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Summary. We give a partial overview of some results from the rich theory of 
branching processes and illustrate their use in the probabilistic analysis of algo
rithms and data structures. The branching processes we discuss include the Galton
Watson process, the branching random walk, the Crump-Mode-Jagers process, and 
conditional branching processes. The applications include the analysis of the height 
of random binary search trees, random m-ary search trees, quadtrees, union-find 
trees, uniform random recursive trees and plane-oriented recursive trees. All these 
trees have heights that grow logarithmically in the size of the tree. A different be
havior is observed for the combinatorial models of trees, where one considers the 
uniform distribution over all trees in a certain family of trees. In many cases, such 
trees are distributed like trees in a Galton-Watson process conditioned on the tree 
size. This fact allows us to review Cayley trees (random labeled free trees), random 
binary trees, random unary-binary trees, random oriented plane trees, and indeed 
many other species of uniform trees. We also review a combinatorial optimization 
problem first suggested by Karp and Pearl. The analysis there is particularly beau
tiful and shows the flexibility of even the simplest branching processes. 

1. Branching Processes 

1.1 Branching Processes 

Around 1873, Galton and Watson came up with a model for explaining the 
disappearance of certain family names in England (see the historical survey 
by Kendall, 1966). Their model, now known as the Galton-Watson process, is 
extremely simple: in a population, we begin with one pater familias, or root. 
The root has Zl children, where Zl has a fixed distribution (the reproduction 
distribution): it is convenient to let Z denote a prototypical random variable 
with this distribution, and to set 

Pi = Pr( Z = i) , i ~ 0 . 

Each child in turn reproduces independently according to the same distribu
tion, and so forth. This leads to a random tree, the Galton-Watson tree, and 
a random process, the Galton-Watson process. Let Zi denote the number of 
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particles in the i-th generation, with Zo = 1. Only one of two possible situ
ations can occur: either the population survives forever (Zi > 0 for all i), or 
it becomes extinct after a finite time. To analyze the Galton-Watson process 
it is convenient to use the RGF (the reproduction generating function), or 
simply generating function 

00 

f(s) = LPkSk = E(SZl) , s E [0,1] . 
k=O 

This is a function of s that contains exactly the same information as the 
vector (PO,Pl. .. . ). It is strictly convex (if PI i= 1) and increases from Po at 
s = 0 to 1 at s = 1. Different RGF'S define different Galton-Watson branching 
processes. Intuitively, it should be clear that a population explodes if the 
expected number of children per particle is greater than one, and that it is 
bound to shrink if it is less than one. An important parameter thus is the 
expected number of children (or Malthusian parameter) 

00 

m = E(Z) = E(ZI) = L kPk = 1'(1) . 
k=O 

We will prove that this intuition is partly correct. In fact, whether a popula
tion explodes or becomes extinct depends solely on the value of m, and not 
on the individual probabilities of the RGF! Consider the RGF for Zn, the size 
of the n-th generation: 

fn(s) ~f E(sZn) , 0 ~ s ~ 1 . 

With this notation, we clearly have h(s) == f(s), and fo(s) = s. Conditional 
expectations help us in relating fn to f. To this end, let Zn-I be the number 
of particles in generation n - 1. These have offspring of sizes Yn (l), ... , 
Yn(Zn-d, and these form an independently identically distributed (LLd.) 
sequence distributed as ZI (Le., all the Yn(j) have the same distibution as 
ZI and the choices of the Yn(j) are made independently). Therefore, 

fn(s) = E (E (sZnIZn_I)) 
= E (E (sYn(I)+ .. +Yn(Zn-dIZn_l)) 

= E (TI;'::ll E (sYn(j)IZn_I)) (by independence) 

= E (TI;'::ll E (SZl)) (identical distributions) 
= E ((f(s))Zn-l) 
= fn-I(f(S)) 
= ... 

n times ------= f(f(f(···))) . 

When m < 1, the graph of f(s) lies above sand f(s) = s only at s = 1. It is 
not difficult to see that fn(s) --> 1 for any s. In particular, fn(O) = Pr(Zn = 
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m < 1 

m> 1 
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Fig. 1.1 The two possible behaviours 

0) ---+ 1. When m > 1, there is a unique solution q of f(s) = s that is less 
than one. See the figure above. 

It is easy to see that for any s E [0,1), fn(s) ---+ q. In particular, Pr(Zn = 
0) ---+ q. 

We now show that q is the probability that the process becomes extinct. 
The point I am making here is subtle, but important, as the event "extinc
tion" relates to the entire history of the process, not a particular n. Note the 
following: 

Pr(extinction) = Pr(Zn = 0 for some n) 
= Pr(U~l[Zi = 0]) 
= limn->oo Pr(U~l[Zi = 0]) 
= limn->oo Pr(Zn = 0) 
= q. 

Therefore, q is the extinction probability. We have thus shown the fundamen
tal property of Galton-Watson processes: 

Theorem 1.1. In a Galton- Watson process, if m > 1, then 

q = Pr(Zn = 0 for some n) = lim Pr(Zn = 0) < 1 . 
n->oo 

When m ~ 1, the process becomes extinct with probability one, unless 
we have the degenerate case Pl = 1, in which case every generation contains 
one particle. 

Processes are called supercritical, critical and sub critical when m > 1, 
m = 1 and m < 1 respectively. We also introduce the hypercritical processes, 
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which have m = 00, and the exploding processes (which may be of any of 
the four types above) which have E(Zllog Zt} = 00. The last two terms are 
non-standard, but will be convenient to work with. It is worth noting that in 
all cases, 

E(Zn) = (E(Zt})n = mn 

(by induction and conditioning, as E(ZnIZn-l) = mZn-t}. In the critical 
case, the expected size of the population remains constant, while the popu
lation becomes extinct with probability one. 

1.2 Some Limit Results 

Theorem 1.2. Assume that Pl < 1. In a Galton- Watson branching process, 
Pr(limn_ oo Zn E {O, oo}) = 1. 

Proof. Clearly, 

00 

Pr( lim Zn rt {O,oo}) ~ '"'Pr(Zn = k infinitely often) 
n-+oo L...J 

k=l 

and this is zero if every term is zero. Thus, it suffices to show that for every 
finite k, 

Pr(Zn = k infinitely often) = 0 . 

We say that the population is in state k if Zn = k. Let Tk be the probability 
that the population returns to state k given that we are in state k now, so 
that 1-Tk is the probability that we wander off forever (Zj =f. k for all j > n). 
If Po = 0, then 

Tk ~ Pr(Zl = klZo = k) = pt < 1 . 

If Po > 0, then 

Tk ~ Pr(Zl > 0IZo = k) = 1 - p~ < 1 . 

Therefore, Tk < 1. 

If X is the number of visits to state k, then 

Pr(X ~ n) ~ T/:- l 

because we need to have at least n - 1 transitions from state k to state k in 
the process driven by the transition probability Tk. Note that 

00 00 1 
E(X) = L Pr(X ~ n) ~ L Tk = 1 _ T . 

n=l n=O k 



Branching Processes 253 

Take M arbitrary. Finally, 

Pr(Zn = k infinitely often) ~ Pr(X ~ M) 
< E(X) 
- M < 1 
- M(l-rk) , 

which is as small as desired by our choice of M. We conclude that 

Pr(Zn = k infinitely often) = 0 . 

D 

Theorem 1.2, which is valid for any mE [0,00], shows that it is impossible 
to have oscillating populations, that is, populations in which the size drops 
below some finite level infinitely often when m > 1: in fact, with probability 
one, the limit of Zn is zero or infinity. The remainder of this section is more 
advanced and rather technical. It can be skipped without harm (except for 
the definition of convergence in distribution and the statement of Fatou's 
Lemma, which can be returned to when and if required). 

We can improve on Theorem 1.2 by using that Zn behaves roughly speak
ing as mn (recall that E(Zn) = m n ), and its behavior is best captured in 
Doob's limit law: 

Theorem 1.3. [Doob's limit law] Let m be finite. The random variables 
Wn = Zn/mn form a martingale sequence with E(Wn ) == 1, and Wn - W 
almost surely as n - 00, where W is a nonnegative random variable. 

For readers not familiar with martingales, we refer to the chapter on 
concentration inequalities by McDiarmid in the present volume. 

We use the symbol ~ for convergence in distribution. For random vari

ables (Xn)n and X, and a distribution function F, we say that Xn ~ X or 

Xn ~ F when for all x E IR at which F(x) = Pr(X ~ x) is continuous, 
Pr(Xn ~ x) - F(x). 

While we don't know the limit distribution of Wn in general, we know a 
lot about it: in case m ~ 1, Pl < 1, we have Pr(W = 0) = 1, an uninteresting 
case. If m > 1 and u 2 = var(Z) < 00, then Pr(W = 0) = q, E(W) = 1, 
var (W) = u 2/(m2 - m), and E(Wn - W)2 _ o. In fact, the second moment 
condition on Z is too strict, as the following result shows: 

Theorem 1.4. [Kesten-Stigum theorem, 1966] For a supercritical Galton
Watson process, the following properties are equivalent: 
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A. limn-+oo E(IWn - WI) = 0; 

B. E(Zlog(1 + Z)) < 00; 

C. E(W) = 1; 

D. Pr(W = 0) = q. 

When m > 1, then the above results imply 

logZn I 
-- --+ ogm 

n 

almost surely on non-extinction. Note that in general, by Fatou's lemma 
(which in a special form states that for positive sequences of functions In 
with liminfn-+oo In = I, liminfn-+oo J In ~ J I), we have (as expected values 
are just integrals) 

E(W) :5 liminfE(Wn) = 1 n-+oo 

but we cannot conclude that E(W) = 1. Indeed, when m :5 1 and PI < 1, 
W = 0 almost surely, and when m > 1, there exist distributions for Z for 
which W = 0 almost surely as well! In the critical case, Zn --+ 0 almost surely, 
so finer results are needed. 

We can avoid the extinction problem by studying the branching process 
conditional on survival at time n (Zn > 0). Some results for the critical case 
are provided in the following theorem: 

Theorem 1.5. [Kesten, Ney and Spitzer, 1966] Assume that m = 1 and 
0'2 = var(Z) :5 00. Let E be an exponentially distributed mndom variable 
(that is, a mndom variable with densitye- X on [0,00)). Then 

lim nPr(Zn > 0) = 22 . 
n-+oo 0' 

Furthermore, ilO'2 < 00, Z~/n !:. 0'2 E /2, where Z~ is distributed as Zn given 
Zn > o. If 0'2 = 00, then Z~/n --+ 00 in probability, and 
limn-+oo nPr(Zn > 0) = o. 

Under the stronger condition E(Z3) < 00, the theorem above is referred 
to as the Kolmogorov-Yaglom theorem after Kolmogorov (1938) and Yaglom 
(1947). The conditional random variable Z~ is also useful to understand sub
critical branching processes . The main results in this respect are again pro
vided by Yaglom (1947) and Heathcote, Seneta and Vere-Jones (1967) (see 
also Asmussen and Hering, 1983 and Lyons, 1997): 
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Theorem 1.6. [Yaglom-Heathcote-Seneta-Vere-Jones theorem] If m < 1, 

then Z~ £. V, where Pr(V < 00) = 1. Furthermore, Pr(Zn > O)/mn is 
nonincreasing (for any my. Finally, the following properties are equivalent: 

A. limn_ oo Pr(Zn > O)/mn > 0; 

B. SUPn E(Z~) = SUPn E(ZnIZn > 0) < 00; 

c. E(Zlog(Z + 1)) < 00. 

Proof. We will not give a complete proof here. However, it is worthwhile to 
note Lyons' proof of the equivalence of A and B. We know that for any m, 

( ) E(Zn mn 
Pr Zn > 0 = )E(ZnIZn > 0) = E(Z~) . 

Thus, Pr(Zn > O)/mn 1 ifE(Z~) j. Thus, A is equivalent to B if we can prove 
that E( Z~) j. Let Yn be the size of the n-th generation in the subtree rooted 
at the leftmost child of the root with a descendant in the n-th generation, 
and let In be the index of this child (counted from left to right). Then, as 
Zn ~ Yn, for any k ~ 1, 

Pr(Zn ~ klZn > 0) ~ Pr(Yn ~ klZn > 0) 
= Ej Pr(Yn ~ k, In = jlZn > 0) 
= Ej Pr(Yn ~ kiln = j, Zn > O)Pr(In = jlZn > 0) 
= E j Pr(Zn-l ~ klZn- 1 > O)Pr(In = jlZn > 0) 
= Pr(Zn-l ~ klZn- 1 > 0) . 

1.3 Bibliographic Remarks 

o 

For an account of the theory of branching processes, see Athreya and Ney 
(1972), Grimmett and Stirzaker (1992), Harris (1963), Jagers (1975), or 
Asmussen and Hering (1983). Kendall (1966) gives an enjoyable historical 
overview. Neveu (1986) provides a rigorous background for studying ran
dom trees in general and Galton-Watson trees in particular. A modern proof 
of the Kesten-Stigum, Kolmogorov-Yaglom and Heathcote-Seneta-Vere-Jones 
theorems based on Galton-Watson processes with immigration and/or trees 
with distinguished paths may be found in Lyons, Pemantle and Peres (1993, 
1995). In these papers, size-biased trees are introduced that scale probabili
ties of events in the n-th generation by Zn/mn, which turns out be equivalent 
to looking at limn_ oo Pr(.IZn > 0). The idea of size-biasing is also due to 
Hawkes (1981) and Joffe and Waugh (1982). 
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For critical processes, Weiner (1984) showed that there exist positive con
stants a:::; b such that E(maxl~i~n Zi) E [a log n, blognJ and 
var(maxl<i<n Zi) E [an, bnJ. 

For a supercritical process, Heyde (1970) shows that if Z has a finite vari
ance a2, and Zn/mn --+ W almost surely, then (W - Zn/mn)mn/2 converges 
in distribution a random variable Y. Thus, Zn/mn is rather concentrated 
around W. Conditional on Zn > 0, 

whereN" denotes the normal distribution (Heyde, 1971). A Berry-Esseen type 
inequality to quantify this convergence is given by Heyde and Brown (1971). 
Again on the non-extinction set W > 0, we have almost surely 

mnw_z 
lim sup n = 1 

n-+oo J2a2(m2 - m)-lZn logn 

and a similar statement for the limit infimum with 1 replaced by -Ion the 
right-hand side. 

The tail behavior of W was investigated by Bingham (1988), who showed 
faster than exponential drop-offs. For finite n, super-exponential tail inequal
ities for Pr(Zn > cE(Zn)) and Pr(Zn < E(Zn)/c) for large c were derived 
by Karp and Zhang (1995). See also Biggins and Bingham (1993) about the 
description of W. 

Darling (1970) describes the behavior when Z has very large tails, so that, 
in fact, log(Zn + l)/bn tends to a limit law for some b > 1. Here, Zn increases 
as a doubly exponentially quickly. This sort of transformation is necessary, 
because, as shown by Seneta (1969), if m = 00, then no constants en can 
exist such that Zn/cn converges in distribution to a non-degenerate random 
variable. 

2. Search Trees 

2.1 Height of the Random Binary Search Tree 

A binary search tree for distinct real numbers Xl, ... , xn is a binary tree 
in which Xl is the root, whose left subtree is a binary search tree for 
{X2' ... ,Xn } n (-00, xd} and whose right subtree is a binary search tree 
for {X2, ... , xn} n (Xl, oo)} (thus the structure of the search tree depends 
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heavily on the order in which the real are presented). If the left subtree has 
k points (nodes), then the rank of the root in the total ordering of the xi's 
is k + 1. We can grow the tree incrementally: if X n +! is to be added (in
serted), we start at the root and recursively find the subtree to which x n+! 

must belong by comparing Xn+l to the current root and choosing the left or 
right subtree as appropriate. Eventually, we locate an empty subtree, which 
is then formally replaced by a one-node subtree having x n+! as its root. The 
insertion time is equal to the distance in the tree (path length) between the 
root (xd and the inserted node (xn+d, this distance is referred to as the 
depth of Xn+!. The height of a binary search tree is the maximal depth of a 
node, and it measures the worst-case insertion time, an important quantity 
if we are to maintain a binary search tree when new data arrive. 

By a random binary search tree, we mean a binary search tree on a set 
of random variables {Xl, ... , xn} which is obtained by taking a permutation 
of {I, ... , n} with each permutation equally probable. It is easy to see that 
the structure of the tree we obtain will be the same if we pick the Xi in
dependently, all from the same distribution f provided the probability that 
we choose the same number twice in n trials under f is zero, e.g., if the Xi 

are uniformily chosen elements of [0, 1]. The depth Dn of the last node to 
be inserted satisfies E(Dn) rv 2 log n (Lynch, 1965; Knuth, 1973), (further 

(Dn - 2 logn)/v'2logn ~ N(O,l) (Mahmoud and Pittel, 1984; Devroye, 
1988)). For the height Hn, the maximal path distance between any node and 
the root, Robson (1979) showed that for all € > 0, 

lim Pr(Hn ~ (-y + €) logn) = 0, 
n-co 

where '"Y = 4.31107 ... is the unique solution greater than 2 of the equa
tion clog(2e/c) = 1. To actually show that Hn/logn -t '"Y in probabil
ity (we recall that Xn -t c in probability means that for any positive €: 

limn_co Pr(IXn - cl > €) = 0.), branching processes were the first successful 
methodology (Devroye, 1986, 1987). Drmota (1997) was the first to prove 
this result by generating function analysis. The theorem below will be con
siderably generalized further on in the chapter. 

Theorem 2.1. [Devroye, 1986, 1987] In a random binary search tree on n 
nodes, Hn/ log n -t '"Y = 4.31107 ... in probability. 

Proof. We briefly show here that the height can be studied with the aid of 
Galton-Watson branching processes. To make the connection, we introduce a 
new representation of a binary search tree. Call the (random) binary search 
tree T. Augment the tree T by associating with each node the size of the 
subtree rooted at that node, and call the augmented tree T'. The root of 
T' has value n. Since the rank of the root element of T is equally likely to 
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be 1, ... , n, the number N of nodes in the left subtree of the root of T is 
uniformly distributed on {a, 1, ... , n - I}. A moments thought shows we can 
choose U by setting N = LnUJ , where U is uniformly distributed on [0,1). 
Also, the size of the right subtree of the root of T is n - 1 - N, which is 
distributed as Ln(1 - U)J. All subsequent splits can be represented similarly 
by introducing independent uniform [0,1] random variables. This is a typical 
embedding argument: we have identified a new fictitious collection of random 
variables UI, U2, ... , and we can derive all the values of nodes in T' from it. 
This in turn determines (the shape of) T. More precisely, the rule is simply 
this: in an infinite binary tree, give the root the value n. Also, associate with 
each node an independent copy of U. If a node has value V, and its assigned 
copy of U is U' (say), then the value of the two children of the node are 
LVU'J and LV(I- U')J respectively. Thus, the value of any node at distance 
k from the root of T' is distributed as 

where Ul, ... , Uk are LLd. uniform [0, 1). We have just described a second way 
of generating a random tree with exactly the same distribution as a random 
binary search tree. This second method of generating the trees is much more 
amenable to analysis. 

The above representation has a myriad of applications. One of them in
volves the study of the height. Let Hn be the height of T when ITI = n. Then 
Hn ~ k if and only if one of the 2k values Vi of nodes at distance k from the 
root of T' is at least equal to one; which we write as 

This is a beautiful duality indeed. Some care must be exercised when manip
ulating it though, as the Vi's are very dependent-just consider the values Vi 
and Vi for nodes that are near one another in the tree. To steer around this, 
we will derive separate upper and lower bounds for Hn. 

In doing so, we need to be able to analyze the distribution of the Vi 
which boils down to analyzing the distribution of the product of l uniform 
[0,1] random varables for various l. To do so, we pass to the logarithm. It 
turns out the logarithms we are interested in studying are drawn from a very 
well studied class of distributions, the Gamma distributions. To be precise, 
a uniform random variable is distributed as e-E where E is exponentially 
distributed (Le., has density e-x on JR+) and a gamma k random variable Gk 
is distributed as the sum of k independent exponentials (see Grimmett and 
Stirzaker, 1992). Thus the product of k uniforms is e-Gk . 
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The upper bound. By the dual relationship shown above, we see that 

PreHn ~ k) = Pr (U~~1[Vi ~ IJ) 
:5 2k pr (V1 ~ 1) 

(by the union bound (Bonferroni's inequality) 
and symmetry) 

:5 2kpr ( n n:=1 Ui ~ 1) 
(Ub ... , Uk are Li.d. uniform [0,1]) 
(omit the L.J in the definition of Vi) 

= 2kpr (ne-Ck ~ 1) 
(G k is a gamma (k) random variable) 

= 2k pr(Gk :51ogn) . 

The point here is to find the smallest k such that the upper bound tends 
to zero. Recall that a Gk random variable has mean k. Thus, if k = log n, the 
upper bound is 8(2k), which is obviously useless. In fact, k will have to be 
much larger than log n in order that the effect of the 2k term be canceled. Let 
us try the next best thing: k '" clog n for some c > 1. The whole enterprise 
now focuses on the probability in the left tail of the gamma distribution. We . 
provide the details as they explain the choice of c. Let G k be a gamma (k) 
random variable. We have 

1 < Pr(Gk :5 Y) < 1 
- k -y - l--1L T k+1 

where the lower bound is valid for all y > 0, and the upper bound is applicable 
when 0 < y < k + 1. In particular, 

(logn)k 1 
Pr(Gk < logn) < k' x I - - n 1-~ . k+1 

valid for log n < k + 1. Thus, we have, taking k = r clog n 1, and using k! ~ 
(k/e)k (which follows from Stirling's formula), 

PreHn ~ k) :5 (21~~~)k X 1i~~1) 
:5 n-1(2elogn/k)k x 1i~).1) 
:5 (! (2e)c)logn X 1+o(l) c 

e c 1-;; 

--+0 

if (l/e)(2e/cY < 1. Let 'Y = 4.31107 ... be the only solution greater than one 
of 
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We conclude that limn _ oo PreHn > clogn) = 0 , for all e > "y. A more 
careful use of Stirling's inequality shows that limn _ oo PreHn > "y log n) = O. 

The lower bound. We know now that Hn is very likely less than "y log n. 
Pick € > O. To show that it is more than k = Lb - €) lognJ with high prob
ability, all we have to do is exhibit a path in the augmented tree with the 
property that at distance k from the root, the augmented value is at least 
one. Now, you will say, this is a piece of cake. Why don't we just follow the 
path dictated by the largest split, that is, when we are at a node with uniform 
split value U, we go left if U > 1/2 and right otherwise? It turns out that if 
we do so, the augmented value drops below 1 for k near e log n, with e ::::: 3.25 
only. So, this is not a good way to prove the existence of a node far from 
the root. Instead, we will use branching processes to show that the height is 
greater than clog n with probability tending to one, when e < "y. Thus, we 
need to track down nodes with large values in the augmented tree. For now, 
we define V = nUl U2 ... Uk for a node at distance k from the root, where the 
Ui'S are the uniform [0,1] random variables describing the splits on the path 
to the root. The purpose is to construct a surviving Galton-Watson process. 
The root of T becomes the pater familias of the branching process. Consider 
all descendants in T L levels away, and declare these nodes Galton-Watson 
children if the product of uniform splitting random variables encountered on 
the path from the root to the possible child is ~ dL for a given constant d. 
The number of Galton-Watson children per node is bounded between 0 and 
2L. Clearly, all nodes in the Galton-Watson process reproduce independently 
according to identical reproduction distributions. If T were infinite, the corre
sponding Galton-Watson process would survive with probability 1- q > 0 if 
the expected number of Galton-Watson children per node were greater than 
one. But this expected number is 

2L pr (Ul ... UL > dL) = 2L pr (GL < Llog(l/d)) 
(G L is a gamma (L) random variable) 

> (2Ldlog(1/d»L 
- L! 

(by an inequality for the tail of the 
gamma distribution) 

(2edlog(1/d»L 
'" V27rL 

(by Stirling's approximation, as L --+ 00) 
>1 

for L large enough, when 2edlog(l/d) > 1. We choose d = e- l / C , recall that 
e-l (2e/e)C > 1 and obtain 2e l - l / c /e > 1 . 

So, with probability 1 - q > 0, there exists a node at distance kL from 
the root with value V ~ ndkL = ne-kL/ c . If we take truncations into account 
to get the real augmented value of that node, it takes only a minute to verify 
by induction that it is at least equal to V - kL as we can lose one unit at 
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worst in every truncation. In conclusion, 

Pr (Hn ~ kL) ~ 1- q 

if ne-kLlc - kL ~ 1. Take for example kL = d logn - (}L for d < c, where 
() E [0,1) is possibly dependent upon n. Then the last condition is verified as 

ne-kLlc _ kL ~ n1-c'lc - c' logn > 1 

for all n large enough. As d is arbitrarily close to c, which in turn is arbitrarily 
close to 'Y, we have liminfn _ oo Pr(Hn > b - e) logn) ~ 1 - q for all e > 0 
and some q < 1. But we are not finished yet! Indeed, what if 1-q = 0.00001? 
Clearly, we want the latter probability to be 1-0(1). So, we take t such that 
tL is integer-valued. The 2tL nodes at distance tL from the root ofT are roots 
of subtrees each of height kL (in T; height k in the Galton-Watson tree): each 
of the subtrees leads to an independent run of a Galton-Watson process. If tL 
is large enough, the probability that at least one of these processes survives 
is close to one. Let a E (0,1/2) be another constant, and let A be the event 
that the 2tL - 1 uniform [0,1] random variables associated with the top tL 
levels of nodes take values in (a,1 - a). We see that 

Pr(AC ) = 2a x (2tL - 1) < a2tL+1 , 

and this is as small as desired by our choice of a. If A is true, then the 
augmented values V associated with the nodes at distance tL from the root 
are all at least natL . Let B be the event that one of the 2tL Galton-Watson 
processes defined with the aid of the parameters c and L, and rooted at 
one of the given 2tL nodes survives. From the previous discussion, using 
independence, 

which is as close to zero as desired by choice of t. If A and B happen simul
taneously, then there exists a node at distance tL + kL from the root whose 
augmented value at least equal to 

natLe-kLlc - (t + k)L . 

Take for example kL = d log n - () L as above. Then the augmented value is 
at least equal to 

atLn1-c'lc - c' log n - tL . 

This is greater than one for n large enough. Therefore, 

lim Pr(Hn ~ c' logn - L + tL) ~ Pr(A n B) ~ 1- Pr(AC ) - Pr(BC ) • 
n-oo 

The lower bound is as close to one as desired by the choice of a and t. Also, 
d is arbitrarily close to 'Y. Hence, for all f > 0, 

lim Pr(Hn ~ b - f) logn) = 1 . 
n-oo 

This concludes the proof of the result that Hn/ log n --+ 'Y in probability. 0 
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2.2 Quadtrees 

We round off this section by showing the universality of the above methodol
ogy with the aid of quadtrees. The point quadtree in Rd (Finkel and Bentley, 
1974; see Samet (1990) for a survey) generalizes the binary search tree. Each 
data point is a node in a tree having 2d subtrees corresponding to the quad
rants formed by considering this data point as the new origin. Insertion into 
point quadtrees is as for binary search trees. 

We assume that a random quadtree is constructed on the basis of an LLd. 
sequence with a given distribution in the plane. If this distribution is uniform 
in the unit square, we call it a uniform random quadtree. In the latter case, the 
root is easily seen to induce splits into 4 sections of sizes approximately equal 
to n times the products of two independent uniform [0,1] random variables. 

The height Hn of a random quadtree has a distribution which depends 
upon the distribution of the data points. For this reason, we look only at 
uniform random quadtrees. It is easy to show that 

dk 

Pr(Hn 2: k) ~ 2dk pr(n II Ui 2: 1) , 
i=l 

where the Ui's are i.i.d. uniform [0, 1] random variables. We deduce that 
Pr(Hn > (c/d)logn) -+ 0 whenever c > 'Y. Furthermore, 

Pr(Hn 2: k) 2: Pr( max nVi 2: 1 + k) , 
1~i~2dk 

where Vi is a product of independent products of two uniform [0,1] random 
variables along the i-th path of length k down the quadtree (Devroye, 1977). 
We deduce that Pr(Hn < (c/d) logn) -+ 0 whenever c < 'Y by mimicking the 
proof of Theorem 2.1. We conclude that Hn/ log n -+ 'Y / d in probability. This 
result still requires appropriate generalization to non-uniform distributions. 

2.3 Bibliographic Remarks 

The use of branching processes in the study of binary search trees was advo
cated in Devroye (1986, 1987). A nice account of this approach can be found 
in Mahmoud (1992). One can also prove that E(HJ:)/ logP n ~ 'YP + 0(1) for 
all p > 0 and find a positive number 6 such that 

lim Pr(Hn > 1'logn - 8 log log n) = 0 . 
n ..... oo 

By mimicking the proof of the latter fact, show that Fn/ logn -+ 0.3711 ... 
in probability, where Fn is the fill level, i.e., the maximal depth at which the 
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binary search tree truncated to that depth is complete-thus, level Fn has 2Fn 

nodes. The constant 0.3711 ... is the only solution < 1 of (2e/c)C(I/e) = l. 
See Devroye (1986, 1987). 

3. Heuristic Search 

3.1 Introduction 

In this section we present two other beautiful applications of the theory of 
branching processes. Both involve heuristics for finding the optimal path in 
a tree with random costs. The tree model studied here was first proposed 
and analyzed by Karp and Pearl (1983), who decided to look at the simplest 
possible nontrivial model so as to make the greatest didactical impact. 

Consider an infinite complete binary tree in which we associate with every 
edge e an 0 -1 random variable Xe which is 1 with probability p and 0 with 
probability 1 - p. The value of a node is the sum of the values of the edges 
on the path from the root to that node. The object is to find the best node 
at distance n from the root, that is, the node of minimal value. Interestingly, 
for p < 1/2, we can discover one of the optima in O(n) expected time. This 
is largely due to the fact that there are many more zeroes than ones in the 
tree, allowing us to use simple yet fast search algorithms (see section 3.2). 
In section 3.3, we deal with the much more difficult case p > 1/2. Rather 
than trying to reach the optimum, Karp and Pearl propose looking for a 
near-optimum that would be reachable in O(n) expected time. The heuristic 
proposed by them employs bounded lookahead and backtrack search. 

3.2 Depth First Search 

The infinite subtree rooted at a node v is called Tv. All the nodes in this 
subtree that can be reached via O-valued edges form a subtree called Zv. The 
heuristic we consider here simply performs a series of depth first searches of 
trees Zv. We can also think of I-valued edges as blocked pipes, and O-valued 
edges as open pipes. When we pour water in the root, it trickles down and 
makes all the O-valued nodes wet. If we reach level n in this manner, we stop. 
Otherwise, we open one blocked pipe and start all over from there. During 
the depth first search of a given Zv, the nodes u with the property that edge 
(w, u) is I-valued and w E Zv are collected in a set Bv. Since the method 
consists of always going for the easiest bait, we will call it depth first search. 
Note that the above procedure first visits all nodes with value 0, then all 
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nodes with value 1, and so forth. This guarantees that an optimum will be 
returned. The question we have to answer is how long the algorithm runs on 
the average. 

In order to analyze this algorithm, we offer the following crucial result of 
Karp and Pearl (1983): 

Theorem 3.1. [The family tree traversal theorem) Consider a Galton- Watson 
branching process with reproduction probabilities Po, ... ,PM (where M is a de
terministic bound on the number of children of a node). Consider the (possibly 
infinite) family tree T thus generated. Let Dn be the number of nodes encoun
tered in the depth first search ofT, stopped as soon as level n is reached. Then 
E(Dn) = O(n). 

Proof. We consider three cases. In case 1, we assume that m, the mean 
number of children per node, is $; 1. Let Zo, Zb'" denote the generation 
sizes in T. We bound Dn by the total size of T. We recall that 

E(Zk) = m k $; 1 . 

Therefore, 
n n 

E(Dn) $; L E(Zk) = L m k $; n + 1 . 
k=O k=O 

In case 2, we assume that m > 1, yet T is finite. This corresponds to a pro
cess that becomes extinct. We introduce the notation E* for the conditional 
expectation given that T is finite. We also introduce q, the probability of 
eventual extinction, and f(s), the RGF (reproduction generating function). 
Once again, we bound 

Note first that for k ~ 0, 

P (Z _ kiT fi' ) _ Pr(Zl = k)Pr(T finite IZI = k) _ Pkqk _ k-l 
r 1 - mte - P (T fi . ) - - Pkq . r mte q 

Note that 
00 

E*(ZI) = L kpkqk-l = f'(q) . 
k=O 

Thus, the derivative of f at q tells us the expected number of children of 
the root of an extinct tree: note that this is less than one. But this formula 
should be universally valid for all generation sizes. Therefore, 
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( 
k times )' 

E*(Zk) = 'I(f(·· .'(q)) .. . ) 

( 

k-l times ) 

= f' 1(1(" .'(q)) .. . ) 

= (I'(q))k . 

( 

k-2 times ) 

x f' 1(1(" .'(q)) .. . ) x··· x f'(q) 

Thus, 

E*(Dn) ~ t(l'(q))k = 1 _ ~'( ) 
k=O q 

This concludes the proof of case 2. (Note that for supercritical Galton-Watson 
processes, the branching process given T finite is an unconditional branching 
process with RGF f(sq)/q.) Finally, in case 3, we assume that m > 1 and 
that T is infinite. Nodes in the search are designated as mortal or immortal 
according to whether their subtrees are finite or not. Note that the search at 
a given node at worst visits all the nodes in the subtrees with mortal nodes as 
roots. The expected size of each such subtree is not more than 1/(1 - f'(q)) 
by case 2. When the search visits the first immortal child, it will never return 
to visit another child, as an infinite tree is bound to have at least one node 
at level n. As each node has not more than M mortal children, we have the 
following recurrence: 

E(DnIT infinite) ~ 1 + E(Dn-1IT infinite) + 1-~(q) 

This recurrence leads trivially to 

E(DnIT infinite) ~ n + (n - 1) 1 _ ~'(q) 
Cases 2 and 3 may be combined easily, as 

E(Dn) = Pr(T finite) E(DnIT finite) 
+ Pr(T infinite) E(DnIT infinite) 
~ max{E(DnIT finite), E(DnIT infinite)} 

This concludes the proof of the family tree traversal theorem. o 

Next, we claim that the expected running time of iterated depth first 
search is O(n) when p < 1/2. A depth first search trial is one iteration of this 
process: at a node, all the nodes in its subtree reachable via O-valued edges 
are visited. We call this collection of nodes the expansion tree of the node. 
A node with an infinite expansion tree is called immortal. The other ones 
are mortal. Consider the branching process defined by zero edges only. The 
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reproduction distribution has P2 = (1- p)2 (two zero edges), PI = 2p(1- p), 
and Po = p2. The expected number of children per node is 

m = 2(1 - p)2 + 2p(1 - p) = 2(1 - p) > 1 . 

Thus, the extinction probability for this branching process is q < 1. q is also 
the probability that a given node is mortal. 

The running time is conveniently decomposed as follows: any trial started 
at any node takes expected time bounded by en (Theorem 3.1). Thus, the 
total expected time before halting is not more than the expected number of 
trials times en. The total number of trials in turn is not more than the total 
number of trials started at mortal nodes plus one. Therefore, 

E(total time) ~ ~ , 
1-q 

since the probability of having an immortal node is 1-q, and a search started 
at an immortal node surely reaches level n. This concludes the proof of the 
linear expected time claim. 

Remark 3.1. The case p = 1/2. When p = 1/2, the given iterated depth-first
search procedure takes quadratic expected time. 

We conclude this section with another analysis: what is the value Cn of the 
minimal node at distance n from the root? Clearly, Cn is a random variable 
sandwiched between 0 and n. When n grows, Cn increases as well (on a given 
tree). As all monotone sequences have a (possibly infinite) limit, we may call 
our limit C. Interestingly, when p < 1/2, C is finite with probability one! 
This means that we can find an infinite path in almost every tree with only 
a finite number of nonzero edges. We have the following: 

A. For every k, Pr(Cn > k) ~ Pr(C > k). (Obvious, since Cn i C.) 

B. limn--->oo Pr(Cn > k) = Pr(C > k). (Thus, C really matters, as it de
scribes the situation for all n large enough.) 

C. For p < 1/2, 

2"+1 
Pr(C>k)~(2p) , k=O,l,2, .... 

Proof. Consider a branching process in which we keep only the O-valued edges 
in the complete binary tree. As the number of children per node is binomially 
distributed with parameters 2 and 1 - p, the expected number of children is 
2(1 - p) > 1. Let q be the extinction probability. Then 
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Pr(C> k) < q2k 

since [C > k] implies that each of the 2k subtrees rooted at the nodes at 
depth k must fail to have an infinite path of zero-cost branches (that is, each 
of the 2k branching processes spawned at these nodes must become extinct). 
Since the RGF of this branching process is f(8) = (p+ (l-p)8)2, it is easy to 
see that q < (2p)2. To prove this, we need only show that f((2p)2) < (2p)2, 
or that 

p+ (1- p)(2p)2 < 2p, 
or that 4p(1 - p) < 1. But the last inequality is obviously true. o 

3.3 Bounded Lookahead and Backtrack 

In the case of a majority of I-valued edges (p> 1/2), depth first search yields 
exponential expected time. In fact, it seems impossible to concoct any kind of 
polynomial expected time algorithm for locating the optimal value. We can 
do the next best thing, that is, we can try to find an almost optimal solution. 
To set the stage, we first define Cn , the optimum value of a solution found 
by an algorithm, and C~, the value of the true optimum in the random tree. 
Clearly, C~ :5 Cn. For a given algorithm, two issues have to be dealt with: 

A. What is the expected time E(T) taken by the algorithm? 

B. How close is Cn to C~ (in some probabilistic sense)? 

The bounded-lookahead-and-backtrack (or: BLAB) algorithm proposed by 
Karp and Pearl (1983) introduces three design parameters, d, a and L, where 
d ~ 1 is an integer, a E (0,1) is a real number, and L > 1 is an integer. If v 
is a node in our tree and u is a descendant of v such that the path distance 
from v to u is L, then we say that u is an (a, L) son of v if the sum of the 
edge values on the linking path is :5 aL. To make things more readable, we 
will simply say that u is a good child of v. 

We now construct a fake branching process as follows: start with a given 
node and make it the root of the branching process. Declare all the good 
sons to be its offspring. So, this process jumps L levels at a time. (This is 
illustrated in the first figure of this section.) Repeat this definition for all 
the nodes thus obtained. The Malthusian parameter for this process is the 
expected number of good sons per node, or 

m ~f 2L pr(BIN(L,p) :5 aL) . 

The fake branching process is supposed to help us locate near-optimal nodes 
at level n. If it is to work for us, we surely would like the process to survive 
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forever, thus leading to the condition m > 1. From the properties of the 
binomial distribution, we retain that if a < p is fixed, then, as L -+ 00, 

m = 2L 8(1) {R(a,p)}L = 2L 8(1) ((!!..)O (1 _ p) 1-0) L , 
..fL ..fL a I-a 

where the function R(a,p) increases monotonically from 1 - P at a = 0 to 
1 at a = p. Thus, it takes the value 1/2 somewhere in the interval (O,p), 
at a place we will call a*. We have the freedom to choose a and L. So, we 
first pick a E (a*, 1). Then we choose L so large that m > 1. This fixes 
the branching process. We let the probability of extinction be q. The BLAB 

algorithm proceeds as follows: we select d in some way (to be specified later), 
such that n - d is a multiple of L. Repeat for each of the 2d nodes at level 
d until successful the following process: traverse the "good sons" branching 
process in a depth-first-search manner until a node is found at level n or until 
the subtree is exhausted without ever reaching level n. If a node at level n is 
reached, then its value is guaranteed to be no more than d + a(n - d). But 
the probability of a given depth-first-search succeeding is at least 1- q. Thus, 
the overall procedure returns a failure with probability less than q2d. In that 
case, if a node has to be returned, we might as well return the leftmost node 
in the tree, with value::; n. Putting this together, we see that 

E(Cn ) ::; nPr(search fails) + d + a(n - d) 
::; nq2d + d + a (n - d) . 

For fixed E > 0, this is less than a*(1+E)n by choice of a (e.g., a::; a*(1+E/2) 
will do), L (as above) and d (large, but fixed). We also see that 

lim Pr(Cn > a*(l + E)n) = 0 
n--+oo 

for all E > 0 if we choose a and L as above and d -+ 00 while din -+ 0 
(example: d '" log n). 

The second thing we need to prove is that E(C~) ~ a*n or something 
close to that. Note the following: 

Pr(C~ < a*n) ::; Pr(3 at least one (a*,n) good son of the root) 
::; 2nPr(BIN(n,p) ::; a*n) 
= 2nBJ,l {R(a*,p)}n 
-~ - ,;n . 

Thus, Pr(C~ ~ a*n) -+ 1. Also, 

E(C~) ~ E(C~)Ic:,~o'n 
~ a*nPr(C~ ~ a*n) 
~ a*n (1- 8(1)/vIn) 
2 a*n - 8(vIn) . 
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For given E > 0, we can design an algorithm that guarantees the following: 

Or, if one wants it, 

lim Pr (CCn > 1 + E) = o. 
n-+oo ~ 

(The last event implies either Cn > 0:*(1 + E)n or C~ < o:*n, and the proba
bilities of both of these events tend to zero with n.) 

We conclude this section with a proof of the linear expected time com
plexity: E(T) = O(n). When finding a good son of a node in the branching 
process, an effort not exceeding 2L is spent. Then, by the family tree traver
sal lemma, each depth-first-search takes time not exceeding en, where cis 
a constant depending upon the branching process parameters. The expected 
number of depth-first-searches until a node is encountered that is the root 
of a surviving branching process is not more than 1/(1 - q). Thus, the total 
expected time does not exceed 

en 
- =O(n). 
l-q 

REMARK. McDiarmid and Provan (1991) pointed out that bounded looka
head without backtrack is also feasible. Assume that we find the optimal 
path from the root to a node at depth L. Make this node the new starting 
point and repeat. L is a large integer constant. For p > 1/2, and E > 0, 
one can show that there exists an L such that this algorithm runs in linear 
expected time, and that the best value found by the algorithm (Cn ) satisfies 
the inequality 

Cn :$ (1 + E)C~ 
with probability tending to one. 

3.4 Bibliographic Remarks 

The problem dealt with here was proposed and analyzed by Karp and Pearl 
(1983). An alternate short proof of Theorem 3.1 is given by McDiarmid 
(1990), where additional information about the problem may be found as 
well. The analysis of the optimal value en in the case p < 1/2 is due to Mc
Diarmid and Provan (1991). Consider now depth first search in a complete 
b-ary tree in which the probability of a "one" edge is p, and b(1 - p) > 1. 
The following inequality is due to McDiarmid and Provan (1991): if Cn is the 
optimal value of a node at distance n from the root, then 
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bk + I 

Pr( en > k) < (b ~ 1) , k 2: 0 . 

Karp and Zhang (1995) analyze random AND/OR trees, where internal nodes 
at even (odd) distances from the root are AND (OR) nodes and each node 
has a boolean value 0 or 1. The value of a node is the outcome of the logical 
operation of the node on its children's values. The evaluation problem is to 
determine the root's value by examining the leaf values (which are randomly 
and independently assigned), while keeping computation to a minimum. This 
is Pearl's minimax tree model (1984). Karp and Zhang propose and analyze 
various algorithms using tail bounds on generation sizes in Galton-Watson 
processes. For minimax trees, Devroye and Kamoun (1996) analyze the value 
of the root in a random minimax tree, in which the leaf values in the n
th generation are those of a branching random walk, and intermediate level 
values are obtained by alternating the operations minimum and maximum. 

4. Branching Random Walk 

4.1 Definition 

In a branching random walk, we superimpose a random walk on each path 
from the root down in a Galton-Watson tree. More specifically, we associate 
with each individual u in a Galton-Watson tree a value Vu , the value of 
the root being zero. If u has N offspring (where N follows the model of 
the Galton-Watson process), then the values of the offspring relative to the 
value Vu of the parent u jointly have a given distribution. In the simplest 
model, for every child v of u, we have Vv = Vu + Xv, and all displacements 
Xv are independent (this will be called the independent branching random 
walk). However, in general, if the children have displacements XVI" .. ,XVN ' 
then the joint distribution of (N, XVI' ... ,XVN ) is quite arbitrary. What is 
important is that each parent produces children (and their values) in the 
same manner. 

The analysis of branching random walks is greatly facilitated by the fol
lowing function: 

m(O) = E (t e-6Xvi ) 

where VI,"" VN are the children of the root. We assume throughout that 
m(O) < 00 for some O. This function may be considered as the Laplace
Stieltjes transform of F(t) = E(ZI(t)), the expected number of individual in 
the first generation, with value less than or equal to t. In general, we introduce 
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the notation Zn(t), the number of individuals in the n-th generation, with 
value ~ t. Note that Zn = Zn(oo), so that this definition generalizes that of 
the previous section. Let zn be the point process with atoms Vu for all u in 
the n-th generation. Then, following Kingman (1975), introduce 

1 
Wn(O) = m(o)n . L. e-ovu 

u In generatIOn n 

This is a martingale for Fn, the a-field generated by all events in the first 
n generations. There is an almost sure limit, W(O) (as Wn(O) ~ 0), and by 
Fatou's lemma, E(W(O)) ~ 1. The study of Wn and W reveals that there 
may be several modes of behavior, and this was studied by Biggins (1977) in 
more detail. In this section, we do not wish any distractions due to extinction 
of the underlying Galton-Watson process, and assume therefore that N, the 
number of children per parent, is a fixed positive integer: N = b. For more 
general theorems, we refer to the cited papers. 

In subsection 4.2, for N = b, we survey the main results on the first 
birth in the n-th generation, or Bn = min{Vu : u in n-th generation}, and 
on Zn (t), the distribution of values in the n-th generation. A straightforward 
application in the study of the height of trees then concludes this section. 

4.2 Main Properties 

Let X be a random variable equal to the value Vu of a randomly picked child 
of the root. Since N = b, the earlier definition of m( 0) specializes to 

Then, if X ~ 0 is nondegenerate, we define the J.L-function by 

J.L(a) = inf {eOam(O)} = inf E (eO(a-Xl) . 
o~o o~o 

Theorem 4.1. [Biggins, 1977] If J.L(a) < 1, then with probability one, 
Zn(na) = 0 for all but finitely many n. If a E int{a: J.L(a) > 1}, then 

lim (Zn(na))l/n = J.L(a) 
n--+oo 

almost surely. 

This theorem shows that M(a)n is about equal to the number of individuals 
in the n-th generation with value ~ na. Its simple proof is not given here, 
but it follows the lines of the proof of Theorem 2.1. In fact, Theorem 4.1 is 
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nothing but a refined large deviation theorem, as along any path from the 
root, the values form a standard random walk. 

As a corollary of the above result, we have: 

Theorem 4.2. [Kingman, 1975; Hammersley, 1974; Biggins, 1977] Assume 
m(O) < 00 for some 0 > o. Let En = min{Vu : u is in the n-th generation }. 
Then, 

lim En = "( ~f inf{a : fJ.(a) > I} 
n->oo n 

almost surely, and "( is finite. 

Interestingly, En gows linearly with n, while the n-th generation size (bn) 
grows exponentially with n. As the fJ.-function has an impact on both results, 
it is useful to have its properties at hand. 

Lemma 4.3. Let X ~ 0 be a nondegenerate random variable. Then its fJ.
function satisfies the following properties: 

(i) fJ. is an increasing function on [0,00). 

(ii) fJ. is continuous on int{a : fJ.(a) > O}. 

(iii) logfJ. is concave on int{a : fJ.(a) > O}. 

(iv) sUPaER fJ.(a) ::::; b. 

(v) If E(X) < 00, then fJ.(a) == b for a ~ E(X). 

(vi) limaToo fJ.(a) = b. 

(vii) If X ~ c > 0, then fJ.(a) = 0 for a < c. 

(viii) Let s = sup{t : Pr(X < t) = O}, and define p = Pr(X = s). Then fJ. is 
continuous on (s,oo), fJ.(s) = bp, and fJ.(a) = 0 for a < s. 

(ix) If bp < 1, and"( = inf{ a: fJ.(a) ~ I}, then fJ.("{) = 1. 

If all displacements with respect to a parent are identical, then we speak 
of a Bellman-Harris branching random walk. McDiarmid (1995) calls this a 
common branching random walk. Of course, all theorems above also apply 
to this situation. It is of interest to pin down the asymptotic behavior of En 
beyond Theorem 4.2. Consider for example an infinite b-ary tree on which 
we superimpose a branching random walk, with all displacements Bernoulli 
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(lib), that is, they are 1 with probability lib and 0 otherwise. The case 
b = 2 is easiest to picture, as all displacements are independent equiprobable 
bits. Joffe, LeCam and Neveu (1973) showed that Bnln -+ 0 almost surely, 
and this also follows from Theorem 4.2, which was published later. Bramson 
(1978) went much further and showed that there exists a random variable W 
such that 

1· B _ poglogn-log(W+o(l))l_O 
~ n -

n-+oo log 2 

almost surely, where the 0(1) term is stochastic. In the binary case, each in
dividual in the n-th generation has a binomial (n,1/2) distribution. If these 
2n binomials had been independent, we would have had lim infn-+oo Bn = 0 
almost surely and lim sUPn-+oo Bn = 1 almost surely. This follows from the 
fact that Pr(Bn = 0) -+ 1 - lie as n -+ 00 and Pr(Bn ;::: 2) ::; e-(n+1). 
Thus, Bramson's result exposes a crucial property of branching random walks. 
Dekking and Host (1990) consider the general branching random walk with 
nonnegative integer-valued displacements. Thus, Bn j. Let N(k) be the num
ber of children of the root with displacement k. Let N = I:~o N(j) be the 
number of offspring of the root. Again, we assume N = b with probability 
one, although the results of Dekking and Host treat the general case. Some 
of their results can be summarized as follows: 

Theorem 4.4. [Dekking and Host, 1990] If, denotes the constant of The
orem 4.2, then, = 0 if and only ifE(N(O)) ;::: 1. 

Assume now Pr(N(O) = 1) < 1. Then Pr(Bn -+ 00) E {O, I}, and the 
zero case happens if and only if E(N(O)) > 1. Also, 

A. If E(N(O)) > 1, then there exists a proper random variable W such that 
Bn -+ W almost surely. 

B. If E(N(O)) = 1, E(N2 ) < 00, and 9 = inf{i > 0 : E(N(i)) > O}, then 
Bn log 21 log log n -+ 9 almost surely. 

If p, = E(N(l)) > 0 and T = (1/2)var(N(0)), then for integer k;::: 0, 

Pr(Bn ::; k) '" P, 1 

T(p,n) 2k 
asn-+oo . 

McDiarmid (1995) extends the results of Dekking and Host in some cases. 
Consider only nonnegative displacements, and recall that the branch factor 
is b. Then, if bn is the median of Bn, McDiarmid establishes the existence of 
positive constants c, c' such that for all n, 

Pr(IBn - bnl > x) < ce-c'x 
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for all x E [0, n]. This implies that almost surely, for all n large enough, 
Bn - bn = O(logn). Clearly, by Theorem 4.2, bn should be near "In. The 
following result describes the closeness of Bn to "In. We give only the version 
for the case that the underlying Galton-Watson tree is the complete infinite 
b-ary tree. 

Theorem 4.5. [McDiarmid, 1995] Consider a common branching random 
walk in which every individual has b children, and all displacements are on 
[a, 00), where a is the leftmost point of the support of the displacement random 
variable X, and bPr(X = a) < 1. Let T > 0 be the (necessarily unique) 
solution of eT"Ym(T) = 1, and let m be finite in a neighborhood of T. Then 
there are positive constants c, c' , c" such that 

Pr(Bn ::; "In + clogn - x) ::; e-c'x , x ~ 0, 

and 
Pr(Bn ~ "In + c" log n + x) ::; e-c' x , 0::; x ::; n. 

McDiarmid's proof does not imply c = c", but it strengthens earlier re
sults, such as a result by Biggins (1977), who showed that under the stated 
conditions, Bn - "In ----> 00 almost surely. Interestingly, his argument is based 
on the second moment method, and the idea of leading sequences. A sequence 
(Xl,.'" xn) is leading if for all j = 1, ... , n - 1, 

If (Xl"'" Xn) are exchangeable random variables, then indeed, 

Pr((X1 , ... , Xn) is leading ) ~ lin. 

Given an individual u in the n-th generation, we denote by Y1 , ... , Yn 
be the displacements encountered on the path from the root to v. We call v 
leading if this displacement sequence is leading, that is, if Wj ~ (j/n)Wn, 
where WI, ... , Wn are the values of the ancestors of v in generations 1 through 
n. Clearly, Zn(t) ~ Z~(t), where Z~(t) is the number of leading individuals 
in the n-th generation with value::; t. It should be clear that Z~(t) is about 
Zn(t)/n when Zn(t) is large, and not much is lost by considering Z~(t), or 
by considering the minimum value B~ among leading individuals, instead of 
just Bn- A careful application of the second moment method (Pr(X > 0) ~ 
(E(X))2/E(X2) for any random variable X with finite mean E(X) ~ 0) then 
yields Theorem 4.5. 
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4.3 Application to Analysis of Height of Trees 

One may use Theorem 4.2 in the study of the height of a large class of random 
trees. These trees can be modeled indirectly by the size tree, a tree in which 
we associate with each node u the size of its subtree Suo For the root, we 
have Su = n, and for each leaf, Su = 1. Often, these size trees are close to a 
split tree T in a manner to be made precise. A split tree T starts with a root 
u of value Vu = 1. It is an infinite b-ary tree, and the values of the children 
VI, ... , Vb are VUXV1 , ... , VUXVb· Furthermore, E~=I XVi = 1 and XVi ::::: 0 for 
all i. In other words, considering the value as mass of a subtree, the mass 1 
at the root is partitioned into smaller masses that again add up to one. This 
process continues forever, each particle splitting in the same manner. The 
distribution of values in the split tree is governed by the joint distribution of 
the b child values of the root. If we consider V~ = -log Vu , then the above 
model describes a branching random walk. Let mO and /-LO be defined as for 
that random walk, that is, if X is the value of a randomly picked child of the 
root (so, 0:::; X :::; 1), then 

m(O) = bE (e-O( -log X)) = bE (XO) . 

Define 
/-L(a) = inf {eOam(O)} = infbE(XOeOa) 

o~o o~o 

Finally, let Nn(t) be the number of n-th generation individuals with value 
exceeding t in the split tree. The following is a corollary of Theorem 4.1: 

Theorem 4.6. If /-L(a) < 1, then with probability one, Nn (e-na ) = 0 for all 
but finitely many n. If a E int{a : /-L(a) > I}, then limn -+oo (Nn (e-na))l/n = 
/-L(a) almost surely. Furthermore, if Bn is the maximal value of any individual 
in the n-th generation of the split tree, then 

. - log Bn clef. 
hm = I = mf{a : /-L(a) > I} 

n-+oo n 

almost surely. 

The above results may be applied in the study of Kolmogorov's rock (see 
Athreya and Ney, 1972), which is subjected to many rounds of breaking, and 
each break results in two rocks with uniform size. If the initial rock has mass 
one, then Theorem 4.6 describes the maximal rock size among 2n shattered 
rocks in the n-th generation. The random variables that govern the splitting 
are (U,1 - U), where U is uniformly distributed on [0,1]. In this case, we 
have 

m(()) = 2E(Uo) = _() 2 . 
+1 
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Also, 

p.(a) = inf {()2e/Ja } = 2ae1- a • 
/J~o + 1 

From this, we determine 'Y as the solution of 2ae1- a = 1, and obtain 
'Y = 0.2319 .... As a consequence, the size Bn of the largest rock is almost 
surely e-n(-y+o(l». For comparison, if we were to break the rocks evenly, then 
Bn = 2-n = e-nxO.6931..., almost the third power of the maximal rock in the 
random model! 

However, the way Tree splits are used is different. A search tree holding 
n nodes has mass n at the root, so we define our split tree in such a way that 
each node has n times the value of the corresponding node in the original split 
tree. These (typically non-integer) roughly represent the sizes of the subtrees. 
Nodes with value (after multiplication with n) less than 1 correspond to 
nothing and will be cut. In this manner, the size tree is finite. For example, 
in a random binary search tree, the sizes of the left and right subtrees of 
the root are distributed as L nU J and L n( 1 - U) J respectively, where U is 
uniform [0,1]. These sizes are jointly smaller than (nU, n(l - U)), and thus, 
by embedding, we can say that the values in the size tree are jointly (over 
the infinite tree!) smaller than the values in a split tree with multiplicative 
factor n and with root child values (U, 1 - U). Furthermore, the sizes of the 
left and right subtrees are jointly larger than (nU - 1, n(l - U) - 1). If we 
repeat this sort of bounding for k generations, then it is easy to see that all 
values in the size tree at generation k are jointly larger than the values in the 
split tree just defined, minus k. The connection between size trees and split 
trees is thus established. In particular, what interests us most is that if Hn 
is the height of the binary search tree with n nodes, then 

Pr(Hn ~ k) = Pr(maximum value in generation k of size tree ~ 1) 
~ Pr(nBk ~ 1) 

where Bk is the maximum value of a k-th generation node in the original 
split tree (n is the multiplicative factor). Similarly, 

Pr(Hn < k) = Pr(maximum value in generation k of size tree < 1) 
~ Pr(nBk - k < 1). 

As Bk = e-k(-y+o(l» almost surely as k - 00, where 'Y is precisely as in the 
example of Kolmogorov's rock, it is easy to conclude from these inequalities 
the following (essentially Theorem 2.1): for f > 0, 

lim Pr (Hn > ~ + f) = 0 
n-oo logn 'Y 

and 
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lim Pr (lHn <.! - f) = 0 . 
n ..... oo ogn, 

Thus, Hn/logn - Ih = 4.31107 ... in probability, where, is defined in 
Theorem 4.6. For the random binary search tree, we thus have a second 
proof of Theorem 2.1. 

The technique above consists in describing the sizes of the subtrees of a 
random tree by an embedding argument, and to relate these sizes to those of 
a split tree by suitable inequalities. This has been done in the literature for 
a number of random trees, and rather than dwelling on the details, we will 
review the known results. The remainder of this section is rather specialized 
and may be skipped upon first reading. 

EXAMPLE 1: THE RANDOM b-ARY SEARCH TREE. Let n Li.d. random variables 
with a common density be used to construct a random b-ary search tree, 
where each physical node holds up to b - 1 elements. As soon as a node is 
full, new nodes reaching it on the path down from the root are sent down 
to one of the b child trees by a comparison of values of the b - 1 (sorted) 
elements in the node. Here the tree size is measured in number of elements, 
not number of nodes. The first b -1 elements occupy the root. Without loss 
of generality, they are Li.d. uniform [0,1]. Thus, as the other elements are 
independent, we see that the subtree sizes (Nt. ... , Nb) are distributed as a 
multinomial random vector with count n - b + 1 and probabilities given by 
St. ... , Sb, the spacings determined on [0,1] by a uniform sample of size b-1. 
Now, the relationship between the size tree and the split tree is only slightly 
more intricate, but the split tree clearly should have multiplicative factor n 
and split random vectors (Sl, ... , Sb) (see Devroye, 1990, for the details). In 
particular, the S/s are beta (1, b - 1) distributed (Pyke, 1965), and we can 
thus easily compute 

m(O) = bE(Xli) = bE(Sli) = b (I xli(b-l)(1-x)b-2dx = F(b + I)F(O + 1) 
1 io F(b + 0) . 

Unfortunately, the expression for J.l is in general not simple. We have Hn/n
e in probability, where 

{ 
b b-I} e = inf c > I/~(I/j) : t + clogb! - c f;lOg(t + i) < 0 

and t > 0 is the unique solution of 

1 b-I 1 

~=Lt+i 
i=I 

(Devroye, 1990). Particular values of e include e = 4.31107 ... (b = 2), e = 
2.4699 ... (b = 3), e = 0.9979 ... (b = 9) and e = 0.3615 ... (b = 100). The 
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depth of the last node, Dn, is in probability asymptotic to logn/E~=2(I/j} 
(Mahmoud and Pittel, 1984). Devroye (1997) showed that if ,x = 1/ E~=21/i 
and (1'2 = E~=2 l/i2, then 

Dn - 'xlogn ..s N(O, 1) , 
V(1'2,X31ogn 

where N denotes a normal random variable. As an example, if b = 3, 

Dn - (6/5) logn ..s N(O, 1) . 
V(78/125) logn 

EXAMPLE 2: THE RANDOM QUADTREE. The point quadtree in Rd (Finkel 
and Bentley, 1974; see Samet (1990b) for a survey) generalizes the binary 
search tree. Defined in the previous chapter, we only consider uniform data 
in [O,I]d. Note that if the root is X = (Xl, ... ,Xd), then the probabilities 
(volumes) of the 2d quadrants are given by the identically distributed (but 
dependent) random variables 

d 

IT X~i(l- Xi)l-bi , 

i=l 

where bl , ... , bd is a vector of d bits identifying one of the 2d quadrants. 
Devroye (1987) establishes probability inequalities between the values in the 
size tree and the values in the split tree, which imply for first order results 
that it suffices to study the split tree. Then we note that 

thus generalizing the binary search tree (obtained when d = 1). Thus, 

{ }

d 
2 ~ 2 d 

p.(a) = inf ~ = (-.!!:..e l - a / d ) • 
8~O 0 + 1 d 

Therefore, by simple inspection, p.(d'Y) = 1, where 'Y is the parameter for 
the binary search tree. As a result, the height Hn of a random quadtree 
is in probability asymptotic to (l/d'Y) logn, where Ih = 4.31107 ... is the 
constant in the height of the random binary search tree (Devroye, 1987). Let 
Dn be the depth of the last node. It is also known that 

Dn 2. b b·li -1 - -+ -d In pro a 1 ty , 
ogn 

a result first noted by Devroye and Laforest, 1990. See also Flajolet, Gonnet, 
Puech and Robson (1991). Furthermore, 
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Dn - (2/d) logn ~ N(O, 1) , 
J(2/d2 ) logn 

valid for any d ~ 1. This result was obtained via complex analysis by Flajo
let and Lafforgue (1994) and by standard central limit theorems by Devroye 
(1997). EXAMPLE 3: THE RANDOM MEDIAN-OF-(2K+1) BINARY SEARCH 
TREE. Bell (1965) and Walker and Wood (1976) introduced the following 
method for constructing a binary search tree. Take 2k + 1 points at random 
from the set of n points on which a total order is defined, where k is integer. 
The median of these points serves as the root of a binary tree. The remain
ing points are thrown back into the collection of points and are sent to the 
subtrees. Following Poblete and Munro (1985), we may look at this tree by 
considering internal nodes and external nodes, where internal nodes hold one 
data point and external nodes are bags of capacity 2k. Insertion proceeds 
as usual. As soon as an external node overflows (i.e., when it would grow 
to size 2k + 1), its bag is split about the median, leaving two new external 
nodes (bags) of size k each, and an internal node holding the median. After 
the insertion process is completed, we may wish to expand the bags into bal
anced trees. Using the branching process method of proof (Devroye, 1986b, 
1987, 1990; see also Mahmoud, 1992) the almost sure limit of Hn/logn for 
all k may be obtained (Devroye, 1993). For another possible proof method, 
see Pittel (1992). The depth Dn of the last node when the fringe heuristic is 
used has been studied by the theory of Markov processes or urn models in 
a series of papers, notably by Poblete and Munro (1985), Aldous, Flannery 
and Palacios (1988). See also Gonnet and Baeza-Yates (1991, p. 109). Poblete 
and Munro (1985) showed that 

Dn -> 1 ~ .\(k) 
log n ,,2k+2 1. 

L...ti=k+2 i 

in probability. It should be clear by now that the height of this tree may be 
studied via a split tree with split vector distributed as (B,l - B), where B 
is beta (k + 1, k + 1). That is, B is distributed as the median of 2k + 1 Li.d. 
uniform [0, 1] random variables. This representation is obtained by associating 
with each point in the data an independent uniform [0, 1] random variable. 
Equivalently, if the Ui are independent uniform [0, 1] random variables, then 
B is distributed as 

2k+l II U;l/i. 

i=k+l 

Note that in this case 

m(O) = 2E(Bo) = r(2k + 2 + O)r(k + 1) 
r(2k + 2)r(k + 0 + 1) 

The computation of J.L is a little bit more tedious, but the result can be 
phrased indirectly: 
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Theorem 4.7. [Devroye, 19931 A random binary search tree constructed with 
the aid of the fringe heuristic with parameter k has the following property: 
I;;nn -+ c(k) in probability where c(k) is the unique solution greater than A(k) 
07 the equation 

2k+1 ( 'Ij; ) 
'Ij;(c)-c L log 1+ ~c) +clog2=0, 

i=k+1 

and 'Ij;(c) is defined by the equation 

1 2k+1 1 

C = i~l 'Ij;+i . 

In particular, ,x(0) = 4.31107 ... (the ordinary binary search tree), A(I) = 
3.192570 ... , ,x(3) = 2.555539 ... , ,x(1O) = 2.049289 ... and 
,x(100) = 1.623695 .... 

With 
2k+2 1 

u 2 = L -=2' 
j=k+2 J 

Devroye (1997) obtained a central limit theorem for Dn for all k: 

Dn - ,x log n ~ N(O, 1) . 
Vu2A310gn 

As an example, for k = 1, we obtain 

Dn - (12/7) logn ~ N(O, 1) . 
V(300/343) log n 

EXAMPLE 4: RANDOM SIMPLEX TREES. Triangulating polygons and objects 
in the plane is an important problem in computational geometry. Arkin, Held, 
Mitchell and Skiena (1994) obtained a simple fast O(nlogn) expected time 
algorithm for triangulating any collection of n planar points in general posi
tion. We look more specifically at their triangulation and its d-dimensional 
extension to simplices, and ask what the tree generated by this partitioning 
looks like if the points are uniformly distributed in the unit simplex. Given 
are n vectors X I, ... , Xn taking values in a fixed simplex S of ad. It is as
sumed that this is an i.i.d. sequence with a uniform distribution on S for the 
purposes of analysis. Xl is associated with the root of a d + l-ary tree. It 
splits S into d+l new simplices by connecting Xl with the d+l vertices of S. 
Associate with each of these simplices the subset of X 2 , ••• , Xn consisting of 
those points that fall in the simplex. Each nonempty subset is sent to a child 
of the root, and the splitting is applied recursively to each child. As every 
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split takes linear time in the number of points processed, it is clear that the 
expected time is proportional to nE(Dn), where Dn is the expected depth of 
a random node in the tree. The partition consists of dn + 1 simplices, each 
associated with an external node of the tree. There are precisely n nodes in 
the tree and each node contains one point. If lSI denotes the size of a simplex 
S, then the following crucial property is valid. 

Lemma 4.8. [Devroye, 1997] If simplex S is split into d + 1 simplices 
Sb ... , Sd+1 by a point X distributed uniformly in S, then (IS11,···, ISd+11) 
is jointly distributed as (ISIV!, ... , IS!Vd+1), where V1, •• • ,Vd+1 are the spac
ings of [0, 1] induced by d i.i.d. uniform [0,1] random variables. 

It is immediate that the random simplex tree is a split tree with split 
vector distributed as the spacings defined by d Li.d. uniform [0, 1] random 
variables on [0,1] and branch factor d + 1. Therefore, Hn (and also Dn) 
behave precisely as for the random d+1-ary tree discussed earlier. Thus, if 

2 _ "a+1 1/·2 u - L..ti=2 l, 

Dn -+ A ~f 1 in probability 
logn "d+1 ~ 

L..t.=2 • 

and 
Dn - Alogn ~ N(O, 1) . 
Ju2 A3 logn 

As an example, if d = 2, then and 

Dn - (6/5) logn ~ N(O, 1) . 
J(78/125) logn 

We also know that Hn/logn -+ c(d) in probability for a function c of d that 
may be computed via the recipe described in the example on b-ary search 
trees. 

4.4 Refinements for Binary Search Trees 

The results of the previous section permit fundamentally only first order 
asymptotic analysis of Hn. For the study of the depth of the last node Dn. 
or the depth of a typical node, branching processes are really not necessary, 
although they could be used. Devroye (1997) derives a general central limit 
theorem for Dn , illustrated in the previous examples, based on a split tree 
model as in the previous section. By allowing n balls to drop according to a 
certain process down an infinite b-ary tree in which nodes may hold zero, one, 
or more balls, the model is rich enough to encompass both search trees and 
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tries or digital search trees. Recall that "( = 4.31107 ... the unique solution 
greater than 2 of clog(2e/c) = 1. Theorem 2.1 implies that the height Hn 
of the random binary search tree satisfies Hn/ log n -+ "( in probability. In 
fact, convergence is in the almost sure sense as well, a fact first noted by 
Pittel (1984). Using elementary inequalities and essentially the bounds found 
in this survey, Devroye (1987) showed that Hn -"(logn = o (y'log n log log n) 
in probability. Robson (1979) reported that Hn was much more concentrated 
than that, and conjectured even var(Hn) = 0(1). There have been three 
attempts to crack this conjecture. 

Michael Drmota (1997) uses generating functions to prove that E(Hn) '" 
"( log n, and his proof is the first one based on this approach. This method 
may have two benefits: first of all, it may provide detailed behavior on the 
exact behavior of E(Hn) (the lower order terms may be useful elsewhere), 
and the method may perhaps one day be extended to treat var(Hn) in a 
similar manner. 

Devroye and Reed (1995) provided the first analysis of the height that did 
not require any results from the theory of branching processes. Instead, they 
mark certain paths to leaves in the split tree that corresponds to the binary 
search tree, and apply the second moment method to compute bounds on 
probabilities. Interestingly, the marked leaves are sufficiently spread out to 
make this method work. This method was later generalized, via the notion 
of leading sequences, to common branching random walks, by McDiarmid 
(1995) (see Theorem 4.5). They were able to show that 

lim Pr (IHn - "( log nl > 115"( log log n) = 0 . 
n-oo og2 

(Note that 15,,(/ log 2 = 92.2933 .... ) Using a surprisingly elementary recur
sive argument, Robson (1997) showed that for any € > 0, infinitely often, we 
have 

8"( 
E(IHn - E(Hn)l) < 10g2 - 4 + € . 

In fact, if 

sup (E(H2n) - E(Hn)) < 00 , 
n 

then his method allows one to conclude that 
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supE(IHn - E{Hn}l) < 00 . 
n 

If we knew E(Hn) down to 0(1) terms, we would be done, at least for first 
moment deviations. 

Finally, we just learned from Jean Jabbour (1998) at the University of 
Versailles that he has a proof of Theorem 2.1 based solely on martingales. 
This may be yet another path along which to proceed. 

4.5 Bibliographic Remarks 

For general background information see, for example, Asmussen and Hering 
(1983), Athreya and Ney (1972), and Harris (1963). Lemma 4.3 takes elements 
from Kingman (1975), Biggins (1977), and Devroye and Zamora (1997). The 
minimal displacement Bn was compared by Durrett (1979) with that of the 
independent tree model, in which all n-th generation individuals have inde
pendent values of their common distribution. Bramson (1978) also worked out 
the finer behavior of Bn when the displacements are gaussian, or in general 
when particles describe Brownian motion and split at random times. Biggins 
(1990) derives a central limit theorem for Zn(.) when E{N) 10gN < 00, where 
N is the number of offspring. Lemma 4.8 is implicit in many older references, 
such as Rubinstein (1982), Smith (1984) or Devroye (1986a) 

5. Crump-Mode-Jagers Process 

5.1 Introduction 

The Crump-Mode-Jagers (or CMP) branching (Crump and Mode, 1968) starts 
with a single ancestor born at time t = O. Zl (t), the number of children 
born to the ancestor before time t is an arbitrary counting process. The 
children of the ancestor, from their births, behave independently of one an
other and of their parent, producing children at random according to random 
processes with the same joint distribution as Zl (.). Their children produce 
children in the same way, and so on. We speak of a Poisson CMP branching 
process if the between-birth intervals are exponentially distributed with pa
rameters Ao, Ab'" respectively. Thus, births occur at intervals distributed 
as Eo/ AO, Ed Al, ... , where the E/s are independent and exponentially dis
tributed random variables. Note that if Ai = 0, for some i, then the number 
of offspring of an individual can never exceed i. 



284 Luc Devroye 

If we link each individual with its parent, then we obtain a tree, and the 
notion of a generation becomes meaningful again. Several random variables 
are of interest here: 

A. tn, the time at which the tree has exactly n nodes. 

B. Bn , the time of the first birth in the n-th generation. 

c. Hn, the height of the tree at time tn. 

D. Zk, the number of individuals in generation k. 

E. Z(t), the number of individuals at time t. 

F. H ( t ), the height of the tree at time t. 

The reason CMP processes are important to us is because of the following 
connection with random trees that can be grown in an incremental manner. 
The random trees are grown one edge at a time, starting from the root. If 
the degrees of the current nodes are denoted by D i , then node i is selected 
with probability proportional to ADi. This node becomes the parent of a new 
node. Observe that the order of the births in the Poisson CMP process follows 
exactly that of the incremental random trees just described. Also, both are 
probabilistically equivalent if we are only interested in studying depths and 
heights of nodes. The last remark is rooted in the observation that if we 
have a number of birth processes with rates Ai, then process i gives the next 
birth with probability proportional to Ai. The model described above and the 
continuous time embedding idea are due to Pittel (1984). 

EXAMPLES. 

A. The uniform random recursive tree (URRT) has Ai == 1 for all i. It is grown 
by choosing a parent with equal probability from among all possible 
parents. 

B. The random m-ary pyramid with m ~ 2 has Ai = 1 for i < m and Ai = 0 
for i ~ m. Here we choose a parent uniformly at random from among 
those parents with less than m children. See Mahmoud (1994). 

c. In the random binary search tree, we have AO = 2, Al = 1 and A2 = 
O. To see quickly why this incremental tree model corresponds to the 
standard random binary search tree, consider a random binary search 
tree constructed on the basis of an i.i.d. sequence of uniform [0, 1] random 
variables U1 , U2 , •••• Given that the tree has n - 1 nodes, the n-th node 
has a rank that is uniformly distributed on {I, 2, ... ,n}. That is, it falls 
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in one of the n intervals on [0, 1] defined by the first n -1 uniform random 
variables. But each such interval corresponds uniquely to a potential new 
node (these are called external nodes), and there are two external nodes 
for a node with no children, and one for a node with one child. 

D. The linear recursive tree has Ai = 1 + bi for some positive constant b. 
To visualize this, consider b = 1. To grow a tree, we pick a parent with 
probability proportional to one plus the number of children. For b = 1, 
this is called a plane-oriented recursive tree by Mahmoud (1993) and 
Mahmoud, Smythe and Szymanski (1993) (see also Szymanski, 1987, and 
Bergeron, Flajolet and Salvy, 1992). The last name is selected because of 
the following planar visualization: draw the tree in the plane, and place a 
new edge uniformly at random as any possible child of any possible rank. 
In this manner, a plane-oriented tree is defined. 

There are three recent papers that provide an analysis of the height of 
these random trees using Crump-Mode processes, Pittel (1994) for the URRT 

and linear recursive tree, Mahmoud (1994) for random pyramids, and Biggins 
and Grey (1996) in the more general setting followed in this chapter. The 
height Hn can be analyzed using the Biggins-Hammersley-Kingman theorem 
(Theorem 4.2). We conclude by working out the details for the various tree 
models mentioned above. 

5.2 The Main Result 

The relationship between the CMP process and the branching random walk 
is clear, if we let the displacements in the branching random walk be the 
inter-birth times. As the branch factor may be unbounded (as for the URRT 

case), we need to follow a general set-up. For simplicity, to ensure survival, we 
assume throughout that ZI (00) ~ 1. For a general branching walk process, 
we define the Laplace transform of the mean reproduction measure, 

where the ¥i's are the realizations of ZI(.)' and the sum ranges over all 
children of the root. 

Example. For a Poisson CMP process, we have 
Yl = EO/Ao, Y2 = Y1 + EdAb and so forth, so that 

m(6) = E:o E (e-O(EO/AO+··+E;jAi») 
=",,00 TIi, E ( -OEj/Aj) 

L.n=O 3=0 e 
",,00 TI' 1 = L."i=O j=O 1+ 0 . 

Aj 
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Assuming that m( 0) < 00 for some 0 > 0, we note that as 0 ....... 00, 

m(O) ....... O. Observe that a sufficient condition for this is that Aj = O(j) as 
j ....... 00 in the Poisson eMP case). Define 

J.L(a) = inf {eOam(O) : 0 ~ O} , 

and observe that log J.L( a) is concave (the infimum of a family of lines is 
concave) and J.L(a) is continuous on the interior of {a: J.L(a) > O}. 

Define Zk(t), the number of individuals in generation k with value at most 
t. Biggins (1977) uses classical large deviation results by Bahadur and Rao 
(1960) and Chernoff (1952) to prove the following: 

Theorem 5.1. [Biggins, 1977; Hammersley, 1974; Kingman, 1975] 
1 

If m(O) < 00 for some 0 > 0, then (E(Zn(na)))n - J.L(a) as n - 00. 

Furthermore, if J.L( a) < 1, then with probability one, Zn (a) (na) = 0 for all but 
finitely many n. If a E int{a : J.L(a) > I}, then limn~oo (Zn(na))l/n = J.L(a) 
almost surely. Finally, 

1. Bn def { () } 1m - = I = sup a : J.L a < 1 
n-+oo n 

almost surely, and I is finite. 

We must relate Bn to Hn. Observe that at the moment tn, the family 
tree is of size n and of height Hn and that B(Hn) and B(Hn + 1) are the 
first moments when the height becomes equal to Hn and Hn + 1 respectively. 
Therefore, 

B(Hn) ~ tn ~ B(Hn + 1) . 
Since tn - 00 almost surely, we have Hn ....... 00 almost surely as well. Thus, 
B(Hn)/ Hn - I almost surely, and tn/ Hn - I almost surely. Therefore it 
suffices to study tn. This can be done on a case by case basis, as is routinely 
done in the literature. However, there is a universal theorem: 

Theorem 5.2. [Nerman, 1981; Biggins, 1995] If m( 0) < 00 for some 0 > 0, 
and Z(t) denotes the number of births up to time t, and 

a ~f inf{O : m(B) < I} 

(which is positive and finite, as m( 0+) ~ 1 and m( 0) - 0 as () - 00), then 

log Z(t) 
--"--'-'- - a 

t 
almost surely as t - 00. Equivalently, 

tn 1 ----logn a 

almost surely as n - 00. 
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From this, we have: 

Theorem 5.3. [Biggins and Grey, 1996] Under the conditions of Theorem 
5.2, 

Hn 1 
-- --+-
logn o:y 

almost surely as n --+ 00. 

5.3 Application to Various Tree Models 

In a few special cases, we have very refined information about tn. This occurs 
principally when we can describe the spacings between consecutive births 
quite accurately. Consider first a branching process with one child per node, 
and the inter-birth times are exponential of unit parameter, then tn is the sum 
of n independent standard exponential random variables, so that tn/n --+ 1 
almost surely. Also, Hn = n - 1, m(O) = 1/(1 + 0) and 

{ eOa } 
J.L(a) = inf 1 + () : 0 ~ 0 . 

The minimum occurs at 0 = max(l/a -1,0), so that 

{ 
ael-a 

J.L(a) = 1 
(0 < a < 1) ; 
(a ~ 1). 

Since J.L(1) = 1, we have 'Y = 1. This was just a (stupid) roundabout way 
of checking what we already knew, that Hn/n --+ 1 almost surely (as Hn = 
n -1). 

In the second example, let Y1 , Y2 , the children of the root, be born at 
independent standard exponential times. In this case, 

Clearly, 

2 
met) = -0. 1+ 

J.L(a) = inf {:~~ : 0 ~ o} 
The minimum occurs at 0 = max(l/ a-I, 0), so that 

{ 
2ael-a 

J.L(a) = 2 
(0 < a < 1) ; 
(a ~ 1). 

Thus, 'Y is the solution less than one of 2ae1- a = 1. To study tn, note that we 
have inter-birth times that are distributed as E2/2, E3 /3, ... ,En/n, where 
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the Ei'S are independent exponential random variables. From this, it is easy 
to show that 

tn 
-- ---+ 1 
logn 

almost surely. Therefore, Hn/ log n ---+ 1h almost surely. This may be cast 
in the Poisson CMP model, as the first birth to the ancestor occurs at a time 
distributed as Et/2, and the second at a time distributed as Et/2+E2, where 
the Ei'S are exponential random variables. Thus, AO = 2, A1 = 1, and Ai = 0 
for i ~ 2. This, of course, yields the same results. 

In a third example, let the root have children whose times of birth are 
distributed like a Poisson point process of unit rate. Thus, 

00 ( l)i 1 
m(O) = ~ 1 + () = (j . 

3=1 

Therefore, 

~(a) = inf {e;a : () ~ 0 } 

The minimum occurs at () = l/a, so that 

~(a) = ea. 

Thus, 7 = l/e. The study of tn is equally simple, as tn is distributed as 
Et/1 + E2/2 + ... + En-t/(n - 1). To see this, note that if k elements are 
alive, the time until the next birth is distributed as Ek/k, as the minimum of 
k independent exponentiual random variables. Thus, as before, tn / log n -+ 1 
almost surely. It is easily seen that H n / log n ---+ 1 h = e almost surely. This 
result for the uniform random recursive tree was first obtained in Devroye 
(1987). 

Our fourth example involves the plane-oriented recursive tree. In this 
case, if a node u has degree d(u), then its probability of making a child is 
proportional to 1 + d( u ). This is like saying that the children of the root are 
born with inter-birth times distributed like E1 , E2/2, E3/3, and so forth. A 
simple computation shows that 

m(6) ~ t,il (i ~9) 
The computation of 7 is a bit more complicated (see Pittel (1994) or Mah
moud (1994)). However, the inter-birth times are easy to deal with. Indeed, 
the sum of the intensities of the birth process is Eu(l + d(u)) = 21ul - 1, 
where lui denotes the number of nodes. Therefore, the inter-birth times for 
the tree are distributed like Et/1, E3/3, .... Hence, it is not hard to show 
that tn/ log n ---+ 1/2 almost surely, so that Hn/ logn ---+ 1/(27) almost surely. 
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In the random m-ary pyramid, we have m(9) = {I - {I + 9)-m)/9. One 
can easily see that for m = 2, Q = {v'5 - 1)/2 (Theorem 5.3), but "y requires 
numerical computation. See Mahmoud (1994). 

Finally, for the linear recursive tree, Pittel (1994) and Biggins and Grey 
(1995) show that m(9) = 8-;/b for 9 > b, so Q = 1 + b, JL{a) = ae1+ba, and 
"y is the unique root of ae1+ba = 1. Thus, Hn/logn -+ l/h{b+ 1)) almost 
surely as n -+ 00. 

In a Bellman-Harris set-up, the whole litter is born simultaneously at time 
T. If there are b children per parent, then we have m(9) = bE{e-8T ). When 
T is exponential and b = 2, this is the celebrated Yule process. Clearly, 
m(9) = 2/{1 + 9), exactly as for the binary search tree discussed earlier. 
Thus, the height behaves in a manner similar to that of the binary search 
tree, even though the CMP processes are very different indeed. When T is 
not necessarily exponential, and the litter size follows a general distribution, 
we obtain the Bellman-Harris branching process, which is the subject of the 
next section. 

5.4 The Bellman-Harris Branching Process 

In 1952, Bellman and Harris described a generalization of the Galton-Watson 
branching process by embedding it in continuous time. The (so-called age
dependent branching) process is described by two parameters, a discrete dis
tribution {Pi, i ~ o} for the number of children, as in a standard Galton
Watson process, and a distribution of a strictly positive random variable T, 
the time between birth and reproduction. With each edge in the Galton
Watson tree, we associate an independent copy of T. The process is started 
with a single root at time O. The elements are still grouped in generations. 
The root element produces a litter of size determined by {Pi} after a time Tl 
distributed as T. Each individual in the litter reproduces in the same manner 
and independently. 

This model can also be used for describing the growth of the random 
binary search tree. We take the point of view that we let the random binary 
search tree grow by at each iteration picking an external node uniformly 
and at random. This node becomes an internal node, gets removed from the 
pool of external nodes, and produces two new external nodes, its potential 
children. At any moment, there are n internal nodes if and only if there are 
n + 1 external nodes. If T is standard exponential, then given that there are 
k external nodes at time t, by the memoryless property of the exponential 
distribution, we in fact pick as our next node any external node with equal 
probability. Thus, the order in which the nodes are chosen is identical to 
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that for growing the random binary search tree. In notation of the previous 
section, the tree obtained at the time t when there are exactly n + 1 external 
nodes is a random binary search tree on n internal nodes. Recall that the 
process in which T is exponential and the number of offspring is always two 
is the Yule process, or binary fission (Athreya and Ney, 1972, p. 109). For 
different distributions of T, we obtain different kinds of random binary trees. 
We will not explore the Yule process construction of random binary search 
trees any further, except for the mention of the following theorem below, 
valid when T is standard exponential. 

Theorem 5.4. Assume that {Pi} has finite second moment and that T is 
standard exponential. Let Z(t) be the number of particles alive at time t in 
a Bellman-Harris process. Then Z(t)e- t tends almost surely to a random 
variable W, 

where (72 = var(W). Finally, conditioned on W, U(t) ~f Z(log(1 + t/W» is 
a unit rate Poisson process in t. That is, for any 0 < tl < ... < tk < 00, and 
integers ni ~ 0, 2 :5 i :5 k, and Borel subset B ~ [0,00), 

Pr(U(t2) - U(td = n2,· .. ,U(tk) - U(tk-d = nk, WEB) 
= Pr(W E B) n:=2 Pr(P(ti - t i - 1) = ni) 

where P(s) is a Poisson (s) random variable. Furthermore, U(O) = Z(O) = 1. 
For the Yule process, the random variable W has the standard exponential 
distribution. 

The Poisson representation in the theorem above is due to Kendall (1966). 
If T is standard exponential, then in the Yule process, Z(O) = 0 and Z(t) 
increases by one each time a particle gets replaced (as one dies but two 
are born). Two interesting properties of the exponential distribution are the 
following: if E 1 , E2 , ••• are i.i.d. exponential random variables, then 

A. For any n, min(Eb"" En) £, 1ft. 
B. (The memoryless property.) For any t > 0, El - t, given El > t, is 

distributed as E1 • 

Thus, the intervals between times of birth in a Yule process are distributed 
like Eb E2/2, E3/3, .. " Using these two properties repeatedly, we have 

Pr(Z(t) > k) = Pr(El + E2/2 + E3/3 + ... + Ek/k :5 t) 
= Pr(max(E1, E2, ... , Ek) :5 t) 
= (1- e-t)k 
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so that everything is known about the distribution of Z(t). For example, 

E(Z(t)) = L Pr(Z(t) > k) = et . 

k~O 

In fact, at any t, Z(t) has the geometric distribution with parameter e-t . 

6. Conditional Branching Processes 

6.1 Introduction 

Of particular interest is the conditional Galton-Watson process, or condi
tional branching process, or simply CBP, in which we condition on N = n, 
where N = L::'o Zi is the total size of the population, Zi is the size of 
the population in generation i, and Zo = 1. These processes were studied 
by Kennedy (1975) and Kolchin (1978, 1985), who made key connections be
tween them and so-called simply generated random trees, introduced by Meir 
and Moon (1978). These trees are uniformly picked in given collections such 
as, for example, all binary trees on n nodes. 

Several examples will be given in the next section. In the other sections, 
we review some results for the distribution, size and height of the trees in 
this model. 

Consider a multiset of trees, that is, a set in which repetitions are allowed. 
Let the weight il(t) of a tree t be the number of occurrences of t. Let It I denote 
the size of t, Le., the number of nodes contained in t. Then 

an = L il(t) 
t:ltl=n 

is the number of trees in this multiset with n nodes. The generating function 
for {an} is denoted by 

y(z) = Lanzn . 
n~O 

We define a random tree Tn of size n by 

Iltl=n Pr(Tn = t) = cil(t)Iltl=n = -- , 
an 

where c is a normalization constant. Thus, each of the an occurrences of 
elements in the multiset of trees of size n has the same probability. Therefore, 
it is appropriate to speak of a uniform model if we can somehow distinguish 
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between all D(t) copies of t thrown into the multiset. This is illustrated in 
the next section. 

A particularly interesting multiset of trees is the simply generated family 
of trees (Meir and Moon, 1978), which requires a descriptor 

00 

¢(y) = L Ciyi , 
i=O 

where Co > 0, and the Ci's are nonnegative integers (usually, but not neces
sarily, uniformly bounded in i). The notation ¢, yand Ci is by now standard, 
so we will adopt it as well. Consider ordered trees, that is, trees in which 
the order of the children matters. For each ordered tree t, let Di(t) be the 
number of nodes in t with i children (successors). Then define 

D(t) ~f IT cf;(t) . 

i~O 

The family of trees is aperiodic if gcd{ i > 0 : Ci > O} = 1, and periodic 
otherwise. We define a random simply generated tree Tn of size n by 

Pr(Tn = t) = cD(t)Iltl=n 

where c is a normalization constant. We note here that because we have 
ordered trees, 

y(z) = z¢(y(z)) . 
A proof is given in Theorem 6.4. 

Next, we define a Galton-Watson branching process with parameter 9 > 0 
with offspring distribution 

Ci9i 
Pi = ¢( 9) , i ~ 0 . 

Here we assume that ¢(O) < 00. It is easy to verify that (po,Pl. ... ) is in
deed a probability vector. Furthermore, the expected number of offspring, an 
increasing function of 0, is 

. iCi()i O¢' (0) 
~ ~Pi = ~ ¢(O) = ¢(O) . 

Let r be the smallest positive root of ¢(r) = r¢'(r). Then for 0 = r, the 
branching process is critical, while for 0 < 0 < r, it is subcritical. We now 
define CBP with parameter n as the above Galton-Watson process conditioned 
on the total population size n, and let T~ denote a realization of CBP. 

The crucial properties of the two random trees defined above are captured 
in Theorem 6.1, which states that the conditioned Galton-Watson tree Tn has 
the same distribution as the random simply generated tree! 
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Theorem 6.1. [Kennedy, 1975] The distribution of T~ is independent of 
() E (O, r]. Furthermore, Tn £: T~, where £: denotes equality in distribution. 

Proof. The first statement follows from the second one. Let t be an arbitrary 
fixed ordered tree with It I = n. Let T* be a family tree produced by the 
(unconditioned) Galton-Watson process. Then 

Also, 

Pr{T* = t) = TIi>O (Pr{Zl = i))D,(t) 

- ( 8 i )Di(t) 
=TIi~O ~ 
=TIi>OC~;(t) x {¢{()))-E, Di(t) x ()E,iD,(t) 

= n(i) x {¢{()))-It l x ()n-l 

= n{t) x {¢{()))-n X ()n-l . 

Pr{IT*1 = n) = Et:ltl=n Pr{T* = t) 
= Et:ltl=n n{t){¢{()))-n x ()n-l 

= an{¢{()))-n x ()n-l , 

where an is the number of trees in the multiset of size n. Therefore, with 
It I =n, 

Pr{T* = tlIT*1 = n) = Pr(T* = t) = n(t) . 
Pr{IT*1 = n) an 

But this is proportional to n(t), so that Tn is indeed distributed as T* con
ditionalon IT*I = n, that is, as T~. 0 

Trees are used in symbolic computations to represent formulas, with in
ternal nodes representing operators or functions, and leaves operands. These 
are also called expression trees in the literature on parsing and the evalua
tion of expressions in higher level languages. In the analysis of such objects, 
it is natural to assume that all objects are equally likely. For example, in 
ordinary trigonometric expressions on three operands, x, y and z, there are 
internal nodes with two children (+ and -), internal nodes with one child 
(sin, cos, tan, cot), and leaves with zero children (x, y and z). The nodes 
are thus labeled, with a different number of labels according to the type of 
tree. In the formalism of the previous section, we have CO = 3, Cl = 4 and 
C2 = 2. As y(z) = z¢(y(z)), we may get exact or asymptotically accurate 
expressions by analytic methods: see Vitter and Flajolet (1990) for a survey 
of such methods, based on Lagrange inversions and singularity analysis. For 
expected values of various additive parameters, this is indeed a natural route 
to follow. 
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6.2 Examples of Trees in the Uniform Random Tree Model 

(1,1). Several choices of descriptors lead to various types of trees. Consider 
first the choice (1,1). The weight of a tree t is one for every tree consisting of 
just leaves and one-child nodes. Thus, the multiset will contain one of each 
of these trees, which in fact are just linked chains. The CBP has probability 
vector 

(1:0'I!O) . 

But clearly, conditioned on the size of the tree being n, we see that it does 
not matter which 0 we picked. The tree has height exactly n - 1. One can 
easily verify that the same result would have been obtained if we had selected 
the descriptor (a, b) for any a, b > 0. Therefore, interesting trees only occur 
when Ci > ° for some i > 1. 

(1,0,1). The next simplest choice is (1,0,1). Here we place in our multiset 
trees with only leaves and two-child nodes. Such trees must have an odd 
cardinality. If It I = 2k + 1, there are necessarily k + 1 leaves and k two-child 
nodes. The weight of each tree of size n = 2k + 1 is thus identical and equal 
to 1 (as all nonzero Ci'S are one). Hence, each tree in the multiset is different, 
and all possible trees of the type described above are present. The family is 
the family of full binary trees. Again, all such trees occur equally often in the 
multiset. 

(l,O,m). If we take (I,O,m), then the weight of each treeofsizen = 2k+l 
is mk, and within this class, all trees occur equally often in the multiset. 
Therefore, there is no difference between random simply generated trees for 
(1,0, m) for any m > 0. 

(1,2,1). The next member on the ladder of complexity is (1,2,1). Here 
we have trees with nodes having up to two children, and the weight of a tree 
with n nodes of which there are l leaves is given by 2n -(21-1), as the number 
of nodes with two children is l - 1. Interestingly, not all trees with n nodes 
have equal representation. We can however force a distinction on them by 
additional ways of distinguishing between trees. For example, for each node 
with one child, we may make the child a left child or a right child of its 
parent. For a tree with n - (2l - 1) such nodes, there are 2n -(21-1) possible 
combinations of left/right distinctions. Let us attach exactly one of these 
combinations to each of the 2n -(21-1) trees with n nodes and lleaves in our 
multiset. Then, each tree in the multiset is distinct, and is in fact an ordinary 
binary tree. And all binary trees on n nodes are indeed in the multiset. An 
equivalent multiset (for our purposes) would have been obtained with the 
choice (1, 2m, m 2 ) for any m > 0. We will also refer to these trees as Catalan 
trees. 
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(l,m,I). If we pick (1, m, 1), then it is necessary to create a designation 
for each single child, and we could associate a label between 1 and m with 
each such lone child. This assures a bijection between all such "labeled" 
trees with up to two children per node and the trees in the multiset. With 
m = 1, labeling is superfluous, and one obtains the so-called unary-binary 
trees, which are the ordered trees with up to two children per node. 

(1, m, m 2 ). If we pick (1, m, m 2 ), then we color each child in one of m 
colors, and note that with all possible colorings, all trees in the multiset occur 
only once, and that there is a bijection. The family is that of trees with up 
to two children per node, and all nodes except the root are colored in one 
of m colors. In the CBP, we may set () = l/m to obtain the reproduction 
distribution (1/3,1/3,1/3). Thus, the shape properties of all these trees are 
identical, regardless of the choice of m. 

Binomial. Position trees of branch factor b are trees in which each node 
has up to b children, and each child is given a position, and only one child can 
occupy each position. With b = 2, this yields the binary trees. For general 
b, it is not hard to see that the descriptor must be binomial of the form 

( 1, m, m, ... , (b~ 1)' m)· Ternary trees are obtained by using the descriptor 

(1,3,3,1), for example. 

(1,1,1, ... ) or geometric. All ordered trees without restrictions on the 
number of children are obtained by the infinite descriptor (1,1,1, ... ). These 
are also called unlabeled rooted ordered trees or unlabeled planted plane 
trees, or unlabeled rooted plane trees, or just planted plane trees. For the 
CBP, we must take () < 1, so that ¢>«()) = 1/(1-()), and the basic reproduction 
distribution is given by (1/(1 - ()), ()/(1 - ()), ... , ()i /(1 - ()), ... ), that is, a 
geometrically decreasing probability vector. From Theorem 6.1, we note that 
any () E (0,1) yields the same random tree in the conditioned branching 
process model. We might thus as well take () = 1/2. It takes just a moment 
to verify that all unlabeled rooted plane trees with non-root nodes colored 
in one of m colors are obtained from (1, m, m2 , m3 , • .. ). For the CBP, we 
require therefore () < l/m. But then the CBP is exactly as in the case m = 1 
(geometric), and thus this choice of descriptor is equivalent to (1,1,1, ... ) if 
we want to study shape properties of the trees, unrelated to color choices. 

(1,0,0, ... ,1). If the only nonzero coefficient are the O-th and the t-th, with 
t > 0, we obtain the so-called t-ary trees of Flajolet and Odlyzko (1982). 

(1,1,2,3,4,5, ... ). A node with k children gets a label between 1 and k, 
which may indicate which of its children (in the ordered tree) is "best". We 
will call these trees favorite son trees. 
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If we remove structure in the order, by removing the order of the children 
altogether, or by replacing the total order by a circular order or a partial 
ordering, we in fact allow Ci'S to take values less than one. This will not be 
pursued here. See, however, the section on Cayley trees, where a connection 
is made with Poisson-distributed CBP's. 

6.3 Catalan Trees and Dyck Paths 

There are specially pretty derivations of the equivalence between a CBP and a 
uniform random Catalan tree. We first consider a nonnegative random walk 
in which all steps are + 1 or -1, we start at Xo = 0, and have X 2n = O. If we 
replace +1 and -1 by a and b respectively, then the sequence of 2n symbols 
thus obtained is a Dyck word. The walk is also called a Dyck path. If an is 
the number of different Dyck paths of length 2n, by conditioning on the place 
2p of the first return to the origin, we have 

n-l 

an = L apan-l-p 
p=o 

and al = 1, ao = 1. It is well-known that 

1 (2n) 
an =n+1 n ' 

the n-th Catalan number. There is a bijection between a Dyck path of length 
2n and a binary tree on n nodes. Draw the binary tree in the standard manner. 
Write an a to the left of every node, and a b underneath each node. Then 
start at the root and walk around the tree by following edges just like a boat 
would follow the shoreline, and note the sequence of a's and b's. The order 
of visit is called preorder. The sequence forms a Dyck word as the number of 
a's at any point must exceed the number of b's. This bijection is useful for 
many purposes but for the study of parameters as the height of the random 
binary tree, some extra work is needed. We just note that the rooted binary 
trees were correctly counted as far back as Cayley (1858). 

Another bijection may be considered, but now with rooted ordered trees 
with n + 1 nodes (and thus n edges), by placing next to each edge an a to the 
left and a b to the right, and forming a Dyck word by the walk of the former 
bijection. This walk will be referred to as a Harris walk. The correspondence 
with a CBP can be seen as follows. Let X l ,X2 , ... be Li.d. random variables 
taking the values +1 and -1 with equal probability. Let Sn = 2:~1 Xi be 
the partial sums. Consider only Xl = 1. Define p as the time of the first 
return to zero: p = inf{n : Sn = O}. Let Pl, ... , PN be the times less than P 



Branching Processes 297 

with Sn = 1. We set Po = 1, and note that PN = P - 1. Define t1 = P1 - Po, 
t2 = P2 - P1, and so forth. Note that 

1 
Pr(N = k) = 2k+1 ' 

where Pr(.) denotes always conditional probability given Xl = 1. This is 
best seen by noting that at each passage at one, the random walk has exactly 
50% probability of returning to the origin. Thus, N is indeed geometrically 
distributed of parameter 1/2. Furthermore, given N = k ::::: 1, the excursions 
above one of lengths t 1, ... , tN are independent and have the same distribu
tion as the original positive excursion Sl, ... , Sp. This is just a manifestation 
of the strong Markov property applied to the ordinary random walk. We now 
construct the corresponding ordered tree explicitly: take a root, and give it 
N children, and associate with the children the positive excursions of lengths 
t1 , ... , tN respectively. Constructed in this manner, we note that the corre
sponding tree is nothing but a critical Galton-Watson tree with reproduction 
distribution Pr(Z = k) = 1/2k+1 , k ::::: o. The bijection is formidable as it not 
only yields the desired connection, but it also is rather direct: for example, 
the maximum of an excursion corresponds to the height of the Galton-Watson 
tree, and the length of an excursion is twice the size of the Galton-Watson 
tree. 

One may use the well-known bijection between rooted ordered trees on 
n + 1 nodes and binary trees on n nodes: first copy all n + 1 nodes from 
the ordered tree to the binary tree; then associate each parent-oldest child 
edge in the ordered tree with a parent-left child edge in the binary tree, 
and associate with each node-next sibling relationship in the ordered tree a 
parent-right child edge in the binary tree. Finally, remove the root and its left 
edge from the binary tree. This yields yet another (but slightly more indirect) 
bijection between Dyck paths and binary trees. The CBP relationship follows 
easily: if N is the number of children of the root in the ordered tree, then 
the binary tree's root (before removal) has a left child if N > o. A node in 
the ordered tree regarded as a child in a family has a number Y of younger 
siblings that is again geometric (1/2) by the memoryless property of the 
geometric distribution. Thus, it has a right child in the binary tree if Y > O. 
To make a Galton-Watson process, place in the ordered tree a pair (U, V) = 
(IN >0 , Iy>o), and observe that all these pairs in the tree are independent, 
and that U and V are also independent. Thus, the binary tree with a random 
number of nodes and after removal of the root is indeed a Galton-Watson 
tree with reproduction distribution (PO,P1,P2) = (1/2,1/4,1/2). 

We should also mention that for symmetric random walks with zero mean 
having continuous distributions, Le Gall (1989) has proposed a beautiful 
tree construction that leads once again to a binary Galton-Watson tree with 
(pO,P1,P2) = (1/2,1/4,1/2). 
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6.4 Cayley Trees 

The uniform random labeled tree en is the tree picked uniformly from the 
nn-2 trees on vertices {I, 2, ... , n}. The uniform random rooted labeled tree 
(or rooted nonplanar tree) 'R.n is the tree picked uniformly from the nn-l 
trees on vertices {I, 2, ... , n} in which one vertex is declared to be the root. 
Cayley (1889) studied en and Riordan (1960) counted various related species 
of trees, including 'R,n. Renyi and Szekeres (1967) showed that the expected 
height Hn of 'R.n is '" ../27rn. They also showed that the limit distribution 
of Hn/ v'n is the theta distribution (see further on). Renyi (1959) showed 
that the number of leaves is asymptotic to n/e, while Meir and Moon (1970) 
showed that the expected distance between two nodes taken at random is 
asymptotic to V7rn/2. 

Kolchin (1986), just like Meir and Moon (1978) and Moon (1970), studies 
en and 'R,n via generating functions, establishing a tight relationship with 
CBP'S. More probabilistic approaches may be found in Grimmett (1980) and 
Aldous (1988, 1991). The purpose of this section is to point out the key results 
in the latter papers. 

Consider a Poisson (1) Galton-Watson tree 'P. Make 'P a labeled tree by 
randomly labeling the vertices 1, ... , I'PI. If t is a specific rooted labeled tree 
(having It I vertices), then 

e- Itl 
Pr('P = t) = W . 

To see this, order all the sets of siblings in t by increasing labels, and let 
Nt. ... , N ltl be the number of children of all nodes, listed in preorder. Then, 

It I nltl.J 
Pr('P = t) = II _1_ i=l N,. 

. Ni!e Itl! ,=1 

where the first factor accounts for matching the geometrical layout of the 
tree (it uses the independence of the number of offspring, as well as the 
Poisson property), and the second factor is the probability of getting the 
random labels just right. Therefore, conditional on I'PI = n, we see that 'P is 
uniform on labeled trees of size n, and is thus distributed as 'R.n. This property 
allows us to study the CBP with Poisson (1) offspring. The calculation above 
establishes the connection and may be made into a construction of 'R,n. The 
theorems about CBP's then provide information on random Cayley trees. 

There is a second construction due to Aldous (1988). It requires Li.d. 
random variables Ul!"" Un uniformly distributed on {I, ... , n}. First we 
make 1 the root. Then with i varying from 2 to n, we add edge (i, min(i -
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1, Ui )). Then we remove the labels to obtain a random rooted (nonuniform) 
unlabeled tree. It can be made in a tree distributed as Rn by randomly 
assigning labels. 

Grimmett (1980) proposes yet another related process, and Aldous (1991) 
builds on it to derive a tool for studying local properties of such trees. For 
each k = 0, 1,2, ... , we create independent Poisson (1) Galton-Watson trees, 
regarded as trees with root Tk and other vertices unlabeled. Then we connect 
ro, TI, T2,··. as a path, make TO the root, and delete the labels. For fixed k, 
the vector of k i.i.d. copies of P is close in total variation distance to a random 
rooted unlabeled tree with a distinguished path of length k - 1 attached to 
it. This connection will not be explored here. 

Finally, we mention the Priifer codes that are so useful in the generation 
and counting of all labeled trees (rooted or unrooted). The properties that 
may be deduced based on these codes are not directly linked to branching 
processes, and will thus not be studied here. 

6.5 Fringe Subtrees 

Following Aldous (1990), for a finite rooted ordered tree T, we call T* the 
subtree rooted at a randomly and uniformly picked vertex from T. Aldous 
observed that in many (random or non-random) tree models, T* tends in dis
tribution to a certain random tree as ITI -> 00. This has of course immediate 
consequences for the parameters of T*. For example, we have the following, 
(see Aldous, 1990): 

Theorem 6.2. Let ~ be an offspring distribution of a Galton- Watson pro
cess, with E(~) = 1, Pr(~ = 1) < 1, E(e) < 00 and ~ non-lattice. Let T 
be the Galton- Watson tree (note ITI < 00 almost SUTely) , and let Tn be T 
conditional on ITI = n. Let T~ be a tree rooted at a random vertex of Tn. 
Then for all trees t, 

lim Pr(T~ = t) = Pr(T = t) . 
n ...... oo 

Discussion. In this remarkable result, note that the limit distribution of a 
fringe tree of the CBP is the unconditional Galton-Watson tree! As a result, 
we may immediately deduce properties of local parameters from this. For 
example, the degree of a random vertex in a CBP tends in distribution to 

the degree of the root of T, that is, ~. Also, IT~I !:. ITI. Note also that the 
number of vertices in a CBP within distance k of a uniform random vertex 
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tends in distribution to the number of vertices within distance k of the root 
of T, that is, Zo + ZI + ... + Zk, where Zo, ZI,· .. are the population sizes in 
the tree T. 

6.6 Size of a Galton-Watson Tree 

Let T be a Galton-Watson tree that is either critical or subcritical. We know 
that if e is the offspring distribution and Pr(e = 1) < 1, then ITI < 00 

almost surely. In fact, it is remarkable that the distribution of ITI can be 
solely deduced from the distribution of e by a simple device discovered by 
Dwass (1969) and rediscovered by Kolchin (Kolchin, 1977, 1978, 1980; see 
1986, p. 104). 

Theorem 6.3. For n ~ 1, 

Pr(ITI = n) = Pr(6 + ... + en = n - 1) , 
n 

where e 1, 6, . .. are i. i. d. and distributed as e. Let T1 , T2 , • •• be independent 
and distributed as T. Then, for n ~ m ~ 0, n ~ 1, 

P (IT I IT I ) mPr(el + ... + en = n - m) 
r 1 + ... + m =n = . 

n 

Proof. It suffices to prove the more general statement. Clearly, if ZI is the 
number of offspring of the root of T1 , assuming m ~ 1, we have 

Pr(ITll + ... + ITml = n) = E;o pj Pr(ITII + ... + ITml = nlZI = j) 
= E;~;' pj Pr(IT1 1 + ... + ITm+j - 1 1 = n -1) , 

where Pj = Pr(e = j) and ZI = e is the number of children of the root. 
We easily verify the Lemma for m = 0 and m = 1, n = 1 as Pr(ITI = 1) = 
Pr(6 = 0). The remainder is by induction on n (for all 0 :5 m :5 n), and we 
have 

",n-m 
Pr(ITII + ... + ITml = n} = L..Jj=O PjPr(IT11 + IT21 + ... + ITm+j-ll = n -I} 

",n-m m+ii1 ( ') = L..Jj=O Pj n- P .. ~1 + ~2 + ... + ~n-l = n - m - 3 

(by the induction hypothesis) 
= r::~f Pr(~l + ~2 + ... + ~n = n - m} 

+~ E;~: jpjPr(~l + ~2 + ... + ~n-I = n - m - j) 

= (r::~{ + n(;:::'i») Pr(~l + ~2 + ... + ~n = n - m) 
(see below) 

= :z;rtPr(6 + ~2 + ... + ~n = n - m} . 

We are done if we can explain the last step. But clearly, 
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n-;.m = E (en leI + ... + en = n - m) 
_ ~;-=-o'" jPr(~n=j)Pr(~l +"'~n-l=n-m-j) 
- Pr(~l +···~n-n-m) 

This concludes the proof of Theorem 6.3. o 

Theorem 6.3 makes a crucial connection with sums of independent random 
variables, and for this, all is known. For example, following Kolchin (1986, 
p. 105), we note that if e has mean one (as in a critical branching process), 
variance (72 and maximal span d, when n - 1 tends to infinity over multiples 
of d, 

Pr(ITI = n) '" v'2i d / . 
21m32(7 

It is easily seen that E(ITI) = 00, a result that also follows by noting that 
ITI = ~:o Zi and E(Zi) = 1 for all i. 

Finally, the size of a Galton-Watson tree may also be determined by 
analytic methods. Let y( s) be the generating function of ITI. Then we have 

Theorem 6.4. The genemting function y(s) = E(sITI) of ITI satisfies 

y(s) = sf(y(s)) 

where f is the genemting function of e in the Galton- Watson process. 

Proof. 

o 

The asymptotic form of Yn, the n-th coefficient of y(s), and thus Yn == 
Pr(ITI = n), may be obtained by singularity analysis (Meir and Moon, 1978; 
P6lya, 1937). For exact formulas, one may apply Lagrangian inversion and 
note that 

Yn = .! x coefficient of un- I (J(u))n . 
n 

See Vitter and Flajolet (1990) for more on this method, and for additional 
references. 
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6.7 Height of a Galton-Watson Tree 

Let Hn be the height a Galton-Watson tree T conditional on ITI = n. By 
equivalence, we will refer to these trees by the names used in the combinatorial 
literature, based on the equiprobable equivalent trees thus obtained. 

It is known that E(Hn) '" ,;;m for the planted plane trees (Debruijn, 
Knuth and Rice, 1972), E(Hn) '" v2'rrn for the rooted labelled trees (Cay
ley trees) (Renyi and Szekeres, 1967), E(Hn) '" v371"n for the equiprobable 
unary-binary trees (Flajolet and Odlyzko, 1982), and E(Hn) '" v471"n for the 
equiprobable binary trees (Flajolet and Odlyzko, 1982). For the last model, 
the expected depth of a random node is asymptotic to ,;;m (Vitter and Fla
jolet, 1990). Renyi and Szekeres (1967) also computed a limit law for Hn/ y'n: 

where 

lim Pr (H~ $ x) = 'H(x) , 
n-oo v2n 

{ 

411"5/2",,00 '2 _11"2 j2 /X2 

'H x = --xa- L.tj=l J e 
( ) ",,00 (1 _ 2'2 2) _j2 x 2 

L.t)=-oo J x e . 
We will call 'H the theta distribution function. The theta distribution has first 
moment yI7i, variance 71"(71" - 3)/3 and general s-th moment 2r(1 + s/2)(s-
1)((s). Interestingly, the theta distribution describes the limit for all simply 
generated random trees. This result, due to Flajolet and Odlyzko (1982), 
who used analysis of singularities of generating functions in their proofs, may 
be formulated as follows. Let Co, Cl, •.• define the simply generated family of 
ordered trees, and let 

y(z) = z¢(y(z)) , 

where y(z) = En>l Ynzn and Yn is the total number of trees of size n, and 
¢(y) = Er~o Cryr-: 

Theorem 6.5. [Flajolet and Odlyzko, 1982] For simple families of trees 
corresponding to the equation y = z¢(y) and for n = 1 mod d with 
d = gcd{r : Cr =f. O}, if we set 

2¢'(r)2 
'I/J = ¢(r)¢"(r) 

with r the smallest positive root of the equation ¢(r) - r¢'(r) = 0, we have 

Hn I:. ( .Ji1iii --> 'H .) . 

Furthermore, all the moments of Hn/.Ji1iii tend to those of 'H. In particular, 

lim E(Hn) = ~ . 
n ........ oo y'n 
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The above result also applies to Cayley trees, even though their gen
erating functions do not satisfy the required equality. However, if y(z) = 
En>1 Ynznln!, then y(z) = z¢(y(z)) with ¢(y) = eY , which corresponds to 
the choices Cr = 1/r!. Combinatorists know that ye-Y = z has a formal 
solution 

00 n-2 
'"' n n y = ~ (n _ l)!z , 
n=1 

when Izl ~ lie (Riordan, 1960). From this, we also obtain the number of 
unlabeled trees on n nodes. 

By the connection of the previous section, we note that indeed, the limit 
law given above is applicable to random Cayley trees. In this case, we have 

for any value of T. Hence, E(Hn) '" J27rn, a result due to Renyi and Szekeres 
(1967). 

6.8 Components in Random Graphs 

We conclude with Karp's (1990) construction of a branching process for 
studying the components of random graphs. We place this material here, 
as it relates to sizes of extinct branching processes. Random graphs were in
troduced by Erdos and Renyi in 1960: we have an edge probability p, possibly 
depending upon n, and call Gn,p the graph on n labeled vertices obtained 
by independently adding each of the G) possible edges with probability p. 
Palmer (1985) gives a great account of the growth of Gn,p as p increases. 
At least in the study of the behavior of Gn,p for p ~ lin, thus for sparse 
graphs, branching processes come in handy. So we set p = cln, c ~ 1. Around 
p = lin, Gn,p undergoes a dramatic metamorphosis, as one giant component 
emerges which has size B(n) when c > 1. Karp's method is reconsidered 
in Alon, Spencer and Erdos (1992), where it is used to analyze the giant 
component in some detail (the case c = 1). We will fix c < 1 for simplicity. 

Consider a fixed vertex u. We declare all other vertices alive, dead, or 
neutral. Originally, at discrete time t = 0, only u is alive, and all other nodes 
are neutral. Let yt be the number of live nodes at time t. We set Yo = 1. Each 
time unit, we take a live vertex w, and check all pairs (w, Wi) with Wi neutral 
for membership in G. If (w, Wi) is indeed an edge, then we make Wi live. after 
all such Wi are awakened, w dies, and we declare yt the new number of live 
vertices. When there are no live vertices (yt = 0), the process terminates, 
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and we equate C(u), the component of u, as the collection of dead vertices. 
Clearly, we have 

Yi = Yi-l + Zt - 1 . 

Each neutral w' has independent probability p of becoming live, and no pair 
(w, w') is ever examined twice, so that the conditional probability of the 
existence of edge (w, w') is always p. As t -1 vertices are dead and Yi-l live, 
it is easy to see that 

Zt £, B(n - (t - 1) - Yi-bP) 

where B(.,.) denotes the binomial distribution. Let T be the smallest t for 
which Yi = 0, the time of extinction. Also, T = IC(u)l. We continue this 
definition recursively, and note that for all t, 

Yi £, B(n - 1,1 - (1 - p)t) + 1 - t . 

Proof. Define Nt = n - t - Yi, the number of neutral vertices at time t. We 
will show that Nt £, B(n - 1, (1 - p)t). Clearly, No = n - 1. We argue by 
induction, and note that 

Nt = n - t - Yi 
= n - t - B(n - (t - 1) - Yi-l,P) - Yi-l + 1 
= Nt - l - B(Nt-l,p) 
= B(Nt - l , 1 - p) . 

o 

The property above is valid for all p. For p = c/n, when t and Yi-l are 
small, the binomial law is close to a Poisson law with mean c. So, Zt is close 
to B(n, c/n), which is close to P(c), a Poisson random variable with mean c. 
Thus, roughly speaking, the component grows at u like a branching process 
with offspring distributed as P(c). For fixed c, let Yo*, yt, ... , T*, Zi, Z2, .. . , 
refer to the P(c) branching process, and let the unstarred random variables 
refer to the random graph process. More precisely, the branching process 
starts with one live individual, so that Yo* = 1, and at each time unit, one 
live individual is selected at random. It produces a P(c) number of children, 
and then dies, so that 

yt* = yt~l + Z; - 1 

where Zi, Z2,.·· are LLd. P(c) random variables. Let T* be the least t for 
which yt* = O. If no such t exists, we say that T* = 00. From Theorem 1.1, if 
E(P(c)) = c < 1, with probability one, the process dies out, so that T* < 00 
almost surely. 

Let H, H* denote the histories of the processes up to time t, that is, 
H = (Zb ... ' Zt) and H* = (Zi, ... , Z;). Then 
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t 

Pr(1i* = (Zl,"" Zt)) = II Pr(P(c) = Zi) 
i=l 

and 
t 

Pr(1i = (Zll ... , Zt)) = II Pr(Zi = Zi) , 
i=l 

where Zi is binomial B(n - 1- Zl - ... - Zi-l,c/n). IT m f'V n and c and i 
are fixed, we have 

e-cci 

Pr(B(m,c/n) = i) - -.,
t. 

as n - 00. This may be used to show that 

Thus, for any fixed t, limn_co Pr(T = t) = Pr(T* = t). This may be used 
naively in two ways. First of all, T* is the total size of a P(c) Galton-Watson 
process. Therefore, as n - 00, 

r. 
IC(u)l- T* . 

From Theorem 6.4, the generating function for P(c) is f(s) = ec(s-l), while 
the generating function y(s) for T* is the solution of y = f(sy), i.e., of 

y = ec(sy-l) . 

This describes the asymptotic distribution of the size of C(u) in its entirety. 

Secondly, if we consider Cn = maxu IC(u)1 over the nodes u of Gn,c/m 
then we can easily prove the known result (see Palmer, 1985) that Pr(Cn > 
,Blogn) = 0(1) for some ,B > O. To see this, observe that for any t, and for 
h > 0, by Chernoff's bounding method, 

Thus, 

Pr(T > t) ~ Pr(yt > 0) = Pr(B(n - 1,1 - (1 - p)t) ~ t) 
~ Pr(B(n, tc/n) ~ t) ~ E (ehB(n,tc/n)-ht) 
= e-ht (1 + (eh - l)tc/nt ~ e-t(h-(eh-l)c) 
= e-t(log(l/c)-(l-c)) (take h = 10g(l/c)) 

~ e-at 

Pr(Cn > ,B log n) ~ ne-a,Blogn = n1-a,B _ 0 

if we pick ,B > 1/0. = 1/(log(l/c) - (1 - e)). 

We leave it as an interesting exercise to show that the P(c) branching 
process of this section, with c > 1, conditional on extinction, has the same 
distribution as the (unconditional) P(e') branching process, where c' = cq, 
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and q is the extinction probability of the P(c) branching process, that is, 
q = ec(q-l). (Note that ce-C = de- c'.) This fact is used in Alon, Spencer 
and Erdos (1992) to show for example that the structure of Gn,cln with the 
giant component removed is fundamentally that of Gm,c'lm (without any 
removals), where m, the number of vertices not in the giant component, 
satisfies m I'V ny. 

6.9 Bibliographic Remarks 

Meir and Moon (1978) studied the expected depth E(Dn) from root to nodes 
in simply generated random trees, and showed that E(Dn)/ y'n - c, where 
c is again a constant only depending upon the species of tree. The work of 
Flajolet and Odlyzko (1982) is continued by Gutjahr (1993), who derives 
asymptotics for expected values of various other tree parameters such as the 
number of nodes at level k and the total path length. Even tree models with 
trees of given size and height are considered there. The branching process 
approach was used by Kennedy (1975) (see also Kolchin, 1986) to obtain 
the limit law for ZLv'ntJ/(y'nt) conditional on N = n as n - 00, where Z1c 
is the size of the k-th generation. Thus, the bulk of the points is indeed at 
distance 8( y'n) from the root. Finally, one might study the height of random 
binary trees, where each edge has an independent length drawn from a fixed 
distribution on the positive halfline. Height is then defined as the maximal 
sum of edge lengths of any path to the root. For the exponential distribution, 
Gupta, Mesa and Waymire (1990) showed that this height satisfies the same 
limit law as the standard height modulo a constant multiplicative factor. 
Their proof uses convergence of all moments. 
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