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1. Introduction.

Let Xi,...,X, be ii.d. random variables with common density f on the real

line. We consider the kernel estimate
1 n
fulz) = n ZKh(x - Xi)
=1

where K, (z) = (1/h)K(z/h), h > 0 is the smoothing factor depending upon n only,
K, the kernel, is a given density symmetric about zero and satisfying [ K? < oo,
[2*K(z)dz < oo (Akaike, 1954; Rosenblatt, 1956; Parzen, 1962). Sometimes we will

write f,, to make the dependence upon h explicit. The L, error given by

Ton = [ 1w = 1]

measures in many situations the quality of the estimate f,. The expected L, error EJ,,
is a function of n, f, h and K. Of these factors, the user can only choose K and h.
The choices of h and K have led to extensive discussions, especially data-dependent
choices for h for fixed K. The question addressed here is: which density asymptotically
minimizes
ir}if EJ.,?

In addition, we would like to see how f influences the asymptotic behavior of this per-
formance measure. Note that inf, EJ,; can be considered as a measure of the difficulty
of estimating f by the kernel estimate. If we have more information about this, then
we could apply nonlinear transformations to the data as in Devroye and Gyorfi (1985)
and try to knead the data into a cloud that has a density close to the optimum. This
question has been addressed to some extent in the book of Devroye and Gyorfi (1985)
and in Wand, Marron and Ruppert (1991) and Ruppert and Cline (1993). Devroye and
Gyorfi showed that the isosceles triangular density minimizes both an upper bound and
a lower bound for inf;, EJ,,. It turns out however that the isosceles triangular density
does not minimize the inf, E.J,, asymptotically. The optimal density is the solution of
a difficult differential equation. We derive precise asymptotic expressions for inf, EJ,,
that are valid for all densities. This forces us to replace derivatives (which may not exist)

by generalized derivatives, thus rendering the derivation more involved.



2. Main result.

Devroye and Gyorfi (1985) considered the following subclass of densities: F is
the class of all densities f with compact support, such that f is absolutely continuous, f’

is absolutely continuous and there exists a version of f” that is bounded and continuous

a:W, ﬁ:/xQK(x)dx

A(K) _ a4/561/5 .

on the real line. Define

and

We also introduce the function 1(u) & E|N — u|, where N is a normal (0,1) random
variable.
LemMA 1 (DEVROYE AND GYORFI, 1985). If f € F and

lim h=0, lim nh=o00,

n—00 n— 00

then

< o(h?) + o(1/Vnh) .

As noted by Hall and Wand (1988), this implies the following.

LEMMA 2 (HALL AND WAND, 1988). For f € F,
n?/® inf B.J,, — 27 1P AK)Q(f)

where

Q(f)

it [T (7))

One of the goals of this paper is to derive a generalization of this result that is
valid even if f ¢ F, e.g., when f is the isosceles triangular density or the Laplace density.

As we know from Devroye and Gyorfi (1985), some densities are such that an
O(n=2/%) rate of convergence is unattainable. Basically, these include all unsmooth
densities — even one simple discontinuity suffices to put f in this class; it even contains
continuous densities with an infinite first derivative at some point, such as the beta
(a,a) density with 1 < a < 2 — and all densities with a heavy tail, such as the Cauchy
density and, in fact, all densities for which [+1/f = co. We first consider densities that

can insure a convergence rate of O(n~2/%). To describe the main result, it is necessary
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to generalize the notion of a second derivative, without which Lemmas 1 and 2 cannot
be extended. We let ¢ be a mollifier, i.e., a density with support on [—1, 1], having four
continuous derivatives. If * denotes the convolution operator, f *(, is a density with all
the smoothness properties required to apply Lemmas 1 and 2. Furthermore, as a — 0,
f*p, — f at almost all . These two observations are at the basis of our generalization

for Q(f):

def . 1. i |(f * pa)"u
Q(f)= inflimsup [ 570 ( NG :
For f € F, this definition of Q(f) coincides with the definition of Lemma 2. In particular,

the definition does not depend upon the choice of the mollifier . This property is also

true for most densities outside F. We will define a class H containing JF, for which,
among other things, Q(f) does not depend upon the choice of the mollifier. The idea of
a mollifier goes back to Devroye and Gyorfi (1985) and Devroye (1987). Other equivalent
generalizations of derivatives were pointed out by Mokkadem (1989a,b) and Karunamuni
and Mehra (1988). For multidimensional studies of the L; error of the kernel density
estimate, we refer to Holmstrom and Klemeld (1992).

The class H contains all densities f for which
sup [1(£ )] < o0
a>0

and for which the following condition (1) holds: there exists a cup-shaped unimodal

symmetric positive function H satisfying

1
/H(x)dx<oo,EH(X—a)<oo,EH(X+a)<oo (1)

for some a > 0, where X is a random variable with density f. (A function H is
cup-shaped if there exists a point # such that H is nonincreasing on (—oo, ] and non-

decreasing on (6,00).)
REMARK 1. SUFFICIENT CONDITION FOR H. (1) is satisfied when
E|X|log' ™ (1 + |X]) < 00

for some € > 0, or when the 1+e-th moment of X exists. (Hint: take H(z) = || log' ™ (14

z[).) O



REMARK 2. A NECESSARY AND SUFFICIENT CONDITION FOR MOST DENSITIES. When
f can be written as a finite mixture of unimodal densities (and most densities appearing
in applications can), then condition (1) holds if and only if [+/f < co. We prove this
for symmetric unimodal f, leaving the general case to the reader: first, (1) implies
[V/f < oo in all cases, by the Cauchy-Schwarz inequality:

1= fom)” <
Next, when [/f < oo, choose

H(z) = { 1/\V/f(a) if |z] < 2a
1/V/f(z] —a) if [z] > 2a

when verifying (1). O

THEOREM 1. Let f € H, and assume that K is a kernel with compact support. Then
w0l E [ 1= 11> 2 AR |
>

Furthermore, if nh®> — v > 0,

2/5 . a/f |(f*§0a)”|6\/’7
n?/ E/‘fnh_f’%hr(?j(l)lp ’y1/1°¢< 2a/T ) :

THEOREM 2. Consider a density f for which [/f = oo or
limsup/ |(f *pa)"| =00 .
a—0
Then Q(f) = oo, so that the statement of Theorem 1 remains formally valid:

lim n?/® inf EJ,;, = oo .
n—00 h>0

ProOF. Direct from Lemma 6 below. This result was already noted by Devroye and
Gyorfi (1985), and we refer to the discussion given there. [J

There are a few densities for which [\/f < oo, yet condition (1) is not satisfied. Such
densities are not covered by the results of this paper. We should point out that this
class only contains pathological cases. To see this, we apply remark 2 above, and obtain

without work:



THEOREM 3. Let f be a density that can be written as a finite mixture of unimodal
densities. Then

w0l E [ 1= 11> 2 AR |
Furthermore, Q(f) < oc if and only if [\/f < oo and

limsup/|(f>kg0a)”| < 00
a—0

For the vast class of densities covered by Theorem 3, we have a complete answer to the
problem we set out to solve. In particular, Theorem 3 gives necessary and sufficient
conditions for the rate of convergence to be O(n~%/%). Theorem 3 reaffirms that a poor

rate of convergence is due to one of two factors: either the distribution is too spread out
([ /f = 00) or not smooth enough (limsup, ., [ |(f * ¢a)"| = 00).

REMARK 3. UNSMOOTH DENSITIES. When limsup, ., [ |(f * ¢.)"| = oo, one may
still be able to obtain rates of convergence for the kernel estimate. For example, if
limsup, o [ |(f * p.)'| < oo, we get at least a rate of the order of n=*/2. Unfortunately,

a simple general theory is impossible to get because the rate of convergence depends
upon the (lack of) smoothness of f. A similar phenomenon occurs for densities with
large tails. To put it more succinctly, every beta (a,a) density with a < 2 induces a
different rate of convergence, as does every Student t density with parameter v < 1.

However, by the results of this paper, for a > 2 and v > 1, the rates are all O(n=2/%).

3. Another measure of difficulty.

The difficulty related to a density f on IR for the kernel estimate is measured by

au =t [ 2o (\O1)

u>0
whenever f is absolutely continuous, f' is absolutely continuous, f" is absolutely in-

tegrable, and [+/f < oo. The question that imposes itself is: which density mini-
mizes Q(f)? In what follows, we concentrate on the family F of all densities for which
[V/f < o0, f is absolutely continuous, f’ is absolutely continuous, and f" is absolutely
integrable.

The following properties of ¢ help us in the ensuing analysis. We refer to Devroye
and Gyorfi (1985, p. 77) for details.



LEMMA 3 (THE FUNCTION ). Let N be a standard normal random variable.

e ¥(u) > BIN| = /27 .
o $(u) > [EN —u| = |u] .

lim, y0 ¥ (u) = v/2/7 .
[(u) = ¢()| < Ju—v].

0.

Lemma 3 immediately yields the following estimates:

LeEmMA 4 (Bounps). For f € F, if

B(f)

then

O

(f
(

7 <

oy
=

Proor. Clearly, for fixed u > 0,

I

ulls

< \/gu‘m/\/ﬂu““/\f”\

<sm = [ vE [

Also,

ulls

= ["vi [T

|
vii

2 (5

o [ i)

> emps [V [

¥(u) < E[N|+ |u| = /2/7 + |u] .

)

Foru >0, ¢'(u) = P{|N| < u} > 0.
e ) is convex and symmetric about zero.

urp(v/u) — w (v /u*)| < v — v+ V2/7|u — ],

If £&(u) = ¢ (u) — |ul, then £ is monotonically decreasing on [0, 00) from

inf,oo(u)/ut/® <y = 1.028493 .. ..

< 5(8w)7%/° = 1.3768102. .. .

7
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This bound can easily be eclipsed by using Jensen’s inequality. Again for fixed u, note
that by the convexity of ¢,

qﬁw('ﬁ'ﬁ

Lo (1)

RV T

NI

This concludes the proof of Lemma 4. []

Lemma 4 sets the stage for our problem. Indeed, it is relatively easy to minimize
B(f): it is minimized in F by a sequence of densities best described by f; *x ¢, as a | 0,
where f; is the isosceles triangular density (Devroye and Gyorfi, 1985). In fact, with our
generalized definition of a second derivative, f; is the minimizer; note that f, ¢ F. It is
interesting that f, minimizes both the upper and lower bound of Lemma 4, yet it does
not minimize Q(f). The reason is that at f;, we attain the upper bound. More formally,

for any piecewise linear density with a finite number of pieces, we have

Q(f) =5(8m) *°B(f),
where Q(f) is defined above and

(] )" (g f0-5)’

generalizes the definition of B given above. The upper bound of Lemma 4 is reached

/5

on this family. At the other side, we will exhibit a density for which the lower bound of
Lemma 4 is attained as well.

The interest in B(f) is not only historical—we are also driven by practical con-
siderations: B(f) is much easier to compute and estimate than @Q(f). This may be
important when one designs a data-based method for choosing the smoothing factor.
Estimating the two integrals in the definition of B(f) should be straightforward. The
minimization in Q(f) is problematic. Furthermore, the close relationship between B(f)
and Q(f) tells us that minimizing one would be almost equivalent to minimizing the

other. In the next section, we explore this relationship in more detail.



4. Hunting for the best density.

It helps to visualize each density in the plane with coordinates (B(f),Q(f)). We
note that the bounds given above, which remain valid with generalized definitions of
second derivatives as well, cut out an infinite linear wedge in the plane. Furthermore,

the absolute lower bound

4

shown in Devroye and Gyorfi (1985) limits this wedge from the left. To illustrate things,
we show many densities in this plane. Densities with finite coordinates necessarily have
small tails and bounded (but possibly discontinuous) first derivatives. For more stable

computations, we employed the relationship

an=safoe firr+ [ Be(53)

For densities with f’ monotonically increasing to a peak, then decreasing to a low, and

then increasing again as x — oo, with a finite number of discontinuities allowed, we may
replace [ |f"| in the above formula by 4sup|f’|. This follows from the results of this
paper, and is one of the reasons the results are so useful. Also, if f' is absolutely contin-
uous on a finite number of open intervals (which is the case for all densities considered
here), then the formula for Q(f) remains valid as well, with the understanding that the
first term is replaced by u*/>([ ||+ J(f)), where J(f) is the sum of the absolute values
of the jumps at the points of discontinuity of f'. This too is a simple consequence of

Theorem 1.

Put Figure 1 about here.

The figure shown above is geometrically exact—it was drawn in POSTSCRIPT
from precise computations. It requires a considerable amount of computations, as each
point represents the result of an optimization with respect to u of an integral, whose
integrand ¢ in turn is an integral of a non-standard function. This was repeated for
thousands of densities. The idea is to identify densities with small values for Q(f) that
we may then take as target densities for possible transformations in the transformed
kernel estimate. For more work on transformed kernel estimates, we refer to Devroye
and Gyorfi (1985), Ruppert and Wand (1992), Ruppert and Cline (1993), and Wand,
Marron and Ruppert (1991). At the same time, we would like this target density to be
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simple in form, for otherwise it would not be attractive to users. A list of densities and

families of densities is listed below.

e THE NORMAL DENSITY. We computed B(f) and Q(f) for the expo-
nential power densities given by

—lz]*

e

1@ = v 170
where a > 1 to have a finite value for B(f). The family is sometimes
attributed to Subbotin. Prominent members include the Laplace density
(e = 1) and the normal density (¢ = 2). We note that for the normal

density,

5127
e

B(f):( )1/10:1.893... Q) = 1.986... .

Even within this small family, the normal density is neither optimal with
respect to B nor (). The optimal B(f) is obtained for a ~ 3.01, while the
optimal Q(f) ~ 1.95 is obtained for a ~ 2.45. The family forms a lasso
in the (B, Q) plane, with the Laplace density at one end. Normal trans-
formations as advocated in Ruppert and Cline (1993) should nevertheless

provide us with expedient kernel estimates.

e THE BETA FAMILY. Terrell (1990) showed that the beta (4,4) density
minimizes the properly standardized expected L. error for the kernel
estimate. The led us to look at the symmetric beta (a,a) densities. To
have finite B(f), we need a > 2. The limit as a — oo is the normal
density, for which we already had a good value for Q(f). All the beta
densities in our family have smaller values for B, and most have smaller
values for @), with the minimal Q(f) & 1.9235 obtained at a ~ 5.4. Note
that Terrell’s optimum density for L, is no longer optimal here. At the
other extreme of the family is beta (2,2) density f(z) = 6x(1 —z), which
is but an affine transformation of Epanechnikov’s kernel. This yields the
value B(f) = 1.830419599.... The value Q(f) ~ 2.2294 is the worst
in the symmetric beta family with finite Q(f) values, despite the fact
that f is similar in form to the best positive kernel K in the kernel
estimate. The quartic density (a linearly transformed beta (3,3) density)
is given by f(z) = (15/16)(1 — %)% on [—1,1]. We have [+/f = v/15/3,

10



[1£"] = 10/+/3, and thus B(f) = 53/521/53-1/2 = 1.741916666.... We

have seen that () is not minimal here.

¢ POWERS OF A TRIANGLE. Consider the family of densities
a+1 o
fo) = e
for « > 1. For a < 1, we have B(f) = co. At a = 1, we obtain the

isosceles triangular density, for which B(f) is minimal. As & — oo, the

densities become more and more peaked, and B increases monotonically.
The optimal value of () is obtained for & = 1.14. By and large, this
family is uninteresting. Compare however the isosceles triangle with the
Laplace density. The discontinuous derivative of f at the origin is the
main contributor to unsmoothness in both cases. But the large tails of

the Laplace density have a disastrous effect on the value of B(f) and
Q(f)-

e THE TRAPEZOIDAL FAMILY. Let f be trapezoidal in form on [—1,1],
with flat part on [—a,a], where a € [0,1) is a parameter. As we noted,
within this family, we must attain the upper bound for B/@ at all points.
The best density, minimizing both () and B, is the isosceles triangle. As
a — 1, we move closer to the uniform [0, 1] density, for which both B and

() are infinite.

e THE COSINE FAMILY. In our search for the best density, we came
across the cosine family with densities given by
(@) I'*(14a/2)2(a+ 1) cos*(x)
xTr) =
I'(a+2)r

™

2

=l <

Interestingly, the curve carved out in the (B, Q) plane lies underneath
and to the left of that of the beta family. In the limited number of
examples described here, this family contains the best density thus far,
at a &~ 1.7962. The minimal recorded Q(f) is ~ 1.9231.
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e THE SAKAI DENSITY. The inequality Q(f) > vB(f) was obtained by
appealing to Jensen’s inequality. As is well-known, equality is reached if
the integrand takes a constant value. In our case, this would occur when
|f"|/V/f is held fixed. Among the symmetric unimodal densities, this
leads to a unique density modulo a linear transformation. This density is

symmetric about 0 and vanishes off [—1,1]. We introduce the constants

1
1
B= ———dv=1.01 26...
rss JI—oi v 010059626
and
= B = 0.2208430100

On [—1, —a], we define

f@) = (c/12)*(@ + 1),

where ¢ is a normalization constant to be determined further on. On

[—a, 0], we define f(z) as the unique solution of the equation
z+a=D(F(f(2)27%"/f(-a)) - F2 %) ,

where F' is defined by

§ 1
F(z) = /0 W du ,
and D = (1 — «)/2'/5 = 0.2186435377.... On [0,1], f is defined by
symmetry. Note that f is bell-shaped, with convex pieces for |z| > «
and a concave piece on [—a,a]. The name Sakai refers to the Japanese
word for boundary, as f falls on the border of the admissible region in
the (B, Q) plane. It is quickly verified that both f and f' are continuous
on IR. A bit of work shows that

fll(x) — {_C\/ (:Z:) ’ |l’| Sa

e/ flx) x| >«

Note that f(z)/f(—«a) does not depend upon c. Standard computations
show that [ f =1 if ¢ = 12(1 — a)~2/+/C, where

@,
=L
—95/3] 2(1—qa)

v
— dv +
2-2/3 \/1 — 3/2 v 5

12

= 0.9251260780. .. .



Therefore, we determine that ¢ = 20.55089981.... More computations

lead us to

where

G 1 Vo d 0.9428090416
= ————dv =0. e
9-2/5 /1 — v3/?

This yields [+/f = 1.080098210.. ..
Also, B(f) = ¢'/® [ /f = 1.977103546 . . .. Furthermore,

Q(f) =vB(f) 2761/5/\/17: 76_4/5/|f”| = 2.033437. ...

This is not as good as we anticipated. There are no densities with () =
vB < 2.033437.. ..

¢ A QUADRATIC SPLINE. The family considered here consists of three
quadratic splines pieced together:

b—cx?/2 |z] <6 ;

f@) =1 (z|—€)?/2 6 <|z|<e;

0 e < lz| .
Here b, ¢, 8 and € are chosen in such a way that f and f' are continuous,
while [ f = 1. This yields 6* = 1/(¢(c+ 2/3 + ¢*/3)), € = 6(1 + ¢),
b= (1+ ¢)ch?/2. We are free to pick c¢. At one end of the spectrum
(¢ = 0), we find the beta (2,2) density. As ¢ increases, the value of Q(f)
initially decreases to reach a minimum at ¢ =~ 1.6 of about 1.946. Then
it increases again to the density at the other extremum, consisting of two
parabolic pieces leaning against each other with a discontinuity in f' at

the origin.
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¢ A QUARTIC SPLINE. The family considered here consists of three

quartic splines pieced together:

axt 0<z<8;
b—c(r—1/2)*/2 6<x<1-0;
flx) = . :
a(l —x) 0<1-60<z<1;
0 o —1/2>1/2.

Here a, b, c and 6 are chosen in such a way that f and f' are continuous,
while [ f = 1. This yields for 8 € (0,2/3): ¢ =5/(2—368),b = (¢/2)(1/2—
0)%, a = ¢(1/2 — 0)?/6°. The minimal value Q(f) =~ 2.133 occurs at
0 =~ 0.33.

e OTHER DENSITIES. The following densities are far from optimal. We
provide some values for B(f) and Q(f) for future reference. The logistic
density has B(f) = 2.064... and Q(f) = 2.176.... The extreme value
density is close: B(f) = 2.060... and Q(f) = 2.272.... Similarly, the
gamma (4) density is close: B(f) = 2.016... and Q(f) = 2.290.... Be-
cause of its heavy tail, we note the dismal performance for Student’s t3
density: B(f) = (20007/(27v/5))"/® = 2.531..., Q(f) = 2.746.... At
Q(f) = 4.580..., the situation is even worse for the lognormal distri-

bution. Finally, we recall that for the Cauchy and uniform densities,

B(f) = Q(f) = oo.

5. Proof of theorem 1.

We recall some properties from Devroye and Gyorfi (1985, p. 79 and p. 93):

LeEmMA 5 (DEVROYE AND GYORFI, 1985, p. 91). If K is bounded and has compact

support, then there exists a constant ¢ such that

Blf(o) — f0)| - oua (222} < £

on()
o, (z) = E(fu(z) — Ef.())”

B.(z) = Ef.(z) — f(z) = [ * Ki(2) — f(2) .

14



LEMMA 6. For any density f,

VIR [VF.

When f satisfies condition (1) and K is a kernel with compact support, then
tim [ V7R = V=0
and [/f* K, <oo (all h > 0).

Proor. The first statement is immediate from Jensen’s inequality applied to the con-
volution integral. For the second result, assume without loss of generality that a = s in
condition (1), and that K vanishes off [—s, s]. From the Cauchy-Schwarz inequality, we
have for large finite 7"

[ VR - Vi
= [T VE@WF - Kaw) = \J1@)) x H@) 2 do
S/TOOH(m)(f*Kh(x)ij(x))dxx/H(x)_ldm

— B{H(X + W) xinyor + H(X)xor} x / H(z) " dz

< B{(H(X +5)+ HX = ) xvoor + HX) oo} x [ H@) Ho,

where Y has density K and X has density f, and A < 1. The last expression on the
right-hand-side of the chain is as small as desired by our choice of 7" and the finiteness
of EH(X + s) and EH (X — s). Again by the Cauchy-Schwarz inequality, if H, denotes
the Hellinger distance,

[ Wi -

S\/QT/T|Vf*Kh_\/?|2
:\/ﬁHZ(f*Khaf)

g\/2T/]f*Kh—f]

=o0(1)

(see Devroye, 1987, p. 7). This concludes the proof of Lemma 6. []
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LEMMA 7 (DEVROYE AND GYORFI, 1985, P. 79). When [+/f = oo or
l1msup/] fxp)"| =

where ¢ is a mollifier, then

lim n?® inf EJ,;, = oo
n—00 h>0

The class ‘H captures nearly all densities in the complement of the set described

in Lemma 7. It was also shown by Devroye and Gyorfi (1985) that
sup [ (£ +¢,)" = liminf [ (7 %0,)"] < o0

LEMMA 8. Let K have compact support. For f € H,
inf B.J,, = O(n=2/%) .

PROOF. Choose h such that nh® = 1. Assume that K has support in [—s, s]. Let S, =
[—5n, 8,] be such that s, = o(n?/®) and at the same time P{|X| > s, — 1} = o(n"2/%)
where X has density f. If f has compact support, the existence of such a sequence is
obvious. If f does not, but condition (1) holds, then for the function H in that condition,
H(n)/n — 0o as n — oo along the integers. This implies that we can find a sequence of
integers v, for which
Up n
n2/5
Take s, = v, + 1. Then s, = o(n*°) and
EH(X]) _EH(X])
H(s,—1) H(v,)

P{|X|>s,—1} < =o(n™%%) .

By Lemmas 3 and 5,

E [If. - 1]
S/ +E/ f|+/ anz/J

2¢s 2
< n — sh B \/ =
~ nh - S}+/| o+ W/Un

=I+IT+1IT+1V .

By our choice of s,, and h, we see that I = o(n~2/%). Since sh < 1 for all n large enough,
we also have IT = o(n=2/%). Thirdly,

limsupn®® [ |B,| :limsupn2/5/]f*Kh—f]

n—o0 n—o0
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= limSsup T

n—oo

. |f * Ky, — f]
< hmsu e
— hJ’O p h2

—sup [ (£ )" < o0
a>0

(Devroye and Gydorfi, 1985, p. 86). Hence ITI = O(n~2/%). Finally, recalling that

~—

2 _
g, =

((Kn)? * f = (K x )?)
= %(Lh * f —ha 2(Ky * f)?)

where L = K2/a?, we have by Lemma 6,
n2/5/on§a/\/Lh—*f
<a [WLixf-Vii+a [ VF
:o(1)+a/\/?.

This concludes the proof of Lemma 8. ]

0 3|

LEMMA 9. Let h be a sequence of positive real numbers with the property that
EJ,, ~inf EJ,, .
u>0

Assume that K has compact support. When f € H, then there exist constants a, b such
that

0 < a <liminfnh® <limsupnh® <b < oo .

n—00 n—00
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Proor. If h — 0 or nh — oo do not hold along a subsequence, then lim sup EJ,,;, > 0 by
the equivalence result of Devroye and Gyorfi (1985, p. 12). Assume next that nh® — oo,
h — 0, along a subsequence. We will show that along this subsequence, n*°E.J,, — oc,
which contradicts Lemma, 8.

By Lemma 5,

E/|fnh_f|ZE/_il//55|fnh_f|

1/5

n 1/5
> / - <&> _ 2cn
_pl/s On nh

W1/5

2cnt/s
> B,| -
- /,nl/s | | nh
— B fnl/s f * Ky — f|  2en'/®
—nl/5 h2 nh3 '
Thus, if every limsup and lim inf is defined for n increasing along our subsequence,

timsupn*’°E [ |f - /]

n— oo
1/5
" K — fl
ST 5Y2/5 13000 |f*7h _L .
2 limsup (nfe)"* liminf [ === lmsup o
But s
.. " ’f * Kj, — f| . "
mint [ S = [0 01> 0.
Also,
. 2c
limsup —— < o0

n—oo n2/5h
because h > n~'/° for n large enough, along our subsequence. We conclude that along

the entire sequence,
limsupn2/5E/|fnh - f’ =,

n—+00
as required.

Assume finally that nh® — 0, nh — oo, along a subsequence. We will show that
along this subsequence, n?/°E.J,,, — oo, which once again contradicts Lemma 8. That

would conclude the proof of Lemma 9. Find a constant ¢ > 1 with the property that
1
[ Viss[VE.
|z|>t—1

By Lemma 5,
t

18



t
o (2)-
—t oy, nh

S 2 /t 2ct
- o,——.
- T J ¢ nh

n2/5 % (nh)fl _ (nh5)71/10 % (nh)71/2 _ 0((nh5)71/10)

We see that

along the subsequence in question. Also, if K (and thus L) vanishes off [—s, s],

o oz 22 ([ e e
ZW“)I/IO(/_ZL}I*\/_—g>

a t—sh \/E
> (nh?)1/10 (/_H_Sh\/?_ 7)

a+o(1)
= 2(nh?)t/10

Thus, along the given subsequence, n?/°E.J,, — oo. This concludes the proof of Lemma
9.0

LeMMA 10. Let ¢ be a mollifier, let K be a compact support kernel, and let f be any
density with [+/f < co. Then, for any constant -,

im [ V7o (W) =i [ 7o (M2

19



Proor. We follow the proof of Lemma 4 on page 84 of Devroye and Gyorfi (1985).
Part 1. First assume that f has two continuous derivatives and that [ |f"| < co. Let L
be the kernel associated to a symmetric kernel K (page 104 of Devroye, 1987):

o) = [ - le)Kw)dy
It is a nonnegative function integrating to 3/2. We also have (p. 108 of Devroye, 1987):
FrE,—f =W f" %L,

As h — 0, we see that (f * K, — f)/h* = f"[(/2 at almost all 2 by the Lebesgue density
theorem and the integrability of f”. Thus, as h — 0,

/\/—‘ﬂf*Kh—f"
:/7|f*lf;h—f|

= [l L]
< [a1r18/2.

Furthermore, since [/f < oo,

/\ﬁS(vlf*f\(} ) /\ﬁS(vlf"lﬂ)_

Putting this together, we see that
s [ v (511 [ (U3
Part 2. For f € H, we next show that
WS * Ky — f] N *0a)"18
llmsup/\/_¢< NG ><hm1nf/\/_¢< NG )
Using ¥ (a + b) < ¢(a) + ¢(b), we have

/\f¢ <7!f \f/}_ﬂ:%\)

+/\/ﬁz} (7\f*Kh;<f;7—f*%!>

—i—/\/ﬁb <7|f*Kh*90a—f*Kh|>

h*\f
=TI+ IT+1IT.
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When a — 0,

1_/\F¢<7’f \f/f%\)S v\f—hJ;*cpa!_)O_

In a similar fashion, I7 — 0. By part 1 of this proof, we have

lim inf 77 < liminf [ /Fy (W) .

Part 3. We show that

hmlnf/\/_¢ <M\/ﬁ}_cf‘> > lif{ll;up/fw (7\ f;fj)”‘ﬁ> .

We need an auxiliary result. Let f > 0 and g be arbitrary functions, and let ¢ be a
density. Then

[ feto19) = [BINf@) = g(a)
—E [ INf() - g(o)
>E [ INf (@) - g% pla)
= [frovlgresfae).

Armed with this fact, we see that

/\/_@[)<7|f*Kh ) /\/7*9% <7|f*90a*Kh_f*§0a|>‘

VT * @a
Take the limit infimum as h — 0 on both sides of this inequality. Note that for fixed a,
xp, x K, — %o, " * . )"
fSD h;L fw:(f*tpa) *Lh%(fg)ﬁ

at almost all . Applying Fatou’s lemma on the right-hand-side, and the continuity of

1, we have
e 7o (L) [ (4552

Next take the limit supremum as ¢ — 0 on the right-hand side, and note that

Vﬁ*% (7’2{/7?@:%) I (M 2 ”\6 \[[\f SFrou] 0.

This concludes the proof of part 3. Now combine with part 2, and obtain Lemma 10. [
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PRrROOF OF THEOREM 1. Take a subsequence h with the property that nh> — ~. Then,
by Lemma 9, if K has compact support, and f € H,

E [ 1= f1= [ou () + o) = ]JM(B$;> +o(n™F)

To see the first equality, use some estimates from the proof of Lemma 9. Take s, =
o(n?/%) such that P{|X| > s, — sh} = o(n=?/%) where [—s, s] is the support of K, and
X has density f. Such sequence s, can be found for f € H as was demonstrated in the
proof of Lemma 9. Next, with S, = [=s,, s.], [ ¢/(nh) = 2cs,/(nh) = o(n=2/?). Also,
if L=K?/a?,

[ (B) 2 [
< \/%/S VL% f+o(n™>")

SO(nfz/s)/h/T*f_\/ﬂ_i_o(n—z/s)/sc VF + o(n %)

=o(n72/%) .

The second part of the equality can be obtained as follows:

o (2)- %(i? )

f avf* Ly n
Vnh

IN

f

ﬁ) =o(n7%%) .

Similarly, along our subsequence,

B [ 1= g1 = [ S0 (Z2L) +or)

By Lemma 10, we thus have along the subsequence,

2/5 . a/f |(f*§0a)”|6\/_
n?/ E/‘fnh_f’%hr(?j(l)lp ’y1/1°¢< i )

From Lemma 9, we recall that for any optimal sequence h stays asymptotically in

[dn='/5,bn='/5] for some positive constants d,b. Thus, nh® has at least one subsequence

tending to a constant v € [d,b]. The “best” subsequence is one that minimizes the
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limit with respect to v. A simple reparametrization, settin = 4a%u?/3?, yields the
p Y 1% 1% ) g Y y Y

following;:
n B [ 1fan = f] > 2 AE)QS) . O
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