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SUMMARY
Let X,,...,X be independent random varia-
1 n
bles with common probability measure u on the

Borel sets of Rl , and let A . osA be the
n nn

dL8s
nearest neighbor partition of the real line ob-

tained from Xl,...,Xn .  When feLl(u) , then it
n

is known that J £(X)) wa ) > SE(x) u(dx) in
i=1 e

probability as n » « (Stone, 1977). We show

that "in probability" can be replaced by "almost

surely" whenever stm(u) . No conditions are
placed upon p

1. INTRODUCTION

We consider the problem of the approximation of J[f(x) u(dx) by
In = [f(x) un(dx) where 1y is an arbitrary probability measure on the Borel

sets of Rl , £ 1is a Borel measurable function and Mo is an empirical proba-

bility measure. We assume throughout that X Xn are independent

1000
identically distributed random variables with probability measure u . When
My is the classical empirical measure, then

G @0 =3 ) £k

o~

i=1

-6 19A

and In -+ I=/f(x) u(dx) a.s. as n »+ «» for all feLl(u) . We are interested

here in the samé/type of result for the empirical nearest neighbor measure My

In section 3 we will highlight the impact of this result on the study of the
nearest neighbor method in discrimination. Yakowitz (1977) has suggested the
use of the empirical nearest neighbor estimate In in Monte Carlo integration,

and he has given evidence showing that In converges faster to I when u

satisfies some regularity conditions.

The empirical nearest neighbor estimate In is defined by

* This research was sponsored by U.S. Air Force Grant AFOSR 76-3062 while the
author was at the University of Texas during the summer of 1979.
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n
iZlf(xl) u(a o)

where Ani = {x]xeRl, Xi is the nearest neighbor of x among Xl,...,Xn}
We say that Xi is closer to x than Xj when
either |x—X.| < |x—X.|
it J
or |x-X.| = |x-x.| , X, <X,
1 ] 1 i
or Xi = Xj 5 LS

Thus, Xi=xj , 1 <j , implies that Anj is empty.

Stone (1977) has shown that when feLP(u) s Prauls

E(JL-1/”) 0 as n~+o

)

for all probability measures p . In particular, when stl(u) , it is true
In - I in probability as n - « . The almost sure convergence of In to I

cannot be established by the methods employed by Stone. The main result of
this paper is the following Theorem:

Theorem 1. Let [f| < c <« be a Borel measurable function and let u be a

probability measure on the Borel sets of Rl . Then the empirical nearest
neighbor estimate In satisfies
n
|1 -1] < L J f@X)-f(x)| u(dx) > 0 a.s. as n >, (1)
v i=1 A *

ni

2. PROOFS

Lemma 1. Theorem 1 is true whenever p is nonatomic.

Proof of Lemma 1.

Replace all Xi's by F(Xi)’s where F is the distribution function cor-

responding to u . Let X ) <X be the order statistics of

a (2) S e = X(n) i
F(Xl),...,F(Xn) and let Bni=(x(i—l)’x(i)] where X(0)=0 g X(n+l)=l . Clearly

n
e i [£(x) £ () [u(dx)
i=1 A .

ni

(2)

IA
Il e~

I lg(x,.\-g(x)| dx
1B _UB 1)

1 A
ni n i+l

where g(u)=f(F_l(u)) and F_l(u)=inf{yIF(y)=u} ,and 0<u<1l.
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Consider a sample of size 2n , and define

2n
= X, .\-gx dx
Voo 'Zl : IfJB | (X ;)-8 |
- 2n i 2n i+l
which can be split up into two sums Vén+ En = z + z It suffices to

i even i odd
show that V! - 0 a.s. as n >« . Lemma 1 then follows by symmetry. Let us

define Ci =2;2n 2iUan 2441 ° 1 <i<n, and Dn=(x(l)’X(B)""’X(Zn—l)) . We
will show that

Vén - E(Vén\Dn) + 0 a.s. as n > , (3)
and

E(Vén]Dn) >0 a.s. as n > . (4)
Since Cl,...,Cn are determined by Dn , we have for all r > 2 and some

constant a, < o , by a result of Dharmadhikari and Jogdeo (1969), after defining

A= le(Xy5))-8)| dx , 1 <ismn,

L

n
A ] r = s r
E(|v -E(V) [D)[") = E(Iizl (z;-E(z[D ) D)

r
S= n
sa o’ ] E(|z;-Ez )"
i=1
X
-1 n
< 2%a n2 7 E(]Z.\r)
r 5 1
i=1
%-l n 2
< (4c)"an 1 E@ (€,
5 i=1 .
r_
2

1
= (4c)rarn E(ur(Cl))

T
2 i )

which is summable in n for r > 2 ; (3) then follows by the Borel-Cantelli
lemma.

Let us next define

pL £ (y)~£ () |dy

ot (x,b) =
y > x,||y=x|[sb



246 L. Devroye

for =xe[0,1] and b > 0 . Define o (x,b) similarly on the set

y<x,|iy—x Isb , and let

+ -
p(x,a) = sup (p (x,b),p (x,b)) , a>0.
O<bza

By the Lebesque density theorem (Stein, 1970), we know that p(x,a) >0 as

a ¢+ 0 for almost all x . Also, p(x,a) is nonincreasing as a ¥ 0 . Now,
n il
1 =
E(v) D) < E S op(x,U) dx = J p(x,U) dx (5)
i=1 Ci 0

where Un = sup IX(21+1)—X(2i_1)I . Becagse Un >0 a.s. as n > (Slud,
0<is<n

1978) and 0 < p < 2¢c , we have by a generalization of the dominated conver-

gence theorem (Glick, 1974), [/ p(x,Un) dx 0 a.s. as n > .

When u has atoms, we consider the decomposition of u into its atomic
part (ul) and its nonatomic part (uz) . u=u1+u2 . Let A be the set of

of atoms of u . If A is empty, theorem 1 follows from lemma 1. If wu(a)=1,
theorem 1 is almost trivial. For the other cases, the following lemma will be
useful.

Lemma 2. W_ = Z

b, (A ) >0 a.s. as n >,
B i:XieA 2

Proof of Lemma 2.

Consider the two subsequences of random variables from Xl,Xz,..., defined

by membership in A . Let Yl,...,YM be the collection of Xi's Al HE<Om S
n

belonging to A¢ , and let Zl""’ZN be the corresponding collection for A .
n

Yi‘s and Zi's are added in order of their appearance in the X, sequence.

Clearly, Mn+Nn=n for all n . If F(x)=u2((—w,x]), then

M
n
By = B ) @) Tag = W

where Y(l) L e S Y(M ) are the order statistics corresponding to
n

TpohetaTys 3 X

M Tni is the indicator function of the event
n

0~} Y(Mn+1)=+"" ;
that at least one Zj w13 = Ny belongs to (Y(i)’Y(i+l)]
u,(R)=q > 0 .

Assume that

LE EO,...,E are independent identically distributed exponential random

M
n
variables with sum SM , then W; is distributed as
n
Mn Mn
-1 2 1/2
T /ey <8 [ I E Q]
i=1 n n i=0
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where Qn is the number of different values among Zl""’ZN and T . 1is the
ni
n
indicator function of the event that one or more of the F(Z,)'s belongs to
J
=) =1
(SMn(EO+...+Ei_1),SMn(E0+...+Ei)] , with E_1=0 . To conclude that Wg * 0 a.s.

as n > , it suffices to show that
(i) Qn/n -+ 0 a.s. as n > ,
(ii) Mn/n +qa.s. asn >,

and
= 1B 2
(ii) Y P(|@)TT Y E, -2 |>e) <w,all >0 .
n=1 i=0 *
Here EO’El""’En are i.i.d. exponential random variables with sum S_ .
n

Statement (ii) %s true by the strong law of large numbers, and statement (iii)
can be proved without difficulty by using exponential inequalities for sums of

independent random variables (e.g., see Baum, Katz and Read, 1962). Lemma 2 will
follow if we can show (i).

It is clear that

E@) = ] 0-(1-a)%
i=1

for some sequence of ai's with Z a; <t a; 20 . Thus, for cy >0,
EQQ) < | na; + ) 1
ai<c2/n aiZCZ/n
<n ) a, +1+2
a,<c,/n * S
i 2
=no(l) +1+2
c
2
gD , n large enough.
c
2
Since cy > 0 was arbitrary, we conclude that E(Qn)/n +0 asn->~, If
Q(k,l] is the number of different values among ZNk+l""’ZN , then obviously
%

U=l ~ el i) w0 TP =

and the distribution of Q(k 2] only depends upon &-k . By the subadditive
. 3

ergodic theorem (Kingman, 1968, 1973), we may conclude that Q(O ]/n rey =
Y AL ’n

lim E(Q(O,n])/n a.s.,n >, RGO Qn/n L

Si =
e nce Q(O,n] Q, , we have c

i
a.S. as n > © ,
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Proof of Theorem 1.

Let M , N , Y.,Y,,... and Z.,Z,,... be as in the proof of Lemma 2,
n n 2 a2 1
and let Bni s LSS Mn , be the nearest neighbor partition of R~ correspond-
ing to Yl,...,YMn ¢ Let C, be {x| xeA , Xi#x o alilf i<t n s SEThent

n
W [£X)-£) | u(dx)

i=1 A .,
ni (6)
Mn
=) s [f(Y )-f(x) | uy(dx) + § 2eu, (A )+2en, (C)
=1 B_, 1:X cA 4k b

Since Mn > ® a.s. asn >« , the first term on the right hand side of (6) tends

to 0 a.s. as n >« (Lemma 1). The second term tends to 0 a.s. as n + ® by
Lemma 2. Finally ul(Cn) is monotone ¥ , and

EGy(€)) = ] wxh) @Q-u(xh) "+ as n->e,

xeA

so that ul(Cn) -+ 0 a.s. as n > » . This concludes the proof of Theorem 1.

3. THE NEAREST NEIGHBOR RULE

We will now consider the implications of Theorem 1 in nonparametric discrim-
ination. Let (X,Y) , (X s ¥ ) ' (X 5Y. ) . be independent 1dent1cally

distributed R x{O 1}—va1ued random vectors, and let Y be estimated by Y =Y

when X € Ani . “Thus; Yn depends upon X , and (Xl, 1)""’(Xn’Yn) : It is

called the nearest neighbor estimate of Y (Fix and Hodges, 1951; Cover and
Hart, 1967). We define

B
|

= P(Yn¢y|xl,Yl,...,xn,Yn)
and
L* = inf
d
g:R +{0,1}

L* is called the Bayes probability of error, and Ln is the probability of error

P(g(X)#Y)

for the nearest neighbor estimate and the given data. Clearly, Ln Z28E® 00 all n .

Under some restrictions on the distribution of (X,Y) , Cover and Hart have shown
that

lim E(L ) = 2E(n(X) (1-n(X))) < 2L*(1-L%) (7)
R B
where
n(x) = P(¥=1|%=x) , xe R .
Stone (1977) and Devroye (1980) showed that (7) remains valid for all distribut-
ions of (X,Y) In general, Ln does not converge to a constant in probability.

For example, when X=0 a.s., and n(0) = %—, then
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[y

2
L =L oo 42T i
n .3 [x,=01 * 3 Tl¥=1

so that convergence to a constant is excluded. Devroye (1980) has shown recently
that

L > 2E((X)(1-n(X))) in probability as n > =

whenever the probability measure u of X is nonatomic. This result can be
strengthened now for d=1 :

Theorem 2. For d=1 and all nonatomic probability measures u , we have, a.s.,

1lim Ln = 2E(n(X) (1-n(X))) < 2L*(1-L*)

n->o

Proof of Theorem 2.

Clearly,

L o=7 I, .7 / (1-n())udx)
o 2 [Yi—l] A

ni

+ ) I, o1/ nx udx)
i [0l Ay

= Lnl+Ln0 .

We will show that Lnl > E(n(X)(1-n(X))) a.s. as n =+« . By symmetry, we can

then conclude that Ln + 2E(n(X) (1-n(X))) a.s. as n - o . The inequality in

Theorem 2 is a simple consequence of Jensen's inequality when one notices that
L*=E(min(n(X),1-n(X))) . Let

C .=/ (I-n(x)) u(dx)
ni A

ni
Zi=1wflr”“9

Then,
|L_.=/n(x) (1-n(x))u(dx) |
nl

A
e
o
=1
!
N
"
+
]

[n(&)-n(x) [uldx) . (8)
ni
The last term of (8) tends to 0 a.s. for all probability measures u (Theorem
1). Check that ) ¢y<1, Ccy 20, E(cnilxl,...,xn)=cni a.s., |2z;] <1 and
E(Zi|X1,...,Xn)=0 a.s. Thus, by an inequality of Dharmadhikari and Jogdeo (1969),

for all r > 1 , there exists a constant a=a(r) > 0 such that
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7. |2r

2
E(|] c_,z,] ") = BE|] ¢z, 177Ix
i i

ERRE

IA

r-1 2r:
E(an g E(|CniZi| lxl,...,xn))

- an” (lc_ 7, %D

IN
[

ot E(uzr(Anl))

n® E(Wzr) (where W 1is the second largest of a sample of n
independent identically distributed uniform (0,1)
random variables)

IA
[

x2r n(n—l)(l—x)n_zx dx

A
(V]
=)
o

T'(n-1)T(2r+2)

T
=an n(1) T (nt2r+1)

0@’ .

Thus, by the Borel-Cantelli lemma, (8) tends to 0 a.s. as n >« .

4. REFINEMENTS

In Lemma 1, we established the strong convergence to I of the empirical
nearest neighbor estimate In when f is bounded and u is nonatomic. The

condition that f is bounded can be dropped without much trouble.

Lemma 3. (1) is valid whenever feLp(u) for some p > 1, and u is nonatomic.

Proof of Lemma 3.

By Theorem 1, (1) is valid for the function f(x)I[]f(x)|SM] and any

constant M . Let us fix a constant M > 0 , and define g(x) = £(x)I

[ £(x)[>M]

We have,

l1-1] < ) s
2 i=1 A,
ni

Ig(Xi)-g(x)| u(dx) + o(1) a.s. as n >,

Also,

I o~

Ji |2(Xi)—g(X)|u(dx)
1A,
ni

1

n
< SlgGut@x) + ] Jg@®)u ) . (9)
i=1
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For all geLl(u) , the first term on the right-hand-side of (9) is small by the
choice of M . By Holder's inequality, the last term of (9) is not greater than

n o %- n i
01 le@)IP17 1] wlaa p1® (10)
i=1 i=1
101 2
where p,q > 1, =+==1. Now, Z |g(X.)|p von E(Ig(X )]p) a.s. as n > ,
P g i=1 i il
Let S, , 0<1i<n, be the spacings of n i.i.d. uniform (0,1) random

variables. Clearly, for all n and all u >0,

by q q-1 2 q
P(izlu (Ani) > u) < P(2 izo Sni > u) . (11)

n
Now, we will show that % 2 (nSni)q converges completely to T(q+l) as n > ».
i=0 n
This in turn implies that for all € > 0 , Z uq(Ani) < Zq_lr(q+l) (1+t-:)/nq_1
i=1

except possibly for finitely many n , a.s. Thus, almost surely, (10) is smaller
than
1 1
E(lgx) PP 2 r@D?

except possibly for finitely many n . This too can be made arbitrarily small by
choosing M large enough. This would complete the proof of Lemma 3.

It is known that SnO""’Snn are distributed as EO/S,E1/S,...,En/S where
EO,El,...,En are i.i.d. exponential random variables and S=E0+...+En . Thus,
n
Thus, L Z (nS .)q + I'(g+l) completely when
n . ni
i=0
1 B
@ = 7 Ed 5 I (q+l) completely ,
n . i
i=0
n
e 1
(ii) = Z E; > 1 completely .

i=0

The latter two results follow from the fact that E(Eg) =T(q+l) , all q 20,
and that E(qu) < » (apply for example, Theorem 28, p. 286 of Petrov (1975)

n

which states that under the said conditions P(|% z (Eg—r(q+1))|>a) = o(n-z)
i=0

for all e > 0)
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