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ABSTRACT

The estimation of a discrete probability density from independent
observations is considered. TFor a wide class of noises, a method is given
for estimating a probability density when the measurements are corrupted by
independent additive noise. This method is shown to be consistent, and
several bounds on the error are given.

I. INTRODUCTION

The need for considering discrete data is often encountered in data
communications, digital signal processing, and other areas. In this paper
we consider discrete valued random variables, and we are concerned with
estimating the discrete probability density function. Measurements are
taken, and from these measurements a density function is obtained. However,
we assume that the measurements are imperfect. We derive the estimators,
establish the appropriate forms of convergence, and supply an abundance of
bounds on the errors.

Assume that we can observe X1, X2, ..., Xp, a sequence of independent
identically distributed random variables with the unknown discrete proba-
bility density f. An obvious way of estimating f(x) is to use the empirical
density based on the n observations. However, the estimation problem is
complicated if we can only observe X +Zq, Xp + Zyseeoy, X + Z_, where X_,Z
Xos 29y «ovy g Z, are independent random variables and the Z;'s, commomly
referred to as noise, have a common known discrete probability density
function g. For a wide class of densities g, a method is given to recover
f which is shown to be strongly uniformly consistent, that is,

lim sup 'fn(x) - f(x), =0

n*e x
with probability one (wpl), where f, is the estimate of f with just n
observations.

IT. PROPERTIES OF THE EMPIRICAL DENSITY

Let X., X,, ..., X be independent identically distributed random
variables with & discreté probability density function f. Assume without
loss of generality that f is supported on Z , the set of integers. The
empirical density fn is defined by

n

1
fn(x) »= 2 I{X.=x} 5 RE L,
i=  §

where I is the indicator function. Thus, fn is also a discrete probability
density.

We will briefly review some properties of f , starting with the point-
wise consistency. By the strong law of large numbers [1, p.239] we know
that £ (x) + f(x) wpl for all x. In fact, by Hoeffding's inequality [2],
for all € > 0,

P {]fn(x) - f(x)’_i e} s 2 exp(—2nez) 3
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from which the strong consistency follows by the Borel-Cantelli lemma
[1, p.228]. This bound is independent of f and x. Since countable unions
of null events are null, we immediately have the strong uniform consistency

1lim sup |fn(x) - f(x)l =0 wpl.
n>~ x

Now we consider some uniform error bounds. If Fn and F are the distribution
functions corresponding respectively to f_and f, then

P{sup |fn(x) - f(x)| > 8}_ﬁ 2P < sup |Fn(x) - F(x)| 2.%'}
X

=
2C, exp [-2n(§)2]., (1)

by an inequality of Dvoretzky, Kiefer, and Wolfowitz EB], where C, is a
universal constant. In the Appendix it is shown that Cl < 610.4.7 Recently,
Singh [4] (see also, [5]) has shown that

| A

P | sup |Fn(x) - F(x)| 2_8}_§ G By B exp(—ZnBz)

X
for n82 > 1. This implies that
2
P {sup £ (x) - £(x) | > e} < 4 e2 n £ exp (—n-% > (2)

5 n
for nt-:2 > 4, Both bounds (1) and (2) are valid for all discrete densities
f and, by the Borel-Cantelli lemma, each implies that

1im sup |fn(x) - f(x)| =0  wpl.

n>o X

Now consider the following two lemmas.

Lemma 1: Let fn(x) be the empirical estimate of the discrete density f(x).
Then

x=.—oo

P{Z lfn(x) - f(x)l > e} < K1 exp(—Kzn)

where Kl’ K2 > 0 depend upon € and f only.

Proof: Pick N > 1 such that :E: f(x) <
|x|>N

P{Z lfn(x) w £02)] > e}

Then

o™

= -0

iP{ Z Ifn(x) - £(x)| 3%} + P{ Z |fn(x) -~ £(x)] 3%}

|x[< N |xf>N

g MRy )| 3 55 b + P £ (x) - f(.x)zi}
Tefine -l adm v T - Frer o

| A
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2 2
< (4N+2) exp [—Zn <Z§1§) ] + exp [-Zn (%) ]
2
< (4N+3) exp [—2n<ﬁ) ]

by Hoeffding's inequality [2]. Q.E.D.

Lemma 2: Let (Q,%,P) be a probability space. Let f., f,, ... be densities
on the integers for each fixed w, and random variables oni (Q,%,P) for each
fixed x. We will write f (x,w) to make the dependency on w explicit. Let
f be a density on the intggers. If fn(x,w) B fx) wpl for all x, then

:E: Ifn(x,w) - £(x}] 2o wpl. 3)

K==00

Proof:

0

Tim £ Ge,0) - £G0) | # o} < 00”:

n—>o X=—00

i Tim £ _(x,0) - £G)] # 0} = LI .\gﬂle"‘

P {w:
j & {w:
X==—00 1>
B ¢
P \v} ( lim Ifn(x,w) - f(x)| # 0) = L

>, p{m T £ (x,0) - £G0] #0}

X=—00 n--c

Therefore, if fn(x,w) + f(x) wpl, then

0

D 1f (o) - £ >0 wpl. Q.E.D.

== 00

III. ESTIMATION IN THE PRESENCE OF ADDITIVE NOISE

Because of background noise, faulty equipment, or other practical
problems, it may not be possible to observe Xl’ X2, Yaialy Xn; but instead,
we can observe Yl’ YZ’ aCal sl i Yn’ where

Y. =X, +2, , 1 <41 <n ,
i ik i =R

and X_, Zl’ X, Z,, «+., X , Z_ are independent. The Z, have a common known
densi%y g on the Integers Ond Phe X, have an unknown deﬁsity f on the in-
tegers which we would like to estimite. The discrete probability density

h of the Yi is given by

00

h(x) = D £(x-y) g(y)
y:—oo

Assume that we can write

f(x) = Z = hix-y) = Z R h(y)




a & =
for some sequence {Ei} of real numbers. Resubstitution gives

00

B o= ), & D e feey-w 4)

y:.—oo u=—.oo

which should hold for all x and all f.

Lemma 3: Eq. (4) is valid for all x and all f if and only if

= Sfor* k- = .0

D e glk-y) = , (5)
y=—o y 0 for k# 0

for all integers k.

Proof: Clearly, if (5) holds, then (4) is valid for all x and all f.
Conversely, let £(0) = 1, and note that

}E: Ey g(u) =1

y,u:y+u=0
Next, let £(0) = %—= f(k), k # 0. Then (4) reads, for x = 0,
i’ 1 1
2= 3 Z e, 8(w) + 3 Z £, g(u)
y,u:y+u=0 y y,usytu=—k y
1s 1
= 5 v 5 Z g g(u) ,
y,utytu=-k y f
from which (5) follows by the arbitrariness of k. QsE.D.

Deferring for the moment the question of how to determine the & from
g so that (5) is satisfied, we return to the construction of an estimdte of
f assuming the knowledge of the § Let hn be the empirical density for

Tys Tgs cevs L, y

.y
1'ln(x) T n z; I{Yi=x} 5

which suggests the following estimate of f:

fn(X)

i
oy
=
~~
0
«
p—
1

<
utvjs
]
8
Yy
5
<
o
o
e
<
N

(6)

Il
=R
H
¥
s
HtV18
1
8
(a1
N
<
Lt
)
[}
<
—
[}
=
M
g
at
o
|.<
H

Notice that for g with g(0) = 1 (and thus &, = 1, Ei =0, i # 0), we get
back the original empirical estimate of f because

O T s
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The first question that arises is the question of the closeness of f
to f. Notice that f is not a probability density in general. Of course,
fn defined by

1 , fn(x) >1
£ @ = £(x), 0<f (x)<1
0 " fn(x) <0
is a strictly better density estimate than f . However, we will not further

discuss this trivial modification of our estimate. Clearly, fn satisfies

(Z | |) sup [h_(x) - h(®)| @)
X

sup ]fn(x) - f(x)| <
X y=_oo
sup |£_(x) - £ < <fup Iayl) > Ih G -h@] (8)
X y X==—00
and
Yl - £@] < ( > Iayl) D b - b
Let
c = ) g
y=.-co
and
D = sup IE |
y Y.

Applying some of the results of the previous section, we have the following
theorem.

Theorem 1: Let f (x) be given by (6) and assume that {E } satisfies (5).
Then if C is flnl%e we have

2
2 C1 exp | - = o ,alln >1
2 ¢2 (9)
P { sup Ifn(x) - f(x)| > ey = , 2 4C2
o 4e " ne exp | - O , all n > —/
—_— 2 - 2
C 2¢ €
and
P{Zw |fn(x) - f(x)l > e} < Kl exp(—Kzn) (10)
where K > 0 are constants depending upon €, h, and C. Also, if D is

finite, we %ave




& 1 b

X

P {sup |fn(x) - f(x)| > e} < K3 exp (fK4n) (11)

where K_,, K, > 0 are constants depending upon €, h, and D.
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The bounds in (9) are distribution-free but require that C < «, Eq.
(11), which is not distribution-free requires only that D < ». The strong
result (10) assumes finiteness of C and is not uniform over all densities,

Using the Borel-Cantelli lemma, we obtain the following result.

Corollary 1l: Let fn(x) be given by (6) and assume that {Ey} satisfies (5).

If D = sup
y

gyl < », then

(o]

:E: ]fn(x) - f(x)| By 0 wpl.

X===00

In the remainder of this paper we briefly discuss practical solutions
to (5) and give some examples of sequences {Ey} for some common densities g.

Practical Considerations: A solution to (5) can be obtained recursively if
g is a single tailed density, that is, if there exists a K such that g(x)=0
for all x > K or g(x) =0 for all x < K. For example, assume that g(K) > 0
and g(x) =0 for all x < K. Let Ey =0 for y < -K and E—K = 1/g(K). It is

easy to see that the k=0 equation of (5) holds and that the k=1 equation
results in

E gyp 8K +E_p g(KHD) = 0,

from which we find £ Solving the k=2 equation of (5) gives us E—K+2

-K+1°
and so on. Clearly, this is probably not the only solution to (5).
Consider the following simple example.

Example 1: Let g(0) = g(1) = 1/2 and g(x) = 0, x # 0, 1. Then (5)
results in

a4 5-1 = EO + El = g ¢ £2 =f et = 0
If EO = a and 5_1 = 2-0 , then all solutions of (5) can be written as
£, = a(-1)7 , 20

+1
L |

\%

= (2-a)(-1
g'y
where a is any real number. For this case we note that D is finite while
C is infinite.

Example 2: In Example 1 we have sgp |5y| < o, but this is not always the

case. If g(-1) = g(1) = 1/4 and g(0) = 1/2, then it is straightforward to
show that for any solution of (5) we have sgp IEy| = o ,

Now we will give solutions for some well known densities g.
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Example 3: Poisson noise with parameter A > 0: Let

x
A -2
g(x) = o © , x >0 5

and it can be verified that a solution to (5) is given by

3Ny
_(_'}'IA-!LEA’ Yio
E =
¥ 0 sy iR

It is easily seen that
A
2 5l = e < =
yz_m

In [6] the estimation of a continuous probability density function from
measurements corrupted by Poisson noise is considered.

Example 4: Geometric noise with parameter A > 1: If

g(x) = (X—lx/;x+l s, X2 0 ,
then a solution to (5) is given by
A/ (A-1) |, y=20
R e =1fA-1) 5 ¥ =l
0 s ¥ #B,1

Example 5: Binomial noise with parameters N and p #3051 3y If

g(x) = (g)px (l-p>N_x s Oxsc® ,

then a solution to (5) is given by

y N+y-1 -N y
-1 1- 5 >0
SRsploE e
y 0
We notice that

oo

:E: Igyl < o

y=—m

if and only if p < 1/2, and that IEyI L o if p>1/2 or if N > 2 and

p = 1/2. Another solution to (5) is given by

A A

_N—y = 0




o =

and it is easy to see that for each p > 1/2,

APPENDIX

In this appendix we prove the following Lemma. The bound that we
present results directly from the work of Dvoretzky, Kiefer, and Wolfowitz.

Lemma: 1If F is any distribution function on R and F_ is the empirical dis-

tribution function with X,, X,, ..., X , a sequence of independent random
variables with distribution function F, then

P {sup |Fn(x) - F(x)l 3_6} §_Cl exp(—Znaz)

X
where
Cl Y 32 7 4 & exp (40/9)
3er  3V3 8v2e

Proof: We will use the notation of Dvoretzky, Kiefer, and Wolfowitz [3,
pp.646-648]. 1In [3] they establish that

1 -G (r) <2 [1 - H (r%]
n - n

where r takes values in (0, vn ). Expression (2.9),

2 I
1'="H () =11 - — + rvn Q (3,2)
X Vn j=[rvnl+1 n

can be upper bounded as follows. Notice that

(-2) < =)

(see (2.11)).

First, consider those j for which |j - %1 £ %- . We will show that
. -3/2
Qn(J 90) < C2 n
for cy = 1 . By an approximation of Feller [7] for n! we have
3/6m
. ¢
X S eEn N o
Q (3,0 (j)-nn (n-3)

| A

Sl g exp[ 58 T T ]
: R
/o j(n—j)3 12a 12341 12(a-3)+1




.

4
Notice that j(n—j)3 2027 (%) « wAlso,

exp i1 L = 1 < exp ol < S
120 ;| 124+1 12(n-j)+1 124+1
Thus,

Q,(1,0) <

Next, we know that

and (2.15) holds:

A

2 ¢y <1 + @) exp(—Z rz)

(3?/2_“ + ;i/g) exp (—2 r2 )

Now consider those j for which |j - 21 > | It follows from the

equation at the top of p.647 that 2 8

2 BN

0,() < (1,1 exp [-£(n,r,3) + £(n,1,9) ]
for r > 1, where f(n,r,j) is the negative of the exponent in (2.12). From

(2.9) it follows that j 3_r¢5-. Thus, it is easily seen that f(n,1,j) <
40/9 = c. Therefore, we have that

Qn(j,r) < c Qn(J,l) exp [_f(n,ru-j)]

2
for r > 1. Since f(n,r,j) > 2 r2 g %Z-’ we have that
2
. . 2) .
Q,d.1) 2 Q.1 exp(-2 r eXP(' 64)

2
Using the fact that r exp(— %Z-) is maximized at r = V2 /16 , we obtain

Qn(j,r) = Qn(j,l) exp(-Z r2>

8rv2e
Thus,

"

vn exp(—Z r2>z Qn(j,l)

exp(—2 rz)

" i c
iR S5 o

8/2e




=70 =
from (2.16).
Collecting bounds, we find that, for r > 1,

1= G (x)<s Z0E1 S & + 4 + exp (40/9) exp(—Z r2> y (A1)
» 3ver  3/3 8/2e

For r < 1, the expression on the right hand side is greater than one, so

that (Al) is valid for all r.
Q.E.D.

ACKNOWLEDGEMENT

This research was supported by the Air Force Office of Scientific
Research, Air Force Systems Command, USAF, under Grant AFOSR-76-3062.

REFERENCES

1. M. Loeve, Probability Theory. New York: Van Nostrand, 1963.

2. W. Hoeffding, '"Probability inequalities for sums of bounded random
variables," J. Am. Stat. Assoc., vol. 58, pp. 13-30, 1963.

3. A. Dvoretzky, J. Kiefer, and J. Wolfowitz, "Asymptotic minimax character
of the sample distribution function and of the classical multinomial
estimator," Ann. Math. Stat., vol. 27, pp. 642-669, 1956.

4. R. S. Singh, '"On the rate for uniform strong consistency of empirical
distributions of independent nonidentically distributed multivariate
random variables," J. Multivariate Analysis, vol. 6, pp. 338-342, 1976.

5. L. P. Devroye, "A bound for the uniform deviation of empirical
distribution functions," to appear in J. Multivariate Analysis.

6. G. L. Wise, A. P. Traganitis, and J. B. Thomas, '"The estimation of a
probability density function from measurements corrupted by Poisson
noise," to appear in IEEE Trans. Inform. Theory.

7. W. Feller, An Introduction to Probability Theory and Its Applicatioms,
Vol. I. New York: Wiley, 1968, p. 54.




