < w, = o(n). The first few degrees are about logn. This establishes that
liminf EM, /logn > 1, which unfortunately, is not tight. We will be able to obtain
Theorem 1 via the following device.

D;
lim sup P {‘ -1

n—o0 i<wn EDZ




LEMMA 1. Let a, be a sequence of positive numbers, and let A,; be the event [D; > a,].

Then
Zi:l P{Ani} '
+ Z?:l P{Am‘}

ZP{AM} > P {UyzlAni} > 1
=1

Also,
0 iflim, 00y i P{A,} =0

lim P {Mn el an} { 1 Ifllmn—mo Z?:l P {Am} =00

n—00

PrROOF. The first chain of inequalities is obtained via Bonferroni’s bound and by means
of the Chung-Erdés inequality (Chung and Erdos, 1952; see also Dawson and Sankoff,
1967),
Am} > (z?:l P {Am})2 '

Z?:l P {Am} + Ziyéj P {AniAnj}
As we will show further on,

P{UL,

for all ¢ # 7, so that
T P{A,;})?
P T >3 1V S
Zi:l P {Am} + (Zi:l P {Am}) - Zi:l(P {Am})
Z?:l P {Am}
1+ Z?:l P {Am}
To show the former inequality, we note that the multinomial distribution is negative

orthant dependent (see Joag-Dev and Proschan, 1983, for definitions and a discussion). In
particular, if (X7, ..., X}) is a multinomial random vector, then we have for all xq, ..., g,

i=1
Now, assume that 7 < j. Then, with T = ZLHI Iig—i, V = ZZ:].H Iigo—i)y W =
EZ:].H Iig,—j), and a, integer-valued, we have
P{A,A,;}=P{T+V >a, W >a,}
<P{T+V >a,}P{W >a,}
=P {4} P {4},
where we used the fact that 7" is independent of (V, W), and that (V,W,n—j -V —W)is

a multinomial random vector. This establishes the first chain of inequalities. The second
half of Lemma 1 follows from the first part and the fact that [M,, > a,] = Ul A, O

We first show the first statement of Theorem 1 with “almost surely” replaced by
“in probability”. Clearly, we need only verify the limits of the sums shown in Lemma 1,
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first for a,, = [clogn] with ¢ > 1/log2, and later with ¢ < 1/log2. In the second part,
we obtain strong convergence. In the third part, we deal with A, .

PROOF OF THE WEAK CONVERGENCE: UPPER BOUND. We will begin by showing

g PPz ) =0

where a,, = [clogn| with ¢ > 1/log 2. We first obtain the following exponential inequality:

P {Dz > an} < 6clogn(lf'u,Jrlog('u,))

where u = (H,—1 — H;)/(clogn). Indeed, for ¢t > 0, by Markov’s inequality,

P{D; > a,} <E{e"i "t}
S E {etDi—tclogn}
< etelogn H 1— L + ¢ (by independence)
B j>i j—b g1

< o telog n+y ;5 (ef=1)/(5-1)

= e teloant (e (Hnoa—H:) (j > 9),

The last upper bound is minimal when ¢ is the solution of ¢! = clogn/(H, 1 — H;).
Resubstitution yields the bound. Since u is a decreasing function of 7, we note that

> P{D; >a,} <nP{D; >a,}
1<n¢

< neeclogn(1+0(1))(17%+10g(%))
— eflogn(o(l)Jrlchrclogcfe)
and this tends to zero for € < 1 — ¢+ clog(c), so the inequality can be satisfied for all €
small enough. Next, we have

> P{D;>a,} <nP{Dpu-e > an}
i>nl—e

neclog n (1+o0(1))(1—e/c+log(e/c))

<
<e logn (1+0(1))(—ct+e—clog(e/c)—1)

which tends to 0 provided that € < c¢/e*—again, this is satisfied for all € small enough.
The first part of the theorem follows if we can show that for all ¢ > 0 small enough we
have

lim. > P{Di>a,}=0
negignl—s



If we set i = n”, with 3 € [, 1—¢], then u = (1—f3)/c+o0(1), where the o(1) term does not
depend upon 3. Also, for n® < y,z < n'~¢ Jy—2z| < 1, we have |¢(u(y))—¢(u(2))] < 1/enf,
where ¢(s) ©y s+ log(s). Thus, by the uniformity of this estimate,

nl—e

Y. P{Di>an} <o(l) +(1+0(1)) / ectosn(1=¢ (=558 Hos 2 (1-555)) g

nsgignl—e ne
By the transform v =1 — logz/logn, we can rewrite the last integral as
1- 1-
/ ‘ eclog n(l—v/c-l—log(v/c))nl—v IOg ndy = nl—l—c—clogc logn/ ‘ nclogv—?v dv
€ €
— 2(1—e)1

_ n'te dogclogn (i=atoen wClogne*wdw
- (2 log n)1+clogn )

nl—l—c—clogc IOg n
- (2 log n)1+clogn

~ntmeloe2 | /relogn/2

where we used the gamma integral and Stirling’s formula. The last expression tends to

elogn

I'(1+ clogn)

zero with n.

PROOF OF THE WEAK CONVERGENCE: LOWER BOUND. Assume next that ¢ < 1/log?2.
Define b,, = b = [dlogn|, where 6 € (0,1/log2—¢) is an arbitrary small positive number.
Furthermore, € > 0 is a fixed small number such that 2¢ < ¢+ < 2(1 — €). We consider
an integer i with n¢ < i < n' ¢ and assume that n is so large that b(i — 1) > 4 for all
such i. Let By, B, ... be independent Bernoulli random variables with EB; = 1/(j — 1),
and let Py, Ps, ..., be independent Poisson random variables with EP; = 1/(j — 1). Set
a = a, = [clogn]. In trying to derive a lower bound for P {D; > a}, we cannot use
the standard bounds on the closeness of the distribution of a sum of Bernoulli random
variables to a Poisson random variable (see Le Cam (1960); see Deheuvels and Pfeifer
(1986) for the most recent references), as these bounds are too large. However, in a rich

enough probability space, there exists an embedding such that

Di=3) Ip-i)=) B

j>i §>i
> Z Pj[[PjSI]
j>t
=Y Pi=) Pilipsy
j>t j>i
W, - Z,.

To see this, let U be uniform [0, 1], and define B; and P; both by the probability integral
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transform. Thus, B; = 0 if and only if U < 1 — p. This implies that U < e * and thus
that P; = 0. If B; = 1, we trivially have B; > PjIp,<i;. Repeat this for all j. Note
that W; is Poisson with parameter y & >.isil/(i —1) = Hy—y — H;. From the trivial
inequality

P{D;>a} >P{W;>a+b} -P{Z; > b} ,

we note that it suffices to show that

Jim 3 P{Wizasb)=oo. (1

and

. L
lim <Z<:1P{Zz_b} 0, (2)

to conclude by Lemma 1 that im P{M,, > a,} = 1.

VERIFICATION OF (1). If V; is Poisson with parameter log((n —1)/(i — 1)), then
uniformly over our i,

P{W,>a+0b} >P{V;>a+b}

. 1\ -1
2(a—i—b)!lOg+b<z—1> -1
Clog™(n—1)i—1 log(i — 1)
~ (a+b)! n-1 (1 log(n — 1))
_ (L=o(1))log"**(n) i log(i) \ “*"
N (a+0b)! n <1 B log(n)> '
Thus,
(1 —o(1))log""(n) (™ "& ( log(z)\""
X pwzesn = = 00 (ong) e
_ (1=o(1))log"**(n) [U=ten w \"" L,
T (a+b) /l ! <1og<n>> ¢
a+b(n) (a+ b)
( b)l 2a+b+1 logaer( )
= ST

In this chain, we used the weak law of large numbers for the gamma distribu-
tion (the probability that a gamma (a + b+ 1) random variable takes values in
[2elogn, 2(1 — €)logn| tends to one when 2¢ < ¢+ 6 < 2(1 —¢)). It should be
noted that the lower bound tends to co when ¢+ d < 1/log 2.
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VERIFICATION OF (2). We will use Chernoft’s exponential bounding technique
to bound P {Z; > b}. First, observe that

EZi:Z(EPj—P{szl}):Zj%l (1—6—%1) 52<ji1>25ii1-

§>i §>i §>i

Since b(i — 1) > 4, we see that
P{Z >b} <P{Z —EZ >b/2} <e 2 E{% B},

We will abbreviate the Poisson parameter 1/(j—1) of P; to u. The last expectation
may be written as a product over j > i of expected values of the form

E {et(Pj 7I[pj:1]7EPj +P{P;j=1}) }

<E {6t(Pj*1[Pj:1])}

Thus,
P {Zz > b} < 6_7+Zj>i(]_1)72@2t
th | e2t
< e 27i-1

< <;)>b/4 (if b > 8e)

2(nf—1
<n~t (ifn>2).
Thus, when n > 2 is so large that b > 8e,
Z P{Z, > b} < nl-dlosn/t
ne<i<nl-e
This is o(1), as required. The weak convergence of M, /log,n to 1 thus follows. This

implies that liminf, .., EM,/log,n > 1, which together with Szymanski’s result (or
directly via tail bounds for M, given above) shows that EM,/log,n — 1 as n — oc.



PROOF OF THE STRONG CONVERGENCE. The monotonicity of both M, and logn are
used in the inequalities

Mzn

. . Mn Mn M2n+1
inf ——— < inf < sup < sup )
N<nlog2ntl T av<nlogn T ovg, logn T n<, log2n

To show that

n

lim sup almost surely ,

nooo logn — log?2

we need only show

. on 1
lim sup < almost surely .
n—soo Nlog2 ~ log2

From the tail bounds derived above, for any ¢ > 1/log2, there exists an ¢ > 0 small
enough such that for all n large enough,

P{ Mon S C} < 26_%(n_1)10g2 + V27rcn10g2 e(l—clog2)nlog2 )

nlog?2 2

As this is clearly summable in n, we may apply the Borel-Cantelli lemma to conclude that
lim sup,,_, ., M,/logn < 1/log2 almost surely. From exponential bounds derived earlier
and the association inequality of Lemma 1, for any ¢ < 1/log?2, there exists an ¢ > 0
small enough such that for all n large enough,

P Mo <cp=1—-P Mo >c
nlog 2 nlog 2

2 P{D; > cnlog2}
1+ 37 P{D; > cnlog2}
1
< .
=11

This too is a summable series. By the Borel-Cantelli lemma,

liminf —% >
n—oo logn ~ log2

almost surely.



PROOF OF THE LAST PART OF THEOREM 1. Here we use a simple result on Pédlya
urns that may be found in Athreya and Ney (1972). It has been used in the analysis of
uniform random recursive trees in other contexts by Mahmoud and Smythe (1991). As
we grow our URRT and follow |T}|, the size of the URRT, we observe that |T|, for n > k,
follows a Pdélya urn process: at n = k, the urn contains £ — 1 black balls and one white
ball, the white ball corresponding to node k. Each subsequent node picks a previous node
uniformly at random. Therefore, we may model this by picking a ball from the urn at
random, and throwing two balls back of the same colour. It is known that the proportion
of white balls tends almost surely to a beta (1,k — 1) random variable when &k > 1:

lim @

n—oo 1N

where Y is beta (1,k — 1). Since 0 < Y < 1 with probability one, we have

log |'T;
lim M = 1 almost surely .
n—oo logn

=Y almost surely .

The next observation is that 7} grows as a URRT in its own right. Hence, on [|T;| — oo,

we have
M, 1

%
log|Ty|  log2

almost surely ,

and thus,
Mn,k o

im =
n—oo logn  log2

almost surely .

3. Proof of Theorem 2.

For ¢ > j, the indicator of the presence of a directed edge between “child” ¢ and
“parent” j is denoted by R;;. We define R; as the vector (Rji,...,R;j_1). Clearly,
{R;, j > m} are independent.

LEMMA 2. Let a > 0 be fixed. Define the degree of the i-th node,
Dpi= > Rji,
j=i+1
and the event A,; = [Dy; > a|, where a > 0 is a given number. Then, for k > i > j > m,
Ry and Ry; are negatively orthant dependent, i.e., for any increasing functions f and g,

E{/(Rri)g(Brj)} < B{f(Ryi) }E{g(Ry;)} -

Furthermore, D,; and D,; are negatively orthant dependent. In particular, for any a > 0,

P{A,Ay;} <P{A4,}P{4,;} .
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Proor. Clearly,

E{/f(Rri)g(R;)}
— FU0) ) + G Da(0) + £l = + 090 = E =Y
< (pro+ 5210 (Fom+ - 00)
= E{f(Rei)}E{g(Rx;)} ,

because 0 < (k —7)r(f(1) — £(0))(g(1) — g(0)). Also, the pairs (Ry;, Ry;) for k > i are
independent. Hence, a straightforward argument shows that ), . Ry; and ), _, Ry; are
negatively orthant dependent. By conditioning, the addition of an independent component
ZZ:;’H Ry; does not change matters, and we note that D,; = Y, . Ry and Dy; =
Y ks i Ry are negatively orthant dependent as well. (]

We note at this point that Lemma 1 remains formally valid if we define A,; =
[Dyi > ay). The proof of Theorem 2 proceeds along the lines of the proof of Theorem
1. Strong convergence is obtained from tail estimates that were used to prove weak
convergence by applying the Borel-Cantelli lemma to the subsequence |(1+1/7)"|, where
n > 1, and employing simple monotonicity arguments. Thus, we only consider upper
bounds for

ZH:P {Dm 2 an} )
=1

when a, = (1 + €)log, /. n, and lower bounds for the same expression with a, = (1 —
€)1og; 1/, n. The upper bound should tend to zero, and the lower bound should tend to
oo in order to be able to deduce that

M,

———— — 1 in probability .
10g1+1/r n

11



AN UPPER BOUND. We proceed as in the proof of Theorem 1. Take a, = [clogn] with
¢ > 1/log(1+ 1/r), and define u = r(H, 1 — H;)/(clogn). Note that Dy; = >, ; Rji,
where Rj; is Bernoulli (r/(j — 1)). Thus, for i > m, we have, along the lines of the proof
of Theorem 1, for ¢t > 0,

P{D,; > a,} <E {6tD”i_t“”} (by Markov’s inequality)
S E {etDm-ftclogn}
¢
< e—tclognH <1 — "4 .re ) (by independence)
L1 j—1 j—1
7>t
eftclogn+zj>iT(etfl)/(jfl)

— —tclog n+tr(et—1)(Hp—1—H;)

IN

= ¢clogn(t=u(e"=1) (definition of u)

— eclogn(l—u-i—logu) (

take t = —logu)

where we assume that n and i are such that u < 1 (i > n'~%" will do; since r log(141/r) <
1, this is satisfied for all 7 and all n large enough). We take € > 0 very small, and consider
three ranges for our sum. Since u is a decreasing function of 4, and since the value of u
at i =m is r/c+ O(1/logn), we note that

Z P {Dm Z an} S n‘P {Dnm Z an}
m<i<ne
< neeclogn(17u+10gu) (at i = m)

< neeclog n(l—(r/c)+log(r/c))+O(1)

< Onetemr+elos(r/o) (for some constant C') .
Note that the exponent of n is negative for all € > 0 small enough. Similarly,

Y P{Dui > a,} <nP {Dyp-ey > a,}

i>nl-e
< neclogn(l—u—l—logu) (at i = [nlfe'l)

— n60(1)+10g n(c—re+clog(re/c))

(since the value of u at i = [n'~¢] is re/c + O(1/logn))

< Opltemretelosre/o) (for some constant C') .

Once again, it is easy to verify that the exponent of n is negative: first of all, note that
¢ >1/log(1+1/r) > r. Then, observe that the exponent is a unimodal function of ¢ with
a maximum at ¢ = re. Thus, if we replace ¢ in the exponent by r, we necessarily obtain
an upper bound, which is 1 4+ 7 — re + rloge < 0 when € < e~("+1/7) The sought upper
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bound follows if we can show that for all € > 0 small enough we have

lim > P{Dn>a,}=0.
negignl—s

If we set i = n” with 8 € [¢,1 — €], then we note that u = r(1 — 8)/c + o(1), where the

€

o(1) term does not depend upon 3. Also, for n¢ < y,z < n' ¢ |y — 2| < 1, we have
lp(u(y)) — p(u(2))| < 1/enc, where ¢(s) ©y s+ log(s). Thus, by the uniformity of this
estimate,

nlff
> PDuza) <o)+ (o) [ e b k) gy,

€
ne<i<pl-—e n

By the transform v =1 — logz/logn, we can rewrite the last integral as

1—e
/ eclog n(lfvr/c+log(vr/c))n17v IOg ndv
€
1—e
— nclog r+1+c—clogclogn/ Uclog ne—(l—l—r)v logn dv
€

oo
< nclog r+1+c—cloge log TL/ Uclognef(lJrr)vlogn dv
0

= pelogrtlte=cloge]qg gy (L+r) logn)_Clogn_1 x [(clogn +1)

nclog(r/(1+r))+1 /27rclogn
I+
where we used the gamma integral and Stirling’s formula. The last expression tends to

[

zero with n at a polynomial rate.

A LOWER BOUND. We proceed once again as in the proof of Theorem 1. It suffices to note
the few differences. Set a = a,, = [clogn]| with ¢ < 1/log(1+ 1/r), and set b = [§logn|
where § € (0,1/log(1+ 1/r) —¢). The independent Poisson random variables P; have
parameter r/(j — 1) instead of 1/(j — 1). The definition of W; and Z; is as in Theorem 1.
Using an argument as in Theorem 1, we may prove that

Z P{W; > a, +b,} >n"
ne<i<nl—e
for some 77 > 0 and all n large enough. By the Chernoftf bounding method, it is also easy
to show that

bn (i—1)

P{Z; >0b,} < o~ i (1-log 222 )

for i > n® and n so large that b, > 4r?/(i — 1). Simple calculations then show that for
some 1 > 0 and all n large enough,

Y P{Zizb}<n",

ne Signl—s
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as required.
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