Proc. IFIP Congress 1974, Stockholm, Sweden, pp. 615-619, Aug.

- C. E. Shannon, "Coding theorems for a discrete source with fidelity criterion," IRE Nat. Convention Record, Part 4, pp. 142-163,
- T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-Hall, 1971.
- [10] J. E. Savage, "The complexity of decoders," *IEEE Trans. Inform. Theory*, vol. IT-15, pp. 684-695, Nov. 1969.
 [11] J. Pearl, "On the storage economy of inferential question answering
- systems," IEEE Trans. Syst., Man, and Cybern., vol. SMC-5, pp.

- 595-602, Nov. 1975. [12] N. Pippenger, "Information theory and the complexity of switching networks, "Proc. 16th Annual Symp. on Foundations of Computer Science, IEEE 75 CH 1003-34, Berkeley, CA, pp. 113-118, Oct. 13-15, 1975.
- J. Pearl, "On coding precedence relations with a pair-ordering fi-delity criterion," *IEEE Trans. Inform. Theory*, vol. IT-22, pp. 118-120, Jan. 1976.
- A. Chaitin, "A theory of program size formally identical to information theory," IBM, Yorktown Heights, NY, REP. RC 4805, Apr.

Correspondence

A Distribution-Free Performance Bound in Error Estimation

LUC P. DEVROYE AND T. J. WAGNER, MEMBER, IEEE

Abstract—It is shown that distribution-free confidence intervals can be placed about the resubstitution estimate of the probability of error of any linear discrimination procedure.

I. Introduction

In the discrimination problem the statistician is given an observation X, a random vector taking values in \mathbf{R}^d , and wishes to estimate its state $\theta \in \{1,2\}$. The only knowledge that the statistician has of the distribution of X, given $\theta = i$, is that which can be inferred from a sample of size n_i drawn from F_i where

$$P[X \le x \mid \theta = i] = F_i(x), \qquad i = 1, 2.$$
 (1)

The two samples, here called data, are denoted $X_1^1, \dots, X_{n_1}^1$ and $X_1^2, \dots, X_{n_2}^2$, respectively, and are assumed to be independent of X regardless of its state.

A discrimination procedure which has been frequently investigated in the past (see, for example, Duda and Hart [1, ch. 5]) is to estimate θ by $\hat{\theta}$ where

$$\hat{\theta} = \begin{cases} 1, & \text{if } w^t X \ge w_0 \\ 2, & \text{if } w^t X < w_0. \end{cases}$$
 (2)

The vector $w^t = (w_1, \dots, w_d)$ and the number w_0 , called the weight vector and threshold weight, respectively, are chosen from the data. Regardless of what method is used to arrive at a weight vector and threshold weight, the statistician will always be interested in estimating

$$L_i = P[\hat{\theta} \neq i \mid X_1^1, \dots, X_{n_1}^1, X_1^2, \dots, X_{n_2}^2, \theta = i], \qquad i = 1, 2,$$

a random variable whose value is just the frequency of errors when a large number of independent observations, all with state i, have their states estimated using (2).

The resubstitution estimates \hat{L}_i of L_i are defined by

$$\hat{L}_2 = \frac{1}{n_2} \sum_{1}^{n_2} I_{[w^t X_j^2 \ge w_0]}$$

Manuscript received February 2, 1976. This work was supported in part by AFOSR Grant 72-2371.

The authors are with the Department of Electrical Engineering, University of Texas, Austin, TX 78712.

and

$$\hat{L}_1 = \frac{1}{n_1} \sum_{1}^{n_1} I_{[w^t X_j^1 < w_0]}.$$

These estimates have the appeal of being very simple to calculate once w and w_0 have been determined and, indeed, some procedures for finding w and w_0 involve the specific calculations above. For example, for a given $0 < \alpha < 1$, one may seek values w and w_0 such that, when $\hat{L}_1 \leq \alpha$, \hat{L}_2 is minimized.

The question that we address ourselves to here is: how much confidence can the statistician place in these estimates, that is, for a given $\epsilon > 0$, what is

$$P[|\hat{L}_i - L_i| < \epsilon]. \tag{3}$$

There is, of course, no way of calculating (3) since the distribution functions (1) are unknown. However, if μ_i denotes the measure on the Borel sets corresponding to F_i and $\hat{\mu}_i$ denotes the empirical measure on the Borel sets for $X_1^i, \dots, X_{n_i}^i$ (e.g., $\hat{\mu}_i(A)$ is the proportion of the X with state i falling in the set A), then

$$P[|L_i - \hat{L}_i| \ge \epsilon] \le P\left[\sup_{A \in \mathcal{C}_i} |\mu_i(A) - \hat{\mu}_i(A)| \ge \epsilon\right]$$
 (4)

where \mathcal{C}_i deontes the class of sets of the form $\{x: w^t x \geq w_0\}$, for i = 2, and $\{x: w^t x < w_0\}$, for i = 1. The random variable on the right in (4) is, in the one-dimensional case, essentially what is dealt with in the Glivenko-Cantelli theorem [2]. Indeed, for $d \ge$ 1, Wolfowitz [2] showed that this random variable tends to zero with probability one as $n_i \to \infty$. While this gives the statistician some assurance that, for large n_i , his estimate of L_i will be close to the actual value uniformly in all procedures for determining w and w_0 (see Glick [3] for a thorough discussion of this point), he still falls short of getting a numerical grasp on (3).

Suppose now that X_1, \dots, X_n is a sample of size n drawn from the distribution function F. If μ denotes the measure corresponding to F and $\hat{\mu}$ denotes the empirical measure for X_1 , \cdots, X_n , then Vapnik and Chervonenkis [4, theorem 2, p. 269] have shown that

$$P\left\{\sup_{A\subset\mathcal{P}}\left|\mu(A)-\hat{\mu}(A)\right|\geq\epsilon\right\}\leq 4s(\mathcal{C},2n)e^{-n\epsilon^2/8}$$

where \mathcal{C} is a class of Borel sets in \mathbf{R}^d and $S(\mathcal{C},n)$ is the maximum over x_1, \dots, x_n of the number of sets in $\{\{x_1, \dots, x_n\} \cap A : A \in \mathcal{C}\}$. For the class of "half planes" that we are considering here (e.g., \mathcal{Q}_1 or \mathcal{Q}_2),

$$s(\mathcal{C}_1, n) = \sum_{0}^{d} \binom{n}{k} \le n^d + 1, \quad \text{if } n \ge d.$$

Applying these results to (4) yields

$$P[|\hat{L}_i - L_i| \ge \epsilon] \le 4(1 + 2^d n_i^d) e^{-n_i \epsilon^2/8}, \quad i = 1, 2.$$
 (5)

The significance of (5) is that the statistician knows that

$$P[|\hat{L}_i - L_i| < \epsilon] \ge 1 - 4(1 + 2^d n_i^d) e^{-n_i \epsilon^2/8}, \quad i = 1, 2$$

regardless of F_1, F_2 . By constraining his decision procedure to be linear, he can get a distribution-free performance bound with the resubstitution estimates \hat{L}_i independently of the procedure used to find w and w_0 . This generalizes the result stated in [5] for d = 1 and left there as an open question for d > 1.

II. EXTENSIONS

This result has easy extensions. Suppose the statistician decides to use a rule of the form:

$$\hat{\theta} = \begin{cases} 1, & \text{if } w^t \Phi(X) \ge w_0 \\ 2, & \text{if } w^t \Phi(X) < w_0 \end{cases}$$

where

$$\Phi = \begin{pmatrix} \varphi_1 \\ \vdots \\ \varphi_m \end{pmatrix}$$

is a fixed vector of real-valued measurable functions defined on \mathbf{R}^d with $w^t = (w_1, \dots, w_m)$ and w_0 determined in some manner from the data. A distribution-free bound for

$$P[|\hat{L}_i - L_i| \ge \epsilon], \qquad i = 1, 2,$$

can be obtained immediately by replacing X_j^i by $\Phi(X_j^i)$ so that m replaces d in (5). However, the Vapnik and Chervonenkis result allows a firmer bound if $s(\mathcal{C},n)$ can be computed, where \mathcal{C} is the class of sets of the form $\{x \in \mathbf{R}^d : w^t \Phi(x) \geq w_0\}$ or $\{x \in \mathbf{R}^d : w^t \Phi(x) \geq w_0\}$ $\mathbf{R}^d: w^t \Phi(x) < w_0$. The early paper of Cover [6] contains some specific examples, including the important case where $w^t\Phi(x)$ is a polynomial of degree r in the components of x.

Suppose θ can now take values in $\{1, \dots, M\}$ where

$$P[X \le x/\theta = i] = F_i(x), \qquad 1 \le i \le M.$$

The data become the sequence

$$X_1^1, \dots, X_{n_1}^1, \dots, X_1^M, \dots, X_{n_M}^M$$
 (6)

where $X_1^i, \dots, X_{n_i}^i$ is a sample of size n_i drawn from F_i . The sequence (6) will be denoted simply by the vector D. The linear decision rule for M states is

$$\hat{\theta}$$
 = smallest integer which achieves $\max_{1 \le i \le M} \{w_i^t X + w_{i0}\}, (7)$

where, as before, the weights and thresholds $w_1, w_{10}, \dots, w_M, w_{M0}$ are determined in some manner from the data. If $L_i = P\{\hat{\theta} \neq i/D\}$, $\theta = i$, then its resubstitution estimate just counts the frequency of errors made by (7) on the sample $X_1^i, \dots, X_{n_i}^i$. It is not very difficult to see that a distribution-free bound for this case is given

$$P[|L_i - \hat{L}_i| \ge \epsilon] \le 4(1 + 2^d n_i^d)^{M-1} e^{-n_i \epsilon^2/8}, \quad 1 \le i \le M.$$
 (8)

Finally, we may assume, in some situations, that θ is a random variable taking values in $\{1,\cdots,M\}$ with an unknown distribu-

$$P\{\theta = i\} = \pi_i, \qquad 1 \le i \le M. \tag{9}$$

The data $(X_1, \theta_1), \dots, (X_n, \theta_n)$ is now a sample of size n drawn from the distribution of (X,θ) which is determined from (1) and (9) while the random variable

$$L = P[\hat{\theta} \neq \theta \mid (X_1, \theta_1), \cdots, (X_n, \theta_n)] = \sum_{i=1}^{M} \pi_i L_i$$

is the probability of error for (7) with the statistician's data and his method of choosing the weights and thresholds. The resubstitution estimate of L becomes

$$\hat{L} = \frac{1}{n} \sum_{1}^{n} I_{[\hat{\theta}_i \neq \theta_i]} = \sum_{1}^{M} \frac{N_i}{n} \hat{L}_i = \sum_{1}^{M} \hat{\pi}_i \hat{L}_i$$

where N_i is the number of observations in the data with state iand $\hat{\pi}_i$ is the usual frequency estimate of π_i , $1 \leq i \leq M$. \hat{L} is, of course, the frequency of errors made on the data with (7). For,

$$P[|\hat{L} - L| \ge \epsilon]$$

$$\le P\left[\sup_{i} |\hat{\pi}_{i} - \pi_{i}| \ge \alpha \epsilon / M\right]$$

$$+ P\left[\sup_{i} |\hat{\pi}_{i} - \pi_{i}| < \alpha \epsilon / M \text{ and } |\hat{L} - L| \ge \epsilon\right]$$

The second term above equals

$$P\left[\sup_{i} |\hat{\pi}_{i} - \pi_{i}| < \alpha \epsilon / M \text{ and } \left| \sum_{i=1}^{M} \pi_{i} (\hat{L}_{i} - L_{i}) \right| \ge (1 - \alpha) \epsilon \right]$$

$$\leq \sum_{i=1}^{M} P[|\hat{\pi}_{i} - \pi_{i}| \le \alpha \epsilon / M \text{ and } |\hat{L}_{i} - L_{i}| \ge (1 - \alpha) \epsilon / M \pi_{i}].$$

Since $(1-\alpha)\epsilon/M\pi_i \geq 1$ will yield a probability of zero in each term above, we consider only terms with

$$\pi_i \geq (1-\alpha)\epsilon/M$$
.

Then

$$[|\hat{\pi}_i - \pi_i| \le \alpha \epsilon/M] \subseteq [N_i \ge n\epsilon(1 - 2\alpha)/M]$$

and, from (5) and assuming $1 - 2\alpha > 0$,

$$P[|\hat{\pi}_i - \pi_i| \le \alpha \epsilon / M \text{ and } |\hat{L}_i - L_i| \ge (1 - \alpha) \epsilon / M \pi_i]$$

$$\le 4(1 + 2^d (n\epsilon (1 - 2\alpha) / M)^d)^{M-1} e^{-n\epsilon^3 (1 - \alpha)^2 (1 - 2\alpha) / 8M^3}$$

Using Hoeffding's inequality [7], we see that, for $0 < \alpha < \frac{1}{2}$,

$$P[|L - \hat{L}| \ge \epsilon] \le 2Me^{-2n\alpha^2 \epsilon^2/M^2} + 4M(1 + 2^d(n\epsilon(1 - 2\alpha)/M)^d)^{M-1}e^{-n\epsilon^3(1-\alpha)^2(1-2\alpha)/8M^3}.$$
 (10)

No attempt here has been made to find the tightest bound possible. The interest in (10), as stressed earlier, is that it works for all $\pi_1, \dots, \pi_M, F_1, \dots, F_M$ and all ways of choosing the weights and thresholds.

REFERENCES

- [1] R. O. Duda and P. E. Hart, Pattern Classification and Scene Anal-
- ysis. New York: Wiley, 1973.

 J. Wolfowitz, "Convergence of the empiric distribution function on half-spaces," in Contributions to Probability and Statistics, (Ed. by I. Olkin, et al.) Stanford, CA: Stanford Univ. Press, pp. 504–507,
- N. Glick, "Sample-based classification procedures related to empiric distribution functions," IEEE Trans. Inform. Theory, vol. IT-22,
- V. N. Vapnik and A. Ya. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," Theory of
- Probability and Its Applications XVI. pp. 264-280, 1971.

 T. M. Cover and T. J. Wagner, "Topics in statistical pattern recognition," in Communication and Cybernetics 10, (Ed. by K. S. Fu)
- Berlin: Springer-Verlag, pp. 15–46, 1976. T. M. Cover, "Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition," IEEE Trans. Electronic Computers, vol. EC-14, pp. 326-334, 1965.
- W. Hoeffding, "Probability inequalities for sums of bounded random variables," J. Amer. Statist. Assoc., vol. 58, pp. 13-30, 1963.