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Abstract

Tries were introduced in 1960 by Fredkin as an efficient method for searching and sorting
digital data. Recent years have seen a resurgence of interest in tries that find applications
in dynamic hashing, conflict resolution algorithms, leader election algorithms, IP addresses
lookup, Lempel-Ziv compression schemes, and distributed hash tables. In some of these
applications, most notably in distributed hash tables one needs to design a well balanced
trie, that is, a trie with the height as close as possible to its fillup level. In this paper
we consider tries built from n strings such that each string can be chosen from a pool of
k strings, each of them generated by a discrete i.i.d. source. Three cases are considered:
k = 2, k is large but fixed, and k ~ clogn. The goal in each case is to obtain tries as
balanced as possible. Various parameters such as height and fill-up level are analyzed. It
is shown that for two-choice tries a 50% reduction in height is achieved when compared to
ordinary tries. In a greedy on-line construction when the string that minimizes the depth
of insertion for every pair is inserted, the height is only reduced by 25%. In order to further
reduce the height by another 25%, we design a more refined on-line algorithm. The total
computation time of the algorithm is O(nlogn). Furthermore, when we choose the best
among k > 2 strings, then for large but fixed k£ the height is asymptotically equal to the
typical depth in a trie, a result that cannot be improved. Finally, we show that further
improvement can be achieved if the number of choices for each string is proportional to
log n. In this case for unbiased memoryless sources highly balanced trees can be constructed
by a simple greedy algorithm for which the difference between the height and the fill-up
level is bounded by a constant with high probability. This, in turn, has implications for
distributed hash tables, leading to a randomized ID management algorithm in peer-to-
peer networks such that, with high probability, the ratio between the maximum and the
minimum load of a processor is O(1).
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1 Introduction

A trie is a digital tree built over n strings (see Knuth (1997), Mahmoud (1992) and Szpankowski
(2001) for an in-depth discussion of digital trees.) A string is stored in an external node of a
trie and the path length to such a node is the shortest prefix of the string that is not a prefix
of any other strings.

Tries are popular and efficient data structures that were initially developed and analyzed
by Fredkin (1960) and Knuth (1973) as an efficient method for searching and sorting digital
data. Recent years have seen a resurgence of interest in tries that find applications in dynamic
hashing, conflict resolution algorithms, leader election algorithms, IP address lookup, Lempel-
Ziv compression schemes, and others. Distributed hash tables (cf. Malkhi et al. (2002) and
Adler et al. (2003)) arose recently in peer-to-peer networks in which keys are partitions across
a set of processors. Tries occur naturally in the area of ID management in distributed hashing,
though they were never explicitly named. One of the major problems in peer-to-peer networks
is load balancing. We address this problem by redesigning old-fashioned tries into highly
balanced trees that in turn produce an O(1) balance (i.e., the ratio between the maximum
and the minimum load) in the partition of processors in such networks. We accomplish this
by adopting the “power-of-two” technique (cf. Azar, Broder, Karlin and Upfal (1994, 1999))
that already found many successful applications in hashing.

We consider random tries over A/, the set of positive integers, where each datum consists of
an infinite string of i.i.d. symbols drawn from a fixed distribution on N'. The probability of the
i-th symbol is denoted by p;. The tries considered here are constructed from n independent
strings X1,...,X,,. Each string determines a unique path from the root down in an infinite
N-ary tree: the symbols have the indices of the child nodes at different levels, that is, the
path for X; starts at the root, takes the Xj;i-st child, then the Xjs-st child of that node, and
so forth. Let IV, be the number of strings traversing node w in this infinite tree. A string
is associated with the node uw on its path that is nearest to the root and has N, = 1. The
standard random trie for n strings consists of these n marked nodes, one per string, and their
paths to the root. The marked nodes are thus the leaves (external nodes) of the tree.

The properties of the standard random trie are well-known (see Szpankowski, 2001): for
example, if D, is the depth of a random leaf (i.e., its path distance to the root), then
D,, ~ 1/Hlogn (in probability) as n — oo, where H = — ). p;logp; is the entropy of the
distribution. This result remains true even if H = co. The mean and variance of D,, were first
obtained by Jacquet and Régnier (1986), Pittel (1985) and Szpankowski (1988).

If H, denotes the height of the trie, i.e., the maximal distance between root and leaves,
then = — 2 in probability as n — oo, where Q = —log (lef) (Pittel, 1985). From
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Jensen’s inequality and (max; p;)? < 3. p? < max; p;, we have
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so that the height is always at least twice as big as the typical depth of a node.

In some applications, it is important to reduce the height as much as possible. Attempts in
this direction include PATRICIA trees (Morrison, 1968) and digital search trees (Coffman and
Eve, 1970, Konheim and Newman, 1973). In PATRICIA trees, all internal nodes with one child
are eliminated. In digital search trees, each internal node is associated with a string, namely
the first string that Vlslts that node (the order of X3,..., X, thus matters). In both cases,
we have Ao — —— 1 in probability (Pittel, 1985) however, “in order traversal” of
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digital search trees does not visit the nodes in sorted order, and internal edges of PATRICIA
trees have cumbersome labels.

The height is not the only balance parameter. In a trie with finite alphabet size 3 (i.e.,
X; takes values on {1,...,3}), the fill-up level F,,, the distance from the root to the last level
that has a full set of 3 nodes, is also important. Pittel (1986) found the typical value of F,
in a trie built over n strings generated by mixing sources. For memoryless sources, 101?5 s

in probability where pyi, = min;{p;} is the smallest probability of generating
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a symbol and h_. = log(1/pmin) is the Rényi entropy of infinite order (Szpankowski (2001)).

This was further extended by Pittel (1986), Devroye (1992), and Knessl and Szpankowski
(2005) who proved that the fill-up level F,, is concentrated on two points k, and k, + 1, where
for asymmetric sources k, is an integer (logn — logloglogn)/log(1/pmin) + O(1) while for
symmetric sources (i.e., sources with p; = py = 1/2) ky, is logy n — log, logy n 4+ O(1). Observe
that in the symmetric case we have loglogn instead of logloglogn.

In many applications, most notably in distributed hash tables (cf. Malkhi et al. (2002) and
Adler et al. (2003)), one needs to construct a well balanced trie, that is, a trie with the height
as close to its fillup level as possible. As the first step we propose the so called two-choice trie
in which we deal with pairs of strings. For every pair of strings we actually insert in the trie
the one that has smaller depth of insertion. We first show in Theorem 1 that

H 3
lognn — E in probability,
resulting in a 25% reduction in height compared to standard tries. To reduce the height further,
we design a refined version of the power-of-two tries in which one selects n strings resulting
in a height that is close to the smallest possible. Call this height HY. We design an on-line
algorithm with total computational time O(nlogn) such that (cf. Theorem 2)
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Interestingly, one can further reduce the height by considering tries with k choices for large
k. We prove in Theorem 5 that if k is sufficiently large (but fixed), then the ratio H;/logn
approaches 1/H with arbitrary precision, a bound that cannot be improved.

As discussed above, tries occur naturally in the area of ID management in distributed hash
tables. In this area of network research, n hosts are assigned one ID in the unit interval [0,1).
The unit interval is wrapped around to form a ring. At any time, the set of ID’s partition [0,1)
into n intervals on the ring. The hosts are organized in the ring, linking to the next smaller
and next larger host, and are in general quite unaware of the ID’s of the other hosts, except
what can be gleaned from traversing the ring in either direction. Hosts are added and deleted
in some way, but ID choices are up to the system. Each interval is “owned” by the host to its
left; see Figure 1. T'wo parameters are of some importance here. The first one is the balance
B,, in the partition, as determined by the ratio of the lengths of the largest to the smallest
interval. Secondly, one must be able to determine quickly which host owns an interval in which
a given ID x falls. The latter is the equivalent of a search operation.

ID’s are represented by their (infinite) binary expansions. Assume, for example, that the n
ID’s are i.i.d. and uniformly distributed on [0,1). See, e.g., Ratnasamy et al (2001), Malkhi et
al (2002) or Manku et al (2003). Then it is a routine exercise in probability to show that the
largest spacing defined by the ID’s is asymptotic to log n/n in probability and that the smallest
spacing is ©(1/n?) in probability (see Lévy (1939) or Pyke (1965)). Thus, B, is asymptotic
to nlogn in probability. Adler et al (2003) and Naor and Wieder (2003) implicitly suggest a
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Figure 1: Two ways of partitioning the space. In both (a) and (b), IDs are randomly generated on
the perimeter. In (a), IDs own the intervals to their left in clockwise order. In (b), IDs own an interval
whose boundaries are determined in some manner, e.g., by virtue of a trie or digital search tree. A
downloader or user generates a random number X on the perimeter and picks the owner of the interval
of X for its job. The objective is to make all intervals of about equal length, so that all hosts receive
about equal traffic

digital search tree approach. Consider first a trie approach (not considered in those papers):
the ID’s are considered as strings in a binary trie (with p; = py = 1/2), and ID’s are inserted
sequentially as in a digital search tree. The binary expansions of the nodes that are associated
with the ID’s are the actual ID’s used (so, each ID is mapped to another one). In the case
of a trie, each leaf is associated with an ID. In the case of a digital search tree, each internal
node is mapped to an ID. That means that the ID’s used have only a finite number of ones in
their expansions. If the height of the trie is H,,, and the fill-up level (the number of full levels
in the trie) is F,, then B, = 2H»=F+00) Since H,, = 2log,n + O(1) in probability and that
F,, = logyn — logy logy n 4+ O(1), hence B,, = ©(nlogn) in probability. However, for a digital
search tree, we have H,, = log, n+ O(1) in probability, while F}, is basically as for tries. Thus,
B,, = O(logn) in probability. This is essentially the result of Adler et al (2003) and Naor and
Wieder (2003).

In an attempt to improve this, Dabek et al (2001) proposed attaching b = logn randomly
generated ID’s to each host, swamping the interval, and then making the ID assignments to
guarantee that B, = O(1) in probability. However, some discard this solution as too expensive
in terms of resources for maintenance.

Abraham et al (2003), Karger and Ruhl (2003) and Naor and Wieder (2003) achieve B,, =
O(1) in probability while restricting hosts to one ID. In another approach, Abraham et al
(2003) and Naor and Wieder (2003) pick logn i.i.d. uniform random numbers per host, and
assign an ID based on the largest interval these fall into: the largest interval is split in half. A
little thought shows that this corresponds to a digital search tree in which logn independent
strings are considered, and only one is selected for insertion, namely the one that would yield
a leaf nearest to the root. The fact that both H,, and F,, are now logy n + O(1) in probability
yields the result. Manku (2004) proposed a digital search tree with perfect balancing of all
subtrees of size logy n. It also has B, = O(1) in probability. A similar (but different) view can
also be taken for the trie version: start with an ordinary binary trie with the modification (see,
e.g., Pittel, 1985) that leaf nodes are mapped to their highest ancestors that have subtrees
with b = logy n or fewer leaves. These ancestors are the leaves of the so-called ancestor trie.
Construct such a binary b-trie and its ancestor trie from n i.i.d. uniform [0, 1) random numbers.
Now, for each ancestor, partition its interval equally by spreading the leaves in its subtree out
evenly when associating ID’s. We know from the Erdés-Rényi law of large numbers that the



maximal k-spacing (with k& = clogn) determined by n i.i.d. uniform [0, 1) random numbers is
©(logn/n) in probability (Erdés and Rényi, 1970; Deheuvels, 1985; see also Novak, 1995). This
would imply that all ancestors are at level logy n —log, logy n+O(1) in probability, and that all
intervals owned by the ID’s are ©(1/n) in probability, from which B,, = O(1) in probability.

The power-of-two choices can be explored in the present context. If we make an ordinary
trie by taking the best of two ID’s as described in this paper, and then map ID’s to the strings
that correspond to the corresponding leaf values, then H,, = logyn + O(1) in probability.
However, it is easy to verify that F), is as for the standard binary trie, so that B, = O(logn)
in probability. Indeed, the largest gap defined by 2n uniform strings on [0, 1] is still ©(logn/n)
in probability.

In this paper, using our findings from multiple-choice tries, we will prove in Theorem 7
that H,, — F,, < 2 with probability tending to one provided the number of choices per datum
is proportional to logn. However, we have two modifications: first, we insist on using tries
instead of digital search trees; and secondly, because of the use of tries, we have to modify the
selection heuristic as picking the largest interval is not good enough for tries. Furthermore, in
Theorem 9 we show that by a natural greedy on-line algorithm one also achieves nearly perfect
balancing with H,, — F,, < 7 with probability 1 —o(1). This has applications for load balancing
in peer-to-peer networks. In particular, the result implies that if in a peer-to-peer network
in which ID’s of the n hosts are organized on a circle and upon arrival, each host is allowed
to try clogn randomly chosen ID’s and choose the one that maximizes its distance from its
neighbors then the maximal load balance ratio remains bounded with high probability.

2 Two-choice tries

In this section we consider the situation when each datum has two independent strings X; and
Y; drawn from our string distribution, and that we are free for pick one of the two for inclusion
in the trie.

2.1 A simple greedy heuristic

We start with analyzing the possibly simplest algorithm when we greedily pick one string
according to a simple rule: choose the string which, at the time of its insertion would yield
the leaf nearest to the root. Once a selection is made, it is impossible to undo it at a later
time. This greedy heuristic yields a height that is guaranteed to be 25% better than that of
the ordinary trie, but it cannot achieve the 50% improvement of the main method described
below. Here, H, refers to the height of the trie obtained by this greedy heuristic. We can
prove the following result.

Theorem 1 For all integer d > 0,
P{H, > d} < 4n’e™21Q 4 op2e=31Q/2,

Thus, for anyt > 0,
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On the other hand, if that there exists an integer ( such that py = --- = pg = 1/, then, for
all e > 0,
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2.2 A refined algorithm

In this section we show that it is possible to gain a further significant improvement in the
height by an algorithm that is more complex than the greedy heuristic discussed above. We
start by showing that the best possible height is about logn/@Q and then we construct an
on-line algorithm of expected complexity O(nlogn) which achieves this optimal order. Define
Z;(0) = X;, Z;(1) =Y, let {i1,...,i,} C {0,1}", and let H,(i1,...,i,) denote the height of
the trie for Z1(i1), ..., Zp(in). Thus, with n data pairs, we have 2" possible random tries. Let
H} =min; ;. Hy(i1,...,i,) be the minimal height over all these 2" tries.
We show the following:

Theorem 2 Assume that the vector of p;’s is nontrivial (max; p; < 1). Then H}/logn — 1/Q
in probability. In particular, for fired t € R,

Also, for all e > 0,

This theorem shows that the asymptotic improvement over standard random tries is 50%.
Furthermore, the height is less than or equal to the height of the corresponding PATRICIA and
digital search trees. Below we sketch the proof of the upper bound. The proof of the lower
bound is omitted, and can be found in the journal version of this paper.

2.3 The upper bound

In the infinite trie formed by all 2n strings, we consider all subtrees T}, j > 1 rooted at nodes at
distance d from the root. We sometimes write T};(d) to make the dependence upon d explicit.
More often, we just use Tj. We say that a string visits T} if the root of T} is on the path of
the string. Prune this forest of trees by keeping only those that contain at least two leaves.
Define A =}, p%. The following lemma is immediate from the definition of the trie.

Lemma 3 (i) A bad datum is one in which both of its strings fall in the same Tj. The
probability that there exists a bad datum anywhere is not more than nX?. (i) A colliding pair
of data is such that for some j # k, each datum in the pair delivers one string to T and one
string to Ty.. The probability that there is a colliding pair of data anywhere is not more than
2n2\2,

Next, we consider a multigraph G(d) (or just G), whose vertices represent the Tj(d)’s. We
connect T; with Ty if a datum deposits one string in each of these trees (cf. Figure 2). With
T; we keep a list of indices of data for which at least one of the two strings visits T}.

(4n)3 )\Sd
1—4nAd ~

Lemma 4 The probability that G has a cycle of length > 3 is not more than

Finally, by finding thhe smallest d such that there is no bad datum, no colliding data and
no cycle in G(d) (so that G is a forest with no multiedges), we can assign strings as follows.
For each tree in turn pick any node as the root. Then choose any one of the strings in the root
node’s list. For all other strings in the root’s list, choose the companion string of the same
datum (by following edges away from the root). This either terminates, or has an impact on
one or more child trees. But for the child tree of the root, we have fixed one string (as we did
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Figure 2: The multigraph G and an infinite trie for n = 3 pairs of strings, denoted by (1,1'), (2,2')
and (3,3’). Note that (2,2’) and (3,3’) is a colliding pair.

for the root), and thus choose again companion strings for that child list, and so forth. This
process is continued until one string of each datum is chosen for the trie. In this manner, the
height H,, of the trie for the data selected by this procedure is not more than d. Therefore,

P{H, >d} < P{there exists a bad datum} + P{there exists a colliding pair}
( 4n)3 A\3d

P{th ist le} < AT+ 202N 4 =
+P{there exists a cycle} <n\*+2n +1—4n)\d
If we set A = n\?, then

6443
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P{H,, > d} < min (A +2A4% + 1) < 4AH[A§1/8]+H[A>1/8] < 4AH[A§1/8]+8AH[A>1/8] < 8A.

Thus, P{H, > d} < 8n)?, and the upper bound of Theorem 2 is proved.
2.4 Algorithmic considerations

Both the off-line and on-line constructions of the two-choice trie achieving the upper bound in
Theorem 2 can be carried out by maintaining a data structure that guarantees that the height
H,, is at all times the smallest integer d such that G(d) is acyclic, where multiple edges between
nodes are counted as cycles. The n data pairs are stored in an array, and the infinite trie for
2n strings, truncated at height H,, is stored as well. Each leaf in this trie ¢,, (truncated at H,,)
represents in fact a subtree T;, which in turn contains the nodes of G = G(d) with d = H,,.
To find things easily, each node of G has a pointer to a linked list of data strings. And vice
versa, each string in the array of n pairs of strings has a pointer to the subtree T; in the trie
to which it belongs.

Nodes of G are organized in turn in a parent pointer data structure commonly used for
managing forests (see, e.g., Tarjan, 1983), and one linked list per tree in the forest (G). The
only operations needed on this structure are findroot (self-explanatory) and join (join two




lists of strings

array of n pairs of strings

Figure 3: The basic data structure needed to efficiently construct the two-choice trie.

components). Findroot is implemented by following links to the root. We ensure that the
height of the parentpointer trees is always bounded by log, n, where n is the number of nodes
in the tree. A join proceeds by making the root of the smallest of the two subtrees the child
of the root of the other tree. The two linked lists of the nodes in the trees are joined as well.
This takes constant time. By picking the smaller tree, we see that the height of the parent
pointer tree is never more than log, n.

Assume that we have maintained this structure with n data pairs and that the height of
t, is h = H,. Then, inserting data pair n + 1, say (X,Y’), into the structure proceeds as
follows: for X and Y in turn, determine the nodes of G in which they live, by following paths
down from the root in ¢,. Let these nodes of G' be T} and T},. Run findroot on both nodes, to
determine if they live in the same component. If they do not, then join the components of T}
and T}, add X to the linked list of T}, and add Y to the linked list of T},. The work done thus
far is O(h +logn).

If T; and T}, are in the same component, then adding an edge between them would create
a cycle in G. Thus, we destroy ¢, and create ¢/, of height h + 1 from scratch in time O(n) (see
below how). An attempt is made to insert (X,Y’) in ¢/,. We repeat these attempts, always
increasing h by one, until we are successful. The time spent here is O(nAh), where Ah is the
number of attempts.

In a global manner, starting from an empty tree, we see that to create this structure of size
n takes time bounded by O(nH,, +nlogn). By Theorem 2, E{H,,} = O(logn). Therefore, the
expected time is O(nlogn), which cannot be improved upon.

The space used up is O(nH,). It is known that for standard tries the expected number
of internal nodes is O(n/H), where H is the entropy (Régnier and Jacquet, 1989). While it
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Figure 4: The forest G is maintained by organizing each tree component in a parentpointer tree. The
components in the figure might correspond to the list of strings given in the previous figure

is still true that the expected number of internal nodes in the final trie is O(n) (because it is
smaller than that for the trie constructed using all 2n data strings), the intermediate structure
needed during the construction is possibly of expected size of the order of nlogn.

Two details remain to be decided. First, we have to choose one element in each data pair.
This can be done quite simply by considering the roots for all components in turn. From the
root tree in a component, say T;., pick any of its member strings, and assign it. Then traverse
the component of 7, by depth first search, where the edges are the edges of G (an edge of G
is easily determined from the list of strings in 7., as each string points back to the tree T;
to which it belongs). At each new node visited, if possible, pick the first string whose sibling
has not been assigned yet. This process cannot get stuck as there is no cycle in G, and it
takes time O(n). In Figures 3 and 4, the component whose root tree is T13 is traversed in this
order: Ti3,13,Tg,Tos,Tog,T5 and T17. The string assignments for the six string pairs in that
7-node component are, in order of assignment, Xo5, Xg, Ys, Y19, X33, X409 and Yig. After the
assignment of all strings, it is a trivial matter to construct the final trie in time O(nH,,).

The second detail concerns the extension of G and the necessary data structures when
the height h is increased by one. Here we first update the trie by splitting all the trees T}
appropriately. Create the connected components by depth first search following the edges of
G. This takes time O(n). Set up the parent pointer data structure for each component of G
by picking a root arbitrarily and making all other nodes children of the root.

The discussion above ensures that we can construct the two-choice trie incrementally in
O(nlogn) expected time. Also, in a dynamic setting, if the data structure defined above is
maintained, then an insertion can be performed in O(logn) expected amortized time, under
the assumptions of the theorems in this paper.

2.5 Multiple choice tries

If we have k choices per datum, then the height can be further reduced. However, in any case,
we cannot go beyond the entropy bound, as we will prove in this section. Recall that for an
ordinary trie, D,, = o(logn) in probability when H = co. We will not deal with those cases
here. Let k > 2 be a fixed integer. Consider n data, each composed of k independent strings
of i.i.d. symbols drawn from any distribution on N. Let H} (k) denote the minimal height of
any trie of n strings that takes one string of each datum. We have the following result (in fact,
the lower bound holds for all & > 2).



Theorem 5 Assume H < co. For all € > 0, there exists k large enough such that

. (I —¢)logn . (I4+¢€)logn
lim P —— < H < —>2 = 5 =1
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3 Distributed hash tables and ID management

Consider the interval [0, 1] and let X7, ..., X, be n independent vectors of k = [clogn] i.i.d.
uniform [0,1] random variables X;;, 1 < i < n,1 < j < k, where ¢ > 0 is a constant. We
first show that we can pick Xi;,,..., X, , such that the n spacings defined by these random
variables on the circular interval [0,1] (the interval wrapped to a unit perimeter circle) are
close to 1/n with high probability. Denote by M,, the maximal spacing defined by a given
selection Xy z,,..., X, z, where Zi,...,Z, are random indices defined in some manner. Let
m,, denote the minimal spacing.

Lemma 6 Let o € (0,1) be fized. Let ¢ > 2/a. Then there exists a selection Zy,...,Z, such
that X1 z,,...,Xn, 7z, satisfies, forn > 8,

1-— 1
P{—a<mn§Mn< +a}21—§.
n n

n

Theorem 7 Let o € (0,1/3) be fized. Let ¢ = 2/a. Then there exists a selection Zy,...,Zy,
such that the height Hy, and fillup level F,, of the associated trie for Xy z,,...,Xp z, satisfy,
forn > 8,

]P’{Hn—Fn§2}21—%.

PROOF. Consider the binary trie formed by the selection X z7,,...,X,, z, of Lemma 6. If a
potential node at distance d from the root is not realized, then there is a leaf at distance less
than d from the root. If that leaf is at distance d — 1, then only one string in the selection
falls in the corresponding interval, which has width 1/ 24=1 Thus, the maximal spacing in the
selection is at least half that, or 1/2¢. Therefore, 1/2¢ < M,,. Let F}, be the fill-up level, the
distance to the last full level of nodes. We have F,, = d — 1 if d is the first level with a missing
node. Therefore F,, > logy(1/M,) — 1. On the other hand, H, = h, then at distance h — 1,
two strings in the selection visit the same node, and thus, two strings are at distance less than
1/2h — 1 from each other. Thus, m, < 1/2"71 or H, < logy(1/m,) -+ 1. If the selection is
such that (1 —«a)/n <m, < M, < (1+ a)/n, then we have

[logon —logy(1+a)] —1 < F, < H, < |logon —logy(1 —a)] + 1.

We conclude H,, — F,, <2+ {log2 (%Jj—g)J .If e < 1/3, and ¢ = 2/, then the upper bound is
2. 0

Theorem 7 is an existence theorem, and is appealing since we did not even have to move or
transform any of the IDs. Recall that most ID management algorithms (e.g., Manku (2004))
allow hosts to shift their ID’s to obtain a better partition. The actual construction may be
cumbersome, though. We have not established an algorithm, even for b = 2, that can achieve
such a balance on-line while not sending many messages in the network.

So, let us find an on-line algorithm that achieves the super-balancing predicted by Theorem
7. Only, the spacings referred to in the definition of B,, now refer to the ID’s mapped to the
leftmost parts of the intervals in the trie (see below). For each of n hosts, k = [clogn] i.i.d.
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Figure 5: A standard trie for five strings. The correspondence between nodes and intervals in a dyadic
partition of the unit interval is shown. The leaf ID assigned is read from the path to the root (0 for left,
1 for right). The external nodes, not normally part of the trie, are shown as well. Together, external
nodes and leaves define a partition of the unit interval (shaded boxes). The fill-up level of this tree is
one, while the height is four

uniform [0, 1] potential ID’s are generated, U;(1),...,U;(k), 1 <1i < n. We build an ordinary
trie T, for the binary expansions of Uy(Z1),...,Un(Zy), where the Z;’s are the selections. To
define Z,, 1, consider the tries T;, ; for T}, with U,41(j) added, 1 < j < k. This is easily done
by trying to insert each ID separately. If D, 11(j) is the depth of the leaf of U,41(j) after
insertion into T),, then Z,1; = argmin D,,11(j), where ties are broken randomly. In other
words, we pick the ID that at the moment of its birth has the shortest distance to the root of
the trie. The actual ID assigned is implicit in the path to the root: it has a common prefix
with (the binary expansion of) U,,11(j). This scheme generalizes the best of two-strings greedy
algorithm studied above. Unlike with two choices, with £ = clogn choices one does not lose
optimality by a greedy construction. We first consider the height H, and then the fillup F,.

Theorem 8 Let ¢ > 1/log?2 and k = [clogn] in the greedy heuristic for assigning IDs. Then
P{H, >logyn + 3} < nl-cle2

PROOF. Given that H, _ < h, we have H,, > h if and only if U, (Z,) lands within 1/2"~! of one
k
of U1(Z1),...,Up—1(Zn—1). The probability of this is conservatively bounded by (%) ,

for if one U, (j) is further than 1/2"~! away from each Ui(Z1),...,Un—1(Zn_1), it will result
in a leaf that is less than distance h away from the root. Thus, with h = [logy n + 3],

" k
P{H, > h} < ZIP{HZ- > h|H;_1 <h}<n <%> < pl-clog2
i=1

Theorem 9 Let ¢ > (8/5)log2 and k = [clogn] in the greedy heuristic for assigning IDs.
Then
P{F, <logyn —4} = O(1/log*n).

In conclusion, H,, — F,, < 7 with probability tending to one when ¢ > 1/log 2. This implies
that B,, = O(1) in probability when spacings are defined with respect to leftmost points of leaf
intervals. Finally, the trie scheme proposed here assumes that one knows n, while in distributed
networks, n is unknown. However, one can estimate n by 2, where D is the depth of insertion
of a random string in the trie: since all depths are within O(1) of log, n, the estimate is off by a
constant factor only. One can thus extend the method in this manner by replacing k = clogn
throughout by ¢D where D is the depth of insertion of a random string.
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