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Abstract

A stochastic system with unknown structure and random inputs is considered.
Two sequences of corresponding input-output pairs are observed over two disjoint

observation intervals.

characteristics changed between the two observation periods.

It is desired to decide whether or not the system

A localized

version of the Kolmogorov-Smirnov statistic is introduced and discussed in this

context.

1. INTRODUCTION

Frequently, the need arises to test whether the
characteristics of a system are still the same,
or whether they have changed. This problem is
encountered in fault detection and quality control
engineering. In this paper we consider a stochas-
tic system transferring a random signal from R@
to R®. The structure of the system is unknown.
We assume that the system is in operation and
that we have observed (Xl,Yl), (XZ’YZ)""’
(Xn’Yn)’ a sequence of independent identically
distributed R§+C—valued random vectors, where
the Xi and Yi are corresponding input-output

The distribution of the X, is governed by

pairs. 1
the input apparatus to the system and is assumed
to be fixed but unknown. Later we observe
(Xl',Yl'), (XZ',YZ'),...,(Xn’,Yn'), another
sequence of Rﬁ+c -valued random vectors, which
represent corresponding input-output pairs during
the latter observation period. If the charac-—
teristics of the system change, they are assumed
to change between the two observation periods.
The distribution of the input is assumed to be
the same during both observation intervals. The

system is said to have changed if (Xl,Yl) and

(Xl',Yl') have different distribution functions.
Notice that Y1 and Yl' may be identically distri-
buted even though the system characteristics have

changed.

A method based on the Kolmogorov-Smirnov statistic
may be used in the above detection problem. This
approach is briefly surveyed. Then a method

based on a localized version of the Kolmogorov-
Smirnov statistic is introduced and discussed. Its

properties are illustrated with inequalities.
2. DISTANCE BETWEEN DISTRIBUTION FUNCTIONS

Let Z = (X,Y) be an Rd+c—valued random vector
with distribution function F, and let Z' = (X,Y')
be an Rd+c-valued random vector with distribution
function G. Let H denote the distribution func-

tion of X. Define the metric p as

p(F,G) = sup|F(z) - G(z)|.
z

Since X has the distribution function H in both
cases, we intuitively feel that it must be possible
to define the distance between F and G in terms of
the conditional distribution functions of Y and Y'
given X.
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The regular conditional distribution function of
Y given X=x, Fx(y), which always exists [1], is
for each x a distribution function on Rp,and is
for each yeR® a version of P{Y<y|X=x}, that is,
a Borel measurable function on Hfisuch that for

all Borel sets A from E&,

[ F (y) dH(x) = P{¥<y, XeAl.
A

Thus, we need not worry about the existence of
FX and GX (the regular conditional distribution

function of Y' given X=x).

One natural way to define the distance between F

and G is as follows:

C(F,G) = ess sup sup|F_(y) - G_(y)|
H y X X

= essHsup p(Fx,Gx)
where ess sup denotes the essential supremum with
respect to the distribution function H. For
the mapping C, as well as p, the triangle
inequality holds. Also, C(F,G)=0 if and only if
p(F,G)=0. Thus, C is a valid measure for the

distance between F and G. Notice that

p(F,G) = sup| [ F_(y) dH(®) - [ G (y) dH(w)|

X,y wW<x W<xX

|A

sup [|F_(y) - G, (y)|dH(w)
Yy

|A

[ sl - 6, |ar0w)

| A

eSﬁ{sup D(Fx,Gx)

C(F,G).

Thus C tends to enhance the difference between

F and G.
3. THE KOLMOGOROV-SMIRNOV STATISTIC

The reason for discussing distances between dis-
tribution functions is because they provide us
with natural constructions for tests to detect
changes in characteristics. Indeed, to do so, we
use emperical estimates for p(F,G). We recall
that the (xi’Yi)’ 1<i<n, have distribution func-
tion F; the (Xi',Yi'), 1<i<n, have distribution
function G; and the Xi,Xi’, 1<i<n, have distri-
bution function H. The empirical distribution

functions with these samples are

o 1 B
F (X,Y) = == z I (l)
n o {Xi_<_x,Yi<y}
and n
n 1
G(x = = I
(x,y) - 121 {Xi'fX’Yi'fy},

where I{.} is the indicator function. If en>0 is
a threshold, then the following detection rule is
obvious:
[AVERAY)
decide F#G¢ if p(F,G) 28
decide F=G otherwise.

This test is attributed to Kolmogorov [2] and

Smirnov [3] (see survey by Darling [4]).

The properties of the Kolmogorov-Smirnov statistic
are well-known, in particular, its asymptotical
properties as n grows large (for a survey, see
Hajek and Sidak [5]). Less publicized are some
strong inequalities valid for finite n. For
instance, Devroye [6] has shown that for all F,

6>0, nb 21(c+d)2 5

P{D(F,F) > 6} 5_2&2(2n)c+d exp(—2n92), (2)

c+
whenever F is a distribution function on R dand

n
F is defined by (1). (For other bounds, see
[7-9].) But clearly, by the triangle inequality,

lo(F,6) - 0(¥,&) | < p(F,F) + 0(G,8).

Now assume first that F=G. Then if nenzzﬁ(c+d)2,

P{decide F#G} = P{p(¥,&) > e}
" € A €
< P{p(F,F) > 571+ P{0(6,6) > 5™
st eap 2D, @

2 n

Thus, the probability of a false alarm decreases
exponentially fast with n if =N is constant.
Notice that (2) does not depend upon F. Assume
next that p(F,G)=A>0, that €n is so small that
en§A/2, and that n is so large that nA23}6(c+d)2.
Then

P{decide F = G}

Y
PIp(F,6) < €}

|A

n A v A
Plo(F,F) > 7} + P{o(C,6) > 7}
<4 2em™ ep- 24D, )

Since A is unknown, we must let Eu decrease with
n but not too fast so that (3) is small. That the

bound (4) depends on A=p(F,G) is very normal.




Small changes require larger sample sizes to
reduce the probability of making an erroneous
decision. That the bound depends on nothing else

but A is quite interesting.

From an engineering viewpoint, the computational
requirements, as a function of n, for computing
p(;,g) are of the order of nd+c (obtained by
constructing the grids generated by the Zi and
the Zi'). If d or ¢ is large, this is clearly
not feasible.

4. LOCALIZATION OF THE KOLMOGOROV-SMIRNOV
STATISTIC

Recall that Xi and Xi' have the same distribution
function H on R@. This fact will now be exploited.
To do so, we need the distance C(F,G). Unlike in

the previous section, it is impossible to compute

o Ny
C(F,G) = essﬁsup p(FX,Gx)

for the simple reason that, although H is known,

N n

F. and GX are unknown. Thus the problem remains

of the estimation of Fx and Gx' To solve this

problem, we define permuted samples (Xlx,le),...,
X 5 X b X X

(X,",Y ") and (xl' ,Yl' ),...,(xn'

,Yn'x) where
d
x€R . They are ordered such that

1% xll < o< x5l

\J |
%, x|l < o0 < 1%, *x]|

1
where ||.||denotes the L, norm on RQ(for the case
where ” Xi—x||= [|Xj-x||, we arbitrarily let Xi

N
be closer to x if i<j). Estimate H by H using
Xl,...,Xn,X ',...,Xn'. Estimate Fx and e by the

following functions on R®:

kn

€ 1

P.(y) == L L., x.y

X kn 121 {Yi <y}
and kn

5 1

6 () =1 L Ity 1% 3

X k421 {y,; "<y}

where knfp is a positive integer. What we are

doing is assuming that Fx is close to Fx x if
i
|| X;*-x|| is small. Consider the statistic

Cc(F,G) = essmsup p(Fx,Gx)
H

= max sup([%xl(y)-éx_(Y)I\/lgx..(y)—éx_'(Y)|>,
1<i<n vy x i i i

which, as a function of n, requires on the order

of nz(kn)c(log n)2 computations, a serious improve-

ment over its counterpart p(%,E). (The factor

n(log n)2 arises from the search for the nearest

neighbors [10].) Notice that the dimension d has

disappeared from the exponent in the number of

computations. Thus, the conditional distribution

function approach seems adapted for multiple input

single output systems.
5. PROPERTIES OF THE RULE BASED ON C(F,G)
In this section we consider the decision rule

Decide F#G if C(F,G) > e

Decide F=G otherwise.
5.1 PROBABILITY OF ERROR WHEN F=G

Throughout we require two conditions, namely that
the support B of H is compact (the support of a
distribution function H is the smallest closed set
B such that IBdH(x) = 1; equivalently, it is the
set of all x such that every e-sphere centered at
x has positive probability), and that {Fx} and
{Gx} are uniformly continuous collections of dis-
tribution functions with p, that is, for all >0,
there exists a y(e)>0 such that ||w—x||< y(g)
implies that

p(Ferw) < e and p(Gx,Gw) < €

These conditions are not too restrictive for

practical systems.

We first need a lemma, relating Fx and Gx to

kn
* 1
F_ (y) =7 § F_ x(y)
N ky y=1 %1

and
n

IIo~> =/

* " ._1_ .
6 @ =5 L & -

i=1
A corollary of [6] is:

Lemma 1: Assume that erﬁ, >0, ljknjp, and
~ *

k e2>c2. Then both P{p(F ,F_)>el} and

n. XX =

N *
P{p (Gx’Gx )>e} are upper bounded by

2 a1 AC 2
2 e (2kn) exp(—an e’).

1



-4 -

Thus we have the following:

P{decide F#G} = P{C(%,é) > eyl

| A

P x %
P _ n
{essgsuplp(Fx,GX) (¥, .G )liz }

x % °p
+ Pless,sup p(F. ,G_ )> —=}
H % D Xcs 2

|A

~ 2 €
* * n
A Bar P{p(}?x’Fx )+D(GX’GX )Z—7f}
xeB
* * &
+ 2n sup Plp(F. ,G ) > —1
xTx’ =2
xeB

|A

€

% % "

4n sup P{p(FX,Fx ) 3_77}
xeB

€
+ 4n sup P{HX: = || > Y(_Z%)}
xeB n

| A

2 (et €n
8n e (an) exp (-2 kh —Igo

+ 4n sup P{the number of X. in
xeB 3

€
S[x,y@ib] is less than kn}

when kn 623;6 cz, where S(x,0) is a sphere in
I{icentered at x with radius a. Let
m = inf f dH(w)

xeB
Slx,y (D]

and assume that kn/n < mn/Z. Then we have

P{decide F#G} <
= .2

9 : X nm
8n e (an) exp(—kn -§~? + 4n exp@-—Iﬁ—)

If €en= € is constant, then m = m; is a constant

1
also. Moreover, mn>0 for all n, since for all
o>0

inf [ dH(w) > O

%eB ¢ (x,0)

by the compactness of B. The above inequality is
valid if k < m /2 and k_ €2 >16 c2. 1In the
derivation, use was made of Bennett's

inequality for sums of independent identically

distributed {0,1}-valued random variables [11].
5.2 PROBABILITY OF ERROR WHEN F#G

Assume that C(F,G)=A>0, that an<A/2, and that
k a%144 c?. Then

P{decide F=G}

E_P{essmsup p(Fx,Gx) < ess sup p(Fx,GX) - A/2}
H H

1A
o>
a0

* %

P{esswsup|p(Fx,Gx) = p(FX ,GX )l 2
H

* % A

+ P{ |essﬁsup p(Fx,Gx) - essﬁsup p(Fx ,Gx )|3€}

A
-+ P{essﬁsup p(Fx,Gx) f_essHsup p(FX,Gx) - E}

2 (] Az
8n e (Z&E) exp(-kn 75)

| A

+ 4n sup P{kax - xlli_y(f%)}
xeB n

A
+ 11 - G = ==
[ P{D(Fxl,le) > ess sup P(F_, ) 6}]

2
R (= A _ nm* -2nd
8n e (Zkh) expl-k 75) + 4n exp( —16—) + e

|A

where
m* = inf f dH (w)

B slx,y($p]

A
= G - =
and § P{p(Fxl, Xl) > ess sup p(F ,Gx) 6}

are both positive numbers. If e,=¢ is constant,

1
the inequalities show that we can meaningfully

detect changes if C(F,G) > 2 €+
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