Computer Science and Statistics:
Proceedings of the 13th Symposium
on the Interface

Edited by William F. Eddy

With 122 Figures

D

Springer- Verlag :
New York Heidelberg Berlin

9% 1

RECENT RESULTS ON THE AVERAGE TIME BEHAVIOR OF SOME
ALGORITHMS IN COMPUTATIONAL GEOMETRY

Luc Devroye*, McGill University

ABSTRACT

We give a brief inexhaustive survey of recent
results that can be helpful in the average time
analysis of algorithms in computational geometry.
Most fast average time algorithms use one of three
principles: bucketing, divide-and-conquer (merg-
ing), or quick elimination (throw-away). To
jllustrate the different points, the convex hull
problem is taken as our prototype problem. We
also discuss searching, sorting, finding the
Voronoi diagram and the minimal spanning tree,
identifying the set of maximal vextors, and deter-—
mining the diameter of a set and the minimum
covering sphere. .

Average time. Computational
Sorting. Searching.
Divide and conquer.

KEYWORDS Algorithms.
geometry. Convex hull.
Closest point problems.

1. INTRODUCTION.

There has been an increasing interest in the

study and analysis of algorithms in computational
geometry (a recent survey paper by Toussaint (1980)
had 168 references). Most of the emphasis has been
placed on the study of the worst-case complexity of
various algorithms under several computational
models. It is well-known that many algorithms
perform considerably better on the average than
predicted by the worst-case analyses. In this
note, we would like to point emt a few recent
developments in the analysis of the average com-—
nlexity of some algorithms. To keep the general
discussion simple and yet insightful we make a
couple of convenient assumptions.

The Assumptions.

The input data X s eesX. can be considered as a
— "1 n
sequence of independent identically distributed
d ”
R%-valued random vectors with common density f.
(Here the unrealistic assumption is that real
numbers can be stored in a computer.)

An algorithm takes time T=T(X1,...,Xn), a Borel

measurable function of the input data, and it halts
with probability ome, i.e. T < » almost surely.

The common operations (+,-,/,*,mod,compare,move)
take time uniformly bounded over all vaues of the
operands. For example, a*b or a mod b take time
bounded by a constant not depending upon a or b.
(Once again, this is unrealistic, because the
multiplication or comparison of two real numbers
takes infinite time.)

* The author is with the School of Computer
Science, McGill University, 805 Sherbrooke Street
West, Montreal, Canada H3A 2K6.

76

Average Time.

We are interested in the average time E(T) taken
by certain algorithms. Obviously, E(T) depends

upon f and n only because the averaging is done

over all random samples of size n drawn from the
density f.

Fast Average Time Algorithms.

fastiaverage time algorithms
find

In many applications,
can be obtained by the bucketing principle:
the smallest rectangle C covering Xl,...,Xn;

divide C into equal-sized rectangles (buckets),
and solve the problem by travelling from bucket to
bucket while performing some local operations. We
will also discuss the dramatic savings in average
time that can be obtained by the proper applicaticn
of the divide-—and-conquer principle. Finally, the
quick elimination (or: throw-away) principle may
allow us to further reduce the average time: here
one takes a superficial look at the data, and
eliminates useless points. The more involved work
is then performed on the reduced data sequence.

We will not discuss all the fast average time
algorithms. For example, to find the convex hull
of Xl
models, at least ¢ n log n time is needed (Avis,
1979; Yao, 1979). Jarvis' algorithm (Jarvis,
1973) takes average time 0(nE(N)) where N is the
number of convex hull points. In the design of
this algorithm, no special care is taken to obtain
fast average time behavior. Nevertheless, for
certain distributions E(N)=0(1) (see Carnal
(1970); this is true for multivariate t-distrib-
utions, etc.), so that Jarvis' algorithm runs in
linear average time for a fairly large class of
distributions. In this note, we will be satisfied
with a short inexhaustive and biased survey of
deliberate attempts at reducing the average time
of algorithms and of the probability theoretical
and mathematical tools needed in the ensuing
analysis.

. 2
""’Xn in R under certain computational

2. THE BUCKETING PRINCIPLE.

Let C be the smallest closed rectangle covering

X.,...,X_ and let C be divided into md equal-sized
1 n

rectangles (buckets) where m=int(n1/d). Bucket
memberships can thus be obtained for all data
points in time O(n). Often one keeps track of

these memberships by using md linked lists, one per
bucket, so that 0(n) space is used.

involves sorting
buckets from left

The obvious application in R1

X1 Here one empties the

to right and performs a subsequent sort within each
bucket, if necessary. If this subsequent sort is

""’Xn'

a comparison-based sort (e.g. heapsort, bubble

sort, shell sort mer§e sort or quicksort) with
average time g(n5 (this number is independent of

f, since we have a comparison-based sort), then
the overall average time for sorting is

n
E(T) = 0(n) + E(] g(N,))
i=1
where Nl""’Nn are the cardinalities of the n

Devroye and Klincsek (1981) addressed
They showed that

buckets.
the question of when E(T)=0(n).

when g(u) + « as u » =, g(u)/u2 is nonincreasing,
and g is convex, then E(T)=0(n) if and only if f
has compact support and

[gf(x)) dx < =. (1

Notice that they put no continuity or boundedness
assumptions on f. Akl and Meijer (1980) found
that for sufficiently smooth densities, bucket
sort (with slight ad hoc improvements) compares
favorably with even the best version of quicksort.

Consider now the following generalization of the
previous result: travel from bucket to bucket,
performing within the j-th bucket operations
taking average time bounded between ag(Nj) and

bg(Nj) when Nj is given. Here 0 < a < b < =,

Once again, the average time of the entire
algorithm is
d

m
E(T) = 0(a+E(] g(N,))).
i=1

Assume that g(u)/u 4+ « and g(u)/uK + 0 for some
positive K as u + . Also, assume that g is
convex. Then E(T)=0(n) if and only if f has com-
pact support and (1) holds (Devroye, 1981la).

These basic results have several applications. We
cite just two examples.

Examples.

1. Searching in constant average time.

Assume that X ,...,Xn are stored in the bucket

1
data structure given above, and that we are
presented with XZ (where Z is uniformly distribut-

We have to determine the index
This is the classical problem

ed over 1,...,n).
i such that X.=X,.

dsaZ
of successful search. If the Xi's are stored in

the buckets in order of arrival, then the average
search time is comparable to

md
E(%) N2+1)
g=3 =
(note: two sequences an’bn are comparable when

a =N(b) and b =0(a_)). Bv a simple extension of
n n n n

the previous result, we see that E(T)=0(1) if and

only if f has compact support and ffz(x) dx < o,

If within each bucket the data are organized into
a binary search tree rather than a linked list, by
considering one of the coordinates of the Xi's as

the key for sorting, then E(T)=0(1) if and only if
f has compact support and

[£ log+f(x) dx < e,

2. Convex hull algorithms that are based upon
sorting.

The convex hull of X.,...,X 1is a subsequence
—_—_— 1 n

Xil,...,Xik of Xl,...,Xn such that for all Xij

there exists a hypérplane through Xi-’ and all

Xq‘s, q#ij, belong to the same closea halfspace
determined by this hyperplane.

obtained from X.,,...,X as follows:
1. n

point x that belongs to the interior of the
convex hull of Xl,...,Xn. Sort all that Xi's

In Rz, it can be
(i) Find a

according to the polar angles of Xi—x (by using

the bucket sort described above). This yields a
polygon P. (dii) Visit all vertices of P in turn
by pushing them on a stack. Pop the stack when
non-convex-hull points are encountered. In
essence, this is Graham's algorithm (1972) with a
modification in the sorting method that is used.
Step (ii) takes time O(n). The average time

taken by (i) is 0(n) when the density of the polar
angle of X,-x is square integrable. Since x
itself is 3 random vector, one must be careful
before making any inference about f. Nevertheless,
it is sufficient that f is bounded and has com-
pact support. End of examples.

The previous applications have one feature in
common: the times taken by the algorithms on
individual buckets just depend upon the number
and/or position of the data points within these
buckets (and not on, say, the number of data
points in neighboring buckets). In more involved
problems, we cannot avoid looking at neighboring
buckets. For example, consider the class of
"closest point problems'" in R4 (Shamos and Hoey,
1975) such as: find all nearest neighbor pairs,
construct the Voronoi graph, find the minimal
spanning tree, etc. (see Bentley and Friedman
(1979) for other applications). Shamos (1978)
and Weide (1978) discuss many applications of the
bucketing principle, and Bentley, Weide and Yao
(1980) give a fairly comprehensive treatment of
the average time analysis of bucketing algorithms
for closest point problems. We take the liberty
to cite a couple of examples from their study:

Examples.

1. The all-nearest-neighbor problem.

All nearest neighbor pairs can be found in O(n log
n) time (worst-case) (Lipton and Tarjan, 1977).
Weide (1978) proposed a bucketing algorithm in

which for a given X, a "spiral search" is started
in the bucket of Xi’ and continues in neighboring

cells, in a spiraling fashion, until no data point
outside the buckets already checked can be closer

to Xi than the closest data point already found.

Bentley et. al. (1980) showed that Weide's

algorithm halts in average time 0(n) when there
exists a bounded open convex region B such that
the density f of Xl is 0 outside B and satisfies

0 < inf f(x) < sup f(x) < = .
B B

2. The Voronoi diagram.

The Voronoi diagram in R2 can be found in time

0(n log n) (worst-case) (Shamos (1978), Horspool
(1979), Brown (1979)). Bentley et. al. (1980)
have a bucketing algorithm that uses sprial search
and has some additional features. The Voronoi
diagram can be found in average time 0(n) when d=2
and the density f of Xl satisfies the condition of

Example 1. From the Voronoi diagram, the convex
hull can be obtained in linear time (Shamos, 1978).

3. The minimal spanning tree.

For a graph (V,E), Yao (1975) and Cheriton and
Tarjan (1976) give algorithms for finding the
minimal spanning tree (MST) in worst-case time
O(IEllog 1og|V|). The Euclidean minimal spanning

tree (EMST) of n points in Rd can therefore be
obtained in O(n log log n) time if we can find a
supergraph of the EMST with 0(n) edges in

0(n loglog n) time. Yao (1977) suggested to find
the nearest neighbor of each point in a critical
number of directions; the resulting graph has 0(n)
edges and contains the MST. This nearest neighbor
search can be done by a slight modification of the
algorithm in Example 1. Hence, the EMST can be
found in average time O(n log log n) for any d and
for all distributions given in Example 1. The

situation is a bit better in R2. We can find a
planar supergraph of the EMST in average time 0(n)
(such as the Delaunay triangulation (the dual of
the Voronoi diagram), the Gabriel graph, etc.) and
then apply Cheriton and Tarjan's (1976) 0(n)
algorithm for finding the MST of a planar graph.

Thus, in R2 and for the class of distributions
given in Example 1, we can find the EMST in linear
average time. End of examples.

Finally, we should mention a third group of bucket-—
ing algorithms, where special buckets are selected
based upon a global evaluation of the contents of
the bucket. For example, assume that not more

than a, buckets are selected according to some

criterion (from the approximately n original
buckets) in time O(n), and that only the data
points within the selected buckets are considered
for further processing. If N is the number of
selected points, then we assume that "further
processing" takes time 0(g(N)) for a given function
g. Because the global evaluation procedure is not

78

specified, we should assume the worst case, and
this leads to the study of the order statistics

of the cardinalities of the buckets. The follow-
ing results can be found in Devroye (1981b). When
M is the maximum of n i.i.d. Poisson (1) random
variables, then E(M) ~ log n/ log log n. The same
is true if M is the maximum of Nl""’Nn’ where Ni

is the cardinality of [iil-,-%) and the data is

U Un’ a sequence of i.i.d. uniform (0,1) ran-

1000
dom variables. Using tight bounds on the upper
and lower tails of M, one can show that

~ log n
E(g(N)) = 0(g(a Tog 1og)
where a_ > 1, g is nondecreasing, g(x)=0(1+xB)

(some B > 0), sup %éﬁf%-< » (all ¢ > 1), and the
x>0

Xi's have a bounded density f with compact support.

Example. The convex hull in R2.

Shamos (1979) suggested to construct the convex

hull in Rz in the following fashion: mark all the
nonempty extremal buckets in each row and column
(the extremes are taken in the northern and
southern directions for a column, and eastern and
western directions for a row); mark all the
adjacent buckets in the same rows and columns;
apply Graham's O(n log n) convex hull algorithms
to all the points in the marked buckets. It is
clear that an=0(J5) and that the average time of

the algorithm is 0(n)+ O(E(g(N)) = where g(n)=n
log n. This is

2
(log n) d
0(n) + 0(/n ——5————10g Tog —) = 0(n).

Furthermore, the average time spent on determining
the bucket menberships divided by the total aver-
age time tends to 1. End of example .

3. THE DIVIDE-AND-CONQUER PRINCIPLE.

A problem of size n can often be split into two
similar subproblems of size approximately equal to
n/2, and so forth, until subproblems are obtained
of constant size for which the solutions are
trivially known. For example, quicksort (Sedgewick
(1977, 1978)) is based on this principle. The
average time here is 0(n log n), but, unfortunately
enough, since the sizes of the subproblems in
quicksort can take values 0,1,2,... with equal
probabilities, the worst-case complexity is 0(n").
One can start in the other direction with about

n equal-sized small problems, and marry subsol-
utions in a pairwise manner as in mergesort.
Because of the controlled subproblem size, the
worst—case complexity becomes 0(n log n) (Knuth,
1975). Both principles will be referred to as
divide-and-conquer principles. They have numerous
applications in computational geometry with often
considerable savings in average time. The first \
general discussion of their value in the design of
fast average time algorithms can be found in
Bentley and Shamos (1978).

Let us analyze the divide-and-conquer algorithms
more formally. Assume that Xl""’xn are

Rd—valued independent random vectors with common
distribution, and that we are asked to find
An=A(X1,...,Xn) , a subset of Xl,...,Xn , where

A(.) satisfies:
1) A(xl,...,xn)=A(xo(1),...,xo(n)), for all

KysewesX) € Rd , and all permutations

o) s50m). r0f Ajesesni.

2) x, € A(xl,...,xn) => X € A(xl,...,xi) for

3

all KyseeosX € Rd

2 , and all i <n .

The convex hull satisfies these requirements. If
Ql(x),...,QZd(x) are the open quadrants centered

at x € R, then we say that Xi is a maximal
vector of Xl,...,Xn if some quadrant centered
at X, is empty (i.e., contains no Xj s i
j £n) . The set of maximal vectors also satis-—

fies the given requirements. Let N = cardina-
lity(An) . For p 21, we know by Jensen's

inequality that
EQNP) = (EQ))P .

In the present context, we would like an inequa-
lity in the opposite direction. For random sets
A satisfying 1) and 2), and under very weak

conditions on the behavior of E(N) , we have
EQP) = 0((EOP)

For example, it suffices that
E(N) is nondecreasing, or that E(N) is
regularly varying at infinity. Also, if

E(N) Sa_ 4, then EQP) = O(aﬁ) .
the results of Devroye (198lc) imply that under
weak conditions on the distribution of X1 "

E(Np) and (E(N))p are comparable. The same is
true for other nonlinear functions of N . For
example, if E(N) < a 4 , then E(N log(N+e)) =

Thus the knowledge of E(N)

(Devroye, 1981c).

In essence,

O(an log an) .

allows us to make statements about other moments

of N . Here are some known results about E(N) .
Examples. 1. g%rgiis the convex hull. X1 has a
a density nEm
€1) E(N) = o(n) (Devroye, 1981d).
(i1) If f is normal, then E(N)=
(a-1)/2
0((log n)) (Raynaud, 1970). For
d=2 , E(N) v 2V2m log n (Renyi and

Sulanke, 1963, 1964).
If f is the uniform density in the unit

, then E(N) =

(iii)
hypersphere of Rd

79

O(n(d-l)/(d+l)) (Raynaud, 1970).

(iv) If f is the uniform density on a poly-
with k vertices, then

(Renyi and Sulanke, 1963,

gon of R2
E(N) ~ 2k

=7 log n
1968).

If f is a radial density, see Carnal
(1970). For example, if f is radial,

and P(]X1||>u)=L(u)/ur where r 2 0 and

L is slowly varying (i.e., L(cx)/L(x) + 1
as x +» , all c > 0), then E(N) + c(r)

>0 . If P(|]Xl||>u) n o e(1-u)® for some
oy B> 0sias . wid 1 ,-and P(IIX1||>1)=0,
1/(@xr+l)

(v)

then E(N) v c(r) n for some

elr) >0 .

is the set of maximal vectors.

291 A
=y

When Xl

are independent then E(N)
(Devroye, 1980) and E(N) ~ 2%(log m)¥471/(da-1)1
(Barndorff-Nielsen, 1966; Devroye, 1980).

End of examples. R

has a density and the components of Xl

is nondecreasing

An can be found by the following merging method.
Assume for the sake of simplicity that =n = 2k

for some integer k > 1 .

1. Let Ali=A(Xi) ,1<i<n. Set j=<«1.

2. Merge consecutive Aji's in a pairwise manner
(Ajl and Aj2 3 Aj3 and Aj4 3 etc.) .

3. Set j < j+l . If j > k , terminate the
algorithm (An = Akl) . Otherwise, go to 2.

We assume that merging and editing of Aji and

Aj i+1 with cardinalities kl and k2 can be

done in time bounded from above by g(kl)+g(k2)

for some nondecreasing positive-valued function
g , and that E(g(n)) < bn 4+ where, as

before, N = cardinality(An) . Then the given

algorithm finds An in average time

2n
0(n z

2
b) e
3 J

1
If the merging and editing take time bounded from
below by a(g(kl)+g(k2)) and E(g(N)) 2= sbn
where g and bn are as defined above, and
a,s > 0 are constants, then we take at least
n
2
yn z b./j

=1

Yy >0 and all n large
Thus, the divide-and-

average time for some
enough (Devroye, 198lc).

conquer method finds An in linear average time

if and only if

!

bj/jz <w .

j=1
Examples.
1. The set of maximal vectors.

Merging of two sets of maximal vectors can be
achieved in quadratic time by pairwise compari-
sons, for any dimension d . We can thus take

g(u) = u2 in the previous analysis if we merge
in this way. If E(N) v a 4 « , then we can

check that the divide-and-conquer algorithm runs
in linear average time if and only if

Z a?’/j2 < o
=1
2
2. Convex hulls in R~ .
Two convex hulls with ordered vertices can be
merged in linear time into a convex hull with

ordered vertices (Shamos, 1978). Thus, if
E(N) = 0(a_) and a_ % « , then
n n
I a/if <o 2

o T

is sufficient for the linear average time behavior
of the divide-and-conquer algorithm given here.
When 1lim inf E(N)/an > 0 , then (2) is also

necessary for linear average time behavior.
Notice here that (2) is satisfied when, say,

1+én or an=n/(log n.log1+6log n) for

an=n/log

§>0.

condition a_ =
n

and Shamos (1978).

This improves the sufficient
1-6
n

some

, 6§ >0, given in Bentley

3. Convex hulls in Rd o
Merging can trivially be achieved in poly-

nomial (nd+1) time for two convex hulls with
total number of vertices equal to n . When
E(N) <a_ 4+ and
n
] ottt <e,
j=1 -

we can achieve linear average time. This condi-
tion is fulfilled for the normal density in
d

R and the uniform density on any hypercube of
Rd . End of examples.
4. THE QUICK ELIMINATION (THROW-AWAY) PRINCIPLE.

In extremal problems (e.g., find the convex hull,
find the minimal covering ellipse, etc.) many of

80

the data points can be eliminated from further
considerations without much work. The remaining
data points then enter the more involved portion
of the algorithm. Often the worst-case time of
these elimination algorithms is equal to the
worst-case time of the second part of the
algorithm used on all n data points. The
average time is sometimes considerably smaller
than the worst-case time. We illustrate this
once again on our prototype problem of finding
the convex hull.

Examples.
1. The convex hull.

Assume that we seek the extrema el,...,em

in m carefully chosen directions of R ,
form the polyhedron P formed by these extrema,
and eliminate all Xi's that belong to the

interior of the extremal polyhedron P . The
remaining Xi's are then processed by a simple

worst-case O0(g(n)) convex hull algorithm.
What can we say about the average time of these
algorithms? An average time of o(g(n)) would
indicate that the elimination procedure is worth-
while on large data sequences. We could also
say that the elimination procedure achieves 1007
asymptotic efficiency. In Devroye (1981d) it
is shown that this happens when (i) the open
halfspaces defined by the hyperplanmes through

v d
e; s cover R
except possibly the origin; and (ii) Xl

the origin perpendicular to the

has a

radial density f , where
a(u) = inf{t:P(i|X1]|>t)=u}

0 (1im a(tu)/a(t) =1 ,
t+0

as u+¥0 . Condition
are determined by the

is slowly varying at

all u>0) , and a(u) » =
(i) holds when the ei's

d+l vertices of the regular (d+l)-vertex sim-

centered at the origin. One could
also take 2d directions defined by (0,0,...,
0,+1) , etc. . Condition (ii) is satisfied by
the normal density and a class of radial exponen-
tial densities (Johnson and Kotz, 1972, pp. 298).
The previous result can be sharpened in specific
instances. For example, if f is normal,

g(n) = n log n , and (i) holds, then the average
time is O0(n) . Furthermore, the average time
spent by the algorithm excluding the elimination
is o(n) (Devroye, 1981d).

plex in Rd

When d=2 and f

infinity on a nondegenerate rectangle of R2
(f=0 elsewhere), and are equi-spaced

directions, then the average time of the elimina-

algorithm is O0(n) even when g(n) = n2
(Devroye and Toussaint, 1981).

is bounded away from O and

€1s--es€g

Eddy (1977) has given a slightly different
elimination algorithm in which the number of

directions and the directions themselves depend
upon the data. Akl and Toussaint (1978) report

that in R2 , for certain distributions, almost
all elimination algorithms achieve extremely
fast average times provided that eys---re, are

easily computed (e.g., they are axial or diagonal
directions.)

2. Finding a simple superset.
Assume that we wish to find An=A(xl""’Xn)

in the following manner: (i) Find a set
Bn=B(X1,...,Xn) where Bn is guaranteed to

contain An , in average time Tn 5 (ii) Given
that the cardinality (Bn) is equal to N , find
An from Bn in worst-case time bounded by g(N).
Note that the average time of the entire elimina-
tion algorithm is bounded by

T E(g(N)) .

is the convex hull, B is the set of
| i

2.1. A
2,

maximal vectors.
We discussed some distributions for which Tn=0(n).

In R2 , step (ii) can be executed with g(n)=n2
(Jarvis' algorithm, 1973) or g(n)=n log n
(Graham's algorithm, 1972). Thus, the entire
algorithm takes average time O0(n) when

E(N log+N)=0(n) or E(N2)=0(n) , according to

the algorithm selected in step (ii). When the
components of X1 are independent and Xl has

a density, then these conditions are satisfied by
the results of Devroye (1980, 1981c) given in
Section 3. The linearity is not lost in this case

d+1

in Rd even when g(n) = n in step (ii).

2.2. A
25

T

is the diameter of X.,...,X ; B is
B i

3 o

the convex hull.
An={Xi,X.} is called a diameter of XjseeesXy

when ||Xk—Xm|| <]IXi-XjII for all
l1<k<m<n, (k,m)#(i,j) . Given B, some
An can be found by comparing all (g) distances
between points in Bn (see Bhattacharya (1980)

for an in-depth treatment of the diameter problem,
and a survey of earlier results). But Bn can

be found in linear average time for many distri-
butions. In such cases, our trivial diameter
algorithm runs in linear average time provided
that E(N)=0(vn) . Assume for example that f
is the uniform density in the unit hypersphere of

Rd , then the trivial diameter algorithm runs in

linear average time if and only if (i) the convex
hull can be found in linear average time, and
(ii) d £ 3 (section 3, example 1 (iii)).

81

2.3... A is the minimum covering circle, B is
i i ir

the convex hull.

The minimum area circle in R2 covering
Xl,...,Xn has either three convex hull points

on its perimeter, or has a diameter determined
by two convex hull points. Again, it can be
found (trivially) from the convex hull in

worst—case time O(né) (see Elzinga and Hearn
(1972, 1974), Francis (1974) and Shamos (1978)

for O(nz) algorithms and subsequent discus-
sions). Thus, An can be identified in linear

average time if the convex hull Bn can be
found in linear average time, and if E(N) =

0(v/n) (or 0(n1/4) , if the trivial algorithm
is used).

5. REFERENCES .

[1] S.G. AKL, H. MEIJER: '"Hybrid sorting
algorithms: a survey', Department of
Computing and Information Science, Queen's
University, Technical Report 80-97, 1980.

<[2] S.G. AKL, G.T. TOUSSAINT: "A fast convex

hull algorithm", Information Processing
Letters, vol. 7, pp. 219-222, 1978.

[3] D. AVIS: '"On the complexity of finding
the convex hull of a set of points",
Technical Report SOCS 79.2, School of
Computer Science, McGill University,
Montreal, 1979.

[4] 0. BARNDORFF-NIELSEN, M. SOBEL: '"On the
distribution of the number of admissible
points in a vector random sample", Theory
of Probability and its Applications,
vol. 11, pp. 249-269, 1966.

[5] J.L. Bentley, J.H. FRIEDMAN: '"Data struc-
tures for range searching', Computing
Surveys, vol. 11, pp. 398-409, 1979.

[6] J.L. BENTLEY, M.I. SHAMOS: '"Divide and
conquer for linear expected time",
Information Processing Letters, vol. 7,
pp. 87-91, 1978.

[7] J.L. BENTLEY, B.W. WEIDE, A.C. YAO:
"Optimal expected-time algorithms for
closest point problems", ACM Transactions
of Mathematical Software, vol. 6, pp. 563-
580, 1980. 4

[8] B. BHATTACHARYA: '"Applications of compu-
tational geometry to pattern recognition
problems'", Ph.D. Dissertation, McGill
University, Montreal, 1980.

[9] K.Q. BROWN: 'Voronoi diagrams from convex
hulls", Information Processing Letters,
vol. 9, pp. 227-228, 1979.

[10] H. CARNAL: '"Die konvexe Hiille von n
rotationssymmetrische verteilten Punkten",
Zeitschrift fiir Wahrscheinlichkeitstheorie
und verwandte Gebiete, vol. 15, pp. 168-
176, 1970.

[11] P. CHERITON, R.E. TARJAN: '"Finding minimum
spanning trees', SIAM Journal of Computing,
vol. 5, pp. 724-742, 1976.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

L. DEVROYE: "A note on finding convex hulls
via maximal vectors", Information Processing
Letters, vol. 11, pp. 53-56, 1980.

L. DEVROYE: '"Some results on the average
time for sorting and searching in R%",
Manuscript, School of Computer Science,
McGill University, Montreal, 198la.

L. DEVROYE: '"On the average complexity of
some bucketing algorithms', Computers and
Mathematics with Applications, to appear,
1981b.

L. DEVROYE: "Moment inequalities for
random variables in computational geometry",
Manuscript, School of Computer Science,
McGill University, Montreal, 198lc.

L. DEVROYE: '"How to reduce the average
complexity of convex hull finding algo-
rithms", Computing, to appear, 1981d.

L. DEVROYE, T. KLINCSEK: '"On the average
time behavior of distributive sorting
algorithms", Computing, vol. 26, pp. 1-7,
1981. -

L. DEVROYE, G.T. TOUSSAINT: "A note on
linear expected time algorithms for finding
convex hulls", Computing, to appear, 1981.
W.F. EDDY: "A new convex hull algorithm
for planar sets', ACM Transactions of
Mathematical Software, vol. 3, pp. 398-403,
1977%

J. ELZINGA, D. HEARN: '"The minimum
covering sphere problem', Management
Science, vol. 19, pp. 96-104, 1972.

J. ELZINGA, D. HEARN: "The minimum sphere
covering a convex polyhedron", Naval
Research Logistics Quarterly, vol. 21,

pp. 715-718, 1974.

R.L. FRANCIS, J.A. WHITE: Facility Layout
and Location: An Analytical Approach,
Prentice-Hall, 1974.

R. GRAHAM: "An efficient algorithm for
determining the convex hull of a finite
planar set', Information Processing letters,
vol. 1, pp. 132-133, 1972.

R.N. HORSPOOL: "Constructing the Voronoi
diagram in the plane", Technical Report
S0CS 79.12, School of Computer Science,
McGill University, Montreal, 1979.

R.A. JARVIS: '"On the identification of the
convex hull of a finite set of points in
the plane", Information Processing Letters,
vol. 2, pp. 18-21, 1973.

N.L. JOHNSON, S. KOTZ: Distributions in
Statistics: Continuous Multivariate
Distributions, John Wiley, New York, 1972.

D. KNUTH: The Art of Computer Programming,
vol. 3: Sorting and Searching, Addison-

Wesley, Reading, Mass., 2nd Ed., 1975.

R.J. LIPTON, R.E. TARJAN: "Applications of
a planar separator theorem'", 18th Annual
IEEE Symposium on the Foundations of Com-—
puter Science, PP-. 162-170, 1977.

H. RAYNAUD: '"Sur le comportement asymp-—
totique de 1l'enveloppe convexe d'un nuage

de points tirés au hasard dans RD'"', Comptes
Rendus de 1'Académie des Sciences de Paris,
vol. 261, pp. 627-629, 1965.

82

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. RENYI, R. SULANKE: "Uber die konvexe
Hiille von n zuf#llig gewidhlten Punkten I",
Zeitschrift fiir Wahrscheinlichkeitstheorie

und verwandte Gebiete, vol. 2, pp. 7/5-84,
1963.

A. RENYI, R. SULANKE: '"Uber die konvexe
Hiille von n zufdllig gewdhlten Punkten
11", Zeitschrift fiir Wahrscheinlichkeits-
theorieund verwandte Gebiete, vol. 3,

pp. 138-147, 1964.

A. RENYI, R. SULANKE: "Zuf&dllige konvexe
Polygone in einem Ringgebeit", Zeitschrift
fiir Wahrscheinlichkeitstheorie und
verwandte Gebeite, vol. 9, pp. 146-157,
1968.

R. SEDGEWICK: "The analysis of quicksort
programs", Acta Informatica, vol. 7,

pp. 327-355, 1977.

R. SEDGEWICK: "Implementing quicksort
programs", Communications of the ACM,
vol. 21, pp. 847-857, 1978.

M.I. SHAMOS: '"Computational geometry",
Ph.D. Dissertation, Yale University,

New Haven, Connecticut, 1978.

M.I. SHAMOS: Seminar given at McGill
University, 1979.

M.I. SHAMOS, D. HOEY: '"Closest-point
problems", Proceedings of the 16th TEEE
Symposium on the Foundations of Computer
Science, pp. 151-162, 1975.

G.T. TOUSSAINT: '"Pattern recognition and
geometrical complexity', Proceedings of
the 5th International Conference on
Pattern Recognition and Image Processing,
Miami, Florida, 1980.

B.W. WEIDE: "Statistical methods in
algorithm design and analysis", Ph.D.
Dissertation, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1978.

A.C. YAO: "An O(|E|loglog|V|) algorithm
for finding minimum spanning trees',
Information Processing Letters, vol. 4,
pp. 21-23, 1975.

A.C. YAO: "On constructing minimum span-
ning trees in k-dimensional space and
related problems'", Research Report
STAN-CS-77-642, Department of Computer
Science, Stanford University, Stanford,
1977.

A.C. YAO: "A lower bound to finding con-
vex hulls", Technical Report STAN-CS-79-
733, Department of Computer Science,
Stanford, 1979.

