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Let X,,...,X, be independent, identically distributed random vectors taking values
in R with a common probability density f. If K is a bounded probability density on R
and {h,) is a sequence of positive numbers then f,(x)= > 1 K(x—X;)/h,)/(nh?) is
the kernel estimate of f from X,...,X,. Conditions on f, K and {h,} are given which
insure that sup,|f,(x)—f(x)| 250 with probability one. Additionally, conditions are
discussed which allow %, to be a function of X,...,X, and still retain the consistency
properties of f,.

1. Introduction
Let X, X,,...,X, be a sequence of independent, identically distributed

random vectors taking values in R? with a common probability density f.
The kernel estimate (Rosenblatt (1957), Parzen (1962)) is given by

5= 3 K= X))/ (o)

where K, the kernel, is a bounded probability density on RY and {h,} is a
sequence of positive numbers. In this paper we are concerned mainly with
conditions which insure the strong uniform consistency of f,, that is,

sup | f,(x) = f (x)|-0 w.p. L. (1.1)

Our results, as well as all of those that we are aware of which lead to (1.1),
require that f be uniformly continuous on R% The work of Schuster (1969,
1970) comes close to proving that this is a necessity for R!. We will be
contented then just to make this assumption. If f and K are continuous on

*Research was supported in part by DOD Joint Services Electronics Program through the
Air Force Office of Scientific Research (AFSC) Contract F 49620-77-C-0101.
**Research was sponsored by AFOSR Grant 77-3385.

59




60 L. P. DEVROYE AND T. J. WAGNER

R’ then sup, |f,(x)—f(x)| is a random variable. This remains true if f is
continuous on R? and if the values of K can be determined from its values
on a countable dense set (e.g., for each x ER? there is a sequence {x,}
from a countable dense set D such that x, 5 x and K(x,) A K(x)). While
one can easily think of kernels which do not have this property, we know
of none that are interesting. Rather than explore this point further, or deal
with the case that sup,|f,(x)—f(x)| is not a random variable, we will
assume throughout this paper that it is a random variable.
Let

L(z)= sup K(x) z€[0,0)
Ix]>2
and
L=\(t)=sup{z:L(z) >1) te[O,supK(x)),
where |- || denotes the supremum norm on R?. Our result may be stated as
follows.

Theorem 1. Suppose f is uniformly continuous on R® and K is a bounded
Riemann integrable probability density with

o
fo z97'L(z)dz < 0. (1.2)
If
h, =0,

then (1.1) follows from
(nh?) /(L™ (eh?))logn D> o0 for e>0. (1.3)

Remarks. For kernels with compact support the conditions (1.2) and (1.3)
can be replaced by

nh? /logn 5 0. (1.4)
For kernels with

K(x)<A/||x||**  for some a>1
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(1.2) and (1.3) can be replaced by
nh 1+« flogn > co.
Additionally, (1.3) can always be replaced by
nh? /logn > co. (1.5)

The condition (1.2) for K is close to the condition frequently imposed on
K:

lx[1°K(x)—0 as ||x||—>o0. (1.6)
For example, (1.6) is implied by (1.2) and (1.2) follows whenever
|x)|“*°K(x)—0 as ||x||—>00

for some § >0.

The above theorem does not use the restrictive assumption that K is of
bounded variation on R? (Nadaraya (1965), Moore and Yackel (1976) and
Silverman (1978)) or that K has an integrable characteristic function (Van
Ryzin (1969)). For example, the kernel which is uniform over the unit
sphere satisfies neither of these assumptions and, while the kernel which is
uniform over the unit cube in R? has bounded variation, an orthogonal
rotation of the coordinates can yield a kernel with an infinite variation
while keeping sup, |f,(x)—f(x)| unchanged. Additionally, no moment
assumptions are put on f (Deheuvels (1974), Foldes and Révész (1974))
and the requirements for {A,}, at least for kernels with compact support,
are essentially the weakest possible to get (1.1) (Deheuvels (1974)).

A disadvantage of the kernel estimate is that 4, is chosen without regard
to X,,...,X, (Cover (1972)). One possible remedy is to replace A, by a
function of X,,...,X,, say H,= H,(X,,...,X,). The resulting estimate

f(x)= 3 K(x—X,)/H,)/(nH2)

i=1

has been examined by Wagner (1975), primarily for d=1, where several
choices for H, are also discussed. The technique used to prove Theorem 1
also yields the following result for £.. (See also the remark at the end of
Section 2.)
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Theorem 2. Suppose f is uniformly continuous on R? and K is a bounded
Riemann integrable probability density satisfying (1.2). If

H,50  wp.1, (1.7)
and

nH?? /logn > oo w.p. 1 (1.8)
then

sup|f,(x)=f(x)| 50 wp.1 (1.9)

Additionally, if the convergence in (1.7) is in probability and if
nH? 5 o0 in probability, (1.10)

then

sup | £,(x) = f(x)| > 0 in probability. (1.11)

2. Details
Following Nadaraya (1963) it suffices to prove that
sup | f,(x) — Ef,(x)|—0 w.p. 1 2.1
since, when f is uniformly continuous on R?,

sup | Ef, (x) =/ (x)| 0

whenever 4, 5o.
Consider, for the moment, the kernel which is uniform over (0, 1]°. Then

sup| f,(x) — Ef,(x)|= hn_d:u% | 1 (4) = p(A4))|

where p, is the empirical measure for X,...,X,, p is the measure on the
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Borel subsets of R? which corresponds to f and @ is the class of cubes
4 (x',x'+h,), x=(x,...,x%) ER? Thus

P{ sup | fu(x) = Ef,(x)|>e} =P { G | 1, (4) — p(A4)| >h,f’8}- (2.2)

Rather than use the inequality of Kiefer—Wolfowitz (1956) on the right-
hand side of (2.2), which leads to the condition (1.5) on {4, }, we modify a
result of Vapnik—Chervonenkis (1971) allowing us to upper-bound (2.2) by
con®? exp(— cnhe?) for some c,, ¢>0. This now leads to condition (1.4) to
get (2.1) for the kernel which is uniform over (0,11%. A careful approxima-
tion of Riemann integrable kernels by linear combinations of indicators of
disjoint rectangles then yields the theorem.

We begin by proving two useful lemmas concerning upper bounds for

P{ sup | u,(4)~ p(A)| >e}
AER

where ¢ >0 and @ is a subclass of the Borel subsets of R If y, and p, are
empirical measures for two independent samples of size n then, assuming
that supg| u,(4)— w,(4)| and supg|u,(4)— w(4)| are measurable, Vapnik
and Chervonenkis (1971) showed that

P{ sup | p,(4)—p(A4)| >e} <4s(@,2n)e""/?
@

where

s(@,n)=( max Ng(x;,...5X,)
X

1o 2 %n)

and Ng(x,,...,x,) denotes the number of different sets in the class
{({xp,-.-,x,}NA:AER). If, in addition to the measurability assumptions
of Vapnik and Chervonenkis, we assume that supgpu,(4) is measurable we
have the following lemma.

Lemma 1. Let ¢ >0 and suppose that

supw(4)<b<1/4.
@
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Then
P{ sup| p,(4) — ()| e}
@

< 45(@,2n)e "¢/ Gb+4) 4 o p { sup p,,(4) >2b} (2.3)
@

for all n>8b/ ¢

Inequality (2.3) is useful for small » and for classes @ for which
P{supgp,,(4)>2b} can be upper-bounded. The following lemma provides
a useful upper bound for classes @ whose sets have a uniform bound on
their diameter. We again assume that supgu,,(4) is a random variable and,
as before, || || will denote the sup norm on R? As usual, other norms could
be used instead.

Lemma 2. Let @ be any class of Borel sets from R? with

sup sup ||y —x||<r<co.
@ x,yEA

If S(x,r) is the closed sphere centered at x with radius r and if

sup u(S(x,r))<b,

xER?

then
P { sup pu,,(4) > 2b} <dne=nb/10 (2.4)
@

Sfor all n>1/b.

As an example, which will be used in the proof of the theorem, let @, be
the class of all rectangles from R? with diameter not greater than r and
assume that

sup w(4)<b<1/4.
@,

Since

sup p(S(x,r))=sup u(4)

xER4 &,
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and
s(@,,2n) < (2n)*? for all r

(see Cover (1965) for other calculations of this type) we have, from
Lemmas 1 and 2, that

P{ 51@11’ | 1, (A4)— p(A4) >e} < 4(2n)2e e/ €45 +40) 4 gy —nb/10 (2.5)

for ¢ >0 and n >max(1/b,8b/¢?).

Proof of Lemma 1. The following arguments are variations of those of
Vapnik and Chervonenkis (1971). Let X,,...,X,, be independent, identi-
cally distributed random vectors with a common probability measure u. If
., denotes the empirical measure for X,.,,...,X,, and all unlabeled
supremums below are taken over @, then an easy modification of Lemma
1 of Vapnik and Chervonenkis yields

P{sup] 1,(4) ~ w(4)| >} <2P {sup| b, (4) i (4)| >¢/2) (26)
where
(1) supu(4)<b,
(i1) sup|p,(4)— p(A4)| and sup| p,(4)—p.(A4)| are random variables,
(iti) n>8b/ ¢
Because

P {sup| p,(4) = p,(4)| >¢/2}
<P {sup| 1y (A) — 1, (4)] >¢/2; supp, (4) <2b)

+ P {supp,,(4)>2b}.

Lemma 1 will follow from (2.6) if we can show that for any §, M >0 with
M<1/2

P {sup| 1, (4) — p(4)] >8: supp,,(4) <M )

< 25(@,2n)e /@M +28) (2.7)
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The probability on the left-hand side of (2.7) equals

1
fRM——(Zn)! 2 Jisupl ()~ )18 isup, () <1 4Q
where I; is the indicator of a set E CR*™, Q is the probability measure for

X,...,X,, defined on the Borel subsets of R** and the inner summation is
taken over all (2r)! permutations of x,,...,x,,. But this integral equals

1
fRM (2n)! 2 Lisuppa, () <m1SUP T, ) - i1 55140

1
~ Jgena (20)! 2 Hsupp, (ay <] Sg? L)~ a1 >614Q

1
X R (2n)! 2Ilsumnu)w]SuPI[m(A)—M"u)ps/z]dQ

D 1
< s E
L fRWAE@, IlSqun(A)w][ 2n)! > l[lpv.(A)—#zn(A)I>8/2]} dQ

(2.8)

where @' =@'(x,,...,x,,) is any finite subclass of @ which yields the same
class of intersections with {x,,...,x,,} as does @ and where the unlabeled
summations are again over all (2n)! permutations of x,,...,x,,.

If Y),..., Y, are Bernoulli random variables with P{Y,=1}=p then

>E} < 2e—ne((l+(b/s))ln(l+(b/e))—1 )< 2e—nez/(2b+e) (29)

provided 0<p <b<1/2 (Bennett (1962), Hoeffding (1963)). (The second
inequality follows from In(1+(a /b)) >2a/(2b+ a) for a,b>0.) Hoeffding
has pointed out that (2.9) remains valid if Y,,...,Y, are obtained by
sampling without replacement from a sequence YooY of 0s and 1’s
where k>n and > %y,=kp. Using this last observation we have the
following inequality between random variables (which holds everywhere)

—1 —n(8/2)%/Qpuy,(A)+8/2
{(2n)§ ZIIIH(A)—#Z,,(A)IM/Z]} S0 IR BRaCPE .
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Thus the last integral in (2.8) is upper-bounded by

f D Tt cobepe = RO 40
AE®
<2s(@, 2n)e—n82/(8M+28)

since we can always choose @’ to contain no more than s(&,2n) sets.
Inequality (2.2) and Lemma 1 now follow.

Proof of Lemma 2. If p) _, is the empirical measure for X,...,X,, with
X, omitted and all unlabeled supremums below are again over @, then

P{SUP.U«zn(A)>2b}<P{ U {.‘LG(S(Xi’r))>2b}}

i=1

2n
<P{ U {(2n—1)u;n_l<s<x,r>>>4bn—1}}

i=1
<2nP{ i, (S(X,,r))>(4bn—1)/(2n—1)}.
<2nP{py,_(S(X,,r))>3b/2}  ifbn>1
<2nsup P{ py,_(S(x,r))>3b/2}
<2n sup P{ py,_1(S(x,7) = w(S(x,7)) >b/2)
< dpe—@n=D(b/27/@b+(5/2))

(from (2.9))

< 4ne—(2n-l)b/10 < 4ne—nb/10’

which proves Lemma 2. ' g
To prove the theorem we first approximate K by a linear combination

of indicators of disjoint rectangles.

Lemma 3. Suppose K is a nonnegative, bounded Riemann integrable func-
tion on R?. For each 7,8,p>0 we can find a function

N
K*(x)= ; aiIA,(x)
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where
(1) ay,...,ay are nonnegative real numbers,

(i) Ay,...,Ay are disjoint rectangles contained in [—p,0)%,

(iif) K*(x)<sup, K(x), x ERY,

(iv) |K*(x)— K(x)|<n on [—p,p]® except on a set D,

(v) DCB= U VB, where B,,....B,, are rectangles from [—p,pl’,
whose union has Lebesgue measure less than §.

Proof of Lemma 3. Partition [—p,p]? into disjoint rectangles in such a ‘

way that the upper and lower sums for K over the partition differ by less
than nd (Spivak (1965), Chapter 3). If K, and K, are, respectively, the
functions corresponding to those upper and lower sums, then

{xe[—p,p]d:K(x)—Kz(x)>n}

g{xe[—p,p]d:Kl(x)—Kz(x)>n}.

The latter set is a union of disjoint rectangles with Lebesgue measure less
than §. Putting K*(x)= K,(x) yields the lemma.

Prooi of Theorem 1. We follow the notation of Lemma 3, assuming for
the moment that n, § and p are arbitrary positive numbers. The depen-
dence of A, on n will be suppressed where confusion is unlikely. First

sup | Ef, (x) = fu(x)|

=sup |h = [ K((y=)/h)dF () =h~* [ K((y—x)/h)dE,(y)

3
< 2 sup U(x),

i=1 X
where
Uix)=h~ [|K((y=x)/h) = K*((y = x)/ )| dF(p),

Up(x)=h~ [ K*((y=x)/h)dF(y) ~ [ K*((y—x)/h)aE,(»),

Us(x)=h~ [ |K*((y = %)/ 1)~ K(y = x)/ )| dE,(»).

STRONG UNIFORM CONSISTENCY OF KERNEL DENSITY ESTIMATES 69
If CCRY, x€R? and a>0, let C(x,a)={x+az:zEC} and let
C,=S(x,ph)*
C,= S(x,ph) N D(x,h)*
Cy=D(x,h)
where ( )° denotes the complement of a set. Then
Slip Ul(x)

<3 sup [ h4IKH(=2)/0) - K(y —3)/ WIAF().
i x UG

Recalling that K* is zero outside of [—p,p]* we see that the first term is
upper-bounded by

sup h~K((y —x)/h)dF(y)
x YS(x,ph)°

while the second and third terms are upper-bounded by
M h~“sup\(S(x, ph) =n M 2"
and

2M Mk~ 4supA\(D(x,h)) <2M M,

respectively, where M, =sup, f(x), M,=sup, K(x) and A denotes the Le-
besgue measure on R. Thus

sup U,(x)
X

< sup h=K((y— x)/h)dF(y)+nM 2% +2M M,8.
x S(x,ph)c

(2.10)
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Next,
sup Uy(x)
X

< Sl)lcp z a;h _d( uu’n(Ai(x’ i) — I"(Ai(x’ h)))

<NMzh‘”’81@1plu,.(A)—u(A)l @211)

where @, is the class of rectangles whose diameter does not exceed 2ph.
Finally,

sup U;(x)
P

< 3 swp [ A=)/ B~ K*(r=x)/ DI dE,(y).

13

The first term is upper-bounded by

sup [ nTUK((y=x)/h)dF(y)
x S(x,ph)

while the second term is upper-bounded by
mh”“sup ,(S(x, ph))
<mh”“sup| p,(S(x,ph)) = p(S(x, ph))| + “’SI)lcp p(S(x,ph))
<nh“sup| ,(4) = p(4)] + 1M, (20)",
Recalling that D CB= |J ™, B; the third term is bounded by
Myh “‘SLxlp 1, (B(x,h))
<Moh™“sup | b, (B(x 1)) = p(B(x, )|+ Mh™“sup u(B(x, h))

<SMMyh~™%sup | p,(4) — p(A4)|+ M, M.
@n
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Thus

hK(y—x)/M)AF,(y)

sup U,(x) < sup
xp 3( ) x Y S(x,ph)

+(n+ MyM)h™sup| p,(4) = W(4)
+ M, 2% %+ M\ M,38.
From (2.10), (2.11) and (2.12) we see that
sup|1,(x) = E1, ()
< sup hK((y—x)/ ) dF,(y)

+ sup K ((y—x)/h)dF(y)

+(MN + MM + n)h""sgplnn(A)—u(A)l

+3M, M, +2nM2%"

The first two terms of (2.13) can be upper-bounded by

2sup [ H™ LAy =l /R)AF()

[ oLy =/ R AE()

l h-dL(ny—xu/h)dF(y)}
S(x,ph)°

<o, [ P -1 a-1p(p)ds

) I Z(EE VZOT LA C))
S(x,ph)

L Ch-dL(ny—xn/h)dF(y)'
S(x,ph)

71

(2.12)

(2.13)
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so that
sup | f,(x) — Ef,(x)|
X

<(M,N+ MzM+n)h"’Sgp | n(A) — p(A)]

+ sup

X

[ hL(ly—xl/m)dF,(y)
S(x,ph)
= [ Ly - xI/h) ()
S(x,ph)
+22m, [ CHIL () dr 3 M, MyS + 2mM 294, (2.14)
P

By choosing p sufficiently large and § and 7 sufficiently small the last
three terms of (2.14) can be made arbitrarily small. A straightforward
application of Lemmas 1 and 2 for a fixed 7, 8 and p (e.g., in (2.5) r=2ph,
b=2Mp%“ and e is replaced by eh?/(M,N + M,M+1)) shows that the
first term of (2.14) tends to 0 with probability one if (1.3), which implies
(1.4), is satisfied. The proof will be completed then if we show that

sup
X

f ALy = xI1/h)dF,(»)
S(x,ph)
~f Ch“dL(IIy—XH/h)dF(y)~ @15)
S(x,ph)

tends to zero with probability one for an arbitrarily large p.
Let L’(t)=L(t)1[,>p] so that (2.15) becomes

sup | [ =L/l = xIl /W) dF,(3) = [ WLy = 51| /B dF ().

(2.16)
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For an arbitrary integer / let
Vi Jj :
5= {x:G-DEE cugun< L) 1<
. 1 l
7= {x: YT 10) <L <L) | = U s,
i=j
and

L'(x)= 211 (= I)L—(lp—)fs,(x)

so that

|L'(l|x) = L"(x)| <L(p) /!

for all x. Returning to (2.16) we see that it is bounded by
sup [ |h4L((r =)/ WAE )= [ L' (= 0/ W AF()
+'sup [B4L (v =x)/B) = L(Ily = ||/ B)| dF,(»)

+sup [ AL ((y = x)/h) = L(|ly = x|l /) 4F(¥)

—d —d
E 2L(p)h e L(p)lh

) 3 (= D(a(5,0A) =5, )
j=1

sup
X

Ld —d
3 2L(pl)h i L(p)lh

sup
X

S, ({0 =)

—d
< —2L(p1)h — + L(p)h~“sup suP2| 1 T(x, 1)) — (T (x, ).
X 12j>

(2.17)
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Since 7; is the difference of two concentric rectangles of diameter at most
2L~ Y(L(p)/1), (2.17) can be upper-bounded by

2L 4 Loy h=sup | 1, (4) () (2.19)
@,

where @, is the class of rectangles with diameters at most 2AL~'(L(p) /).
By taking /=[h~“] we can make the first term of (2.18) arbitrarily small by
taking p large. Applying Lemmas 1 and 2 as done earlier we see that the
second term of (2.18) tends to zero with probability one if (1.3) is satisfied.
This completes the proof of Theorem 1.

Proof of Theorem 2. Letting

8(x)=H, " [ K((x—y)/H,)f(»)dy
it is straightforward to see that, with the conditions on K and f,

sup| g,(x)—f(x)| >0 in probability (w.p. 1)
wherever

H,50 in probability (w.p. 1)
(Wagner (1975)). We therefore examine the convergence of the quantity
sup | f,(x) = g,(x)]

First, if {%, } is a sequence of positive numbers for which

Inurc s, 50 in probability (w.p. 1) (2.19)
and
Innzs @) sup |£,(x)—g,(x)| >0 in probability (w.p. 1)
(2.20)
then

sup lﬁ,(x) —g.(x)]| %40 in probability (w.p. 1).

STRONG UNIFORM CONSISTENCY OF KERNEL DENSITY ESTIMATES 75

Following the proof of Theorem 1, we see that
3
sup | £,(x) — g, ()N pazes @< X sup  Ufx,h)  (221)

i=1 x;nh?>%,

where the U, are defined as before except now we make the dependence on
h explicit. By following the proof of Theorem 1 we see that (2.21) can be

bounded by
(M,N+ MyM +n)(n/%,)* =p | ,(4) — p(4)]

+2m, [ ® 441 () di +3 M, M, + M, 2%

P

* 2LI(P) (n/%n)%+2L(p)(n/%n)%szp|”n(A)_‘U_(A)l 2.22)

where now @ is the class of all rectangles in R?. By taking

1=[(n/,)7]
the middle four terms of (2.22) can be made arbitrarily small by choosing p

large enough and 7, 8 small enough. The first and last terms of (2.22) can
be combined to yield a term

o(n/B,)? sup| 1, (4) — p(A)]- (2.23)
Q@

Using the inequality of Kiefer—Wolfowitz (1"956), we see that (2.23), an.d
hence (2.20), tends to 0 in probability if %, — oo, and tends to 0 w.p. 1 if

e ¥ < oVa>0.
1

Using (1.10) or (1.8), it is now easy to show the existence of sequences
{B,} which satisfy (2.19) and (2.20). This completes the proof of Theorem
2

Remark. If f is an arbitrary density with continuity point x, Wagner
(1975) has shown

g,(x) 5 f(x) in probability (w.p. 1)
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whenever
H,50  inprobability  (w.p. 1). (2.24)

For the kernels of theorems 1 and 2, one can see, by examining the proofs
of these theorems, that

lg,(x)—£.(x)| >0 in probability (or w.p. 1)
whenever
nH* 2 o
(or nH? /logn—oo w.p. 1) (2.25)

Thus, for these kernels, (2.24) and (2.25) imply

F() S (%)

when x is a continuity point of f.

in probability (w.p. 1)
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Note. After this paper was in proof, we learned of the resgllt by
Bertrand—Retali (Convergence uniforme d’un estimateur de la densité par
la méthode du Noyau, Rev. Roumaine Math. Pures Appl. 23 (1978),
361-385) which implies that Theorem 1 is true if (1.2) and (1.3) are
replaced by (1.4) and

f sup{ K(u): ||u— x|/ <1}dx<oo.
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