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Summary.

If one guesses at the value of a {1,...,M}-valued random variable Y
by using some function g(X) of an Rd-dimensional random vector X, then no
function g can be found for which the probability of a wrong guess is smaller
than L*, the Bayes probability of error. The value L* and the optimal mapping g
are completely determined by the distribution of (X,Y). Assume that the only
information about this distribution is contained in a sample Dn:(Xl’Yl)’“'”(XndJ

of independent random vectors distributed as (X,Y). The problem we are interested
in is the one of the estimation of Y by some function gn(X) of X and the dataDw

A sequence of such functions defines a discrimination rule. For given n, the
probability of error is Ln=P{gn(X)#Y[Dn}. Ideally one would like to have some

guarantee that at least for n large enough this probability of error is sufficiently
close to the Bayes probability of error. This is necessarily tied to the concept
of Bayes risk consistency. We say that a discrimination rule is weakly Bayes risk
consistent (w.b.r.c.) if E(Ln)+L* as n»>« ( or, equivalently, if L -L* in proba-

bility ), and strongly Bayes risk consistent (s.b.r.c.) when LpﬁL* with probability

one. Until recently, it was generally believed that these properties were true
for certain discrimination rules under certain conditions on the distribution of

(X,Y). Recent advances in the area of nonparametric discrimination seem to indi-
cate that all '"reasonable" discrimination rules are w.b.r.c. for all distributions
of (X,Y), that is, they are universally w.b.r.c. . We will attempt <o sketch the

development of some of these results and to indicate the key references.

Discrimination With Nearest Neighbor Rules.

In 1951, Fix and Hodges 12 showed that when the conditional distributions of
X given Y=i all have almost everywhere continuous densities fi, then the k-nearest

neighbor rule is w.b.r.c. under conditions on k and n that come very close to ke
and k/n>0. The k-nearest neighbor rule picks for g (X) the class i with maximal
n

representation among those (X,,Yj) for which Xj is among the k nearest neighbors to

X ®® , Since local properties of the distribution of (X,Y) are exploited here, omé
may find it very natural to have to impose some continuity conditicn on the
regression functions P{Y=i|X=x} ( also called a posteriori probabilities ) such as

the one proposed by Fix and Hodges ‘.

To some people's surprise, Stone 31 was able to show in 1977 that under the
same conditions on k, the k-nearest neighbor rule is universally w.b.r.c.. His
result is applicable to a larger class of rules which includes a voting scheme of
Royall 27 where the i-th nearest neighbor to X is given a vote v, (n) while v(nb%
iy3(n)i3..iyn(n)zp, ( the k-nearest neighbor rule is a special case with Viﬁﬁ=f'

for i<k and vi(n)=0 otherwise) and appropriate conditions are imposed on the votes,

35




Stone's very elegant proof is based on the observation that every Borel measurable
function ( such as P{Y=i|X=x} ) is nearly continuous, a well-known fact from
measure theory, and on a new nontrivial inequality to the effect that for all
Borel measurable functions h, after reordering (Xl,...,Xn) into <X(1)"“’X(n))
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These results have been extended in two directions. First, if the nearest
hbor ordering is determined using an & _norm on the ranks of the Xi's, rather

(
}
(4¢]

d » . i : .
than through the Euclidean norm in R then a discrimination rule results that is
invariant to all strictly monotone tLaanormatLons of the coordinate axes with regard

to its probability of error, and that is universally w.b.r.c. 8 21

It has been noted that in low storage, fast computarion situations the

nearest neighbor rules become impractical, especially if a rheao supply of data is
available. A sequential version of the nearest mneighbor rule 11 cuts the data
sequence up into blocks of lengths Ql’ pree finds the nearest neighbor to X in
each block, and takes a vote with weights wl,wz,..° among the corresponding Y-values.
; 2 N .
This rule too is universally w.b.r.c. whenever £ -, E n=m and w /lwi+0. It is
’ n n

1

n

(2

universally s.b.r.c. if also E(Wn/ wi) < « and Qn/log n> «,
1

Discrimination Via Density Estimation

If conditional densities f, exist, then one rule achieving L* chooses g(X)
. i
according to
max f,(X)
: i
i
when all clas:ues 1 are equally probable. If in this formula fi is replaced by an

3

)

timate f,; then L_ is close to L* whenever fn' is close to fj With the
Nl T i L
Parzen-Rosenblatt density estimate 22 26 gpqd taking into account unequal probabilities
P{Y=1i} , _?e are obtained of the following type : choose gn(X) according to
max K((X,-X)/h)
i j:y,=1i .

where K is a given bounded density ( kernel ) and h>0 is a smoothing factor. The
potential function method in pattern recognition WaS FLLst formulated in th»s fashion
by Sebestyen 28 and Bashkirov et. al.“ ( see also 1 2y for certain functions K that
Q

decrease with increasing values of The consistency of kernel rul;

under various conditions on the f,, K and h is treated in a series of papers 32 1% 2%

7 1517 18, all of which require ~a stronger than almost everywhere continuity condition
on the fi's. However, the fact that for every density f almost every x is a Lebesgue

point 29 ( that is,

a f‘ |f(y) —f x)ldy +~ 0 as a~»0 ),
| |y-x]||<a

. ; ; o s d
leads to the conclusion that weak Bayes risk consistency follows from h-»0, nh >, and

/ sup K(y) dx < o,
| | | |
iyl 1>] =]
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whenever X has a density 9. The next question is obvious : if this property is true

for all densities of X, shouldn't it also be true for all distributions of (X,Y) ?
The answer, left as an open problem by Stone 31, is affirmative. Using probability
theoretical covering lemmas, it is possible to show that kernel rul=s are universally
w.b.r.c. under the same conditions on h and some regularity conditions on K 10,

Consistency results for recursive versions of kernel rules as developed in
33 34 24 25 06 also generalizable to the case that X has any density

Discrimination With Partitioning Rules.

Friedman !3 offers conclusive evidence that some algorithms that recursively
partition the space up into rectangular-shaped boxes and use majority rules on the
member sets of the partition are computationally very attractive. These rules are
rooted in the work of Stoller 30 and Anderson 3 , and were studied, e.g., in23 19
20, They are included in this survey because Gordon and Olshen 1© recently showed
that under appropriate conditions on the construction of the partition these rules too
are w.b.r.c. for all distributions of (¥,Y).

Open Problems.

Stone's technique yields distribution-free weak Bayes risk consistency results.
With minor modifications, strong consistency results can be obtained for sequential
discrimination rules 11, but it is unknown whether conditions on the sequence of
nearest neighbor weights can be found that insure strong Bayes risk consistency for
all such rules under no conditions on the distribution of (X,Y).

All the discrimination rules mentioned above are oversimplifications : in their
description, we do not take into account that data are preprocessed { scaling,
dimensionality reduction , etc. ), and that most parameters ( window width h, the
neighborhood parameter k, etc. ) are chosen as a function of the data and are there-
fore random variables not independent of D_. I feel that for "reasonable'" schemes
to determine these parameters one probably does not have to reach to another level
of sophistication in the proofs to show the universal Bayes risk ccnsistency of these
practical versions of the basic nonparametric discrimination rules.
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