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Nearest Neighbor Methods in Discrimination

L. Devroye and T. J. Wagner

In the discrimination problem one makes an observation X =(X,...,X,) on
some object whose state 6 is known to be in some finite set which we may take to
be {1,...,M}. Assuming that the object is picked at random from some popula-
tion, (X, #) is a random vector with an arbitrary probability distribution. All that
is assumed known about this distribution is that which can be inferred from a
sample (X,,0,),...,(X,,6,) of size n made from objects drawn from the same
population used for (X, #). This sample, called dara, is assumed to be indepen-
dent of (X, 6). Using X and the data one makes an estimate § for § where the
procedure used for making this estimate is called a rule.

The rule which is the standard example for the class of rules considered in this
article is the k-nearest neighbor rule. Here  is taken to be the state which occurs
most frequently among the states of the k closest measurements to X from
Xj,...,X,. To break ties in determining which of the vectors X,..., X, is among
the k closest to X and to break ties in determining which state occurs most
frequently among these k closest, the independent sequence Z, Z,,...,Z, of
independent random variables, each with a uniform distribution on [0,1], is
generated. We will think of Z as being attached to X and Z, as being attached to
X;,1<i<n. Then X; is closer to X than X; if

(@ X=X <l X— X;|l or

® IX=XII=I1X—- Xl and |Z— Z,|<|Z— Z,| or

© I X=XI=I1X-X,|,|Z—Z,|=|Z—-Z;| and i< j. .

The k closest vectors to X from X|,..., X, are now determined and 6 is taken as
the state occurring most frequently among these vectors. If several states occur
most frequently among the k closest, the state whose observation is closest to X
from among those tied is chosen. If (X7,8/,Z/) represents the jth closest
observation to X, its corresponding state, and attached random variable, then we
see that @ for the k-nearest neighbor rule can be written as

G=g((Xx',Z",8"),....(X*, Z*,6%)) (1)
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for some function g. Rules which have the form
§=4¢ (X', 2,055 (X", Z",0%)) (2)

for some function g, are termed nearest neighbor rules, while rules which can be
put in the form (1) for some g are called k-local.

The probability of error for a rule given the data and attached random
variables is given by

L,=P[6+6|D)]
where
Dn:((XI’BI’Zl)""’(Xn’gn’Zn))'

The frequency interpretation of L, is that a large number of new observations,
whose states are estimated with the rule and the given data, will produce a
frequency of errors equal to the value of L,. (Each of these new observations will
have a new independent Z attached to it but the Z,,...,Z, stay fixed with the
data.) The random variable L, is important then because it measures the future
performance of the rule with the given data. :

Most of the results dealing with nearest neighbor rules are of the asymptotic
variety, that is, results concerned with where L, converges to and how it
converges as n tends to infinity. If the limiting behavior of L, compares favorably
to L*, the Bayes probability of error (the smallest possible probability of error if
one knew the distribution of (X, #)), then one has some hope that the rule will at
least perform well with large amounts of data. For the k-nearest neighbor rule
with fixed k the first result of this type, and certainly the best known, is that of
Cover and Hart (1967) who showed that

EL, >L (3)

when P[f = i| X = x] has an almost everywhere continuous version, 1<i<M. In
(3) L is a constant satisfying, for k = 1,
L*<L<2L*(1—L*)<2L*. (4)

For arbitrary k the “2” in (4) is replaced by a, where a, |1 as k — 0. For these
same assumptions it is also known that

Ly Z, L in probability : (5)

(Wagner, 1971) with convergence in (5) actually being with probability one for
k =1 (Fritz, 1975).

If k is allowed to vary with n, then Stone (1977) showed that for any
distribution of (X, )

L. Z L* in probability (6)
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if
k=k,>0 and k,/n—0.

This distribution-free result extends to a large class of nearest neighbor rules,
which are also discussed by Stone and, because of its sheer technical achievement,
rivals the original accomplishment of Fix and Hodges (1951) who introduced
k-nearest neighbor rules and proved (6) in a slightly different setting with analytic
assumptions on the distribution of (X, #). We should note here that Stone breaks
ties differently than described earlier. For example, if k, =5 and if six vectors,
with the attached Z’s, have positions 4-9 in the distance ordering of X,..., X, to
X and all have the same distance to X, then each of the states of these six vectors
gets a 2/6=1/3 ‘vote’ for the estimate 4. By contrast, in the first way of
breaking ties two of these six vectors would get one vote each and the other four
would get 0. Devroye (1981a) has recently shown that if one also assumes that

k,/(logn) ioo,

then (6) holds with the convergence being with probability one.

In view of Stone’s result, it might be expected that the asymptotic results of the
k-nearest neighbor rule with k fixed are also distribution-free, that is, no condi-
tions on the distribution of ( X, #) are needed for (5). In fact, using Stone’s way of
breaking ties, Devroye (1981b) has shown exactly that. Moreover, the constant L
for the general case, which is the same as Cover and Hart’s for their assumptions
on the distribution of (X, @), continues to obey the inequality (4).

As intellectually satisfying as these results are, one is still faced with the finite
sample situation. You have data D, and your immediate need is for a reliable
estimate of L, for your chosen rule. You may even wish to examine the data and
then pick the rule. In this case reliable estimates of L, for each rule may guide
you in your choice. If one is using a local rule, then a natural estimate is the
deleted estimate of L, given by

n
Ln:(l/n) E 1[0’:?&9|]

i=1

where 6, is the estimate of 8, from X, Z,, and D, with (X,,6,, Z,) deleted. This
definition requires, of course, that k<n —1. Deleted estimates are not easy to
compute but, in cases like the k-nearest neighbor rule, the computation is
reasonable and the intuitively appealing use of the data can be taken advantage
of. Rogers and Wagner (1977) have shown that for a/l distributions of ( X, §) and
any k-local rule

1/2 2
z<2k+1/4+2k(2k+1/4) +k_’.
n 2372 52

(7)
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Using Chebychev’s inequality and (7), distribution-free upper bounds for
P[|I:n — L,| =¢] can be obtained which are O(1/n). In Devroye and Wagner
(1979a) distribution-free upper bounds for P[|L, — I:nl =¢] of the form Ae "2
are also given where 4 and B are positive constants which depend only on d, M,
and &. In these bounds, however, the rate of decrease of B to 0 with d is quite
rapid. In contrast, the right-hand side of (7) does not depend on d at all. Finally,
simulations carried out by Penrod and Wagner (1979) suggest that 2e~2ne g
generally an upper bound for P[]I:n — L,| =¢]. Other estimates of L, are dis-
cussed in the references mentioned above.

If one considers just the single nearest neighbor rule for the finite sample case,
two features stand out. The first is that one must store and search all of the data
for each of the future estimates. The second point is that the nearest neighbor rule
performance deteriorates from the Bayes rule (e.g., the rule used to achieve L*
when the distribution of (X, #) is known), because in the region of R? where
P[0 = m| X = x] is maximal (which is where 6(x)=m in the Bayes rule) all of the
samples X, which fall there ‘carve’ out a subset where § = 6., regardless of whether
i =m or not. To reduce one or both of these effects, many authors have suggested
condensing or editing the data before the nearest neighbor rule is applied (e.g., see
Ritter et al. (1975) for recent references). There are no really general asymptotic
results for condensing methods at this writing, but it seems clear that condensing,
properly done, will definitely reduce computation for future estimates and im-
prove performance. Devroye and Wagner (1979b) have also shown that if the
original data is condensed in any way to J points,

(Y1, 4),...(%. &), (8)

and if the single nearest neighbor rule is used with these J points, then

P[IL,— L,| > <] <a(dn) ™V Deres8 (9)

where l:, is the frequency of errors one gets on the original data with the single
nearest neighbor rule now using (8) as data. The right-hand side of (9) is, of
course, distribution-free, but requires that J be small to be useful.
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