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INEQUALITIES FOR RANDOM
WALKS ON TREES*

Luc DevroyE and AMINE SBiug
McGill University

3.1. INTRODUCTION

Random walks on trees were studied by Moon in 1973 and by
Gobel and Jagers in 1974. Both bapers are largely confined to the
problem of determining the first and second moments of the random
variable

T, ; = min{n > 1: X, =jlX; =1i),

the time needed for a random walk (X, ) started at vertex i to reach j.
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36 INEQUALITIES FOR RANDOM WALKS ON TREES

Nevertheless, some of the key results in our proof are taken from
these papers. Random walks on graphs were also studied by Gobel
and Jagers (1974). In a profound paper, Mazo (1982) has shown that
the average of all ET; ; Is at least n — 1 for any graph with n nodes,
For a recent survey of results on the cover time 7', see Aldous (1989b).
Turning to lower bounds, we have for example:

1. For a stationary random walk on a graph, E7 > ¢ log n for a
universal constant ¢ (Aldous, 1989b).

2. For trees, ET > 1+ o())n log n [Kahn, Linial, Nisan, and Saks
(1989)]. For trees with maximal degree bounded by A, ET >
(n log? n) /(600 log® 2A) [Zuckerman (1989)].

3. Bounds involving the Structure of the graph are given by Broder
and Karlin (1989).

4. For a cube, ET > (5 — DH,_ |, ~ nlog n, where H, =¥ 1/i
is the harmonic function. A detaijled analysis, including the
asymptotic distribution of the normalized cover time, is given in

Matthews (1987, 1988b, 1989).

5. For distance-regular graphs, ET > (n — Dlog n and for symmet-
ric graphs (ET; ; = E7,; for all i, j) ET > inlog n —
O(n loglog n) [Devroye and Sbihj (1990)].

Upper and lower bounds and asymptotics for other graphs can be
nd in Broder and Karlin (1989), Kahn et al. (1989) (k-regular

Theorem 3.1. Let T, be the collection of aj] trees with n vertices and
let ¢ denote a member of T,. Then :

inf ET > 25 logn — O(n loglog n).

teT,

n

Note that Theorem 3.1 improves on the result of Kahn et al. (1989);
it also uses a totally different method of proof. Stars (i.e., trees in
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which n — 1 nodes are connected to a central node) have ET =
2n — 1)H,_, — 1 if we start at the central node, so the coefficient 2
in the bound of Theorem 3.1 cannot be bettered. Because stars are
rather unnatural trees, one might wonder what happens for more
“natural” trees. We will provide the reader with a variety of inequali-
ties for ET that involve some shape parameters of the tree, such as
the diameter, the number of leaves, or the maximal degree. For
example, for trees having bounded degree A, we have:

Theorem 3.2. Let T, denote the collection of all trees with » nodes
and maximal degree A with A > 3 possibly depending upon n. If
A = n°®Y, we have

L EIn Zlog(A 1)

By considering complete (A — 1)-ary trees, we will see that this
bound has the right dependence on n and A. Also, the o(1) term is
explicitly derived in the proof of Theorem 3.1; it depends on A and n
only. The inequality is not valid when A increases polynomially in #,
but in those cases, more complicated but valid lower bounds are
attainable by taking the minimum of expressions (3.7) and (3.8).
Theorem 3.2 improves the lower bound of Zuckerman (1989) in two
respects: It has a smaller constant out front and it betters Zuckerman’s
bound by a factor of about 300 log A.

The random walk discussed in this chapter has some relevance in
computer networks, where the network is fixed and some messages are
randomly routed. ET is the expected time at which all the nodes of
the network have received the message. In social networks, the model
might be used to study the spread of gossip or disease in a fixed
network of friends, although a random walk on a graph including
cycles seems perhaps slightly more appropriate.

We employ a recent result of Matthews (1988a) regarding the time
needed by a Markov chain to visit all of a finite collection of subsets of
its state space.

3.2. AN INEQUALITY OF MATTHEWS

We begin with an inequality of Matthews (1988a), presented here in a
form convenient to us.



38 INEQUALITIES FOR RANDOM WALKS ON TREES

Lemma 3.1. (Matthews’s inequality). Let X,, X,, X,,... be a Markov

chain on a countable state space {ay, a;,...}). If T is the time needed
for the Markov chain to visit the collection 4 = tay, 8, oo a,}, then
for X, = a,, .

where H, is the kth harmonic number, and

n(A) £ min  min ET,

I<j<k O<i<k;i#j

and ET; ; is the expected time needed to reach state g ; When starting
from a,.

In our problem, we will get the most out of this by identifying large
subsets of vertices on which u(A), as defined before, is large. The
requirement that both u(A) and the size |A| of the subset A are large
is, in general, contradictory, so we will often have to strike a suitable
balance. A particularly interesting set is the set A of all leaves. It is
clear that a random walk on a tree covers all the vertices if and only if
it covers all the leaves. By the strong Markov property,

ET = ET, + 2 PS(XT = k)EkTZ minE, T (3.1)
keA g kea

for any vertex s, where T, and X 7, are, respectively, the first hitting
time and the hitting place of A4, and E; is the conditional expectation
given X, = 5. One also has E T, < D?/4 [see Pearce (1980)], where
D is the diameter of the tree. Thus,

E,T < maxE,T + D?/4.
keA

Example. Random walks on cubes. The D-dimensional cube graph has
=27 vertices, each representing a different binary sequence of
length D. Two vertices are connected by an edge if and only if the
corresponding sequences differ in only one place. For any pair of
vertices (i, j), it can be shown [see, for example, Gobel and Jagers

(1974)] that
{52224

M=

ET, ;=

I

m
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if the Hamming distance between i and j is k. It is easy to see that
this expected time is a monotone function of k. Its minimal value is
2P — 1 =n — 1 and its maximal value is 2°(1 + O(1/D)) as D — .
By Matthews’s inequality, ET > (n — 1)H, _,. Also, by an upper bound
symmetric to the lower bound of Lemma 3.1 (Matthews, 1988), ET ~
n log n. For more details, see Matthews (1988a, 1989), Aldous (1983),
Diaconis (1988), or Devroye and Sbihi (1989).

3.3. FIRST PASSAGE TIMES

For all connected graphs with r edges, it is known that ET; ; = 2r/d,,
where d; is the degree of node i and T; ; is the time of first return to i
when starting a random walk from i [Gobel and Jagers (1974)]. Moon
(1973) has shown that when i and j are neighboring vertices in a tree,
then ET; ; = 2N — 1, where N is the size of the component contain-
ing i when edge (i, j) is deleted. From this, we easily obtain the exact
value of ET; ; in trees when i # j: Arguing as in Moon (1973), we see
that

k
- Z ETamfl*am’
m=1

where a, =i, a, = j, and a,, ..., a,_, are the vertices on the unique
path from i to j. Consider the subtree §,, containing a,,_, when edge
(a,,_,,a,) is deleted. Then

- f_ 21S,,] - 1). (3.2)

Corollary 3.1. j is a leaf. If n» > 3 and i, are leaves, then ET; ; >
2>n —1).

Corollary 3.2. i and J are at distance k. ET, . > k?. This comes from
(3.2) with-|S;] = 1, IS, 3] = 18,1"¥ 1 and thus IS, | > m. Hence,
ET, ; >Zm 1(2m—1)=k(k+1)—k—k2

3.4. PROVING THEOREM 3.1
We split the proof of Theorem 3.1 into several lemmas. The first

lemma follows directly from Matthews’s lower bound and Corollary
3.1.
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Lemma 3.2. Assume that a tree has L leaves and n vertices, n > 3.
Then for a random walk started at an arbitrary node,

ET > 2(n - 1)H, _,.

Any random walk started at a nonleaf node reaches the set A4 of
leaf nodes at some vertex ; and needs to visit all other leaves starting
at the given leaf i. Thus, regardless of where we begin the walk,

ET > inf SupET; ;. (3.3)
icA = ’
J#i

Fix a leaf i. If d(i, J) is the distance between nodes i and j, we have
maxd(i,j) = (L - 1) X d(i,j) = (n — 1) /(L - 1).
JjE

JEA

gl J#i

Thus, by (3.3) and Corollary 3.2, ET = ((n — 1) /(L — 1))%. This com-
bined, with Lemma 3.2 shows

n—1>u>2 u-—1
u integer

n—1\2
ET >  inf max(2(n o l)Hu_],( ) ) ~nlogn.
Here we used the fact that the supremum is attained for u~
vn/log n . However, this bound falls short of the best possible bound
by a factor of 2. This necessitates the search for a stronger lower
bound as a function of ..

Lemma 3.3. For a tree with n nodes and L leaves, and for an
arbitrary starting node, we have ET > 2(n — 1)?/L.

Proof. Our proof is based on inequality (3.3). We take an arbitrary
leaf and label it 1 for convenience. Consider next the maximal path
from 1 to any leaf, and label the nodes 1,2,..., /. (Thus, the maximal
path length is / — 1.) We will show that ET,,=2(n - 1)?/L.
Attached to the maximal path are zero or more nonempty trees
whose roots are thus at distance 1 from the maximal path. For the ith
such tree, define n, (the cardinality), /; (the number of leaves), and 4,
(the distance from / to the neighbor on the maximal path of the root
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of the tree). We have

Yn,=n-—1, (3.4)

Y, =L -2, (3.5)
|

d;>1+ T (3.6)

Inequality (3.6) is seen by noting that the height of the ith tree is
greater than or equal to (n; — 1)/I; and that the height plus 1 cannot

exceed d;, for otherwise [/ is not the furthest leaf from 1. Note that
;> 0 and n; > 0 for all i. From Moon’s formula (3.2),

ET, ,=2Ydn, + (I - 1)

= 1

1+ n, + (1 - 1)

14

=2)

n?
2221—'+(l—1)2

—2L ¥ (7] +a-v

i k=1

> (Z,-Zﬂ;,;n,-/l,-)z + (I —1)* (Cauchy-Schwarz inequality)
30 B Al |

- 2%’11";2 (-1 = 2% b= 1)

> 2(’1%1)2.

In the last step, we simply noted that the quadratic in / is minimal
when [ =2(n — 1)/L. O

The lower bound on inf;. ,sup;c 4 ;.; ET; ; shown in Lemma 3.3
can be attained by octopus trees; these are trees with L leaves at the
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end of tentacles of length (n — 1)/L each, where by assumption
n — 1 is a multiple of L.

Proof of theorem 3.1. By Lemmas 3.2 and 3.3, for n > 3,

_ 2(n — 1)
ET > inf max|2(n-1H, ;, ———|.
n—1>u>2 u
u integer

The supremum is reached for a sequence u* ~ n/log n. Thus, ET >
2nlogn — O(nloglogn). O

3.5. TREES WITH BOUNDED DEGREE: PROOF
OF THEOREM 3.2

Set d = A — 1 where A is the maximal degree. The edges of the tree
will be oriented away from the starting node, which we shall call the
root. As is customary with rooted trees, we can define the height of a
node as the distance (path length) from a node to the furthest leaf in
its subtree. We take an integer s, which depends in a controlled
manner on n, and consider the set A, consisting of all vertices of
height s. With each vertex a, € 4, associate one leaf b; at distance s
in the subtree of a;. Let N = |A,| be the number of (a;, b,) pairs. We
will see later that by our choice of s, we have N > 1.

We first claim that for any b; and for any a not in the subtree
rooted at a;,

2ds+1
= T
=

ETa,bi Z 5(21’1 N

Indeed, the subtree rooted at each such a; has at most 1 +d +
d*+ -+ d*=(d**' — 1)/(d — 1) vertices. Next, apply Moon’s
identity (3.2). Remark that the N subtrees rooted at the a;s are
disjoint. Thus, by choosing the node a on the unique path from a; to

a,

2ds+1
d— 1

ETb[,b/- Z 5(211 . + s].

Let us consider the set A4 of all vertices b,. We can apply Lemma 3.1
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and conclude that, no matter where we start the random walk,

2ds+1
d—1

ET25(2n - 8 | He 55 £3.7)

This bound is the backbone of the proof. However, it is only useful
when d° = o(n) (which we will take care of later) and when N is at
least equal to a polynomially increasing function of #.

A second lower bound can be obtained from Lemma 3.3. If L is the
number of leaves in the tree, we know that ET > 2(n — 1)?/L. From
the preceding construction, we also have L < Nd**!/(d — 1), so that

20n — 1)A(d - 1
T ( )( )
Ndx+1

(3.8)

This lower bound is a decreasing function of N and should be useful
for small values of N. We are free to choose s, but not N. It is to our
advantage to choose s ~ log n/(2log d) and s < log n/(2log d). Note
that d**! < dVn . Combining (3.7) and (3.8) we thus obtain

| 2(n — 1)(d - 1)
ETzNilnrtlefgermax s[2n — 51 i | E e w45 N+
e . 2d 1 sz—lﬂd—n
- Nilnrtleger — (d — 1)\/; HRAESH Nds+] ’

The lower bound is of the form infy ;.. max(alog N,b/N) for
positive numbers a,b. For N > (b/a)/log(b/a), we have ET >
alog(b/a) — aloglog(b/a), while for N < (b/a)/log(b/a), we have
ET > alog(b/a). Asymptotically, b ~ n*/?*°® and a ~ nlog n/log d.
Thus, b/a ~ n'/?7°M and

(1 + o(1))nlog®n

ET >
2log d

3.6. OPTIMALITY OF THE BOUNDS: STARS AND
COMPLETE d-ARY TREES

A star is a tree in which one node is connected to the n — 1 other
nodes. It is easy to see that the expected waiting time between the first
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time k leaves have been visited and the first time k + 1 leaves have
been visited is 2An-1/(n-1- k), when k > 1, and is 1 when
k = 0, provided that the random walk is started at the central node.
Summing this yields

ET=1+2(n-1H,_,,

where we assume that n > 2 and Hy, = 0. This is asymptotic to
2n log n.

Consider finally a complete d-ary tree with =l od! nodes; that
is, it has r + 1 full levels of nodes. Also, the maximal degree is
A =d + 1. From Moon’s formula (3.2), it is €asy to see that ET, ;
is maximal when both i and J are leaves, and by symmetry, ET; i =
ET, ,wheni and J are leaves. It is known that for any tree ET; j t ET;,
= 2(n - 1d(, j). By the preceding  symmetry, max; ; ET, ; =
(n — l)max,-,j d(i, j) = 2(n — Dr. By Matthews’ upper bound
(similar to the lower bound of Lemma 3.1, with max instead of min)
and the fact that n = d™*' - 1) /(d - 1) and the number of leaves
L=(nd-1)+ 1)/d, no matter how d > 2 varies with n, we see
that starting at a leaf,

~

ET < 2r(n - L) =

By adding an r2 term to the preceding bound, one obtains for the
walk started at any node (see Section 3.2)

2nlog?n :
+ O(nlog, n).

logd
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