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PREFACE

These notes were wrItten durIng the summer quarter of 1986, when I taught
a course on densIty estImatIon In the Department of StatIstIcs at Stanford
UnIversIty. I am grateful to the students (NaomI Altman, Tony Cooper, Joseph
Gagnon, ErIc Holmgren, Yolchl II, Stephen LangloIs and Jla Yang Sun) and to
the local and vIsItIng faculty (In partIcular Will Gersch, Petter Laake, Art Owen,
DavId Scott and Hermann Thorlsson) for Invaluable feedback.

The orIgInal manuscrIpt was entItled A Summer Course On Density
Estimation, to reflect the warm relaxed atmosphere In whIch the book was wrIt­
ten, and to IndIcate the potentIal market as a textbook for a summer quarter. In
thIs preface, we will explaIn how the materIal of thIs book hangs together, how
the text Is related to Devroye and Gyorfl (1985), where and how densIty estImates
are applied, and where more theoretIcal research Is needed In the area.

The contents.

An lid sequence of n random varIables wIth a unIform dIstrIbutIon on the
surface of the unIt sphere of R 3 has the InterestIng property that the n x­
coordInates (projectIons) form an lid sequence wIth a unIform dIstrIbutIon on
[-1,1]. In general, It Is possIble to deflne random vectors wIth a unIform dIstrIbu­
tIon such that theIr projectIons have a gIven densIty f : just consIder n lid ran­
dom varIables unIformly dIstrIbuted under the curve of f (I.e., on
{(x ,y ) : 0:::; y :::; f (x) , x ER }); theIr projectIons form an lid sequence drawn
from f .

In densIty estImatIon, we are only presented wIth the projectIons, and are
asked to reconstruct, or estImate, f. Usually, the densIty estimate Itself Is a
densIty too, I.e. It Is nonnegatIve and Integrates to one.

FIrst of all, It Is necessary to pIck a crIterIon for judgIng the goodness of an
estImate. ThIs Is perhaps the most crItIcal stage In the entire undertakIng. In the
context of the projectIons dIscussed above, we can easily construct such a crI­
terIon: consIder for example the mInImal area we need to take away from the
estImate f n and gIve (paste) to the estImated densIty f. The relocated area Is
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J I f n - f I /2, which Is also known as the total variation. The L 1 error,
J I f n - f I, Is a number betv:een 0 and 2. Interestingly, If we transform the
space by any one-to-one onto transformation, the L 1 error Is unaffected. In other
words, It Is a universal measure of the closeness of f n to f. Some other dis­
tances, such as the L p distance for p ;;-f1, are not even Invariant under a simple
rescaling of the axes. If f n Induces probablllty measure f.t n ' and f Induces f.t,
then It Is not difficult to see that the L 1 error Is 2 sup I f.t n (A }--f.t(A ) I where

A
the supremum Is over all (Borel) sets A. This Interpretation In terms of
differences between probabilities makes the L 1 criterion unique. When someone In
the field reports an error of 0.012, then we know that all probabilities of all sets
are off by at most 0.006. L 1 errors are not only easily Interpreted, they are also
easily visualized: the visual' Impression of the distance between the plots of f n

and f Is precisely the area between the curves, J I f n - fl. The visual aspect
Is of course Increasingly Important In view of the Invasion of graphical tools for
presenting one's results on workstations, terminal screens and laser printers. One
often finds technical reports and papers In which plots of densities are shown
besides tables of distances between those densities, where the distance Is not the
L 1 dIstance. In many cases, there Is no continuous relationship between spaces of
densities that are endowed with different distances, so that the plots do not
necessarily show close densities when the numbers In the tables are small, and
vice versa. In chapter I, we will relate the L 1 distance to other distances
between densities, such as L p distances, Hellinger distances and dlstance·s based
upon Kullback-Lelbler numbers. Often one can deduce results Indirectly by using
an appropriate Inequality between distance measures. The exIstence of such Ine­
qualities Is also discussed In chapter I. One Important point to note here Is that
the L 1 distance Is just one of many distances that one can define on the space of
all densIties. This, of course, will lead to a theory that Is uncluttered by hard­
to-verifY condItions.

Our criterion Is global since most of the InterestIng applications demand glo­
bal goodness of one or more densIty estImates. Local criterIa, such as pointwise
convergence, are much less Important, since they are oblivious to the role of a
densIty as a probablllty measure: It Is possible to construct estimates that are
very good at one or more points, but Integrate to Infinity.

In chapter II, we Introduce the density estimation problem, and derive
several densIty estimates, based upon the fact that a density f , the Radon­
Nlkodym derivative of a probablllty measure f.t with respect to Lebesgue measure,
can be approximated by a ratio of an empirical measure of a small ball to Lebes­
gue measure of the same ball. Estimates constructed In this fashion are designed
to work for all f , and wlll be called nonparametrlc. "Universal" estimates
would have been a better term, but It would be sllly to replace a term that has
been In use for over 20 years. It Is possible to tailor-design estimates for particu­
lar classes of densities; for example, a beta density can be estimated by another
beta density In which the two beta parameters are data-based estimates of the
unknown beta parameters. The risk of this approach Is that If the assumption
that the data are beta distributed Is false, then all Is lost, for there Is no hope of
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approachIng the underlyIng densIty. But the benefits can be sweet, for If the
assumptIon Is correct, we wlll latch on to the beta densIty, and obtaIn very good
estImates. EstImates In whIch a finIte number of parameters are estImated In an
otherwIse Infiexlble model are called parametric. Tailor-designed estimates on the
other hand are estimates that are desIgned to perform well for a proper subclass
("target class") of all densItIes; they can but don't have to be parametric.

In the notes, we wlll concentrate on nonparametrlc and tallor-deslgned esti­
mates. We wlll deal wIth some parametrIc estImates In the exercIses. We mainly
study the kernel estImate, first Introduced by Parzen and Rosenblatt. ThIs estI­
mate Is nothIng but an equlprobable mIxture of n slmllar-shaped densItIes (ker­
nels) centered at the data poInts. It easy to understand, analyze, and modIfy.
The fiexlblllty comes from our ablllty to pIck the shape of the kernel, possIbly as
a functIon of the data. Unfortunately, we can't show here that the kernel
estImate's performance matches that of most other estImates for most densItIes,
sInce that would force us to Introduce other estImates to find out later that we
dIdn't need them In the first place. The reader wlll Just have to trust our Judg­
ment. Note however that the kernel estImate Is not a cure-all: we wlll find out
that It does a faIrly good Job for most densItIes, but that It can't compete with
tallor-deslgned estImates for specIfic small target classes of densItIes, such as the
class of all normal densItIes, or the class of all mIxtures of two beta densitIes.

In chapter HI, we show that the kernel estImate Is guaranteed to converge
to f If we choose Its parameters In a certaIn way. SInce f I f n - f I Is a ran­
dom variable, we can study many modes of convergence, However, the story Is
quIte simple, since all modes of convergence are equivalent to each other. Furth­
ermore, there Is no densIty for which the kernel estimate Is not consistent. ThIs Is
due to the fact that the collectIon of nIce densItIes (where "nlce" could mean
bounded, of compact support, and InfinItely many tImes contInuously
dIfferentIable) Is dense In the L 1 space of all densItIes, so that each pathological
density Is surrounded by Infinitely many nice densities. In fact, a sample of size
n drawn from f can be thought of as a sample drawn from a nice neighborIng

density g If we are allowed to replace a few (about!: f I f -g I) data poInts by
2

other ones. Close densitIes require very little sample surgery.

There are many other Issues that matter when one estimates a density. Some
of these are sprInkled throughout the text, wIthout any strong sense of order.
Chapters IV, V and VI deal with unIversal properties of all densIty estImates, and
Introduce notions that can aId users In decidIng which density estimate they
should choose for the problem at hand.

For example, In chapter IV, we define robustness for densIty estImates In
terms of L 1 dIstances, and verify that many estimates we think of Intuitively as
non-robust (or hyper-sensitIve) are Indeed declared non-robust by our robustness
crIterIon. The kernel and hIstogram estimates are very robust, since the removal
or replacement of one data poInt hardly alIects the overall estimate, Its weight In
the kernel mixture beIng only lin. Robustness Is not a selectIon criterIon per se.
The maIn poInt of chapter IV Is to show that robustness Is equIvalent to InsensI­
tIvIty to small surgery on the sample.



xii PREFACE

The main selection criterion Is of course f lin -1 1 Itself. Unfortunately,
this Integral Is a random variable:as It Is a function of the data. Should we com­
pare means, medians, gO percentiles, or mean-plus-standard-devlatlon? Pessim­
Ists, always assuming the worst possible scenario, would consider ess
supf lin -1 I (where ess sup Is the essential supremum). This Is nearly always
2, since we take In fact the essential supremum with respect to all possible sam­
ples of size n. Gamblers may want to argue on the basis of the mean, taking the
risk that when the standard deviation Is much larger than the mean, 1n behaves
erratically. If f 1 1n - 1 1 has mean in and variance an 2, It Is not difficult to

show that an "'S.V2in -In 2, where equality can be attained. Since I n --+0 In the
cases of Interest to us, It Is possible to have (In +an )1 In --+00. Thus, In +an and
I n can tend to zero at dllIerent rates. The same Is true for I n and mn , the
median of f lin -1 I, since we can have mn =0 for any value I n "'S.1. In other
words, we are faced With a crucial decision about the choice of a deterministic
number that Is representative of the "usual values" of f lin -1 I·

Luckily, most nonparametrlc estimates such as the kernel estimate and his­
togram estimate are relatively stable, I.e. f lin -1 IIE <J lin -1 1)--+1 In
probability. For example, they satisfY the property that an IJn --+0 as n --+00.

This law of large numbers Is proved In chapter IX, where more Information Is
given about the closeness to the limit In terms of exponential Inequalities. It can
be explained by the fact that the L 1 error Is an Integral, and that the Integral, In
first approximation, Is a sum of many Independent Integrals over small nonover­
lapping sets (In the case of a histogram estimate, this statement would be correct
If the sample size were Poisson; In the case of the kernel estimate, some extra
work Is needed). The fact used here Is that every data point has only a very
local elIect. In any case, what matters for now Is that for many nonparametrlc
estimates, E <J lin - 1 I) Is Indeed a good gauge of the L 1 error. Unfor­
tunately, this Is not the case for some tailor-designed estimates such as some
parametric estimates, but we wl1l nevertheless keep using the mean as our stan­
dard of comparison.

The performance of an estimate for a particular 1 depends upon 1 . It Is
quite a task to compare estimates with one another, because of this dependence.
It Is helpful to know how bad any estimate has to be as measured by the
minimax error

Inf sup E <J lin -1 I)
f. f EF

where F Is a given class of densities. The minimax error, a function of nand F
only, tells us about the error any estimate has to make on at least one density In
F. It paints a pessimistic picture, as the L 1 error for a given 1n and a given
1 EF can be much smaller than the minimax error. On the other hand, assume
that we want to give a person a guarantee (I.e., an upper bound) about the
expected L 1 error of a given estimate committed on densities In F, and that for
that class, the minimax error Is 0.23. Then our guaranteed performance cannot be
smaller than 0.23. 'In this respect, minimax errors are often used as lower bounds,
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and If minimax errors can't be computed exactly, one should try to compute a
lower bound for them.

In chapter V, we give a systematic overview of how one can compute such
lower bounds by Information-theoretic methods. But the main message Is con­
tained In the lower bounds themselves. A class F can be coined a fat class If Its
minimax error does not tend to zero with n . For fat classes, we can't provide any
nontrivial performance guarantees for any estimate. What transpires In chapter V
Is that the class of all densities on [O,lJ bounded by 2 and the class of all unimo­
dal densities With Infinitely many continuous derivatives are both fat. This
Implies that to study uniform performances over given classes, Imposing tall con­
ditions alone or smoothness conditions alone Is not sufficient. At the very least,
we need to combine these kinds of conditions. There are even smaller fat classes,
such as the class of all normal scale mixtures, the class of all densities whose
characteristic function has support on [-1,1], or the class of all densities In an t:'­

ball around a central density f o' The fact that the latter class Is fat Is not at all
surprising since every density Is surrounded by millions of ugly densities of very
dllIerent shapes. A big drawback of the L 1 theory Is that the L 1 distance does
not attach a great deal of Importance to shape similarities. Shapes can be com­
pared In terms of derivatives. Every e-ball around any density f 0 co.ntalns many
jagged densities f for Which the set of points at which f has a derivative has
measure zero.

Classes for which the minimax error tends to zero with n Include for exam­
ple classes of densities on [O,lJ that are defined via a Lipschitz condition on the
k -th derivative. Or the class of monotone densities on [0,1] bounded by a con­
stant B. Or the class of all normal densities With unknown mean and variance.
For all these classes, one may ask for an estimate f n for which the expected L 1

error Is uniformly bounded (over f EF) by a universal constant times the
minimax error. Ideally, this constant should be one, but that Is often difficult to
achieve In practice. Estimates with this property are said to be minimax-optimal
for F. They carry a uniform performance guarantee. The construction of such
estimates Is often ad hoc: sometimes we stumble by accident upon a mlnlmax­
optimal estimate (we wlll show In chapter VII that the kernel estimate Is
minimax-optimal for many large classes F); sometimes we apply our common
sense (this often works for small parametric classes F). But there Is also a sys­
tematic construction of minimax-optimal estimates, based upon minimum dis­
tance estimates, described In chapter VI.

The Idea Is simple enough: cover the set F by a finite number of e-balls (e Is
carefully Picked), and define the estimate as the density at one of the centers that
Is closest to the standard empirical measure according to a criterion that Is rem­
Iniscent of the L 1 criterion. This method requires a finite cover, and hence F
should be L ctotally bounded. The latter restriction can be relaxed, but at some
cost.

Chapters V and VI provide us with a lot of Information about what can be
achieved by denSity estimates, and what Is unreasonable to ask. We give many
explicit Inequalities, so that one can plug In one's sample size and class descrip­
tors to see what kinds of performance can be expected. If we can make a point
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with explicit Inequalities, we will do so. for rates of convergence without accurate
Information about constants and asymptotic error terms are often less appealing
to practicing statisticians. Density estimation In general can be compared to an
Infinite-dimensional parameter "estimation problem. We want to convey to the
students In a quantitative fashion. not by experiments. just how difficult density
estimation Is. How bad are the two troublemakers, the lack of smoothness of f .
and the size of the tall of f ? How large should n be for us to be able to do any­
thing meaningful with a given estimate, or any estimate for that matter?

In chapters VII and VITI. we study particular estimates. The long chapter
VIT deals with the kernel estimate. We study the rate of convergence to 0
without trying to exclude any density f from the study. This requires some prel­
Iminary work and some generalized definitions of k -th derivatives of a density.
The effort Is well spent. Among other things, we will see that for some kernels,
the rate of convergence Is limited by the form of the kernel, while for other ker­
nels, the rate Is determined solely by the smoothness and the tall of f . Always
deriving explicit constants. we will see how the shape of f affects the perfor­
mance, and we can answer such questions as: which density Is easiest to estimate
by the kernel method for a fixed given kernel J{?

In chapter VIII, we present a case study on monotone density estimation,
and compare various estimates for this problem.

Finally, chapter IX deals with the Issue of relative stability. which was so
crucial In the determination of our error criterion (see above).

Devroye and Gyorfi (1985).

The L 1 approach of the subject Is not unlike that of our research mono­
graph with Laszlo Gyorfi ("Nonparametrlc Density Estimation: The L 1 View",
John Wiley, 1985, hereafter referred to as DG). However. the present text Is not
a research monograph. We only seek to explain. often sacrificing some deep
results for shallower ones with simpler more didactic proofs. The exercises at the
end of each chapter should make the text useful for a graduate course on density
estimation. We move quickly from one subproblem to another, with very few
pauses, trying to maximize the number of Ideas and techniques In a book that
can be covered In one quarter or trimester.

DG Is just one of several reference texts that can be considered for further
reading and consultation. giving a more comprehensive (but stilI limited) treat­
ment of the field. It offers a deeper and broader study of some topics touched
upon In the present text. For example. DG studies more kinds of estimates. such
as automatic kernel estimates (DG. chapter VI). generalized kernel and histo­
gram estimates (DG, chapter VII), transformed kernel estimates (DG, chapter
IX) and orthogonal series estimates (DG, chapter XII). In addition. DG discusses
several applIcations. Including simulation (DG, chapter VITI), discrimination
(DG, chapter X) and detection (DG, chapter XI). The present text Is organized
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like lecture notes for graduate students. The readers will however appreciate
that we have kept the notation consistent throughout both books.

There Is some new material presented here, not found In DG, such as the
Introductory notions on robustness (chapter IV) and minimum distance estima­
tion (chapter VI), and the In-depth studies of monotone density estimation
(chapter VIII) and relative stablllty (chapter IX).

The notes are geared towards students who have never been exposed to den­
sity estimation, but who do have a basic background In analysis and probablilty.

Applications.

Exploratory data analysis Is concerned with the extraction of Informa­
tion from data In order to choose appropriate statistical procedures for analyzing
the data. Obviously, nonparametrlc density estimates seem prime candidates for
such a quick analysis, especially when combined with a good graphics package
and a friendly workstation.

We should not forget the Important role of densities and their estimates In
probability theory. Density estimates define smoothed empirical measures. For
the ordinary atomic empirical measure J-l n (which puts mass lin at each data
point), we have the disappointing property that

sup I J-l n (A }-J-l(A ) I = 1 ,
A

where J-l Is the measure Induced by a density I , and the supremum Is over all
Borel sets A. However, If the expected L 1 error for I n tends to 0, then

11m E(SUP IJf n - Jf I ) = 0 .
n -00 A A A

ThUS, when densities exist, f n defines an empirical measure that Is more pre­
cise than the standard empirical measure. Interestingly, this property does not
necessarlly carry over when the collection of Borel sets In the supremum Is
replaced with all left-Infinite Intervals (-oo,x], yielding the Kolmogorov-Smlrnov
statistic.

If one has drawn samples Xl' ... ,Xn and Y l' ... , Yn from unknown
densities f and 9 respectively, and one has to decide which density (f or g ) a
new sample Z 11 ... ,Zk Is drawn from, the maximum likelihood principle
("choose f If III (Zj )/g (Zj )~l ") Is not directly applicable. Replacing f and
9 by estimates f nand gn In the likelihood products Is risky. This Issue and
some solutions to the detection problem are discussed In chapter XI of DG.

Perhaps the most popular application of density estimation Is In discrimi­
nation (or: pattern recognition). Assume that X j and Yj samples are given
as In the detection problem, and that one Is presented with a single random vari­
able Z, which Is known to have density f or g. The best possible (or: Bayes)



rule for this problem states that we should assign Z to f If f (Z r~ g (Z), and
to g otherwise. It should be obvious that If f and g are unknown, then suit­
able estimates of them can lead to rules that perform almost as good as the
Bayes rule. Both the detection and discrimination problems require derivatives of
probabIlIty measures, and canno~ be solved without directly or Indirectly estimat­
Ing or approximating these derivatives. Good starting points for further study
are Cover (1969), Cover and Wagner (1975) and Duda and Hart (1973).

Estimating a tail probability based upon a sample of size n drawn from
00

an unknown density f can be done by a frequency count: Jf Is estimated by
x

1-Fn (x) where Fn Is the standard empirical distribution function. When tall
probabIlIties are needed for testing It becomes Important to have estimates that
are smooth and have small relative errors and variances. In such cases, one can

00

replace 1-Fn (x) by Jf n where f n Is an appropriate density estimate, which Is
x

sometimes based upon a model one has constructed of the shape and size of the
tall of f .

Clustering Is one of the main tools of data analysis. Data points With an
unknown density f can be clustered by an analysis of the estimated shape of f .
Good candidates for cluster centers are the modes (or peaks) of f ; hence the
need to estimate modes. Separating boundaries between clusters roughly
correspond to the valleys of f ; hence the need to reconstruct the valleys of a
density. Mode estimation Is discussed by Wegman (1972), clustering Is studied
by Hartigan (1975), and the connection With density estimation Is apparent from
Hartigan (1981).

Some applications demand the evaluation of a functional of f , such as
Jf 2, J(/,2/ f ) (Fisher's Information criterion), or Jf logf (minus the entropy
of f). These quantities are Important In classical statistics. For example,
Fisher's Information criterion appears In the Cramer-Rao Inequality (see e.g. Pit­
man, 1979). The entropy Is related to the performance of maximum likelihood
estimates. The estimation of these functlonals from a sample can help statisti­
cians In their decision-making processes.

In simulation, the following problem often occurs: data X l' ... ,Xn are
collected at some cost, and It Is assumed that the Xi's are lid with a common but
unknown density f . In a simulation run, new data from f are required, but It
Is too expensive or unfeasible to collect new data In the field. Rather, one Is
forced to do with the available Information. If k new data points are generated
from a density estimate / n , then one commits an error. This error can be meas­
ured In terms of the minimal number of the newly generated data that need to be
replaced by other points In order to turn the new sample (from f n ) Into a sam­
ple from f . It turns out that the minimal number Is binomially distributed with

1 "
parameters k and - J I / n - f I, which once again points to the Importance of

2
the L 1 criterion. See chapter VIII of DG.

xvi PREFACE
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Estimating the shape of a density Is much more difficult than estimating a
density In L l' for shapes are alike If all (or most) derivatives are alike, assuming
that derivatives exist. Thus, In shape estimation, distances between densities
should be measured In terms of derivatives as Is done for example In Sobolev
spaces (Adams, 1975). As an alternative, we could compare the frequency spectra
of two densities (to draw an analog, consider that close frequency spectra of voIce
signals Indicate that the voice signals have similar shapes). But the frequency
spectrum of a density Is nothing but Its characteristic function <p. If our estimate
f n has characteristic function <P n ' then the distance between f nand f can be
defined by

sup I <pn(t)-<p(t) I .
t

Further work.

All the applications mentioned above require density estimates, but each
application Imposes Its Individual demands on the estimate. Only a few of them
require densities that are close In the L 1 sense. Hence the need to study densIty
estimates that are good In other respects. Because of the crucial and natural role
played by L I' It Is felt that the results from the L 1 theory wl1l aid SUbstantially
In the derivation and understanding of non-L 1 properties.

Many estimates are tailor-designed for target classes F. They are often use­
less outside the target classes. On the other hand, nonparametrlc estimates are
reliable for all f but generally speaking Inferior on F to a tailor-designed esti­
mate for that class. Thus. we should try to combine estimates In such a way that
on F, the resulting estImate performs as the tailor-designed estimate, and outsIde
F, It Inherits the consistency and rate of convergence of the nonparametrlc esti­
mate. Such combined estimates are for example required In automatic computer
packages for density estimation. The choice of an estimate can be based upon
the L 1 distance between the various estimates: nonparametrlc estimates could be
replaced by tailor-designed estimates If they fall In an E-ball (a halo) around one
of the latter estimates, where E Is a carefully picked radius of Infiuence. See Dev­
roye (1986).

Some researchers take the point of view that we should first choose a class of
estimates, and then try to make the best of It. They are wl1llng to accept the
consequences of this strategy, I.e. their expected L 1 error Is bounded from below
by

t:;.

V (f ,n) = Inf E (J I f n - f I),
I.EO

where C Is the class of estImates under consideration. For some classes C,
V(f ,n) can be readily computed. Sometimes It Is even possible to compute non­

t:;.

trivial lower bounds for V (n )=Inf V (f ,n). V (n) Indicates the absolute
I
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llmltatlons of the given class of estimates. -Even If one were shown which f Is
being estimated, and picked the best f n In C accordingly, the expected L 1 error
would stlll have to be at least V (n). It Is Instructive to compute V (n ) for many
popular classes. For example, for the class C of all kernel estimates,

V(n)~~• 528 n

(Devroye, 1986). If only nonnegative kernels are allowed, we have for all f ,

V (f ,n) ~ 0.86+0 (1)
2

n 5

(Devroye and Penrod, 1984). The last Inequality basically Implies that to make
the expected L 1 error less than 0.01 with such kernel estimates, n should be at
least 100,000, regardless of how nice the density Is that Is being estimated. One
can consider these lower bounds as the costs associated with the use of the kernel
estimate (nothing Is free). It Is also necessary to verify what costs are associated
with the estimation of one particular f , as measured by V (f ,n). For the ker­
nel estimate, an L 2 analog of V (f ,n) has been computed In a milestone paper
by Watson and Leadbetter (1963) (see also the follow-up papers by Davis
(1975,1977)), but V (f ,n) seems much more difficult to compute In L l' A
detailed study of V (f ,n) Is essential for a solid understanding of the kernel esti­
mate.

The sample size restrictions Imposed by the kernel estimate even on the best
f are nearly unacceptable. We feel therefore that the major practical break­
throughs In density estimation wlll not be on nonparametrlc estimates In their
general forms, but on tailor-designed estimates. The target classes on which
advances should be made are somewhere In the grey area between finlte­
parameter classes and fat classes. A prime example of this Is the class of mono­
tone densities, for which good estimates were developed by Grenander (1956) and
Birge (1983,1984). Particular versions of the kernel estimate perform well for tar­
get classes defined In terms of the smoothness of f , as Is shown In chapter VII.
However, how does one handle Important classes such as the class of all log­
concave densities (this class Includes normal, gamma, Welbull, beta, exponential
power, logistic, hyperbolic secant, generalized Inverse gaussian, extreme value and
Perks distributions), the class of all normal scale mixtures, or the class of all den­
sities of sums of k lld random variables with density supported on [O,l]?

With every class C of estimates we have associated lower performance
bounds V (f ,n) and V (n). It would be nice If, based upon the data, we could
select an f n from C for which the lower bound V (f ,n) Is attained modulo a
multiplicative constant. Such a data-based selection rule for C Is exciting since
we would In fact be able to obtain the best possible rate of convergence within C,
sometimes without knowing what the rate of convergence Is. A good starting
point for further research Is Stone (1984,1985) where a similar problem Is success­
fully solved In L 2 for the kernel and histogram estimates.
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Let us conclude by mentioning the dlIDcult problem of the estimation of
J I f n - f I, on which absolutely no headway has been made to date. It should

be noted that If we could estimate J I f n - f I accurately (e.g., with an expected
error much smaller than E (J I f n - fin, then we would be able to make a lot
of progress In the datacbased selection problem mentIoned In the prevIous para­
graph.

Dedication.
This book Is dedicated to Bea.

Luc Devroye
School of Computer Science
McGill University
Montreal, Canada H3A 2K6





Chapter One
DISTANCES BETWEEN DENSITIES

The distance between two densities f and g on the Borel sets of R d can be
defined In many dltIerent ways. First and foremost, there Is the Lp distance

{

( )
l/Pf I f -g I p (oo>p >0)

Lp (f ,g) = ess sup I f -g I (p =00)

The Hellinger distance Is defined by

( )
l/P

Hp (f ,g) = f(f lip -g lip )P (p >0) .

Finally, the distance between f and g can also be measured In terms of an
entropy-related quantity, the Kullback-Leibler number

{
f f logL if f «g

K (f ,g) = 00 g otherwise

In this introductory chapter, we wlll establish relationships between these quantI­
ties, and explore the properties of L 1 In more detail.

1.1. THE TOTAL VARIATION.
The total variation between two probablilty measures p, and II on the

Borel sets of R d is defined by

V = sup I p,(A )-II(A ) I .
A

It should be noted that 0:::; V :::; 1 in all cases, and that it is well-defined even If J.L
and/or II do not have densities. When V is 0.01, we know that for any set A ,
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the probabl1lty assigned to It by I-t differs at most by 0.01 from the probability
assigned to It by v. In other words, V Is a practical easy-to-understand quantity.
When I-t and v have densities 1 and 9 , we have

Theorem 1.1. Scheffe's theorem.

J I 1 -g I = 2 sup I J 1 - J 9 I
A A. A

= 2J(f -g)+ = 2J(g-1 )+ .

Proof of Theorem 1.1.

Intuitively, Scheffe's theorem Is clear from figure 1.1.

f

Figure 1.1­

Two densities.

The Integrals of (f -g)+ and (g - 1 )+ are equal, and sum to (1/2)J I 1 -g I .
Scheffe's theorem states that the supremum Is reached for the set B ={I > 9 }
(or, equivalently, for the set {g > 1 }). To prove this formally, consider first that

JIf -g I = 2J(f -g ) ~ 2 sup IJ1 -J9 I .
B A A A
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To prove the other Inequality. note that

IJf -Jg I = I J (f -g)+ J (f -g ) I
A A AnB AnB'

~ max ( J (f -g ). J (g - f »)
A nB A nB'

~ max (J(f -g ). J(g - f )1
B B' J

= ~J I f -g I .•
2

3

One of the most remarkable properties of L 1 Is that L l(f .g) Is Invariant
under rich transformations of the coordinate axes. where a transformation T Is
called rich If {T-1B IB EB}=B. and B denotes the Borel sets of Rd. Note
that this necessarily Implies that the mapping Is one-to-one. For example. a
transformation In which each coordinate Is transformed separately Via a strictly
Increasing mapping wlll do. Assume that random variables X. Y have densities
f .g • and that T (X). T (Y) have total variation V. Then

J I f -g I = 2 sup IP (X EA }-P (Y EA ) I (SchefIe's theorem)
A

= 2 sup IP (T (X)ET (A »-P (T (nET (A» I (one-to-one mapping)
A

= 2 sup IP (T (X)EA }-P (T (nEA) I ({T (A )}={A nT (R d)})
A

=2V.

This means that the L 1 distance between f and g • hidden In Infinite talls. can
be vlsuallzed by plotting the densities of transformed random variables. For
example. the transformation x :--+x /(1+ I x I) maps the real llne to [-1.1]. and
the taUs show up at near the ends of this Interval. This Is especially useful for
displaying Infinlte-taUed densities on a terminal screen.
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norma.l ---I
Cauchy ----

.....
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\
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Figure 1.2a.

Two densities on the real line.

Figure 1.2b.

Densities of figure 1.2a after transformation

y :=X /(H I X I ).

1.2. THE SPACE Lp •

Needless to say. L 1 Is the natural space for all densities. When we mention
something Involving Lp (f ,g) for some p ~1. It Is always understood that

f .g ELp • I.e. J f P<oo.Jg P<00.
Let us first note that there cannot eXist any direct Inequalltles between

L 1(/ ,g) and Lp (f .g) for p ~1. To see this, It suffices to note (see figure 1.3
below)
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L, (f ,g) 20

18

16 Every point in rectangle Is possible

14

12

10

(L M ,g ),L, (f ,g ))

-------------1

2

LM ,g)

Figure 1.3.

(L l'Lp ) plane

5

that for every point In the plane [0,2] X [0,00), there exists a pair of densities
(f ,g) such that the x -coordinate Is L 1(f ,g), and the y -coordinate Is Lp (f ,g).
Once a pair (f ,g) Is fiXed, changing the scale takes the point along a vertical
journey In the plane. This follows from the observation that If f ,g are the den­
sities of X, Y, and f * ,g* are the densities of aX ,aY Where a Is a real number,
then

1-p

Lp (f * ,g*) = a p Lp (f ,g) .

In other words, only L 1 Is unaffected by a rescaling. And thus, only L 1(f .g)
can have a universal Interpretation.

If one density (say, f ) Is kept fiXed, we can stlll cover most of the plane by
varying g , although there are some restrictions. These are perhaps best captured
In
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Theorem 1.2.

Let 1 be a fixed density on R d , and let p > 1. Assume that 1 ELp • Then
there exists a sequence of densities 1n ELp such that

L 1(f n ,I ) --+ 0 , Lp (f n ,I ) --+ 00 .

However, the converse Is not true: If Lp (f n,J )--+0 as n--+oo, then
L 1(f n ,I )--+0.

Proof of Theorem 1.2.

Find a sequence of densities gn for which (j gn p )1/P = an --+ 00. Define
bn =mln(I,I/ya;:). Set

We verify easily that

J lIn -1 I ~ 2bn -+ 0 ,

(I lIn -I I p r = (I I bngn -bn1 I p r
~ bn (j gn p )1/p - ( (j1 P )1/p ) -+ 00 (Mlnkowskl).

This proves the first part of the theorem. For the second part, we take a number
M so large that 2 J 1 Is as small as desired. Then,

I-M,M)

J lIn -I I = 2J(f -In )+ ~ 2 J +2 J
I-M ,M) I-M ,M)'

1 1

~ 2( J dx)q(J I In-I I p )"P+2 J 1
I-M,M) [-M,M)'

= 0 (1)+2 J 1
I-M,MI'

This concludes the proof of Theorem 1.2.•

1 1
(Holder;-+-=I)

p q

1.3. HELLINGER SPACES.

Hp shares many nice features with L 1: for any pair (f ,g), Hp (f ,g) Is non­
negative and finite, the maximum possible value being 21/

p • It Is easy to verify
that Hp remains Invariant under "rich" transformations, and Is thus scale­
Invariant. This can be proved based upon a relationship between Hp and the
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probabl1ltles of sets. See exercise 1.2, for example. The most Important values for
pare 1 and 2. Clearly, H 1(f ,g )=L 1(f ,g ). Furthermore,

Theorem 1.3.

For any pair of densities (f ,g),

H 22(f ,g) :::; H M ,g) :::; H 2(f ,g h!4-H22(f ,g) :::; 2H2(f ,g)

and

2-H1(f ,g) ~ (l-+H /(f ,g))2

The last Inequallty Is equivalent to LeCam's inequality (LeCam, 1973)

Jmln(f ,g) 2: +(J,;ygf .

Proof of Theorem 1.3.

In the proof, we wl1l drop the arguments (f ,g ). We have

H 1 = J I f -g I = J Iff -Vi I Iff +Vi I
~ J(ff -Vi )2 = H 22 .

Also,

H 1
2

:::; J(ff -Vi)2J(ff +Vi)2 (Cauchy-Schwarz)

= H 22(2+2J,;yg )= H 22(4-H 22) .

LeCam's Inequallty can be obtained very simply as follows:

r J ,;ygr= ( J f Vf)2

~/<g J I<g

:::; J f fg J f :::; J f (Cauchy-Schwarz).
1 <g 1 <g 1 <g

Combining this with a similar Inequallty for the set {f ~g}, we have

(J,;ygf:::; 2 J f +2 J g = 2Jmln(f ,g).
1 <g g:::,1

Finally, use the fact that Jmln(f ,g )=l-HJ!2, and that H /=2-2J,;yg .•
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HM ,g)

Figure 1.4.

(H pH 2) plane

Let us Interpret these Inequalities In the plane formed by HI and H 2' I.e. In
[0,2] X [0,v'2]. Figure 1.4 above shows that only a thin banana-shaped area
around the diagonal Is possible. In particular, H 2 and HI have to converge to
zero together. This could be a potentially useful fact for proving the consistency
In one metric using consistency In the other metric. A word of caution. The rates
of convergence to zero can differ widely, since HI can be made to decrease
linearly or quadratically In H 2' LeCam's Inequality cuts out an area near the top
right corner of the rectangle, providing us with Information regarding the rate
with which 2-H 1 tends to zero when v'2-H 2 tends to zero. At this point, the
reader may wonder why one would be Interested at all In that part of the plane,
HI being so far away from zero. Observe that If f ,g are replaced by n -fold pro­
ducts (as In the case of a sample of n lid random variables drawn from f or g ),
then the Hp -values for the products are pushed towards their upper bounds as n
Increases (unless I =g ). It Is precisely In those situations that we will need the
behavior of Hp near 21/ p •
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1.4. ENTROPY. KULLBACK-LEIBLER NUMBERS.

The quantity Jf logf has often been related to the entropy of a density
f (actuallY, minus this quantity Is the standard definition). Note that the func­
tion x logx for x 20 Is convex, taking the value ° at 0, dipping underneath the
axis, reaching a minimum -1/ e at x =1/ e , crossing the axis again at x =1, and
Increasing to 00 as x --+00. Thus, there are no problems with °log ° In the
Integral, since this should clearly be Interpreted as 0.

Jf logf can take all values In [-00,00]. To force It to take the value 00, an
Infinite peak Is needed. To force It to take the value -00, an Infinite tall Is
reqUired, I.e. the probability mass has to be smeared out thinly. Note that there
could be a possible problem With the Integral when both Its positive and negative
components are 00.

The Kullback-Leibler number

K (f ,g) = Jf logL ,
g

defined when f «g (f Is absolutely continuous with respect to g) Is asym­
metric In f ,g, and can therefore not be a distance. Nevertheless, there are
Important relationships between K and L l' Its main use Is when f ,g are'
replaced by n -fold products. The Kullback-Lelbler number for the product densi­
ties Is precisely n times K (f ,g). This facilitates certain computations dramati­
cally.

As with all Integrals that can be written as Jf 'l/J(L) for some function 'l/J
g

(examples Include K and Hp for all p ), K Is Invariant under rich transforma-
tions. In other words, K (f ,g) depends on the relative shapes of f ,g only.
Note first that K 20, with equallty occurring If and only If f =g . This follows
from Jensen's Inequallty:

-K (f ,g) = Jflog; ~ log(j f ; ) = 0 .

Note however that K (f ,g) can be 00 even though f «g. This means that
the (L l'K) plane cannot possibly be restricted from the top In the y -direction.
It Is true however that when K Is small, L 1 has to be small. Several InequalIties
can be Invoked to decide just how small L 1 has to be,
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Theorem 1.4.

Let K =K (/ ,g), and L l=L 1(/ ,g). Then

L1~V2K

(the Kullback-Cslszar-Kemperman Inequallty; see Kullback (1967), Cslszar (1967),
Kemperman (1969)), and

L 1 ~ 2V1-e-K ~ 2-e-K .

(the Bretagnolle-Huber Inequalltles; see Bretagnolle and Huber, 1979). The last

Inequallty can be restated as follows: jmln(f ,g) > !....e -K(f ,g J.
- 2

,
I
J
I
I
r
I
J
I

Bretagnolle-Huber bound /

I
I

/
I

/
/

LM ,g)

Figure 1.5.

(L l'K ) plane
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Proof of Theorem 1.4.

We begin with the Bretagnolle-Huber Inequalltles. By a simple application
of Jensen's Inequality, the folloWing Is true:

-II log ~ = I I log(mln( ; ,1))+11 log(max( ; ,1))

:s logcJmln(f ,g ))+logcJmln(f ,g)) = log((l-I I I -g I /2)(1+1 I I -g I /2))

= log(l-.!-cJ I I -g I )2) .
4 ..',

The second Inequallty of Bretagnolle and Huber Is rather obvious. Turning to the
Kullback-Cslszar-Kemperman Inequality, we Introduce the folloWing notation: I
Is the Indicator function, A ={f ~ 9 }, h =gIA / q , q =19 , p = I I . First,

A A

II logL = IhLlogLIg
A 9 9 9 A

~ IhLlogcJhL)I 9 (Jensen's Inequallty)
9 9 A

= II logcJ I /1 9 ) = p logE. .
A A A q

Thus, repeating this argument for the complement of A, we have

K (f ,g) ~ P logE.+(l-p )log 1-p = H (p ,q) (definition of H (p ,q )) .
q 1-q

Assume that p =q +r for some r >0. Then, writing H (r) Instead of H (p ,q ),
we have

H(r) = (q +r )log(1+~)+(l-q-r )log(l__r_) ,
q 1-q

H'(r) = log(1+~)-IOg(l-_r_) ,
q 1-q

H"(r)= 1 >4.
P (l-p) -

Thus, by Taylor's series expansion with remainder,

r
2

1 ( )2K (f ,g) ~ 42 = 2(p -q )2 ="2 I I I -g I .•

Figure 1.5 shows the areas cut out by the Inequalltles of Theorem 1.4.



.12 1. DISTANCES BETWEEN DENSITIES

1.5. STANDARD IMPROVEMENTS OF DENSITY ESTIMATES.

The question dealt with In this section Is very simple: If g Is replaced by a
common sense Improvement, Is the new Improved g closer to f than the old g ?
Very often, the answer Is positive.

For example, It cannot hurt to restrict a density estimate to the support of
f,

Theorem 1.5.

Let g be a function with Jg =1, and let f be a density vanishing off S,
Define

g* = gIs/Jg
s

Then J I g* - f I :s Jig - f I,

Proof of Theorem 1.5.

/
I

/
/

I
I

I
/

/
/

/-- ....... _,/

I
/

/
/

/
/

I
/

/

", ~I
\

\
\

\
\
\
\
\
\
\
\
\
\

\
\

\ ,
......

I

Figure 1.6.

Density restricted to support of another density.

J I f -g * I = 2J(f _.L.)+ (Scheffe's theorem)
s Jg

s
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It also can't hurt to normalize a density.

Theorem 106.

Let 9 be a function with f 9 =1, and let f be a fixed density, Define

g* = gI8 / f 9
8

where S={g >o}. Then f I g*-f I :s f I g-f I·

Proof of Theorem 106.

13

~I

",----- ......
.o"'''"

/
/

/
/

",,""

Figure 1.7.
Function integrating to one, and corresponding normalized density.

f If -g* I = 2f(g*-f )+ (use f 9 =1)
8
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= 2J(g*-/ )+2J(g*-/)+
S S'

= 2J(g*-/ )+
S

~ 2J(g-/ )+= 2J(g-/ )+= J I / -g I .•
S

For other possIble reasonable Improvements, see exercises 1.5 and 1.6.

1.6. PROJECTION ESTIMATES.
Assume that / 71 Is a density estimate, and that F. Is a class of densItIes con­

taInIng /. If we know F, then we would often like to estimate / by another
member of F. ThInk for example about the class of all unImodal densItIes on the
real line. The projection of / 71 onto F Is g71 where

"'"J I g71 - /71 I = Inf Jig -/71 I
gEF

For very small (usually parametrIc) classes, the projectIon g71 Is usually much
closer to / than /71' ThIs has been exploIted by Beran (1977, 1981) for obtaIn­
Ing robust parametrIc estImates. When F Is fairly rIch, It turns out that g71 Inher­
Its the rate of convergence of /71 . In other words, projectIon estImates are ~safe"

If we know that / EF. The statement about the rate of convergence Is Implicit
In

Theorem 1.7.

For all / EF, the projectIon g of h onto F satIsfies:

Jig-/ I ~2Jlh-/ I·
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Proof.of Theorem 1.7.

Jig - f I :'S J Ih- f I + J Ih-g I
:'S2Jlh-f I·.

1.7. EXERCISES.

1.1. Construct a densIty whIch does not belong to any Lp for p ;flo
1.2. Show that

H /U ,g) = 2 all partitions :~~ .. , A. of R' (l-i~lvi1f1g J.
See figure 1.8.

Figure 1.8.

Partition of [0,1] X [0,1]

15

Note that thIs equallty can be used to define the H 2 dIstance between two
measures even If densItIes do not exIst.
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1.3. Let T be any mapplng:R -+R. Let X, Y have densities !. ,g, and let
T (X), T (Y) have probability measures /J,v. Using the total variation
Interpretation of Hi' and the property of H 2 given In exercise 1.2, show that

Hp (/J,v) :s Hp (f ,g)

for p =1,2.

1.4. Prove that K (f ,g )~-2Iog(1-H 22(f ,g )/2)~H 22(f ,g).
1.5. Prove or disprove: assume that g ~o,Jg <1. Let g* be any density satisfy­

Ing g*~ g. Then Jig *- ! 1:SJig - ! I for any density ! .
1.6. Let ! ~o be ! on [0,1], and let g ~O be t on [0,1]. Define g* as the func­

tion with constant value Jg on [0,1] and the value a outside [0,1]. Show
that

Jlg*-! 1:sJlg-! I·



Chapter Two
DENSITY ESTllv.1ATION
AND DERIVATION OF MEASURES

2.1. OUR MODEL.
We assume that a sample X 11 ... 1 Xn of lid random vectors with unknown

density f Is given. Unless expllcltly mentioned, this Is the only Information
available to us regarding f . A density estimate f n Is a Borel measurable func­
tion of x and the data X 11 ••• , Xn :

f n = f n (x ,X 11 ... 1 Xn ) .

Usually, f n Is a density In x , I.e. It Is nonnegative and Integrates to one.

When f has probablllty measure J-I, and A Is Lebesgue measure, then f Is

almost everywhere equal to the Radon-Nlkodym derivative ~~. This means that

for all Borel sets A ,

Jf = J-I(A).
A

We wlll see that most estimates attempt to approximate the derivative of J-I with
respect to A.

2.2. POPULAR DENSITY ESTIMATES.
The empirical measure J-I n Is the frequency count of a set, divided by n :

1 n
J-I n (A ) = - :E fA (Xi) .

n i =l
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It can be used as an approxImatIon of J.L(A ). Thus. If we partItIon the space R d

Into a countable collectIon A l'A 2•••• ' and all Ai 's are small, then .

J.L n (Ai)
f n (x) = A(A

i
) • X EAi •

dJ.L .
can be expected to be a reasonable approxImation of dr' For the approxImatIon

to be good. we need two thIngs:

A. Every iL(Ai )/A(Ai ) should be close to f . I.e. the Ai 's should be small.

B. J.L n (Ai )/iL(Ai ) should be close to Its mean (1). For thIs to be true. n should
be large.

The estImate f n defined by a frequency count on a partItion Is called the
histogram estimate. An example wIth d =1 Is shown In figure 2.1.

.--

-

c---

Figure 2.1.

Histogram estimate.

TypIcally. the partItIon consIsts of a regular grid of equal sIze Intervals or
hyperrectangles. We wlll encounter sItuatIons In whIch It Is to our advantage not
to choose Intervals of the same sIze. Furthermore. the partItIon Itself can some­
tImes depend upon the data, In whIch case we call the estImate a variable par­
tition estimate. One can easlly verIfy that If all the Ai's have finIte Lebesgue
measure, then f n Integrates to one.
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In 1956, Rosenblatt proposed the moving window estimate

J.t n (8 (x ,h ))
f n (x ) = >'(8 (x ,h)) ,

where 8 (x ,h) Is the ball of radIus h centered at x. This radius Is also cal1ed
the smoothing factor. On the real line, f n (x) counts the number of data
poInts In [x -h ,x +h 1 and divIdes thIs number by 2hn. Note that for large n
and fixed h , f n Is close to

J.t(8 (x ,h ))
>'(8 (x ,h ))

whIch In turn Is close to f (x) If h Is small enough. AgaIn, we wl1l have to find
a good value for h as a functIon of n . TypIcal drawIngs of f n have dIscontInuI­
tIes that are remInIscent of the hIstogram estImate. In fact, sInce f n has zero
derIvatIve almost everywhere, It can be consIdered as a varIable partItIon hIsto­
gram estImate. Users often demand smooth eye-pleasIng estImates. The theory
wl1l support thIs common sense request, as we wl1l see further on. The sImplest
way to generalize the movIng wIndow estImate Is by replacIng the window (whIch
can be consIdered as a unIform densIty) by a general functIon K, called a ker­
nel:

1 n
f n (x) = - ~ K h (x -Xi) ,

ni=l

where

ThIs estimate Is known as the kernel estimate or the Parzen-Rosenblatt estI­
mate (Parzen (1962), Cacoullos (1966)).
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Figure 2.2.

Kernel estimate with n =10. Ten data points are shown on axis.

Again, It Is easy to verify that f n ls a density when K Is a density. Remarkably,
f n remains a density even If K and/or h depend upon the data (but not upon
x). Nearly every desirable property of the histogram estimate IS shared by the
kernel estimate, so we won't have to bother too much with histogram estimates.

The derivative can be approximated In yet another way, by making the
radius of the ball depend upon x and the data:

I-L n (S (x ,Rk ))

f n (x ) = >'(S (x ,R
k

)) ,

where Rk Is the minimal value for which I-L n (S (x ,Rk ))=k /n. Thus, the ball
centered at x has radius equal to the distance between x and Its k -th nearest
neighbor In the data sequence. First Introduced by Fix and Hodges In 1951 (see
also Loftsgaarden and Quesenberry, 1965), this estimate Is called the nearest
neighbor estimate.

We have

k /n
f n (x) = >'(S (x ,R

k
))

I-L(S (x ,Rk ))

~ >'(S (x ,R
k

)) (k large)
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dJ-t k
~ - = f (x) (- small) .

d).. n

For good performance, we wlll once agaIn need to balance two contllctlng requIre­
ments: k should be large, but k In should be small. The key property of the
nearest neIghbor estImate Is that f f n =00, so that It Is Impossible to study Its
propertIes In L i. To see thIs for the case d =1, note that

k
f n (x)2: ' x >XCi) ,

n(x-XCk ))

where XCi» ... are the order statIstIcs. See figure 2.3 below.

Vertlcall1nes dra.wn at X (1) and X (1)

Area. under taU 15 00

Figure 2.3.

Nearest neighbor estimate with n =1o.k =4. Data points· are shown on axis.
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2.3. DIFFERENTIATION OF INTEGRALS.
In the study of the kernel estImate. we wll1 need to know about the proper­

tIes of the convolutIon (or smoothIng) operator *. For two functIons / .g In L l'

we have

/ *g (x) = J / (y)g (x -y ) dy = J 9 (y)/ (x -y ) dy

We begIn wIth

Theorem 2.1. Young's inequality.

If / .g EL l' then J I / *g I ::; J I / IJig I .

Proof of Theorem 2.1.

J I J / (y)g (x -y ) dy I dx ::; II I / (y) I I 9 (x -y ) I dy dx

= J I / (y) I Jig (x -y) I dx dy = J I / I Jig I .•

It Is also necessary to recall from real analysIs the followIng fact:

Theorem 2.2.

The contInuous densItIes wIth compact support form a dense subclass In the
class of all densItIes. In other words. for every €>O, and for every densIty / ,
there exists a contInuous densIty g. of compact support. such that
J I / -g I ::; €.

This theorem Is just a specIal case of a more general theorem whIch states
that the contInuous compact support functIons are dense In L l' The consistency
of density estImates can orten be obtaIned by first provIng the consIstency for a
dense subclass of nIce densItIes. and then InvokIng Theorem 2.2.
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Theorem 2.3.

Every kernel K with J K =l,J IK I <00 Is an approximate identity, I.e.
for every f EL l' we have

11mJ I f *K" - f I = 0 .
" !o

Proof of Theorem 2.3.

Assume first that the statement Is true for a dense subspace of functions g •
Then, for arbitrary f EL l'

J I f *K" - f I ~ J I f -g I * I K" I+J I f -g I+Jig *K" -g I
~ cJ IK I+l)J I f -g I +0 (1) .

The first term on the rlght-hand-slde of this expression can be made as small as
desired by choice of g , and the finiteness of J IK I . Thus, we need only prove

_ the L 1 convergence for a dense subclass, such as the class of continuous functions
with compact support.

Define

L = KI I I x I I 5,M

for some large constant M. Let A be {z : I I z -x I I ~M for some x E Support
(f ) }. Let us furthermore Introduce the modulus of continuity

w(g ,h ) = sup . I g (x -y )-g (x ) I
y .x : I I y I I 5,"

Then the following chain of Inequalities Is valid:

J I g*K,,-g I = J I g*K,,-g JK" I
~Jlg*L"-gJL,, I +Jlg IJIK"-L,, I +Jlg*(K,,-L,,)1

~ J Jig (x -y )-g (x ) I I L" (y) I dy dx + 2 J I K -L I
A

~ w(g ,Mh)JJ I L" (y) I dy dx + 2J IK -L I
A

~ w(g ,Mh )"(A )J I L I + 2J I K -L I
= 0 (1) + 2J IK -L I

and this can be made as small as desired by our choice of M. •
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2.4. CHARACTERISTIC FUNCTIONS.
It / and K are densitIes with characteristIc functIons </J and 'Ij; respectively,

then the convolution / *Kh has characteristic function 'lj;(th )</J(t). This observa­
tion allows us to deduce quite a bIt of InformatIon. For example, by the unIque­
ness of characteristic functions, we see that

J I / *Kh -/ I = 0 If and only If 'Ij;(th )</J(t) = </J(t) for all t .

But thIs Is In turn equivalent to the condItIon that for all t, eIther 'Ij;( th )=0 or
</J(t )=0. SInce </J(t );rf0 In a neIghborhood of the orIgIn, we need 'Ij;(th )=1 for
that same t -neighborhood. But 'Ij; can be one only at the origin. This forces h to
be zero. Thus, for any h ;rfo,

J I 1 *Kh -I I > 0 .

Parseval's Identity states that the Integrals of the squares of functions are
equal to the Integrals of the squares of the Fourier transforms (or characteristic
functions). Unfortunately, such a nice Identity does not exist between the L 1

norm of a function on the real line and the L 00 norm of the corresponding
Fourier transform. However, we have

Theorem 2.4.

Let / ,g be densities with characteristic functions </J and 'Ij;. Then

J I 1 -g I 2:: sup I </J( t )-'Ij;(t) I .
t

Proof of Theorem 2.4.

I </J(t)-'Ij;(t) I = IJeit:&/(x)dx-Jeit:&g(x)dx I
~ J I e it:& I I / (x}-g (x) I dx = J I / -g I .•

Consequently, using 'Ij; again for the characteristic function of our kernel K,
we have

J1/ *Kh-I I 2:: sup I </J(t) I 11-'Ij;(th) I .
t

From this, we can deduce that If hn Is a sequence of numbers for which

11m JI/*Kh.-1 1=0,
n--+oo
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then hn -+0. For If this were not the case, then there would exist a subsequence
n' along which hn,-+H E(O,oo] as n'-+oo. For t ;;-fo, we would then have

. {7/J(tH) (H <00) (continuity of '1/;)
n~~oo 'I/;(thn ,) = 0 (H=oo) (Riemann-Lebesgue)'

By the L 1-L 00 Inequal1ty, and the fact that ¢(t );;-fo In a neighborhood of the ori­
gin, we see that 11m liltJ I f *Kh ,-f I >0, which Is a contradiction.

n'-+oo "

2.5. INTEGRAL CONVERGENCE FROM POINTWISE CONVER­
GENCE.

The notion of pointwise convergence Is stronger than that of Integral conver­
gence. This provides us with yet another tool for establ1shlng the consistency of a
density estimate. Schefie (1947) first observed this Interesting fact:

Theorem 2.5. Scheffe's theorem.

If f n Is a sequence of densities (not estimates), and f n -+ f almost every­
where where f Is a density, then J I f n - f I -+0 as n -+00.

Proof of Theorem 2.5.

By the Lebesgue dominated convergence theorem,

Schefie's theorem Is not directly appl1cable to density estimates because the
sequence f n needs to be deterministic. The void Is filled by

Theorem 2.6. Glick's theorem (Glick, 1974).

If f n Is a sequence of density estimates converging almost everywhere to a
density In probablllty (or almost surely), then J I f n - f I -+0 In probablllty (or
almost surely).
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Proof of Theo"rem 2.5.

The "In probablllty" half Is proved by applyIng the Lebesgue domInated
convergence theorem (LDCT) twIce:

1 :::: (f -In )+ -+ 0 In probablllty, a.e.

Implies, by LDCT,

and thus, agaIn by LDCT,

E (j I 1 -In I) = JE (f - 1 n )+ -+ 0 .

The almost sure part follows by a double applIcation of Fublnl's theorem:

P (w:1 n x )';f 1 (x)) = 0 for almost all x (>..)
If and only If

{(w,x ):1 n (x)';f 1 (x)) has P X>" measure 0
If and only If

>..(x :1 n (x )';f 1 (x)) = 0 for almost all w(P).

Thus, for almost all w(P ), we have J lIn -I I -+0 by Theorem 2.4.•

PointwIse convergence at almost all poInts usually requires a theorem In the
spirit of the Lebesgue density theorem, stated here In a general form (see e.g.
Wheeden and Zygmund, 1977):
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Theo~em 2.7. The Lebesgue density theorem.

Let B be a subclass of the Borel sets wIth the property that

A(B o)
~~~ A(B) ::::; C < 00

for some constant C , where BoIs the smallest centered cube contaInIng B (see
figure 2.4 below). Then, at almost all x.

J
z +B_

11m ---------:--:-=---:---- = 0
n --+00 A(Bn )

as A(Bn )--+0, where B n EB for all n. For the same x ,

J f (y) dy
z+B_

These x are called Lebesgue points.

(0.0)

B

Figure 2.4.

Bois the smallest centered cube containing B
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Theorem 2.7 Is valid for shrInkIng balls and for shrInkIng centered hyper­
cubes. Note that the last statement In the Theorem Is equIvalent to f *gn -> f
a.e. where gn Is the unIform densIty on Bn • We need somethIng sImilar wIth gn

replaced by K h :

Theorem 2.8.
Let K be an Integrable functIon, satIsfyIng

JK = 1, IK I :s c < 00 ,K = 0 olf S (O,M) .

Then, for any densIty f ,
f *Kh -> f at almost all x

as h lo.

Proof of Theorem 2.8.

I f*Kh-f I = IJ(i (x-y)-f (x))Kh(y) dyl CfK=l)

:s J I f (x -y )- f (x) I IK h (y ) I dy

:s J If (x-y)-f (x) I ch-d dy
S(Q,Mh)

= ch -d 0 (A(S (o,Mh ))) = 0 (1) as h lO .•

The condItIons on K In Theorem 2.7 are too strong. SteIn (1970) has
poInted out that one only needs JK =1 and an Integrable radIal majorant:

J sup IK (y ) I dx < 00 .
lIyll~llzll

2.6. EXERCISES.

2.1. Construct a sequence of densItIes f n and another density f on [O,lJ having
the property that J I f n - f I ->0 as n ->00, yet 11m sup I f n - f I >0 for

n---+oo
all x.

2.2. ConsIder the nearest neIghbor estImate In R d wIth k =kn varying In such a
way that
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k
llm k = 00. llm - = 0 .

n -+00 n -+00 n

Show that 1" -+1 In probablllty for almost all x .

2.3. Construct a kernel K with f IK I <oo.fK =1, for which the conclusion of
Theorem 2.8 Is false.

2.4. Consider the kernel estimate with kernel satisfying the conditions of
Theorem 2.8. Assume that h =h" Is such that h -+0, nh d -+00 as n ->00.

Prove that lIn - 1 I ->0 In probablllty as n ->00 for almost all x. Con­
clude that f lIn - f I ->0 In probablllty for all densities 1 . Hint: note that
E (f n )=1 *Kh , and use an appropriate probablllty Inequallty for

lIn -E (f n) I .
2.5. There Is no converse to the Inequallty of Theorem 2.4. Construct densities

f ,I l' ... , f n ,••. with characteristic functions <P'<P1' ... , <P n •••• such that

sup I<p(t}-<pn(t) I
llm t = 0 .

n -+00 f I f -1n I



Chapter Three
CONSISTENCY OF THE KERNEL ESTIMATE

3.1. THE EQUIVALENCE THEOREM.
The object of thIs chapter Is to Illustrate varIous technIques for provIng the

consIstency In L 1 of nonparametrlc estImates. We take as our maIn example the
kernel estImate, because most of the problems encountered In practIce can be
Illustrated clearly and sImply.

The maIn result states that the kernel estimate Is eIther consIstent· (In whIch
case It converges In the strongest possIble sense for all f ) or not consIstent (In
whIch case It does not converge In any standard sense for one sIngle f ). There Is
no "Inbetween" .

Theorem 3.1. (Devroye, 19S3)
Let f n be the kernel estImate wIth arbItrary densIty-kernel K, and let the

smoothIng factor h depend upon n only. Then the followIng statements are
equIvalent:

A. J I f n - f I -+0 In probability for some f .
B. J I f n - f I -+0 In probability for all f .
c. J I f n - f I -+0 almost surely for all f .
D. For every €>O, there exIst r ,n 0>0 (wIth r Independent of f ,K) such that

P (j I f n - f I > €) :s e -Tn ,n ~no' all f .

E. 11m h = 0, 11m nh d = 00 .
n -+00 n-+oo

(E) Implies (D) even If we allow negatIve-valued kernels, as long as
J IK I <00 , JK =1. But (A) does not generally Imply (E) for these kernels.
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We· wlll take most of this chapter to prove this. Readers who are only
Interested In weak convergence are referred to a very short proof of weak conver­
gence alluded to In exercise 2.4. Since (C) => (B) => (A), and since (D) =>
(C) by the Borel-Cantelll lemma, It suIDces to prove (A) => (E), and (E) =>
(D). At the end of the chapter, we wlll extend Theorem 3.1 to the kernel estimate
with data-dependent smoothing factor.

3.2. SIMPLE SPLITS INTO BIAS AND VARIATION.
The following trivial Inequalities wlll be needed throughout:

(the first term Is called the bias, and the second term Is called the variation; we
also used the fact that 1n =J.'n *Kh ),

E (J lin -1 I) ~ J I1*Kh - 1 I
(by Jensen's Inequality, and the fact that E (f n )=1 *Kh ), and

E cJ lin -1 I) ~ ~E cJ I J.'n *Kh - 1 *Kh I)·

The last Inequality follows from

E cJ I J.'n *Kh - 1 *Kh I) ~ J I 1 *Kh - 1 I + E cJ lin -I I) ~ 2E ( lin -1 I)
where we used the previous Inequality. We first conclude that E Cf lin -1 I)
tends to zero If and only If the bias term and the expected value of the variation
term tend to zero.

We can also obtain the first half of (A) => (E): Indeed, If (A) holds, then

E cJ lin -1 I )->0 for some 1 (since J lin -1 I ~2). Hence,
J I1 *Kh - 1 I ->0. By a corollary of Theorem 2.4, h ->0 as n ->00.

3.3. A LARGE DEVIATION INEQUALITY FOR THE MULTINO­
MIAL DISTRmUTION.

When K has compact support, It Is easily seen that the behavior of 1n (x)
Is nearly Independent of the behavior of 1n (y ) If x and yare further than ch
apart for some constant c . Thus, the Integral criterion J lin -1 I sums very
many nearly Independent random variables, which Is why we can expect to
obtain some Inequality like (D). One of the obstacles we have to deal with Is the
dependence due to the fact that the total sample size Is n ; this dependence Is of
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a multinomial nature. The tool needed In our proof Is

Theorem 3.2. A multinomial distribution inequality.
Let N 11 ••. ,Nk be a multinomial random vector with parameters

n ,p l' ... , Pk' Then
k N-

P( L; 1_'-Pi I ~ €) ~ 2k+le-nf2/2, all €>O.
i=1 n

Proof of Theorem 3.2.
By Scheffe's theorem,

k N-
.L; '-;--Pi
'=1

I = 2 sup I N (A ) -P (A ) ,
A n

where A ={all 2k possible sets of Integers from l,...• k }, and N (A ) Is the cardi­
nalIty of A. By Bonferronl's Inequality and Hoeffdlng's InequalIty (Hoe1Tdlng,
lQ63).

3.4. PROOF OF (E) => (D),

Theorem 2.4 states that J I f *Kh - f I -+0 when h -+0 and K Is merely
absolutelY Integrable with Integral equal to one. Thus, It suffices to prove (D) for
the variation only. This will be done In three steps, first for K =cdR where a Is
a constant and R Is a rectangle, then for nonnegative K, and finally for abso­
lutely Integrable K .

For K =aIR ' It helps to consider the partition II of the space Into hyper­
cubes of sides h / N • as shown below In figure 3.1.
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Figure 3.1.

Partition II

We have

hlN

hlN
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J IlJn *Kh - f *Kh I = Ia IJ IlJn (x +hR )-IJ(X +hR ) I h -d dx .

Also, If we define SheUz as x +hR minus the union of aU sets B EII for which
B C;;x +hR ,then Shellz C;;x +h (R -R*). Thus,

IlJ n (x +hR )-IJ(x +hR ) I < L: IlJn (B )-IJ(B ) I + (1J+lJn )(Shellz )
BEll, B<;;'z+hR

< L: IIJ(I (B )-IJ(B) I + (1J+lJn )(x +h (R -R *» .
BEll, B <;;'z +hR

Collecting this yields

J IlJn *Kh - f *Kh I
< I a I h -d J( L: IlJn (B )-j.t(B ) I + (j.t+lJn )(x +h (R -R *» Jdx

BEll, B<;;'z+hR
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< la/h-d (~IJ1.n'(B)-J1.(B)! J dx +2A(h(R-R*)))
BEll B ~z +hR

(Young's Inequality)

$ I a I A(R ) ~ I J1.n (B )-J1.(B ) I + 2 I a I A(R -R *), (Young's Inequality)
BEll

Let us take the last Inequality as our starting point. For 8>0, and any density
K , we can find a kernel L of the form

No
L = E ajIRi

j=l

with the property that

J IK-L I < 8,

where No Is a constant, the aj 's are constants not exceeding some number M In
absolute value, and the R j 's are disjoint finite rectangles. Note that L =0 out­
side some hypercube [-H ,Hl d • A standard triangular Inequality yields

J I J1. n *Kh - 1 *Kh I $

flJ1.n*L h-I*Lh I + fJ1. n * IKh-Lh / +JI* /Kh-Lh I
No

< E Iaj I h -d f I J1. n (x +hR j )-J1.(x +hR j ) I dx + 2 8 (Young's Inequality)
j=l

The third term on the rlght-hand-slde can be made smaller than 8 by choosing N
large enough (each R*j tends to Rj as N -->00). The coefficient of the first term

on the rlght-hand-slde Is equal to f IL I $1+8. Thus, we have shown so far that
for every 8>0, we can find N large enough such that

f I J1. n *Kh - 1 *Kh I $ 3 8 + (H8) E I J1.(B )-J1.n (B) I
BEll

$ 5 8 + E I J1.(B )-J1.n (B) I '
BEll

N depends upon 8 and K only, and II depends upon h / N. We are almost In a
position now to utilize the multinomial Inequality of Theorem 3.2, were It not',for
the fact that the partition II Is Infinite. Thus, It Is necessary to "cut oft''' the tails
of the distribution. To do this, consider the partition II, and a finite partition
lIT' consisting of those sets of II that have a nonempty Intersection with [-r ,r ld ,
where r >0 Is a constant to be picked further on. Let II*T be lIT U[-r ,r ld c .
See figure 3.2 below.
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-- - ---- - ,-

Figure 3.2.

Partitions II,II. '

The cardlnallty of IIr Is at most

( 2~+2r= 0 (n) ,

35

To take care of the talis, we argue as follows: let T stand for the tall set, I.e. the
complement of [-r ,r 1d. Then

:E I JL{B )-JLn (B) I :::; :E I JL(B )-JLn (B) I + JL(T) + JL n (T)
BErr BErr,

:::; :E I JL(B )-JLn (B) I + 2 JL(T) + IJL(T )-JLn (T) I
BErr,

< :E IJL(B )-JLn (B) I + 2 JL(T) .
B Err*,

Now, 2 JL(T) can be made smaller than fJ by choice of r. Recapitulating, this
gives the Inequallty
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I I P.n *K" -I *K" I s: 6 8 + :E I p.(B )-p.n (B) I
B EII*,

where r depends upon 8,1 , and N depends upon 8,K. By the multInomIal Ine-
qUalIty of Theorem 3.2, for €>6 8, and pE(D,l), .

p(J I P.n *K" -I *K" I > €) s: p( :E I p.(B )-p.n (B) I > €-68)
B EII*,

-.!..n (£-68)'s: 22+(2+2rN I" l' e 2

-(l-P)~s: e 2, n ~ no(p,€,K,f ,{h}) .

ThIs concludes the proof of (E) => (D) for nonnegatIve K. Note that the Ine­
quality can be forced to hold for all n.h wIth

l6+4d+1

n > ,
p€2

nh d > 4 2d (2rN )d

p€2

If we pIck

If K can take negative values but Is absolutely Integrable with Integral one,
we have

IlL I s:IIIL I-IK II +IIK I
s: I IL-K I + I IK I < 8 + I IK I

This yields the Inequality

I I P.n *K" - I *K" I s: 6 8 + I IK I :E I p.(B )-p.n (B) I
B EII*,

We can thus conclude that for every €>D, pE(D,l), there exists an
no(€.p,K ,I ,{h }), such that

~ n~

p(I IP.n *K" -I *K" I > €) s: e -{1-pl-2- • n ~ no'
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3.5. PROOF OF (A) => (E).
The necessity of the condition h --+0 was already established above, so we

need only be concerned with the condition nh d --+00.

Observe first that

f I f n - f I --+0 In probability

=>

=>

Also,

E (j II-'n *Kh - f *Kh I) 2:: E (f II-'n *Lh - f *Lh I) - 2 f I K -L I '
where L Is a function close to K , defined by

L = mln( I K I,M)slgn(K) ,

f mln( IK I ,M )slgn(K )

I.e., L Is equal to K, truncated at ±M. This Inequality Is obtained by applying
Young's Inequality twice:

Ifll-'n*Kh-f*Kh l-fll-'n*Lh-f*Lh II
~ f I-'n * IKh-Lh I + f f * IK h-Lh I = 2 f I K -L I

We wl11 assume that K has compact support, vanishing off T = [-C /2,C /2]d .
This Is used In

E (j II-'n *Lh - f *Lh I) 2:: f I f *Lh I P (x +hT Is empty) dx

= f If *Lh I (1-I-'(x+hT)? dx .

By Theorem 2.8, f *Lh --+ f almost everyWhere as h --+0 (since L has compact
support, Is bounded, and Integrates to one). Thus, as h --+0,

I-'(x +hT )~(h.C)d f (x) almost everywhere. By Fatou's lemma and the standard
z

Inequality I-X 2:: e 1-Z, valid for O~x <1, we have, If h --+0 as n --+00,

-lim sup nl'(z+hT)
11m Inf E (j II-'n *Lh - f *Lh I) 2:: f f e l-I'(Z +hT)

Assume that along a subsequence, nh d --+8 E [0,00). Then h --+0. The previous
Inequality can be applied to this subsequence In which case the rlght-hand-slde
should be replaced by
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This shows that
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2 J IK -L I ~ Jf e -80' f .

But because M was arbitrary and In! 2 J IK -L I = 0, we conclude that
M

Jf e -80' f = o.

This can only be the case If 8 =00, which Is a contradiction. The proof Is com­
plete If we can extend It to the case of kernels with unbounded support. See exer­
cise 3.2.

3.6. DATA-BASED SMOOTIDNG.
Assume that the smoothing factor h Is a Borel measurable function of the

data. We will write H Instead of h to stress the fact that the smoothing factor Is
a random variable. The main result of this section Is

Theorem 3.3.

Let K be an arbitrary density, and assume that

H -0 In probability (almost surely, completely),

nH d _00 In probability (almost surely, completely).

Then J I f n - f I-0 In probability (almost surely, completely).

The proof Is based upon the fact that small changes In h do not alIect the
estimate very much. This Is captured In two simple lemmas:

Lemma 3.1.

For any density K,
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Proof of Lemma 3.1.

When K Is continuous, K h -+K 1 for all x. Hence, f IK h -K 11-+0 by
Sche1Ie's theorem. For arbitrary K,

f IK h-K 1 I :::; f IK h-Lh I + f I Lh-L 1 I + f I L c K 1 I
= 2 f I K -L I + f I Lh -L 1 I '

where L Is a continuous density. The last term Is 0 (1) because L Is continuous.
The flrst term can be made arbitrarily small because the continuous densities are
dense In the space of all densities.•

Lemma 3.2.

Let I nh be the kernel estimate with kernel K (K Is a densIty), and wIth
smoothing factor h . Then

fl/nh-lnh,1 :::;¢J(h'~h),h'>h,

where
.0.

¢J(b) = sup f IK u -K I
1-6:5 u :51+6

Proof of Lemma 3.2.

Lemmas 3.1 and 3.2 together show that small fluctuations In h have small
e1Iects on I nh . With this observation, we can establish a uniform Inequality In
the spirit of (D) of Theorem 3.1:
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Lemma 3.3. The key inequality.
Let Hn =[h' n ,h"n] be a sequence of deterministic Intervals, where h" n -0

and nh,d _00 as n -00. For every e>O, there exist no>O and r >0 such that

p( sup J I f nh - f I > e) S e -rn f' , n ~ no'
hEH.

The Inequallty states that after seeing the data, and knowing f , and choos­
Ing the worst h In a certain set Hn In function of this knowledge, the kernel esti­
mate remains almost surely consistent In the L 1 sense.

Proof of Lemma 3.3'.

The proof Is based upon a reduction of the supremum over an uncountable
set to a supremum over a finite set. The Interval Hn Is partitioned as shown In
figure 3.3.

• 0 ., .. .3 ..

Figure 3.3.

Partition of Hn =[h' n ,h" n J=[hn o,hnn ] into n intervals.

The Interval sizes In the partition grow geometrically, and the boundaries
are defined by

where

h" n
=--=

h' n



h
¢>(-h-.--1) (Lemma 3.2)

n '-1
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Observe t~at 8n -+0. For 1:S i :s n , we have

sup J I1 h - 1 h I < suph. i_l:$;h :$;h.. n n •• -1 - h. i-\:$;h :$;h..
. h·:s ¢>(~-1) = ¢>(8nJ (definition of ¢> and 8n )

n .-1

< E for all n large enough, since 8n -+0 .
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Thus, we have

hS¥R. J II nh -I I :s 1~1~n (J I 1 nh. ,_1-1 I + h. i_ls~f9 •• J II nh -I nh. i-I I )

:s <s~p< J II nh••_1-1 I + E (all n 2':n 1)·l_,_n

By Bonferronl's InequalIty,

p(hs¥R.Jl/nh-1 I >2E):Si~/(Jl/nh'i_I-1 I >E)

~ 1-p n ,2

:s n e 2

when n 2': n l' n 2': C l' nh' n d 2': C 2 and h" n :s c 3 for some positive constants Cj

obtained In the proof of Theorem 3.1 In the previous section. The constant
pE(O,l) Is picked by the user and afiects these constants. Thus, there exists a con­
stant n Q such that the rlght-hand-slde of the last chain of lnequalltles does not
exceed

_1-2p n ,2

e 2 ,n2':n Q •

This concludes the proof of Lemma 3.3.•

Proof of Theorem 3.3.

First observe that

I(h+(nh'rl~'J -+ 0 completely

lmplles

There exists an E' n Lo
for which I(h+(nh'r'~".l -+ 0 completely.

Choose Hn =[h' n ,h" n 1where

h" n = En ,h'n = (n En t 1/ d , En = maX(E' n , n -l/(d +1)) .
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Verify the following statements:

A. h" n --+0.

B. nh' n d =l/€n --+00.

C. IIIl +(nll' r'2E.J --+ 0 completely.

D. h' n :5:.h" n (because (n €n t 1 :5:.€n d).

E. III ~H. --+0 completely.

Statement (E) follows from (C) and

I III +(nk' r'2E. J = +(I [Il +(nll d rl2k". J + I [k +(nll' r I 2(nk'. d rll )

~ +(I[k 21l".J + I[k 9,.1) = +I[llltH.J .

From (E) and Lemma 3.3, we have

1[/1/._1 1><1 :5:. I[1l 9'.1 + \~Jl. J 1/010-1 I ><J --+ 0 completely.

Note that we can replace the word "completely" In the proof by .. almost surely"
or "In probablllty".•

3.7. EXERCISES.
3.1. Consider a histogram estimate on the real llne defined by the partItIon

[ih ,(i +l)h), for i = ... ,-2,-1,0,1,2, .... Here h plays the role of a smoothing
factor. In the notation of Theorem 3.1, prove that (E) => (D).

3.2. Extend the proof of (A) => (E) In Theorem 3.1 to cover the case of kernels
with unbounded support.



Chapter Four
ROBUSTNESS

4.1. DEFINITION.
An estimator Is robust If small changes In the underlying distribution Induce

small changes In the estimator. In other words, the estimator Is not hypersensi­
tive to the dlstrlbutlon. One possible definition of robustness, adapted from
Bickel (1976), states that a density estimate f n Is robust at f If

{

SUP Eg J I gn -g I }
sup gES(f ,f) < C < 00

n~l,f>O E+EfJlfn-f I -

for some constant C. Here S (f ,E) Is the L 1 ball of radius E centered at f . The
notation Ef denotes the expected value with respect to a sample of size n drawn
from f. The function gn Is Identical to f n' but the distinction Is made to
stress the fact gn uses data drawn from g .
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Figure 4.1a.

Crude illustration of size of region in which 9n

Is ii.!iowed to fall.

Figure 4.1h.

Crude illustration of size of region in which 9n

is ailowed to fall.

In figure 4.1, we roughly Illustrate what this means. Being a bit sloppy In
our statement, we might say that gn should be In a ball centered at 9 of radius

not exceeding C (j I f -g I + f I f n - f I). When 9 Is very close to f , the
second term dominates, While for 9 far away from f , the f I f -g I term dom­
Inates. C could be called a coeIDclent of elasticity, as It refiects how a sudden
move of size f I f -g I can Infiuence a move of the estimate, which Is of size

f I f n -gn I·
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4.2. AN EXAMPLE: A PARAMETRIC ESTIMATE.
To Illustrate the definition of robustness given In the previous section (which

Is by no means the only possible definltlon). consider the exponential density
f (x) = e -x ,x' >0. The estimator f n Is the standard parametric estimator.
I.e. It Is an exponential density with parameter equal to the sample mean

1 n
-EXi ·
ni=l

Consider a density g ES (f .€) constructed as follows:

g = (1-~) f + ~ 'if;M
2 2

where 'if;M Is a spike uniform density functlon of height M and width 1/M with

support on [M ,M+1/M]. Note that Indeed, Jig -f 1:S €.

10 20 30 40 50

Figure 4.2.

Mixture g =0.95 e -x +0.05 'if;so where 'if;so is the uniform density on

[50.50.02]
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Clearly, gn Is exponentIal wIth parameter at least equal to M In If one of the
Xi 's Is drawn from the 'if;M part of the mIxture. Thus, .

sup Eg J I gn -g I 2: 2 P (Blnomlal(n ,~) > 0)
g ESC! ,f) 2

= 2 (l-(l-f)n ) -+ 2 as n -+00 .

By the weak law of large numbers, we know that the sample mean converges In
probability to one. Therefore, by continuity of the exponential density, f n tends
to f In probabIlIty at all x, and thus Er J I f n- f I -+0 by Glick's theorem.
This Implies that

Therefore, the estimator Is not robust.

4.3. THE KERNEL ESTIMATE.
The kernel estimate Is robust at all f , and for all choices of hand K. In

fact, we will prove the following Inequality:

Theorem 4.1.

Let f n be the kernel estImate with absolutely Integrable kernel
arbitrary smoothing parameter h >0. Then, for all n 2:1,0>0 and f ,

sup Eg J I gn -g I
~g-=-ES....:(.:....r.:.....f):..- :S 1+J IK I .

o+ErJlfn-f I

K, and

Proof of Theorem 4.1.

The numerator of the left-hand-slde In the Inequality Is bounded from above
by In the usual manner:

Eg J I gn -g I
:SErJlfn-f I +JIf-g I +Er,g!lfn-gn I
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:::; E f J I1n - 1 I + € + E f ,g J I1n -gn I .
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Note that the expected value E f ,g Is with respect to two samples. Nothing keeps
us however from making these samples depend upon each other. In fact, we wlll
show that there exists a probablllty space (an embedding) such that

E f ,g J I 1n -gn I :::; J IK I J I 1 -g I :::; € J I K I (since g ES (j ,E)) .

Once we have shown that, we have

sup Eg J I gn -g I
g ES (f ,f) < 1 J I I.::.....::.--'-'---'--'------ _ 1 + - sup E f ,g gn -1 n

€ + Ef J I1n - 1 I € g ES (f ,f)

This would then conclude the proof of the Theorem.•

The embedding device.

The object here Is to construct two dependent samples of size n each, one
drawn from 1 , and one drawn from g , such that

E f ,g J I 1n -gn I :::; J I 1 -g I J IK I .
Observe that there Is no hope of obtaining this with two Independent samples,
for as h --+0, the L 1 distance between 1nand gn tends to 2 almost surely. The
construction of the samples can be done as follows (see Devroye, 1985): define

6. = ~ J I 1 -g I
2

Then define the following densities:

mln(j ,g)
1 min = 1-6.

1 0 = 1 -mln(j ,g)
6.

g -mln(j ,g)
go = 6.
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1-<:>

Figure 4.3.
f and g are shown. Samples are drawn from densities proportional to
(f -g )+.(g - f )+ and mln(j ,g).

Four Independent samples ot lid random vectors are considered:

U v ... , Un ~ f min

VI' ... , Vn ~ f 0

W v ···, Wn ~ go

Z l' ... , Zn ~ BernouIll (A).

Then, define

Xi = X'i = Ui It Zi = 0,

Xi Vi ,X' j = W j It Zi = 1 , 1~ i ~ n

We claim that

(Xv· .. ,Xn )

Is an lid sample drawn trom f , and that

(X'1> ... , .r n )
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Is an lid sample drawn from g • This Is based upon the mixture decomposition

f = (1-~)f min + ~f 0 .

49

What matters Is that the Xi's and the X'i 's agree except In N components,
where N Is binomial (n ,~). Let E be the expected value with respect to the
probability measure defined above. Then

1

1 n 1 n IEJlfn-gn I =EJ -;i~lKh(X-Xi)--;i~lKh(X-X';) dx

:::; E J I~ i~lKh (x - Vi) Idx + E J I~ i~lKh (x - Wi) Idx

:::; E( 2:) J I K I = J I f -g I J IK I .•

4.4. APPLICATION: BERAN'S ROBUST PARAMETRIC ESTI­
MATES.

Robust nonparametrlc estimates such as the kernel estimate can be used to
define robust parametric estimates. In this section, we follow a suggestion of
Beran (1977). Let 0 be a parameter and let F = {j 0;OE6} be a family of densi­
ties parametrized by O. For example, 0 can be thought of as the vector (Jt,(]2)
defining the location and scale of a normal family. If f n Is a suitable non­
parametric estimate of 1 , then It Is possible to estimate 0 by On where On Is the
solution of the following optimization problem:

H 2(f 0 ./ n ) = Inf H 2(f 0./ n ) .
• OEe

In our L 1 setting, we could define On by the optimization problem

L l(f 0 ,1 n ) = Inf L l(f 0./ n ) .
• OEe

In other words, 1 O. Is closest to 1n In F.

Theorem 4.2.

The L 1 version of Beran's estimate Is robust at all OE6, provided that It Is
based upon an estimator 1n that Is robust at all f .
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Proof of Theorem 4.2.

Let f = f 8 for some 8Ee. Then

sup E g J I f 8, -g I ~ sup (Eg J I f 8, -gn + E g Jig -gn I )
g ES(f .f) g ES(f ,f)

The last term In the Inequality does not exceed C (€+Ef I f n - f I) If f n Is
robust at f , and has robustness constant C (see definition of robustness). The
term In front of It Is bounded easily:

E g J I f 8, -gn I ~ E g J I gn -g I + I~f J I f rrg I ~ E g J I gn -g I + € .

Therefore,

sup EgJ If 8,-g I ~ 2C(€+Ef I fn-f I) + €
g ES (f ,f)

~ (2C+l)(€+Ef I fn-f I) .•

4.5. EXERCISES.
4.1. Prove or disprove: the histogram estimate based upon the partition

[ih ,(i +1)h ), for i =0,±I,±2,... and fixed h Is robust at all f .
4.2. Let Mn be the median of (X v ... , Xn ), a sample of lid random variables

drawn from some density. Let f be the normal (0,1) density, and let f n be
the normal (Mn ,I) density. Is f n robust at f ? Prove or disprove.

4.3. Consider a kernel estimate with kernel K and data-based smoothing factor
h . Verity the robustness, at all f ,of this estimate when

(I) h Is a function of n times the dl1Terence between the n /3 and 2n /3
quantlles In the data.

(II) h Is a constant (depending upon n only) times the standard sample
based estimate of the standard deviation (I.e. h 2=(c /n ):E(X.. -ji)2

where p Is the sample average).

4.4. Show that Beran's estimate f 8, of section 4.4 Is consistent for all f EF

when In the definition of his estimate, one uses a consistent estimate f n •



Chapter Five

MINIMAX BOUNDS

5.1. MINIMAX THEORY.

Minimax theory Is concerned with the quantity

m (n ,F) = Inf sup E cJ I f n - f I),
!. ! EF

where F Is a suitable class of densities and f n Is any estimator based upon an lid
sample of size n drawn from f .

Lower bounds for m (n ,F) are very Important, because they tell us about
the minimal expected error committed by any density estimate on at least one
member of F. They could for example be used to determine whether a certain
sample size n suffices to obtain a given expected error with some estimate, for
the class of densities under Investigation. In this chapter, we will exclusively deal
with lower bounds. Wherever possible, we will also be concerned with the values
of the constants In the lower bounds.

Ideally, one would like to know m (n ,F) exactly, but this Is orten difficult to
compute. There are methods for determining upper bounds without actually con­
structing estimators. In chapter 6, a straightforward constructive method Is
developed. For large classes F, good upper bounds can also be obtained by
analyzing the performance of one of the popular nonparametrlc estimates (see e.g.
chapter 7 on the kernel estimate). The real Issue of course Is the construction of a
minimax-optimal estimate f n ' I.e. an estimate for which

sup E cJ I f n - f I) ~ C m (n ,F)
! EF

for some universal constant C.

Here Is a partial list of some possible classes F:
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L 1 all densities .

Me all monotone densities on [O.lJ
bounded by B

B, all densities on [0.1] bounded by
c

U all unimodal densities with a
mode at 0

LC all log-concave densities with a
mode at 0

W(& .a.C) all densities on [0.1] with &-1
absolutely continuous deriva­
tives and
f (o)(x}-f (O)(y) SCi x-y I a

NS all normal scale mixtures

N all normal densities with mode
at 0

A word of warning. Designing estimates for good minimax performance over
a set F could have negative side-effects. As we will see, the estimates may not
always be consistent for f ~F, or the rate of convergence for certain f In F
could be Inferior compared to that of other estimates. One common complaint Is
that m (n ,F) has llttle or no Information about m (n ,G) for small classes of den­
sities G properly contaIned In F.

We wlll llIustrate three techniques for obtaining lower bounds:

A. The "low-probablllty method". ThIs method Is based upon Devroye (1983).

B. Information-theoretIc methods based upon the work of Assouad (1983), Bre­
tagnoIle, Huber (1979) and Blrge(1986). These make use of the H 2 distance
or the KuIlback-Leibler numbers.

C. Methods based upon reductions to sufficIent statistics.



5. MINIMAX BOUNDS 53

5.2. THE LOW-PROBABILITY METHOD.
The first technIque Is appUcable when F Is a rIch famlly of densItIes. One

first partItIons the space R d Into very many sets Ai' and assIgns a probablllty
Pi to each set Ai In the partItIon, where :BPi =1. On Ai ' we define two nonne­

i
gatlve functIons gi ,hi such that

Jgi = Jhi = Pi'

J I gi -hi I = 2Pi .

These condItIons force gi ,hi to be dIsjoInt. Next, define a subclass parametrIzed
by

(bInary expansIon)

wIth as a typIcal member

{

g,.(X) , xEAi ' 0i = 1

f o(x) = hi (x), x EAi ' 0i = °.
In other words, the bIt 0i Is used to choose between gi and hi on Ai' We
requIre of course that {f o} be a subclass of F. Usually, thIs can only be done
when F Is exceptIonally vast. Three examples follow.

Theorem 5.l.
If F Is a class contaInIng a subclass of the type described above (for any pro­

bablllty vector (p l'P 2""))' then

Inf sup E (j I f n - f I) ~ 1 .
f. f EF

Proof of Theorem 5.l.

The proof uses the followIng constructIon: conslder n lid random varIables
drawn from each of the densItIes gi Ipi' hi Ipi' and let all samples be Indepen­
dent. ConsIder furthermore three other Independent random varIables or vectors,
e, (alJ ... , an), and (N 1,N2'''')' where e Is unIformly dIstrIbuted on [0,1],
(al , ... , an) Is a unIform random permutatIon of (l, ... ,n), and (N 1'N 2"") Is
mUltinomially dIstrIbuted wIth parameters (n;p l'P 2"")' Define (X lJ ... , X n )

as (Y ut' ... , Y u.) (a random permutatIon of the Yi 's) where the Y.. 's contaIn

the first k random varIables of the gi Ipi sequence If N i =k and e i =1, and the
first k random varIables of the hi Ipi sequence If N i =k and e i =0. Observe
that the Xi'S form an lid sample drawn from f e (gIven e). Furthermore, on
N i =0, e i and X!" .. ,Xn are condItIonally Independent. We argue as follows:
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sup E (j I I n - I I)
f EF

~ S~p E (j I In -Ie I) (subclass of F)

~ E (j I In -I 6 I) (randomization)

=E(~1.{l/n-gi 1 16,=1+ lIn-hi I 16,=o})
~E(~I[Ni=oJ1.{l/n-gi 116,=1+ lIn-hi I 16i =o})

~ E[ ~IIN,~. ~ f{ If. -g; I + If. -h; I }1
(conditional Independence)

~ E(~?[Ni=OJ ~ J I gi-hi I )
I A,

= .!.. :L;(2p. )(l-p· )n
2 i I I

= :L;Pi (I-Pi )n

The proof Is complete If we can show that

sup :L;Pi (I-pi)n = P .
p l,P", .. ·:P, ~O.EPi =P i

This Is most easily seen by taking Pi =P / M for 1::; i ::;M. Then

i~/;(l-pd = (1- itr-+ 1as M -+00 .•

5.3. EXAMPLES OF RICH CLASSES.

F=B 2 : the class of all densities on [0,1] bounded by 2.

It should be clear that the subclass condition of Theorem 5.1 Is applicable to
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Figure 5.1.

A partition for B 2'
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It suIDces to take all the gi's and hi's equal to 2IA for some set A ; for gi '
A Is the leftmost half of Ai ' and for hi , It Is the rIghtmost half of Ai .

F consists of all densities with infinitely many absolutely continuous
derivatives, and I f (s) I < Cs for s =o,1,2,....

Not all arbItrary sequences of constants Cs are possIble. We just assume
that the constants are such that the class has at least one compact support
member go' In the constructIon of a subclass for Theorem 5.1, we let all gi's and
hi's be translates of go' settIng

gi (x-ci) = Pi go(X) ,
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for some constants Ci ,di . See figure 5.2 below.
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A,

Figure 5.2.

Subclass of F.

Note that every J 8 Is In F because

gi (8 l(x -Ci ) = Pi 9 0(8 l(x) .

A 3
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F consists of all monotone densities on [0,00) that are bounded by l.

The lower bound of Theorem 5.1 Is valid for this case too, but the proof
needs some fine-tuning. Consider a set A 1=[0,1], and an arbitrary number Pl'
On A l' define densities 9 and h as follows:

h (x) = 1 ,

{
-t-H8 (O::;x ::;8)

9 (x) = 8 (8<x ::;1) .

10

Dis 0.1 In this example.

4

--------------------------------,
I

oL----b======================l

Figure 5.3.

Fundamental building block for f 8'

Observe that I I 9 -h I = 2I(h -g)+ = 2(1-8)2 2: 2(1-20). Partition [0,00)
Into adjacent Intervals, and define gj ,hj on each Interval as Pj times a properly
translated and rescaled version of 9 ,h . The translation Is necessary because the
Intervals are nonoverlapplng, and the rescaling Is necessary to make the density
monotone. We can assume without loss of generality that P12:P 22:P 32: .
On every A j , the functions gj ,h j are relatively positioned as In figure 5.3. See
figure 5.4.
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0.7

0.6

0.5>---- ----,

0.4

0.3

0.2

0.1

-------------1
I
I
I

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 5.4.

Partition of real line, showing g l'g 2.h ph 2 for P I=P 2=0.5.

For monotonlclty. one should make sure that If li Is the length of the i -th Inter­
val Ai' then

1 ~+1 ~ .
(--1+8)-- = 8- . all z .

8 li+l li

From this equation, and ll=l, the lengths of the Intervals can be determined In
a recursive manner. The lower bound In the proof of Theorem 5.1 should be
replaced by

~Pi (I-Pi )n (1-28) ,
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which can, be made arbltrarlly close to 1 by choice of the Pi's and 8. In other
words, Theorem 5.1 remains valld.

We conclude from this partial llst of very rich classes F that no rate of con­
vergence results are possible under tall conditions alone (see first example). under
smoothness conditions alone (see second example). and under monotonlclty condi­
tions alone (see third example). It Is not dlIDcult to see that the third example
can be modified so that smoothness and monotonlclty conditions alone again do
not suIDce to get minimax errors converging to zero. The same Is true under any
combination of tall conditions and monotonlclty conditions (by playing on the
Infinite peak at the origin). In all cases, the culprit for

m (n ,F) 2: 1

Is the fact that the space Is so big that we can construct enough virtually non­
overlapping densities that can be combined In a convex manner to create a gigan­
tic subclass of F. In other words, the "slze" of the space of densities should be
llmlted In some sense.

5.4. INFORMATION-THEORETIC METHODS.
We begin with
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Theorem 5.2. Assouad's theorem.

Let r::::l be an Integer, and let F contaIn all I o's where 0=0.8182 , .. 8T

can take 2 T possIble values. If ~i agrees wIth 8 except In the i -th bIt, If
d •

A G,A v ... ,AT Is a partItIon of R ,and If

Jvr;r;; :::: j3 > 0 (for all 8 ),

J I le-I f; I :::: a > 0 (for all 8 ),
A;

then

Ir2a (I-V2-2j3n )

I):::: r a_ j32n
4

Another lower bound Is ..!..r a(I-V2n (I-P)).
2

Proof of Theorem 5.2.

s~p E Cf I In - I 01 ) :::: E (J I I n -I e I )

(6 Is unIform over Its 2 T possIble values)

= 2-T ~JJ I In (x ,xn}-I e(x) I dx II! O(Xj) dXn
o

T

=2-T~J ~ J I/n(x,xn}-!O(X)! dx ITlo(xj)dx n
o i=1 A;

. T 1 {= 2-
T
~J .~ "2 J I I n (x 'X n )- I O;+(X) I dx ITI O;)Xj)
o .=1 A;

+ JI!n(x,xn)-lejx)1 dx ITI ejXj )} dXn
A,

(8i -{i+) agrees wIth 8 subject to 8i =0(1))

T a
:::: 2-

T ~J .~ "2mln (ITI O;)Xj) , III ejXj )) d x n
o 1=1

:::: r
2
a Iff J mIn (III ojXj) , ITI ojXj)) dXn .
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The last Integral can be bounded from below by

+(IJII! 8i +(Xj )II! 8jXj) d Xn r
= +(ITJJf 8i )Xj) t ejXj) dXj r

> !-(pn .
- 2

The Integral can also be bounded as follows from below:

1- ~ L 1 (ITt 8i+(Xj ) , ITt ejXj)) ~ 1-H 2 (ITt 8i )Xj) , ITt ejXj ))

= 1-J2-2JJITf 8i+(Xj) ,ITt ejXj) dX n

~ 1--!2-2(3n .•
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Assouad's theorem tells us that we should find a subclass of 2 r densities,
which can be pictured as sitting at the vertices of a cube In R r , such that the L 1

distance between all neighbors Is at least a, the L 1 distance between vertices k
edge-lengths apart Is at least k a, and the H 2 distance between neighbors Is not
too large (see the condition Involving (3):



62 5. MINIMAX BOUNDS

I
r
I
I
I
J
I
I
~------ ----------

/"
/"

./
./

./
/"

./
./

./
/"

Figure 5.5.

Hypercube with r =3 needed in Theorem 5.2.

Several examples of such constructIons follow In the next few sectIons.

5.5. A CENTERED CLASS.
In a first example, we take the class of all densIties that are wIthIn (L 1) dIs­

tance € of a central densIty J *. The example Is analogous to an example worked
out for Hellinger balls by BIrge (1985).
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Theorem 5.3.

Inf sup E (J I ! n -! I) ~ E .
f. f ES (f' ,f)
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We can Interpret this theorem as follows. The estimator ! n =! * Is
minimax-optimal for the class F since s~pJ I ! *-! I ~ E. Thus, If minImizing

the minimax criterion Is our goal, then there Is no need to consider the data; the
data can In fact be thrown away, and we can take! n =! * .

Proof of Theorem 5.3.

PartitIon the space (Without loss of generality, we wl11 take [0,1]) Into r sets
of ! *-Induced probablllty l/r. We wlll restrict F to all densItIes In S (f * ,E)
that have support [0,1]. On the i -th set Ai In the partition, we define

{

(l+E)! * . between leftmost and median point of A' i
hi = (l-E)! * ,between median and rightmost point of Ai •

{

(l-E)! * ,between leftmost and median point of Ai

gi = (1+E)! * . between median and rightmost point of Ai

The median point In an Interval Is the point at which the Integrals of ! * over
the two subintervals defined by the point are equal. See figure 5.6.
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Observe that
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I

I

I

/
/

/
hi /

~~
Figure 5.6.

Partition of [0,1] into r =10 equal probability segments.

2c <l.
=-=0,

r

I If rf* 1= I€f* = € (thus, all f eEF) ,

f..;r;r-;;f r -1 1 r--z .
e . = --+-v 1-€~ (all z)

~, r r

1 r--:; <l.
= 1--(I-V 1_€2) = P.

r

From Theorem 5.2, we obtain the lower bound

r2CL (I-V2-2pn) = € (I-V2-2(1-;(I-Vl-€2»n J

2:: € (I-V 2
r
n (I-Vl-€2))

2:: € (1-~)'
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which Is arbitrarily close to £ If T Is picked large enough. •

5.6. A LIPSCHITZ CLASS.

65

For the first time In this chapter, we consider a truly small class, I.e. a class
for which m (n ,F) decreases with n as n -+00. Let F be the class of all Lipschitz
densities on [0,1] with Lipschitz constant not exceeding C:

I f (x)- f (y) I ~ C I x -y I .
We also call this class W(O,l,C), where "0" refers to the fact that the Lipschitz
condition Is for the o-th derivative of f , "I" refers to the power of I x -y 11 In
the Lipschitz Inequality, and C Is the constant. Not all constants C are possI­
ble. In fact, W (O,l,C) Is not empty If and only If C 2:4. We wlll prove the fol­
lowing

Theorem 5.4.

Let C 2:4 be fixed and define p=R. Then

1 [ 21~162 C"3 4 3C"3 6
In! sup E cJ I f n - f I) 2: ( ) 0 c 1-(-1f. f EW(O,l.C) 10000 n V J.-(j 25 n J

4 7 3
-- ----

_ 1.22 C 3 n 6 p 2 •

The Inequality Is valid for all n and all C 2:4. It Is particularly useful to
get a crude Idea of the performance of any density estimate for a fixed value of
n . Furthermore, for fixed C, the bound decreases as a constant times (C / n )1/3.
To better the bound by a factor of 10, n should be Increased by a factor of 1000.
A sneak preview of things to follow: the kernel estimate wlll be shown to be
minimax-optimal for W(O,l,C) for particular choices of K ,k.
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Proof of Theorem 5.4.

A subclass of F Is constructed by partitioning [O,lJ Into r Intervals of width

.;' where p=R, and two Intervals near the endpoints, accounting for a

total length of 1-p.

r;==1
k..=::d

o 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 O.SO 0.85 0.90 0.95 1.00

Figure 5.7.

Construction of a subclass for W (0,1, C).
r =7,p=0.7,C =7.84313725490.

Example with

The two triangles near the endpoints are fixed: they do not vary with n. The
slopes of the hypothenusas Is C, and the height of the triangle Is h where

2h
1-0 = p,

C
I.e. h =-(I-p). The value of p can be determIned from the requIrement that

2
the Integral under the trapezoIdal curve shown In figure 5.7 Is one:

2h h 2

h (1-0) + 0=1.
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Ai

This yields the value of p suggested above. Every density In the subclass Is equal
to the central density with a smal1 modification on each of the r central Inter­
vals. The functions hi ,gi are as shown In the figure; the slopes of the curves are
±C. Note that regardless of the value of e (used In picking gi or hi In Interval
Ai)' J 8 Is a density. We also have

J I hi-gi I =....L C ....L = C p2 !>. a.
2 r 2 r 4r 2

and

L
4r

J..;r;r;; = 1 + 4 J (V(h +Cx )(h -Cx )-h) dx
o

= 1-4h
:r( ~)! 1-V 1-% dx

~ 1-4h dx (since V1-U ~ 1- :-- for o~ U < 1)
2v1-u

where

~ 1- 4h

1

4>(r) = __1__
C2p2

16 r 2h 2

1

Observe that 4>(r ) Is decreasing In r. Taking the Integral shows that

J rr;r;- ~ 1-2 h 4>(r) C
2 (Lry J 8J 8, 3h 2 4r J

p3 C 4>(r ) !>.= 1 = 1-'"Y.
48 r 3(1-p)

Assouad's lower bound now reads

r2a ( 1-bn 'Y) = ¥ (1-
> C p2 [1- n p

3
C 4>(r 0) l

- 8r 24r 3(1-p)

!>. A(+- r~2 ) .

n lc 4>(r) )
24 r 3(1_p)
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r

The rlght-hand-slde of this expression should be maXimized WI~h respect
Setting the derivative with respect to r equal to zero yields the value

f5B)f
~ 2

8f----+----'-------L...-----''-------L...-----'

-1

-2

-3

-4

Figure 5.8.
1 B

The function ---/- for B =l.
r r 5 2

to r.

Unfortunately, r has to be Integer, a problem we will deal with further on. The
maximal value Is

If we take

where BoiS defined as B with ¢=1, then r ~ r 0 In view of B ~B 0; Resubstltu­
tlon of the selected value of r yields the bound

2 1

C p
2 ~ (~)3( 24 (l-p) )3

S 5 5 np3C¢(r o)
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Now, use the fact that

and that

.! 1

C3(1~P)3p (1
n 3

2
1-p> ­- C

69

= 2 (~)+P 24 C

to obtain the bound

This Is the desired bound If we can make a final adjustment for the fact that T Is
not Integer. If we take

where T opt Is as before, then the maximal value obtainable for the lower bound as

a function of T Is at least equal to the value at T opt (computed above) minus
AB / T opt

5
• The correction factor Is thus

4 7 3-- ----
~ 1.22 C 3 n 6 p 2

where we used the facts that <p(To)?1,1-p~4/C,and

For the class W (8 ,O!, C), It Is possible to obtain a bound of the following
nature:

Inf sup E (j lIn -I I)? (C (8 ,O!)+O (1))
f. f EW(s,o,C) (_C_) 1+2(s+0)

n 8+0
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where C (8 ,a) Is a function of 8 and a only. Observe that this Provides us with
1

a continuum of polynomial lower bounds with powers In the range (--,0).
2

5.7. MIXTURE CLASSES.
Mixtures form Important subclasses of densities. Consider for example the

simple class F consisting of densities of the form

i .0. i i+I
1 ± cg (x --) (x EAj =(-,--)) ,

r r r

where i =0,I,2, ... ,r -1, "1" Is the uniform density on [O,IJ, and g Is a fixed func­
1

tlon on [0,-] satisfying the follOWing conditions: I g 1:::;1 (otherwise we
r

wouldn't have nonnegative functions), and Jg =0 (to assure that all functions
Integrate to one). The constant cE[O,IJ Is allowed to vary within F. The ± gives
us a choice for each of the r Intervals. Therefore, for each c, we have 2 T

members In our family.
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Figure 5.9.

Construction of a mixture class.

lnf sup E Cf I f n - f I) 2: J r , n >.!.. .
I. 1 EF 32 n - 8

Theorem 5.5.
For the

vals,
mixture class F defined on r lnter-
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Proof of Theorem 5.5.
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J I hj-gj I = J2 1 g I = Q ,

Ai 0

1

r A
J-..rr;T;; = 1- J(1-..h-g 2

) =;3.
o

Substitution of Q and ;3 In Assouad's lower bound (~(1-.j2n(1-;3» with
2

I g I =€:::;1 yields the lower bound

€ (l-V2; (I-V1_€2»)

> 2.[2;;
- € -€ V--;:-

V r (take €= 0).
32 n V s;;:

The choice of € maximizes the bound. The condition €:::;1 Implles that we should
have r :::;8n ••

Thls simple bound Illustrates clearly how doubling the number of Intervals
In the class can be balanced at! by merely doubling the sample size n. Many
other families have subfamilies of the form dealt with In Theorem 5.5, possibly
even with r Increasing with n, In those cases, Theorem 5.5 provides a useful
tool. See also exercises 5.2, 5.3.

5.8. CONVOLUTION CLASSES.

Assume that F={ f 0'" J.I. I all probability measures J.I. on the real line }, Here
f 0 Is a fixed "central" density, and "*" Is the convolution operator. An example
of a related class Is the class of all normal scale mixtures, I.e. the' class of all
densities of random variables X distributed as NY where N Is a normal (0,1)
random variable and Y Is an arbitrary random variable. See the table below,
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y X=NY
l/normal Cauchy
1/V2 exponential Laplace
V2a /gamma(a /2) t.
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Observe that log IX I Is distributed as log I N I +Iog I Y I so that log I Y I
defines the probablllty measure J.I. In the convolution, and the central density f 0

Is the density of log IN I. Convolution classes are harder to handle than the
classes seen so far since member densities cannot conveniently be constructed on
partitions of the space. Nevertheless, It Is possible to prove

Theorem 5.6.

For any convolution class (I.e., any central density f 0)'

Inf sup E (j I f n - f I) ~ 1 .
f. f EF

In other words, meaningful minimax lower bounds are nonexistent If one
looks at the class of all normal scale mixtures. Observe that the smoothness or
each density In this class Is determined by the smoothness of f 0' the normal
(0,1) density, and that all members In the class are necessarily unImodal.

Proof of Theorem 5.6.

We will work with two parameters, a real number 0>0, and an Integer
r ~ 1. First, It Is necessary to find a number M so large that

M 0
Jf 0 > 1--.
-M 2
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-M

M

Jf O>l-~
-M 2

Figure 5.10.

Definition of M ,

5. MINIMAX BOUNDS

M

Consider next atomic measures J..li with mass one atoms at points xi'

i =-r .-r +1 ....•-1.0.l •...• r -l.r • where xi =4iM. The poInt will be to force the
densities 1 0 * J..li·s to be vIrtually non-overlappIng. In a construction of a sub­
famlly for Assouad's theorem. we define 0 as In the theorem (0 has r bits), and
set

1 T

10= -;,L; (1 o*J..lJO,=l + 10* J..l-Jo, =0) .
1=1

Define

Ai = [4iM-M,4iM+M] U [-4iM-M.-4iM+MJ.

Observe that
4iM+M

J I 1 Ir f r, I 2': ~ J ( f 0 * J..li - 1 0 *Jl--i )
A, 1 4iM - M

2 ( fJ fJ)2': - (1--)--
r 2 2

2= -(I-fJ).
r
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Also, using the notation

we have

I Vf oj 0;_ = 1 - I (/; -vf oj 0._)

= 1 - I (/; -V(f ; +£:.; )(f ; -£:.; ) )

= 1 - IT; (1-V1-£:.; 2/ f; 2)

(£:.; = (f 0* J1.;-f 0* J1.-; )/2r)
_ £:.,2

> 1 - If"~ (Vi=U >l-u for O<u <1)
- f;2 - - -

> 1 - I I £:.; I (I £:.; I :s T; )
> 1-.!.-.

r

Assouad's lower bound now becomes

75

,j2;;
= (1-5) (l-y -;:-) ,

The lower bound Is arbitrarily close to one If we choose 6 small enough and r
large enough.•

5.g. FANO'S LEMMA.
Assouad's theorem Is based upon a subclass of size 2r of F. The relation­

ship between the member densities was ll1ustrated with the help of a hypercube
with 2 r vertices (see figure 5.5). In some cases, It Is convenient to define subc­
lasses of r +1 densities f o. which can be viewed as vertices of a simplex In r ­
dimensional space (see figure 5.11):



76 5. MINIMAX BOUNDS

Figure 5.1l.

Simplex with r =3 needed in Theorem 5.7.

The L 1 distance between all densities must be at least equal to a:

Int J I f rf 8' I > a;
¥8' -

furthermore, the Kullback-Lelbler distance between any pair ot densities cannot
be too large:

f 0
sup Jf OIOg(-f-) < {3.
0'10' 8' -

The latter condition can be thought of as the counterpart of the upper bound on
the Hel1lnger distances tor the hypercube model. Assouad and Birge obtained the
following generalization ot Fano's lemma:
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Theorem 5.7. Generalization of Fano's lemma.

Let F be a class of densities with a subclass of r +1 densities / 0 such that
for any 0=1'0'.

L M 0'/ 8') 2: a .

K (f 0./ 8') ::; f3 .

Then

sup E cJ I / n - / I) 2: ~ (1 n f3 + log2 ) .
f EF 2 logr

We will proceed via two lemmas, Including Fano's original lemma.

Lemma 5.l.

The entropy -:EPi log (Pi ) of any probablllty vector P v ... ,Pn does not

exceed log(n ).

Proof of Lemma 5.l.

Let </J be a nonnegative convex function. Then

1 1
-:En </J(Pi) 2: n </J(-I;Pi)
n i n i

(Jensen's Inequality)

= n</J(~).
n

Now. use the fact that x log(x) Is convex In x .•



78 5. MINIMAX BOUNDS

Lemma 5.2. Fano's lemma.
Let X be a random variable with density equal to one of r +1 possible den­

sities f 1>"" f r+1' where K(f .. ,f j)s/3 for all i~J·. Let'l/J(X)E{1, .. :,r+1}'
be an estimate of the Index. Then

sup Pi (1/J(X )~i ) 2: 1 _ ,8+log2 ,
i logr

where Pi Is the probability Induced by f i .

Proof of Lemma 5.2.

Let e be a random variable uniformly distributed on 1, ... ,r +1. Then

'2jP (9=i IX) log(P (e=i I X))
..

= p(e=1/J(X) IX) log(p(e=1/J(X) I X»)

+ P (e~'l/J(X) IX) log(P (e~1/J(X) IX))

e X p(e=i IX) I ( p(e=i IX) )
+P( ~'l/J(X)I )"¥~X)p(e~'l/J(X)IX) og p(e~'l/J(X)IX)

2: -log2 - P (e~'l/J(X) IX) logr ,

where we applied Lemma 5.1 twice. The quantity on the left-hand-slde of this
chain of Inequalities will now be bounded from above. Observe that

P(e=i IX)= f .. (X)
"£,1 j (X)

j

Thus,

E(~p(e=i IX)IOg(p(e=i IX)))

[
f i (x ) [f ,.(x) ]] 1

= f ~ 2Jf j (x) log 2Jf j (x) r +I 2Jf j (x) dx

1 [ f .. (x) 1
= r+1 ~flog ~/j(x) f .. (x)dx

1 ( 1 j (x) )S --'2jfIOg -1-- I"(x) dx -Iog(r +1)
(r+1)2 j ,j j(x)

(use log (_l_l:J j )2:_1_~IOg(f j))
r +1 j r +1 j
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= _1_~JK (f i,f j) -log(r +1)
(r +1)2 i,j

::; (3 - log(r +1) .

We conclude that

(3 - log(r +1) 2': -log2 - P (e'l''Ij;(X ))log(r) .

Thus,

s~p Pi ('Ij;(X)'I'i) 2': P ('Ij;(X)'I'e)
I

> log(r +1)-(3-log2
logr

which was to be shown.•
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Proof of Theorem 5.7.

Let X be the shorthand notation for (X l' ... , X n ), let e be as In the
proof of Lemma 5.2, and let gn be defined as follows:

_{Ia IfJII n-Ial<CY./2
gn - I ¢(X) otherwise

Here 'Ij;(X) Is defined arbltrarlly (say, 'Ij;(X )=1) In the "otherwlse" case, and
'lj;(X) Is defined to be () If J I In - I aI < CY./2. Observe that the L 1 balls of
radius CY./2 centered at the functions I a do not overlap (by assumption). See
figure 5.12.
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Figure 5.12.
Non-overlapping balls of radius Cl'./2 needed in the proof of Theorem 5.7.

Distance between any two centers is at least Cl'..

The argument Is very simple:

max E oa I f n - f 01 ) > ~ max P o(f I f n -f 0 Io - 2 0

~ ; m:x P e<f I gn - f 0 I ~ ;)

> ~max Po('l/J(X)....tO)
- 2 0 r

> ~(1 _ n f3 + log2 )
- 2 logr

by Lemma 5.2, and the fact that

> ~)
- 2

n n

K ( X f i' X f j ) = flOg
k =1 k=l

n n
II f ;(Xk) II dXk
k=l k =1
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when i~j.•

81

5.10. LOWER BOUNDS VIA SUFFICIENT STATISTICS.
There Is yet a different method for obtaining lower bounds, which uses the

fact that the best estimators depend upon suffiCient statistics for the family only,
and that the properties of simple sufficient statistics are often well-known. As an
example, we take the class

F = {J I f =pg +(l-p)h ,p E[O.l])

where 9 ,h are known densities with disjoint supports.
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P =0.3
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pg

Figure 5.13.

A simple mixture.

(l-p )h
I-p =0.7

Theorem 5.8.

Let f n be any density estimate with Jf n =1. Then

1
0.030153 >4. v:;:; ,n_,

sup E (J I f n - f I) >f EF - 0.0849 .•.+0 (1)
v:;:;
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Proof of Theorem 5.8.

Define Pn = f 1n where A Is the support of g . We first claim that
A

Is at least as good an estimate as 1n' This follows from

J 1gn -1 1 = Jg 1Pn -P I + Jh I Pn -P I
A A'

= 21 Pn -P 1 = 21 J(1 n -1 ) I
A

:::; J 1 1n - 1 1 (SchefIe's theorem) .
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Next, we note that N, the cardlnallty of A , Is a sufficient statistic for P . Thus,
we should be able to reduce the data to N. This can be done by Invoking the
conditional form of Jensen's Inequallty:

E (j I 1n - 1 I) 2: 2 E ( I Pn -P I)
2: 2 E ( 1E (Pn IN)-p I)

= 2 E ( I 'l/J(N )-p I)
where 'I/J Is some measurable function, which can be considered as an estimator
based upon N only. The dependence upon n Is suppressed temporarily. Observe
that the Joint density of the data given N Is

1 N n
~~ .II 1 (x o.,) . II g (x o)

. u .=1 J=N+1

where 00=(001) ... , an) Is a permutation of 1, ... , n. This density Is Indepen­
dent of p. (ThiS Is another way of stating that In this problem, N Is a sufficient
statistic for p .) This Is why E (Pn IN) Is 'I/J(N) and not 'l/Jp (N). Now, we can
randomize p, by making p equal to 1/2 with probablllty 1/2, and equal to
1/2 + c /.In With probablllty 1/2. Let N 1>N2 be binomial random variables
with parameters (n ,1/2) and (n ,1/2 + c /.In) respectively. Then

sup Ep (J 11n - 1 I)
p

2: +E.!-(J I 1n - 1 I) + +E.!-+_c<J I 1n - 1 I)
2 2 .;n

2: E ( I 'I/J(N 1)-+ 1 ) + E ( I 'l/J(N 2)-(++ In) I )

> ~ ( 1 'l/JU)-+ I P(N 1=j) + I 'l/JU)-(++ In) 1 P(N 2=j))
.< n
J-"2

> ~ (I 'l/J(j)_..!.-j + 1'l/J(j)-(..!.-+ ~) I) P(N 2=j)
n 2 2 vn

i'5."2
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> ~p (N 2<!:.) .
- vn - 2

500 515 1000

Figure 5.14.

Two smoothed binomial discrete densities. The parameters are n =1000 and

C =15/)1000.

1 c
Now, let Z be binomial (n ,-+ r-). Then

2 vn

P (Z < !:.) = pI Z -E (Z) < -c ,fT; ]
- 2 )Var(Z) - _ / n (!...-+_c_)(~__c_)

V 2,fT;2';:;;

~ 4>(-2c)

where 4> Is the normal distribution function. Here we tacitly used the central
limit theorem and a continuity argument. Thus, our lower bound Is

~ In (c 4>(-2c )+0 (1) )



5. MINIMAX BOUNDS

and has the largest possible value when

2c = 0.7517915241....•

5.11. CONSTRUCTION OF GOOD MINIMAX ESTIMATORS.

85

It would be cruel to develop many lower bounds and not to give examples of
how one might find minimax-optimal estimators. Unfortunately, there seems to
be no systematic approach at this point In time.

For very large classes F, a suitably modified nonparametrlc estimate usually
works well. A case In point Is the kernel estimate for the Lipschitz classes
W(B ,a,C). More drastic modifications are needed for classes defined by order
restrictions: this will be Illustrated In another chapter for monotone densities.

Still for large classes F, there are some attempts at making the construction
systematic; In the next chapter, we will discuss minimum distance estimation
(Yatracos, 1985); and the use of E-nets advocated by Birge (198B) can also be
helpful.

Finally, for small F, the nature of the classes can differ so dramatically that
no general rules for constructing minimax-optimal estimators can be formulated.
Each case needs to be handled separately.

5.12. EXERCISES.

5.1. Mlmlck the proof of Theorem 5.4 for the class W (1,1, C), and obtain a lower
bound with as main term a constant times C 1/5n -2/5. Hint: replace the trI­
angularly shaped gi ,hi In the construction of a subclass by quadratically
shaped functions.

5.2. Improve the bound of Theorem 5.5 to 1+0 (1) v:rrn ,where 0 (1) refers to
4

asymptotlcs as r / n -+0.

5.3. Consider the family of all densities of the form
r

f = "E Pi gi '
i=l

where the Pi's form a probability vector, and the g,. 's are (possibly overlap­
ping) densities. The gi 's are known, but the Pi's are not. Derive a minimax
lower bound for thIs class In terms of n, r and possibly the distances
between the gi 's.
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5.4. ConsIder the class F of all zero mean normal densItIes. Prove'that

Inf sup E (j I In - I I) ~ ~
f. fEF vn

for some constant c. In a second step, construct a mInImax-optImal estI­

mate In'
5.5. ConsIder a family F satisfyIng the condItIons of Assouad's theorem

(Theorem 5.2), but wIth the upper bound on the Helllnger dIstance replaced
by an upper bound on the Kullback-Lelbler numbers

JI ol0g ( : : ) ~ /3

for all () and all i . Show that

Inf sup E (J If n - I I) > ~ e -,8 n .
f.fEF -4

where Q Is as In Theorem 5.2 (Bretagnolle and Huber, 1979).

5.6. ConsIder the class F8 ,C of densItIes on [O,IJ wIth the property that each
member I has 8 -1 absolutely contInuous derIvatIves, and

1 28

D
8
(f) a (JI/(8)1)2.i+1 (1«)28+1 ~ C <00.

Observe that D8 (f ) Is a scale-InvarIant factor. Show that

valid for all C larger than some C8 , and some unIversal posItIve constant
18 dependIng upon 8 only. HInts: define a subclass as In figure 5.7, wIth hi
and gi replaced by smoother versIons. Improperly scaled versions of a
dltIerence functIon g can be obtaIned as follows: g 2=g 0 *g 1 where go Is a

1 1densIty with support In [--,-] and contInuous (8 -1)-st derivative, and g 1
4 4

1 1
Is the uniform density on [--,-]. Note that

2 2
g2(8)=gO(8-1)(X+I/2)-go(8-1)(X-l/2), so that J I g2(8) I=2J I gO(8-1) I .

3 3 JDefine g =g 2(X +- )-g 2(X --) to force g =0. Observe also that g =0 out-
4 4

3 3
side [--,-J. Construct gi as I o+g , and hi as lo-g where lois a central

2 2
density, and g Is translated and rescaled to fit the partition model. Apply
Theorem 5.2 or the Inequality of the previous exercise (Bretagnolle and
Huber, 1979).

5.7. Verify that the bound In Theorem 5.8 should be halved If the restriction
that fin =1 Is dropped.
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5.8. Let F be the cla.ss of all convex densItIes on [0,1]. ThIs class Includes the J­
shaped and V-shaped beta densItIes. Show that m (n ,F)2':c for some posI­
tIve constant c and all n .

5.9. Prove that for the cla.ss of all concave densItIes on [0,1], m (n ,F)2':cn-2/
5 for

some universal constant c >0. Can this bound be Improved?

5.l0.Let F be the cla.ss of all densities whose characteristic function Is zero out­
sIde [-T ,T]. Show that 11m Inf m (n ,F»o. Hint: to obtain a lower bound

n->oo
for the dIstance between two densities f ,g In the cla.ss, use the Inequality
J I f -g I >sup I ¢J-'IjJ I, where ¢J,'IjJ are the characterIstic functions

-t
correspondIng to f ,g.



Chapter Six
MINIMUM DISTANCE ESTIMATORS

6.1. DEFINITION.

We can now present a rather systematIc, albeIt computatIonally IneIDclent,
method for constructIng mInImax-optImal estImates. Some conditIons wl1l have to
be Imposed on F, so the constructIon Is not unIversally applicable. However, the
Ideas are so InterestIng that It Is dlIDcult not to spend some time on mInimum
dIstance estImates.

The theory of mInImum distance estImatIon for parameter estImatIon goes
back to LeCam (1966). Other key papers Include Pfanzagl (1968), Beran (1977),
Pollard (1980), Ml1Iar (1981, 1983) and Yatracos (1985). Our treatment Is maInly
based on Yatracos (1985).

We recall that the empirical measure for X v ... ,Xn Is defined by

1 n
I-t n (A ) = - E I [X; EA ]

ni=I

where A Is any Borel set. We do have one standIng condItIon on F, our class of
densIties: F Is an L I-totally bounded collection of densItIes, I.e. for every €>O, F
can be covered by a finIte number of radIus € balls. In fact, It wl1l be helpful to
use specIal notatIon for such a cover: F, Is a finIte collectIon of densItIes such
that

U S (f ,E)
f EF.

covers F. Sometimes Is It useful to ask that F, ~ F, but we wl1l not Impose thIs
addItIonal restrIctIon.
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Figure 6.1-

F is covered by radius € balls

centered at a finite number of densities from F.

Let us also define a number that measures how "'rich"' F Is,
t>.

N. = Inf IF.! '
F.

IF -------1

89

where I. I Is the cardinality operator. Thus, N. Is the size of the smallest €­

cover of F. The quantity log2N. Is also known as the Kolmogorov entropy of
F.

We are now ready for the definition of a minimum distance estimate. First
choose € according to the eventual expected error envisaged, and construct an €­

cover of F. The centers of the covering balls form a finite collection F., Let A be
the family of sets

{x:1 8(X» 1 u(x)} ,

where 18' 1 u EF.. Note that !A! :s !F.! 2, We call 1 ~ the minimum dis­
tance estimate of 1 If
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and

6. MINIMUM DISTANCE ESTIMATORS

2 sup IJ f rJLn (A ) I = mIn (2 sup IJf rrJL n (A ) I )
AEA A loEF, AEA A

Observe that sup IJf rrJL n (A ) I approxImates the L 1 dIstance between f Ii
AEA A

and JL n • ObvIously, had A be the collectIon of all Borel sets, then the dIstance
would trIvially have been 2 (as all dIscrete probablllty measures are at dIstance 2
from all absolutely contInuous probablllty measures). On the other hand, If A Is
too small, there Is no hope of extractIng a reasonable f & from the collection.

Hence we need a. compromIse on the sIze of A. We should also keep In mInd that
the computatIon of f & requIres tIme at least equal to IA I If no special compu­

tatIonal shortcuts are used.

6.2. THE KEY INEQUALITY.
The purpose of thIs sectlon Is to prove

Theorem 6.1.

For IA 12:3,

j~ E cJ I f &-f I):s 5 E + hn (H2VIOg IA I) .

The uniform upper bound depends upon n , E and IA I only. In fact, If we
construct our E-covers well, then the bound depends upon E, n and the Kolma­
gorov entropy only. For a smallest possIble bound, It Is necessary to choose Esuch
that

5 E + hn (H2V2 10gN, )

Is mInImal. Since N, Increases and E decreases as do, the mInImIzatIon problem
Is well-defined. We wlll see further on that E Is a functIon of n and the class F.
Thus, thIs method tallors the estImates after the class F and n. ThIs Implies
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that there could be an awful mismatch If n Is not as planned, or 1 ~F. In fact,
this method Is usually not consIstent when 1 ~F.

The proof of Theorem 6.1 Is In four stages:

Lemma 6.1.

For all 1 ,g EF,

J 1 1 -g I!
::; 4E + 2 sup I J1 -J 9 1 (Yatracos)

AEA A A

~ 2 sup IJ1 -J 9 I (Scheffe)
AEA A A

Proof of Lemma 6.1.

FInd Hand H' such that 1 ES (f 8,E) and 9 ES (f II',E). Then

J 1 1 -g 1 ::; J 1 1 -I 8 I + J 1 1frill' I + J I 1II'-g 1

< 2E + 2 J (f frill')
1.>1,

< 2E + 2 J (f fr1 ) + 2 J (f -g ) + 2 J (g -I 11')
1 .>1 , 1 .> 1 , 1 .>1 ,

< 4E + 2 sup
- AEA

IJI-Jgl·.
A A

Lemma 6.1 establishes that the L 1 dIstance between two densItIes and the
maxImal devIatIon of Induced probabilitIes dIffer by at most 4E. Thus, there
Indeed Is hope to obtaIn meanIngful L 1 results by consIderIng only sets from A.
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Lemma 6.2. Gordon's inequality.

For t >0,
VO00 1°

1 --f e 2 dv < -e 2 (Gordon's InequaIlty) .
I t

ThIs Is a specIal case of a more general InequaIlty, valld for functIons </J?O,
</J'?,o, </J't. 4>too:

Proof of Lemma 6.2.

We wIll only prove the second part, as the first part Is a sImple corollary.

00 OO-/., )

f e-</J(v) dv < f~ e-</J(v) dv
I - I t/J'(t)

00

= ~ fd(e--</J(V»)
t/J'Ct) I

e -</J(I)

= </J'(t) .•

Lemma 6.3.

For any probabIlIty measure J.I. and empIrIcal measure J.l. n (based upon an lId
sample drawn from J.I.). and for any collectIon of sets A wIth IA I ?3,

E( sup I J.l.n (A )-J.l.(A ) I ) :s 2 .flog IA I + 1·
AEA .J2n
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Proof of Lemma 6.3.

By Hoeffdlng's Inequallty (Bennett, 1962; HoeJIdlng, 1963), for any set A ,

P( jlJn (A )-IJ(A) I ~ t) ~ 2 e-
2nt2 (t >0).

Thus,

E( sup IlJ n (A )-IJ(A ) I )
AEA

6 00

~ f 2 dt + f 2 1 A I e -2nt
2

dt
o 6

00
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(use E IX I = f P ( I X I > t) dt and Bonferronl's Inequallty)
o

00 .2

= 28 + I. A~I f e -"2 dv (t =v /(2,Jr; ))
v n 26..;n

< 28 +~ _1_ e -2n 6" (Gordon's Inequallty)
- ,Jr; 28,Jr;

=2 _ flog IAI +~. 1 _1_ (8= _flog IAI )
V 2n ,Jr;.-12 log IA j 1A I V 2n

~ 2 Jlog~1 + 1 ,( I A 1 ~3) .
2n

The choIce of 8 In the last llne Is approxImately optImal for large j AI. Indeed,
the derIvatIve of

With respect to 8 Is

2 - (2+_1 _) I A I e-2n 6" ~ 2 - 2 IA I e-2n 6"
2n Q2

whIch Is zero for the gIven choIce of 8 (note that for thIs choIce, 2n Q2-+oo as
IA 1-+00.)••

Proof of Theorem 6.1.

f I f r f I ~ 4E + 2 sup Iff &-f f I (Lemma 6,1)
AEA A A

< 4E + 2 sup Iff &-lJ n (A ) 1 + 2 sup I f..£n (A )-f f 1
- AEA A AEA A

< 4E + 2 sup Iff rf..£n (A ) I + 2 sup I f..£n (A )-f f
- AEA A AEA A
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(for some foES (f ,f))

< 4f + 2 sup IJf fTJf I + 4 sup I J1- n (A )-J fl·
- AEA A A AEA A

The expected value of the last expressIon does not exceed

5f + & (1 + 2 v'log IA I) (Lemma 6.3) .•

6.3. CONSTRUCTION OF AN f-COVER.

Let us explIcItly construct an f-cover for the LipschItz class W (0,1, C),
which In thIs sectIon wlll simply be called the Lipschitz class. ConsIder first a
grid as In figure 6.2. The Interval [O,lJ Is dIvIded Into 1/0 equal Intervals, where
1/0 Is an Integer to be picked further on. For technical reasons, we also assume
that 1/(C 5) and C are Integer-valued. The y -axis Is cut up Into equal Intervals
of length C 8. Consider as F f all grId functIons (functIons that are allowed to fol­
low the grId lInes only are called grId functIons), takIng the value zero at x =0
and x =1, and movIng up one level, or down one level, or not movIng at all at
each mesh poInt (see figure 6.2). In addItion, the area under each f 0 must be
one (sInce the area Is a multIple of C tr, thIs Is feasIble only If 1/(C tr) Is Integer­
valued).
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c

0
0 I- i I 11

Figure 6.2.

Grid for the construction of F f'

A typicai f 8 is shown.

f 8 takes steps O,±l from strip to strip.

One can easlly verify that
1

IF I < 35
f

95

because at each mesh point, we can only make one of three decisions. Further­
more,

1
- 1

In view of the fact that there are only 2 6 possible subsets of 8' elements. For a

function f EF, find the values f (i 8) for all Integer i, and round these to the
nearest mesh point value (multiple of C 8). Then consider a grid function g (not
necessarlly with the correct area) passing through these points (see figure 6.3).
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c .. ,..,

.,­
~.~.

1\,
\

Figure 6.3.
A Lipschitz density with C =15, and its grid approximation g .

For thIs functIon g, we compute the area, and obtaIn a grId functIon f eEFE

wIth the property that

J If e-g I = 1 1-fg I
(thIs Is always pOSSIble). We have

flg-f I < 2--
8

.!.. (.!..C$2+~C$21 = C8.
- 2 2 2 2 J .

Furthermore, sInce I f g -1 Is C 8, we have f I f e-f I S 2C 8 S E, If we take

-h=r~l·
Hence, we have an E-cover of F. Observe that log IA I Slog21 A I Sl/8, so that
by Theorem 6.1,
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sup E Cf I f lr f I):::; 5€ + ~ (1+ ~)
f EF y2n yO

4 8~ 1 4C
< 5€ + -- + --- (-<- for €<2)- J2n ~ 0- € -

4 ~ !.. ( 2C) +'
= J2n + 3 4 3

53 --;- (optimal choice of €) ,
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The optimal choice of €, obtained by setting the derivative with respect to €

equal to zero, Is

For this to be smaller than 2 (a condition used In the chain of Inequalities), we
need to require that n 2::4C /25.

It should be noted that the upper bound matches a lower bound obtained In
chapter 5 up to a constant. In other words, the minimum distance estimate Is
minimax-optimal. There Is a price tag: the computation time grows roughly
speaking as

for some constant c depending upon C only. When C Is not Integer, replace C
by rC lin the upper bound, and observe that In any case, rC 1:::; 5C /4,

6.4. KOLMOGOROV'S ENTROPY.

Kolmogorov and Tlkhomlrov (1959) and Clements (1963) have shown that
for W(s ,a,C) In R d,

For W (s ,a,C) and d =1, It Is possible to construct a collection F. with
IA I :::;N/. The corresponding minimum distance estimate satisfies

4 V16 IoglV f
sup E<J I f lrf I):::; 5€ + ~ + ,
f EF y2n n

which, In view of the asymptotic expression for N f (valid as dO) forces us to
minimize

1
C ---

5€ + __ € 2(8 +al
vn
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where c =,,(16 log2. This Is mlnlmalfor
s+a

(

C 2 J 1+2(s +a)

€ = 100 (8 +a? n

Resubstltutlon In the original bound gives us the result

(
s +a 1

sup EeJ I 1 -I I) = 0 n 1+2(s+a)
f EF 8 )

Observe that this matches lower bounds obtained vJ.a Assouad's theorem
(Theorem 5.2), at least when one only considers the dependence upon n .

The Lipschitz classes W (8 ,a,C) are perhaps the most widely studied totally
bounded classes. Another example Is the class of all nonlncreaslng densities on
[0,1] bounded by a constant c. But some rather small classes are not totally
bounded, such as the translation class

{f (x -a ) I a ER }

or the scale class

1 x{-I (-)la>O}
CT CT

where 1 Is a fixed density. Examples Include the normal densities with variable
mean and/or varlance.

6.5. EXERCISES.
6.1. Give an expllclt construction of an L 1 minimum distance estimator, com­

plete with a good upper bound for IA I and expl!clt expressions for € and
other parameters as a function of C ,a,n, for the class W (O,a, C) where
aE(O,l]. The construction of section 6.3 for a=l should be a special case of
your construction.

6.2. Let F be the class of densities on [0,1] with modulus of continuity not
exceeding w(b). Show that there exist positive constants c pC 2 such that

(Lorentz, 1966).



Chapter Seven

RATE OF CONVERGENCE
OF KERNEL ESTIMATES

7.1. SCOPE OF THIS CHAPTER.

The purpose of this chapter Is to give some Idea of the relationship between
the smoothness of a density and the best possible rates of convergence that can
be attained by the kernel estimate. The story also depends upon the choice of
K: for example, It does matter whether K 2:0 or not.

The classes of densities we are dealing with are very large. Although there
are other estimates that can provide good rates of convergence for these classes,
the kernel estimate certainly Is the most Important one from a didactic point of
view.

We wlll study two quantities, the uniform performance

sup E (j I Jn - J I)
f EF

and the individual performance

Unfortunately, It Is once again necessary to limit our treatment somewhat. In
both cases, we wlll study small sample and asymptotic upper bounds. In the case
of the uniform performance, that Is not a major concession, since the upper
bounds usually match minimax lower bounds for the given classes up to a small
constant (In other words, the kernel estimate Is minimax-optimal). It Is unfor­
tunate that we won't be able to cover the Individual performance In detail.
Lower bounds for E (j I J n - J I) provide uS with Information about how large
n should be for any given density. For example, a result for d =1 not covered
here Is

2

Inf 11m Inf Inf n 5 E (j I Jn - J I) 2: 0.86 .
f ,K n .....oo h
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Here the Infimum Is over all J , an smoothIng factors hand all nonnegatIve ker­
nels K (Devroye and Penrod, 1984). ThIs result roughly states that we are
bound to make L I errors at least equal to 0.86 n -2/5. To have errors of th~ order
of 0.01. we would need n of the order of 100000 or bIgger. even for the nIcest J .
For practItIoners. thIs Is a soberIng result. It Is possIble to do better If specIal
estImates are used for specIfic classes of densitIes; these estImates could be dIsas­
trous If used on densItIes outsIde the desIgnated classes. but at least we can get
somewhere wIth moderate sample sIzes for some J .

FInally. we should stress that we are not concerned for the tIme beIng wIth
methods of choosIng h as a functIon of the data. In thIs chapter. h Is allowed to
depend upon n only.

7.2. CLASSES OF KERNELS.
The maIn class of kernels of Interest to us Is the class of symmetric (about 0)

functIons IntegratIng to one. These are called the class 0 kernels. They Include
all symmetric densities. A class s kernel Is a class 0 kernel for which

J I x I' I K (x) I dx < 00 ,

and

Jxi K (x) dx = 0

for all i =1•... ,8 -1. where 8 Is a posItive Integer. Thus, most class 0 kernels are
In fact class 2 kernels. the only addItIonal conditIon beIng that I x I 2K (x) have
a finite Integral. However. nonnegatIve class 0 kernels cannot possIbly be class 8

kernels for 8 ~3. In view of the symmetry of all kernels consIdered here. we need
only dIscuss even values of 8 •

The order of a class 0 kernel Is the largest Integer 8 such that K belongs to
class 8. If K Is In class 8 for all 8 • then K Is called a superkernel.

Let us gIve a few examples before movIng on to other kInds of kernels. The
kernel

K 3 2(x) = -(l-x )+
4

Is nonnegatIve and symmetrIc, and Integrates to one. Its order Is 2 since It has
compact support. However, the Cauchy densIty has order O. since Its first abso­
lute moment Is Infinite. If we want to construct order 4 kernels of compact sup­
port, we have to consIder negatIve-valued functions.

Class 28 kernels can be constructed In a systematIc manner In a number of
ways. For example, K can be fit Into a symmetrIc polynomial model on a com­
pact set With 8 unknowns. There are 8 condItions to be satisfied, whIch yield 8

Unear Inequalities wIth 8 unknowns. For example, If we assume that
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K (x) = a + bx 2

on [-l,lJ" then K Is in class 4 It

,b 1a+-=-,
3 2

a b-+--0.
3 5.

The solutIon Is K (:I') = i-(11-15$ ~) (I :J) I ::s; 1).

............. "" ....... ""..
., •.,.,..r ~~""';::"'!IL::------------'
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Figure T.1.

- .·K ( -) a (-' 2)A class 2 kernel ( .. - 3; =--- .I-x or)' and a. class 4 kernel.
4

For the constructIon or superKerne.l.s, one needs to devise another method!
sInce w,e would need to solve an n:ftnlte number of equations with an lnftnlTIe

number of unknowns. A complete 'essargu-ment shows that compact support
I

superkernels do not exlBt slnce f x n I ($) ax =0' for all n 2:0; JEL 1(0,,1)
o

together imply f =0 on (O~f) (see e.g~ Theorem 22 of Hardy and Rogoslnskl
(lQ'6:2)). In fact, this conclusion remaIns valid If' ~,he conditIon. were to hold for a
subsequence -of Integers n 1<n 2< . '. forwhleh Eni -l~OO (Muntz·s theorem.-.. ~

i
see 'e ..g. SteInhaus and Kaczmarz, lQS5].. We recall bere that If K has charac-
teristic functIon, qJ; (l.e.~, 1J;(t)==f e in K (x )dX)f then ""(0)=1 for class 0 kernels,
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and 1/J Is real and even by the symmetry of K. Also, for even s,
(_1)8 /21/J(8 )(0)=J x 8 K (x )dx. Thus, for class s kernels, with s even, It suffices
to Invert a real even 1/J with 1/J(O)=I and 'ljJi)(0)=0 for all even i ~s. 'Eo illuS­
trate this, we start with a function 1/J with all zero derivatives at the origin, such
as

I

1/J(t) = I-e -/2 ,

or

{

Ion [-1,1]

'I/J(t) = (2- I t 1)+ - (1-1 t I )+ = 2-1 t I on [-2,-I]U[I,2] .
o outside [-2,2J

I 1 I1/1 = l-e --;2 ---
¢ = (2- I t I 1+-(1- I t I)± -.-----

-3 -2 -1

Figure 7.2.

Two characteristic functions used to construct superkernels.

Since J 11/J I < 00 In both cases, the following Inversion formula Is valld:

K(x) = ..!..-Jcos(tx) 'I/J(t) dt .
21T

The kernel K can be a superkerneI. The second 'I/J shown In figure 7.2 Is fiat In a
neighborhood of the origin. The corresponding kernels will be referred to as
flattop kernels. (Note that the kernels themselves do riot have a fiat part; the
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characteristic function 'l/J Is 1 on an Interval [-T ,T].) If we recall that (1-1 t 1)+
Is the characteristic function of the de la Vallee Poussin density

[

sln(!...) ] 2

V(x)=~ _2
211" x

2

shown In figure 7.3, then a small argument shows that the characteristic function
(2- I t 1)+-(1- I t 1)+ corresponds to the kernel

K (x) = 4V(2x )-V(x) = _1_ (4 sln2(x) - 4Sln2(!...))
211"x 2 2

1 ( ) 2 x 3x= -- 2 cos(x) - 2 cos(2x) = --sln(-)sln(-) .
211"x 2 1I"X 2 2 2

This kernel Is also shown In figure 7.3. A simple computation shows that

J IK I :s 3, sup IK (x) I :s L.l...!l = 2.- .
x 211" 211"

de la Vallee Poussin density V(z) --­

4V(2x)-V(x)

-40 -35 -30 -25 -20 -i5 -10 °10 15 20 25 30 35 40

Figure 7.3.

de la Vallee Poussin density, and corresponding flattop kernel.

Observe that Jx 2 IK (x ) I dx =00, so that strictly speaking K Is not In class 2
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. (even though Jx j K (X) dx =0 for all positive i). To force K. to have an Infinite
order. It Is necessary to consider 'I/J's that are a lot smoother, The first charac­
teristic function of figure 7.2 Is so smooth that all deriVatives exist. and .are cdn­
tlnuous and absolutely Integrable. By the Inequallty

I K (x) I :S J 11fJ
8

) I
211" I x I 8

valid for s =0.1.2..... It Is easily seen that K Is Indeed a superkernel. See exercise
7.1.

We wlll also need the notion of an associated kernel L , as Introduced by
Bretagnolle and Huber (1979). The function L defied by

00 . 8-1

L (x) = (_1)8 J (y -x) K (y ) dy (x >0)
x (s -1)!

L (-x) = (_1)8 L (x) (x <0)

Is the kernel associated with kernel K. Sometimes we wlll say that L has
parameter s , since this figures In the definition of L. When K Is sYmmetric. L
Is sYmmetric. Furthermore,

f I L I :S -!.,J I x I 8 IK (x) I dx
8.

for all nonnegative Integers s . For 8 =0. we define L =K, For K 2:0. we have
the equallty

f I L I = ~f I X 18 K (x) dx .
s!

Finally,

x 8 {=o .s odd
f L = f -;TK (x) dx = =0. s even. and the order of K Is >s·

These statements are easily proved:

00 00 8-1

f IL I = 2f f (y -x) K (y ) dy dx
o x (s -1)!

:S2I [j(y-X)8,-1 dX]IK(Y)1 dy
o 0 (s -1).

= 21 I Y 1
8

I K(y) I dy .
o s!

Here we have equallty when K 2:0. For even s • we have, similarly,

JL = 2(-1)" I[f (y -x );-1 K (y) dY] dx
o x (s -1 !
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oo[Y 8-
1 1=2(-1)" j j(Y(-~\ dx K(y)dy

a a 8 1.

00 8 8

= 2(-1)8 j-y-K (y) dy = j-y-K (y) dy .
a 8! 8 !
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The last kind of kernel needed Is called a mollifier, because of Its excep­
tional smoothing properties. The term Is commonly used In mathematical texts,
see e.g. Adams (1975). Molllfiers are class 0 kernels, nonnegative, and zero out­
side [-l,lJ. They also have Infinitely many continuous derivatives. An example of
a molllfier Is

1

K (x) = C e-1_X
2

, I x I ::;1

(see figure 7.4), where C Is a normalization constant.

·2 ·1

Figure 7.4.

A mollifier.

1

~ Ix 19
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7.3. UNIVERSAL DERIVATIVES AND MOLLIFIERS.
FollowIng Butzer and Nessel (1971), we say that 1 Is absolutelY contInuous

x •

when there exIsts a functIon gEL 1 such that 1 (x)= Jg . In that case, we
-00

have g = I' almost everywhere. When a densIty 1 has 8 -1 absolutely contInu­
ous derIvatIves. then 1 (s) exIsts almost everywhere. so that the functIonal

Is well defined for 8 =0.1.2•.... We run Into problems when we studY rates of con­
vergence for densIties for which the stated condition Is not satIsfied. unless we
can somehow properly generalize Ds without explicitly using the (non-exIstent)
values of 1 (s J. We define

A
Ds ' =lImlnfJIU*Kh )(s)1

h 10

where K Is a molllfier. Such a definition would make sense If three condItions
are satisfied:

A. Ds ' Is well-defined for all 1 .
B. Its value Is Independent of the form of the molllfier K.

C. For densities 1 with 8 -1 absolutely contInuous derIvatives
Cf I 1 (s) I <00). Ds • =Ds • I.e. the quantity coincIdes with the usual func­
tional of 1 (s ).

In thIs section. we would merely like to point out that conditions A and C
are satisfied. It Is a bit harder to show that B Is also valid. ThIs will be done In
the next section for the value 8 =2 only. One of the Interesting propertIes of
convolutions Is that K EC oo (K Is a molllfler) Implies that

K h *¢ E Coo

for all functions ¢EL l' Furthermore, by Young's Inequality.

J IKh *¢ I ~ J I ¢ I < 00 .

Finally. (Kh *¢is )=(Kh )(s) *¢. Thus. Ds • Is Indeed well-defined. To show that
condition C holds. consider 1 with 8 -1 absolutelY continuous derivatIves. Then
(Kh *1 )Cs)=Kh *1 (s). and thus

J I K h *1 (s) I ~ J I 1 (s) I

and

J IKh *1 (s) I -+ J I 1 (s) I

as h to, a property shared by all kernels when 1 (S)EL l'
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7.4. THE BIAS OF THE KERNEL ESTIMATE FOR CLASS 8 KER­
NELS.

We wlll use Taylor's expansion In this section to derive relationships
between Da • and the bias term of the kernel estimate when a class 8 kernel Is
used, This wlll be done In several steps. We begin first with upper bounds for
the bias:

Theorem 7.1. Upper bounds for the bias.

Assume that K Is a kernel of order at least 8 • and that L Is the kernel with
parameter 8 associated with K. For all densities f ,

If f has 8 -1 absolutely continuous derivatives. then

Let K have order greater than 8. If fEW (8 ,a. C) for some 8 ~ 1 (l.e. f van­
Ishes of! [0.1]. has 8 -1 absolutely continuous derivatives and f (a) Is Lipschitz
(a.C », then

J I f *Kh - f I :S zCh s+'"J I x I'" I L (x) I dx .

If f EW(O,a,C) (I.e. f vanishes of! [0.1]. and f Is Lipschitz (a,C», then

Jlf*Kh-f I :S ZCh"'J Ix l"'IK(x)1 dx.

Proof of Theorem 7.1.

Let us start with the case that f has 8 -1 absolutely continuous derivatives.
Then. by Taylor's series expansion with remainder,

f (x+y)-f (x)= ~1~f(j)(x)+x7(x+Y -U)a-l f (a)(u) du
j=IJ! x (8-1)!

so that, for class 8 kernels K .

f *Kh - f = J(f (x +y )- f (x »Kh (y ) dy ( recall that JK =1)

a-I x+Y ( )a-l
= ~ 0 + J J x +y -U f (8 l(u) du K h (y) dy

j=1 (8-1)!

00 00 8-1

= ! f (8 l(u) /x (X~:~:)( KdY) dy du

z tL -x s-l
- J f (a)(u) J (x +y -u ) K (y) dy du

(8 -1)! h
-00 -00
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= If (8)(U)(-1)8(Lh(u-x)du - I f (8)(U) (-I)(-I)8 H)"8(L)h(X-U) du
-00

00

= ff(8)(U)(L)h(X-u)du =f(8)*(Lh =h 8 f,(s)*Lh ,
-00

where (L)h Is the kernel associated with K h and L Is the kernel associated with
K. Therefore, by Young's Inequality,

For general f ,we first pick a moIIlfier r/J (we can't use the notation K, sInce
K Is reserved for our class s kernel), and note that by the Lebesgue density
theorem,

If*Kh-f I =lImlnfl(f*Kh-f)*r/Ja
a 10

for almost all x , Thus,

flf*Kh-f I ~lImlnfII(f*Kh-f)*<pa I (Fatou'slemma)
a 10

= 11m Inf J IU * <P a )*Kh -(f * rP a ) I
a 10

~ h S I I L I 11m Inf f I(f * <P a )(8) I (f * r/J a EC OO
)

a 10

= h S J ILIDs *(f) (definition).

For the remainder of the proof we assume that the order of K Is greater
than s (hence, f L =0 for the parameter s associated kernel L). Assume also
that s 2:: 1. If! Is In W (s ,a,C), then

s -1 j x +y ( )' -1 ( )
! (x +y )- f (x) = :E~ f (j )(x ) + I x +y -u f (8)(U )-! (8 )(x ) du

j=IJ! x (S-I)!
x +y

(x +y -u )8-1
J du f (s )(x) .

- x (S-I)!

Thus,

! *Kh-! = h S ! (s )(x) 1 *Lh + h 8 (f (s )(.)-! (8 )(x ») *Lh '

and using the fact that I L =0, and thus 1 *Lh =0, we have

J I f*Kh-f I ~ h 8 f I JU(s)(y)-! (S)(x))Lh(x-y) dy I dx .

The Inner Integral has a zero Integrand unless O~y ~1 or O~x ~1. Let us
define sets I 1=[O,IJ X [0,1], I 2=[O,IJ X [O,IJ e

, and 13=[O,I]" X [0,1]. By our
assumptions on f (8),

Ilf*Kh-f I ~hS (J+J+J)C !x-y IQILh(x-y)1 dx dy.
I, 12 I.
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Now, the. Integrals over II and 12 taken together do not exceed
1

JJ Ch '" I x -y I'" I L (x -y) I dy dx :s Ch '"J I x I '" I L (x ) I dx .
o
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The Integrals over II and 13 taken together are bounded by the same expression,
by symmetry. Therefore,

JIJ*Kh-J 1 :s 2Chs+"'J Ix l"'IL(x)ldx.

Let us finally handle the case 8 =0. Then, I J (x +y )-J (x) I :s C I y I "',
and by an argument similar to the one used for 8 >0,

J I J J (x +y )Kh (y ) dy - J (x) I dx

< J J I J (x +y )-J (x) I I Kh (y ) I dy dx
o~x +Y ~l.or o~x ~1

< J J ely I '" I K h (y) I dy dx
o~x +Y ~l.or o~x ~l

:s JJC I y I '" IK h (y ) I dy dx + JJC I z -x I '" I Kh (z -x) I dx dz
o 0

=2Ch'" fly I'" IK(y)1 dy .•

The first two results of Theorem 7.1 apply to class 8 kernels. They basically
Imply that for finite D8 • (J ), the bias Is 0 (h 8 ). One might wonder whether for
smoother densitIes J , the bias does not tend to zero faster with h . If the order
of K Is 8, and thus Jx 8 K (x )~o, then this rate Is optimal: no matter how
smooth J Is, we are In fact "stuck" with the rate h 8 for the bias. In other
words, the kernel Itself llmits the performance. At first glance therefore, It seems
Important to Insure that the order of K be as large as possIble. In fact, superker­
nels have InfinIte order, and show the capability of adapting to nearly any degree
of smoothness of J . Let us give some results about the built-In llmitations of
kernels of finIte order 8 :
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11m
h io

Theorem 7.2.
Let K be a kernel of order s. If 1 has s -1 absolutely continuous de~lva­

tlves, then

JI/*Kh-1
11m --"------- = D. (f ) .
h iO h' I J~K (x) dx I

s!

Observe that the Integral In the denominator Is JL where L Is the associated
kernel with parameter s .

The statements following now are valid for all densities 1 . For a class 2
kernel with K 2':0,

J I 1 *Kh -I I = D. • (f ) .
X

2

h 2J-K (x) dx
2

In other words, the definition of D 2 • (f ) Is Independent of the choice of a
molllfier. Furthermore, for kernels K of order s possessing compact support,
and densities 1 with Da +l' (f )<00,

J II *Kh -I I
11m = D. • (f ) .
h io h' I J~K (x) dx I

s!

If D. +l • (f )=00, and K has order s (but possibly Infinite support), we still
have

J I 1 *Kh -I I
11m Inf -....:.....------ 2': D. • (f ) .

hio ha I J_x _
a

K(x) dx I
s!

Proof of Theorem 7.2.
Assume first that 1 has s -1 absolutely continuous derivatives. Since

J I J (.) I <00 by assumption, we have

I f *Kh- 1 I = I 1 (a) *L I
h' h

I f (.)J L + (f (a) *Lh - 1 (a)J L ) I

Since J IL I <00, we have

J I f (a)*Lh-1 (a)JL I -t 0.



7. RATE OF CONVERGENCE

Ther~fore,

I I 1 *~h - 1 I --+ I I 1 (s) I IlL I
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Let us now look at arbitrary 1 with finite Ds * U ) (the case of Infinite values
can be handled by a large compact set argument). Then,

II I*Kh-1 IlkS ~ I IU*t/Ja)*Kh-U*t/Ja) I Ik S

et/J Is a molllfier , a Is arbitrary)

--+ I IU *t/Ja is) I IlL I (as k to, by the first part).

Thus,

llmlnfII/*Kh-1 Ilks ~supIIU*t/JaiS)1 IlL I ~Ds*U) IlL I·
h!o a >0

The upper bound of Theorem 7.1, and the lower bound proved here agree when
K~o and Is In class 2, since IlL I=IIL I=I(x2/2)K(x)dx. There are
other Instances In which they agree. Assume for example that Ds +1 *U )<00
and that K has compact support. Then

I I1 *Kh -I Ilk S

::::;II/-I*t/Ja IlkS +II/*t/Ja-I*t/Ja*Kh IlkS +II/*t/Ja*Kh-I*Kh Ilks

::::;2II/-I*t/Ja IlkS +IIU*t/JaishLh I
The last term Is not greater than

IIU*t/JaiS)1 iJL I +IIU*t/Ja)(s)*Lh -U*t/Jais)IL I
::::; I Iu * t/Ja )(S) I IlL I + I IU * t/Ja )(s +1) I h I IL I I I M I

where M Is the kernel of parameter s +1 associated with L I I L . If we let a to,
then the upper bound for I I 1*Kh - 1 I Ik S tends to

o + Ds *U ) IlL I + D. +1 *U )k I IL I .
provided that I IM I <00. This Is certainly the case when K has compact sup­
port. Next, let h to, so that this upper bound agrees with the lower bound esta­
bUshed above.•
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7.5. SATURATION AND UNBIASEDNESS.
It wlll help to consIder the followIng sImple table

KERNEL; ORDER 2 ORDER 4 ORDER 8 ORDER 00

SMOOTHNESS
OF f

No restriction 0(1) 0(1) 0(1) 0(1)

D;U )<00 "":'h 2 o (h 2
) o (h 2) o (h 2)

D:U )<00 "":'h 2 ",,:,h' o (h ') o (h ')

D, •U )<00 "":'h 2 ",,:,h' ",,:,h' o (h')

Bounded spectrum "":'h 2 "":'h' ",,:,h' o (h' ) for any 8

Bias J I f *K. - fl·

It should be noted here that the bIas Is a (1) In all cases, a fact dIscussed at
length In chapter 2. For order 2 kernels, the bIas can decrease at the rate h 2 but
not faster; there Is not a sIngle exceptIon. In partIcular, thIs rate Is best possIble
for all nonnegatIve kernels. ThIs phenomenon Is known as saturation (for more
on saturatIon, consult Butzer and Nessel, 1971). A sImilar thIng happens for
order 8 kernels, only at the rate h'. Order 8 kernels do not allow the bIas to
tend to zero faster than h8. InterestIngly, superkernels adapt automatIcally to
the smoothness of f as long as smoothness Is measured In terms of the polyno­
mIal rate of convergence of the bIas (In h ).

The smoothest densItIes are perhaps those wIth bounded spectrum, I.e. the.
densItIes whose characterIstIc functIon vanIshes outsIde a compact set [- T ,T J.
Let us call thIs class BST • DensIties In thIs class are necessarily analytIc (sInce
the characterIstIc functIon Is 0 (e- C I t I) as It 1-+00; see e.g. Kawata (1972, p.
439)). For these densItIes, It Is possIble to have zero bIas, as we wlll now see.
Assume that K Is a fiat top superkernel (for the exIstence of such kernels, see
exercIse 7.2) wIth characterIstIc functIon 'lj; where 1/;=1 on [-I,IJ (wIthout loss of
generality). If f has characterIstIc functIon ¢, then f *K" - f has characterIstIc
functIon

¢(t) ( 'l/J(th H ) .

ThIs Is IdentIcally zero (and hence J I f *K" - f I=0) If 'lj;( th )=1 for all
1 t I5:.T. ThIs Is In turn satIsfied If h 5:.I/T. We have thus shown the remark­

able fact that
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for 1 EBST , h:S ~, and any flattop kernel K with characteristic function of

value 1 on [-1,1]. Thus, for flattop kernels, we can truly state that they adapt to
the smoothness of 1 for all 1 . Superkernels without the flattop property do not
necessarily yield unblasedness on BST • See exercise 7.3.

7.6. THE VARIATION OF THE KERNEL ESTIMATE.

In this section, we relate the variation E (f lin -1 *Kh I) to two quantities,

Jff , a measure of the heaviness of the tall of 1 , and JK 2
, a measure of how

large K Is. We have seen that the bias term Is small when 1 Is smooth and K
has a large order 8 (I.e. K osclllates a lot). Unfortunately, smooth densities
smear their mass out In such a way that Jff Is large, and osclllating kernels
have generally speaking larger values JK 2 than monotone kernels with similar
Widths. Thus, we already have a preview of the compromise ahead of us: what Is
good for the bias Is bad for the variation, and vice versa.

Theorem 7.3.

Let 1n be the kernel estimate with kernel K.

Proof of Theorem 7.3.

Use the Cauchy-Schwarz Inequallty and the follOWing Inequallty:

E ((f n - 1 *Kh )2) = _l_nE ((Kh (x -X1)-1 *Kh )2)
n 2

:S J:...E (Kh 2(X -X 1))
n

= ~h (K 2
)h *1 (x) .•
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All Integrals were from 0 to co.•

S; .jJ(g2+a 2x 2g2) Jel+a2x2tl

= V-{;{Jg2+a 2JX 2g2)

= vrr.jJ;2.jJX2g2

If we choose the optImal value for a , I.e.

a = vi J~:;2 "

Lemma 7.1. Carlson's inequality (Carlson, 1934).

Let 9 ::::0 be a measurable functIon on the real llne. Then

00 [00 ]+[00 j+{g S;Vir £g2 {X 2g2 ,

1, <; r.rr [I,f[lx'" t
Proof of Lemma 7.1.

We wlll use the Cauchy-Schwarz Inequallty, and the fact that
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For small h ,the upper bound of Theorem 7.3 Is roughly speakIng equal to a
constant times Jff ;-Inh. The l;vnrt term Is due to the effect of the cep.tral
llmlt theorem because locally, f n Is an average of about nh observlttlons. The
tail factor Jff Is somehow related to E I X I where IX I has density f .
In most cases, the tall factor and E IX I are finIte or Infinite tog"ether. See how­
ever exercise 7.5.

To relate Jff more precIsely to the tall of f , we need
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If we take 9 =ff In Carlson's Inequallty, then we have
1

Iff :s V21rE 4(X2)
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where X has density f ' Since the left-hand side Is translation-Invariant, we
obtain

Lemma 7.2.

For any density f with variance (72,

Iff :s /2iW.

When f Is regularly varying of order r , I.e.

Um f (tx) = t r

"-'00 f (x)

for all t >0, and f =0 on the negative halfilne, we have Iff =00 If r >-2 and
Iff <00 If r <-2, This again relates the finiteness of the tall factor to that of

I I x If. The finiteness of I ff Is Important for us because of Theorem 7.3
and

Lemma 7.3.

If K Is a square Integrable kernel, then

Iv'f*(K 2)h 2:: Iff JIK 2 .

Proof of Lemma 7.3.

v' f * (K2)h / J I(K 2)h > ff * (K2h / I K2

by Jensen's InequaUty.•

As a corollary, we see that Iff =00 makes the bound of Theorem 7,3 use­
less, Of course, for this to happen, f needs to have a fat tall; Carlson's
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Inequality tells us that at the very least, the variance must be Infinite. Unfor­
tunately, as shown In exercise 7.6, the upper bound of Theorem 7.3 can be
Infinite (j f * (K2h =00 for all h >0) even If Jff <00. Furthermore, the
bound obtained In Theorem 7.3 Is not loose, because the 1/../nh rate of conver­
gence for the variation Is Impossible to achieve When Jff =00' (see exercise
7.7). It Is therefore necessary to analyze the upper bound of Theorem 7.3 a ,bit
further. We wl1l do this by establishing yet another explicit bound, since explicit
bounds are needed to prove the minimax optimality of the kernel estimate later
on.

Theorem 7.4.

Let f be a density With variance 17
2
<00. Assume that K Is a kernel for

which J(1+x 2)K2<00. Then

.JJK2Jff
E (j I f n -I *Kh 1)$ (Ho (1)) ../nh

If h -+0 as n -+00. The 0 (1) term can be taken equal to

[
2a2+h2JX2K2]+ .5ff J+ I f*Qh-1 I '

JK 2 Jff

where Q=K 2;f K 2 Is the quadratic associated kernel.

Proof of Theorem 7.4.

That the 0 (1) term defined In the statement of the theorem Is Indeed 0 (1)
follows from the fact that all kernels are approximate Identities for all densities.
We wl1l also need the fact that f ff <00 (which follows from the finiteness of
a, and Lemma 7.2). We begin with the upper bound for the variation given In
Theorem 7.3:

Note that

1

$ f ff + .5ff(J I f - f *Qh I Jx 2 I f - f *Qh I ) 4" (Carlson's Inequality)

1

$ Jff +.5ff(J I f -1*Qh I (a2+a2+h 2JX 2K 2/JK 2))4" .•
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7.7. MINIMAX UPPER BOUNDS.
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The explicit bounds for the bias and variation can now be put to good use.
They can be combined to yield upper bounds for the expected L 1 error, uni­
formly over some class of densities. We wlll consider the class F=W(s ,a,C)
only. We Inherit the following notation from the previous sections: L Is the
parameter s associated kernel, K Is assumed to have order greater than s,

a2=Ix21 (:::;1). In addition, we wlll use the fact that Iff:::;JTJ =1, and
we wlll assume that

J.to< = I I x I 0< I L (x ) I dx < 00 .

Using

we obtain the following Inequality from Theorems 7.1 and 7.4:

EcJ I 1 -I n I):::; 2Chs+0<J.t0< + ~ff

+ V2jJ([2a2+h2IX2K2j+(SUPII/*Qh_1 )+
nh IK 2 F

which can be put In the form

(Ho (1)) fAh 8 +0< + b 1
t vnh )

If we choose h such that h -+0 and nh -+00. For the verification of the fact that
sup I I 1 *Qh -1 I=0 (1), see exercise 7.13. The constants A and B can be

F
taken as follows:

A A 2C!-t0< ,B A J I K 2 .

The functions Ah 8 +0< , B / ITiJl and their sum are shown In figure 7.5.
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Function to be minimized with respect to h .

The sum of the functIons shown In figure 7.5 Is mInImal when

A (8 +a)h 8 +<>+1 _ B = 0,
2..[nh 3/2

I.e. when

and the mInImal value Is

h
(

B ) 8+<>++

2A (8 +a)..[n ,

1 8 +<>

G* (AB2(8 +<» ) 2(8 +<»+1 n 2(8 +<»+1

where

c* = (2(8 +a)) 2(8+<»+1 (1 + 1 )
2(8 +a) .

In other words, we have just shown
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Theorem 7.5.

Let I n be the kernel estimate with kernel K of order greater than 8 , and
with smoothing factor

Then

h [ 1

1J"]"K2 S +C<+"2

4C I-Ic< (8 +a)';;- .

B +C< 1

sup E{j I I -In I) ~ (1+0(1)) C* n 2(B+c<)+1 (2Cl-lc<(JK 2)s+c<)2(s+OJ+l
W(B,C<,C)

where C* and I-Ic< are defined above.

It Is perhaps worth noting that the minimax lower bound for the Lipschitz
classes, which Is of the form

(C 1(8 ,a)+o (1))
(
_C_) 2(B+c<)+1 ,
nS+C<

depends In the same manner upon C and n as does the upper bound for the ker­
nel estimate given here. It should also be stressed that the kernel estimate Is com­
pletely defined In terms of n ,8 ,a,C. For W (8 ,a,C), the given kernel estimate
Is minimax-optimal. Other more sophisticated estimates can at best Improve the
constant In the upper bound. This brings us to the Issue of the best form of K ,
I.e. the form that minimizes the upper bound.

7.8. THE OPTIMAL KERNEL.
Let us try to find out for which kernel(s) the minimax upper bounds of the

previous section are minimal. What we need to minimize Is

( )

8+C<JK 2 J I x I C< I L (x) I dx .

Here K Is a kernel of order greater than 8, and L Is the parameter 8 kernel
associated with K. We will consider only two cases, 8 =0 and 8 =1. For 8 =0,
L =K • so that we need to minimize



120

We have

7. RATE OF CONVERGENCE

Lemma 7.4.
For all kernels K of order at least equal to one,

>_1_
- 2a+I ( )

Cl
a+I
2a+I

Equality Is reached for

Proof of Lemma 7.4.

We first observe that

J K 1 J I I ClK = _1_ JK 2 = a+I
o=, x 0 2a+l' 0 2a+1 '

and that K 0 Is symmetrIc. The product In the statement of the lemma Is scale
Invariant, so we need only consIder kernels for whIch J I x I ClK =I/(2a+I). For
any other kernel of order at least one, f (K -K0)=0, and f I x ICl(K -K0)=0.
Therefore.

1

f K 2 = f(K -K 0)2 + f K 0 2 + 2 f a+I (1-1 x ICl)(K -K0)
-1 2a

=f(K-Ko)2+fK0
2 +2 I a+I(lx ICl-I)(K-K o)

[-I,IJ' 2a

~ I(K-K o)2+ fK 0
2

when K Is a densIty (the Integrand of the last term In the mIddle expressIon Is
nonnegatIve on [-I,IJC). Thus. for densItIes K, we have proved the result. For
kernels that can be split Into a posItIve and negatIve part. K =K+-K _. we see
that

and thIs Is at least equal to the value of the product at K 0 (sInce f K +~ 1). ThIs
concludes the proof of Lemma 7.4.•
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Figure 7.6.
Several optimal kernels are shown.

For the ordinary Lipschitz class W (O,l,C), a quick computation shows that
with the optimal kernel (l-X)+ (recall that 8 +a=l), and

1

h = ( 8n
3
c 2 )

3
,

the kernel estimate has the following uniform upper bound:
1

(3C) 3sup E Cf I f n - f I) ~ (HO (1)) -
I EW(O,l,C) n

This should be compared with the lower bound we obtained for this class,

R( 1B2C)~(HO (1)) 1--
C 10000 n

.AB n -+00, the ratio of upper to lower bound tends to
1

(
30000 )3 ~ 2.8499599/ 0.
129B 'vi ~-(7
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The optimization of Lemma 7.4 Is generally applicable when K ~o. We
observe for example that when L Is the parameter 8 kernel associated wIth a
kernel K ~O, then

00 00 8-1

fix l"IL(x)1 dx =2fx"J(y-x) K(y)dy dx
° x (8 -I)!

00 JJ "( )8-1= 2 JK (y )f x y -x dx dy
° ° (8 -I)!

00 1 a s-1
= 2fK(y)yS+<> JV (I-V) dv dy

° ° (8 -I)!

= r(a+I) JK ( ) I I 8 +" d .
r(a+8 +1) y y y

Since K must have order greater than 8 for the uniform bounds to be applicable,
the computation of f I x I <> IL I Is only useful .for 8 =0 or 8 =1. We conclude
that the optimal kernel for W (I,a,C) has the form

a+8 +1 (1- I x I H ") .
2(a+8) +

For W(I,I,C), the unIform bound obtaIned wIth the kernel estImate Is asymp­
totic to a universal constant times C 1/5/n 2/5.

7.9. INDIVIDUAL UPPER BOUNDS.
There Is a discrepancy between best possible rates of convergence for Indivi­

dual f , and unIform rates over classes F. In fact, we can regard Individual rates
as uniform rates over F={ f }. For example, for the kernel estimate, we have
very often

Inf E (J I f n - f I)
__h_>_O..:,..K -+ 0 as n -+00 ,

Inf sup E cJ I f n - f I)
h >o,K f EF

where F Is a class containing f . In other words, for most densities, we can do
much better than what we might think Is possible merely by studying mlmlmax
results. In one case however, there Is relatively little dlft'erence between minimax
upper bounds and Individual upper bounds, I.e. when K Is nonnegative.
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Theorem 7.6.

Assume that f Is a density with D 2 * (f )< 00, and f x 2 f < 00. If K Is a
nonnegative order 2 kernel, for which f(l+x 2)K 2 <00, then

2

Inf E cJ I f n - f I) ~ (1+0 (1)) (2 5 +2 5) ¢(K) 'l/J(f ) n 5 ,
h >0

where

and
1

'l/J(f ) A (D/ (f )f\Tr
The Inequallty Is valld for example when

1 2

1 (JK 2 )5(Jff)5
h = n 5

2

( 2D 2 * (f )f x 2K ) 5

Proof of Theorem 7.6.

If h --+0 and nh --+00, we have

Here we used Theorems 7.1 and 7.4. If we Ignore the 0 (1) terms, then we are left
with a simple minimization problem with respect to h. The "best" h Is given in
the statement of the Theorem, and satisfies the conditions h --+0 and nh --+00.

The corresponding upper bound Is the one given In the statement of the theorem.•
The upper bound deserves some special attention. First of all, It depends

upon a product of three factors, n -2/5, ¢(K) and 'l/J(f ). The dependence upon n
Is the same one achieved In the minimax theory for the (Bretagnolle-Huber) class
of all densities on [0,1] for which f and f I are absolutely continuous, and
'l/J(f )~r for some constant r. We have already hinted that
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2

Inf EcJ11 n -1 1)2 (C+o(l))¢(K)'I/J(f)n 5,
h >0

for some constant C, and all densities 1 . Thus, the upper bound Is fine modulo
a small universal constant. The factor 'I/J(K) Is mInimal for Bartlett's kernel
(Bartlett, 1962)

1 2 /and the minimal value Is _(_)2 5 (see Lemma 7.4). Finally, the factor 'I/J(f )
5 5

could truly be called the difficulty factor for kernel estimates, since It seems to
Indicate how hard It Is to estimate 1 with a (nonnegative) kernel estimate. It Is
obviously scale and translation-Invariant, depending only upon the shape of 1 .

'I/J(f ) Is Infinite for one of two reasons: either the tall of 1 Is too big
(Jff =00), as Is the case for the Cauchy density, or 1 oscIJIates too much
(D 2* (f )=00). Examples of densities with D 2 * (f )=00 Include all densities
with a simple discontinuity (such as the uniform density on [O,lJ or the exponen­
tial density), and all densities with an Infinite peak (ess sup 1 (x )=00). Not all
finite values for 'I/J(f ) are possible either. It Is known (Devroye and Penrod, 1984)
that

Inf D / (f ) = ~/ ~ 1.66097458615 .
f 345

The Infimum Is attained for the Isosceles triangular density (1- I x 1)+ and all Its
shifted and rescaled versions. Consider for example the plane formed by D 2 * (f )
as the x -axis, and Jff as the y -axis (figure 7.7). The region below the curve
xy 4:'5 c (c Is some constant) Is forbidden. The Isosceles trIangular density moves
on the border of the forbidden region as Its scale changes. The lower bound for
'1/;(1 ) Is really due to the fact that when one has to draw a density, one either
needs to create a bIg tall If the density Is to be smooth, or one needs a lot of
osclllation If the tall Is to be small.
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Figure 7.7.

Plane of f VI versus D 2 • (f ).

If a given density satisfies the conditions of Theorem 7.6, I.e. the value for
'I/J(f ) Is flnlte, and the variance Is finite, then by taklng an order 4 kernel, It Is
relatively easy to establish that the bias Is 0 (h 2), so that

2

lnf E (f I f n - f I) = 0 (n 5)
h >0

but It Is dlIDcult to give an explicit formula for h In terms of f , unless one
assumes more (e.g" D 4 *Cf )<00). Essentially, as observed as early as 1962 by
Bartlett, and rediscovered later by others, If D8 *(f )<00 for even 8, and we
choose an order 8 kernel K, It Is possible to Insure that

by taking h ~n -1(28 +1). As 8 grows, we get better rates of convergence, but
these rates apply to a shrinking collection of densities. Usually, we don't know
anything about f , let alone the fact that D8 • (f ) Is flnlte. Furthermore, If one
chooses h ~n -1(28 +1), but f Is not as smooth as originally thought so that the
bias decreases e.g, as ~h , then the particular choice of h Is actually disastrous,
as the bias alone decreases as n -1(28 +1) (In this artlfclal example) Instead of
n -8 (28 +1).
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7.10. MODIFIED KERNEL ESTIMATES.
The design of a kernel estimate bolls down to the choice of hand K. Under

certain conditIons on 1 , It Is possible to give formulas of the form

h = a(n )(3(/ )

for the smoothing factor so that a relatively good upper bound on the expected
L 1 error Is minimized. Here a(n) Is a function of n, such as n -1/5, and f3(/ )'Is
a functional Involving 1 (see Theorem 7.6). Since 1 Is unknown, (3(/ ) Is unk­
nown, and we have a vicious circle. There are a few ways around this problem.

Some statisticians suggest making a parametric assumption about f , and
estimating the parameter or parameters from the data. These estimates are then
plugged back Into the parametric model 9n , which In turn Is used to compute
(3(9n ), which hopefully Is not too far from the unknown (3(/ ). This has worked
well In some applications, In which exploratory data analysis had already esta­
blished that the unknown density could almost be fitted by some parametric
method. See e.g. Deheuvels (1977).

Others argue, quIte correctly, that the formula a(n )(3(/ ) for h Is based
upon non-verifiable conditions on I. They suggest going back to general princi­
ples like cross-valldatlon and maximum likelihood In an attempt to obtain the
best choice of h directly. Ideally, one would hope to find a function
h =h (X l' ... J X n ) such that for all f ,

E(jlfn-I I)
--------- -> 1

Inf E (j I f nh -I I)
h >0

as n ->00, where 1nh Is the ordinary kernel estimate with deterministic h , and
1n Is the kernel estimate with data-based h. It Is stili unknown whether such a
formula exists. If It does, we would achieve the asymptotIcally optimal rate of
convergence wIthout actually knowing the rate of convergence. Stone (1984,1985)
has obtained a result In this spirit for the expected L 2 error of the kernel esti­
mate and the histogram estimate. His data-based smoothing factor uses least­
squares cross-valIdation: for further work and references, consult Hall (1983), Bur­
man (1985), Marron (1985) or Scott and Terrell (1986).

A data-based smoothIng factor h supposedly adjusts Itself automatically to'
the smoothness and size of the tall of 1 . For extremely smooth densitIes, the
limIting factor Is the order of K , because of the saturation phenomenon In the
bIas of the kernel estImate. It Is necessary to Jack the order of K up to the maxi­
mal smoothness expected In f. The Issue of the choice of the order of K can be
circumvented If one picks a superkernel. The cost of doing this Is consIderable:
the fact that 1n can take negative values and that K has Infinite support

Implies that a lot of computational time Is required to obtain f n +/Jf n +, the
normalized density estimate. Furthermore, the constant term In asymptotIc
expressions for the expected L 1 error (see Theorem 7.6) typically grows as the
order of the kernel grows, and Is large for superkernels.
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One should question whether It Is appropriate to spend a lot of time and
effort on"the choice of hand/or K, because doing so Is admitting that one Is wll­
ling to accept the asymptotic performance of the kernel estimate, which we now
know Is a complicated function of 1 . Recalling that In many cases It Is a func­
tion of 'I/;(f ), It Is perhaps wiser and easier to try to transform the data In such a
way that 'I/;(f ) becomes smaller, to estimate the density of the transformed data
by the kernel method, and to retransform the density estimate. By the Invarl­
ance of the L 1 distance under continuous one-to-one transformations, It suffices
to analyze the expected L 1 error for the transformed data, with Its presumably
better value of'l/;(f ). Ideally, with nonnegative K, one would like to transform
the data In such a way that 1 becomes triangular (see Theorem 7.6 and Its dis­
cussion). The question remains of how one can construct a good data-based
transformation with provably excellent properties. See for example Devroye,
Machell and Penrod (1983) or Devroye and Gyorfi (1985).

7.11. RATES OF CONVERGENCE WITH SUPERKERNELS.
One of the advantages of a fiattop superkernel is that It can be used for all

densities; provided that we are able to choose h properly, we can adapt to any
degree of smoothness. The variation for superkernels Is dealt with In Theorem
7.6: It Is not different than for any other kernel.

The bias term can be handled differently. Since K has an Infinite order, all
the results of Theorem 7.1 apply. This has the drawback that densities have to
be dealt with according to membership In classes defined In terms of the s -th
generalized derivative. There Is another way of studying the bias, which provides
us with a continuum of rates, based upon the behavior of the characteristic func­
tion <P of 1 .

Assume that 1 has characteristic function <p and that K has "characteristic
function" '1/;, where 'l/F-=1 on [-T ,T]. and that both 1 and K are In L 2' The
tools for obtaining upper bounds for f I 1*Kh - 1 I are essentially the Cauchy­
Schwarz Inequality or Carlson's Inequality, and Parseval's Identity (also called
Bessel's equality):

A, If 1 has support contained In [0,1], then.

£I 1*Kh -1 I ~ V!(f *Kh -1 )2 (Cauchy-Schwarz).

B.
1 1

J I 1*Kh - 1 I < J2i[ (J(f *Kh - 1 )2) 4" (JX2(f *Kh - 1 )2) 4"

(Carlson's Inequality) "
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J(f*Kh -/)2 = _l_J(~(t)'Ij;(th)-~(t)f dt (Parseval's IdentIty).
271"

For our flattop kernel K , we deduce that

J(f *Kh - 1 )2 S ~ J if>2( t ) dt
271" I t I> T /h

This can be plugged back Into bounds for the bIas:

Thus, for densItIes on [O,lJ, the bIas Is dIrectly related to a tall Integral of 4>2. AJ3
an example of how one can obtaIn bounds that are explicIt In h, note that for
a>O,

It should be observed that there are many densItIes on [0,1] for whIch
J I t I a~2(t) dt <00 for all a>O (see exercise 7.11). For these densItIes, the bIas
tends to zero faster than any polynomIal rate In n. This Implies tllat
Inf E(J lin -I I) = 0 (n'I.Jn) for any E>O.

h >0

Most ultra-smooth densItIes, such as the normal densIty, have InfinIte sup­
port. The reader Is urged to look at exercIse 7.12 to get an Idea of how to cope
wIth the InfinIte support, sInce the Cauchy-Schwarz Inequality Is no longer useful.

FInally, for the ultImate In smoothness, consIder a densIty 1 wIth bounded
spectrum (I.e. the characterIstIc functIon 4> vanIshes of!' [-8,81 for some finite
constant 8). For h ST 18 • the bIas Is zero. Thus. It Is not necessary to let h
tend to °wIth n . In fact, sInce the varIatIon Is roughly speakIng a constant over
v'nh . It Is best to choose h as large as possIble. I.e. h T 18 . For a flattop
superkernel wIth J~<oo and constant h S T 18, we have

E(j I In-I I) S J";~2h

whIch decreases as 1/vn when J";1 *(K 2)h <00. Employing Theorem 7.4, the
numerator Is further bounded by

1

Jff + .j2;(4<f!+2h2JX2K2IJK2)4.

In other words. It Is finIte If the variance of 1 . a2, and J(1+x 2)K 2 are both
finite.
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7.12..EXERCISES.

7.1. Show that If 'I/J Is the characteristic function of a symmetric function K.
where 'I/J has a continuous absolutely Integrable derivative of order s • then

I K (x ) I < J I 'ifJ8) I
211" I x I 8

where s Is a nonnegative Integer.

7.2. Consider the "characteristic functions"

{

1 (I t I <1)
'I/J(t)= 1 -

-I-t-I (I t l>l)

and

{

1 (I t 1:::;1)
¢J(t) = 1

1-e (I t I_1)2 (I t I > 1)

For ¢J and 'I/J. prove or disprove that they are flattop superkernels. Hint:
either derive the explicit form of K. or obtain Information about the rate of
decrease of K (x) as I x I -+00.

~I

/ r-----+------. - \ \ \

·3 ·2 ·1

Figure 7.8.

Are these characteristic functions of flattop superkerneis?

7.3. Prove that there does not exist an unbiased kernel estimate (for any K with
JK =1. J IK I < 00) If one wants to estimate a density f whose charac-
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~rlstlc functIon Is nonzero for all t .

how that there does not exist an unbIased kernel estImate for any densIty
'hen the kernel K Is restrIcted to be nonnegatIve.

Ind densItIes f ,g on the real line such that

J I x I f (x) dx < 00 , Jff = 00 ,

J I x I g (x ) dx = 00 , JVi < 00 .

;onstruct one densIty f for whIch Jff <00, yet JJ f * (K2h =00 for all
>0 and all bounded kernels K wIth compact support.

,et f n be a kernel estImate wIth smoothIng factor h satIsfying h -+0,
,h -+00 as n -+00. Assume that K Is an arbItrary kernel, and that
'ff =00. Prove that

11m Inf ME cJ I f n - f *Kh I) = 00 ,
n-->oo

..ssume that K Is a kernel for which J(l+ I x I1+')K 2 <00 and that f Is a

enslty for whIch J I x 11+'f (x) dx <00 for some e>O. Show that
'heorem 7.4 remaIns valid, I.e.

r h -+0 as n -+00.

Vlth a nonnegative order 2 kernel, the best rate of convergence of
~ cJ I f n - f I) achIevable wIth the kernel estImate tends to 0 as n -2/5,

Irovlded that D 2 * (f )<00 and Jff <00. GIve as accurate a statement as
losslble about the rate of decrease (In n ) of

Inf E cJ I f n - f I)
h >0

vhere f Is one of the followIng densItIes:

\.. The beta (a ,a) densIty f (x) (2a -I)! (x (l-X »"-1, x E(O,l),
(a -l)!(a -I)!

where O<a ~1 Is a parameter. For a =1 (the unIform density),
D 2 * (f )=00, but D 1 * (f )<00; for a <I, even D 1 *(f )=00.

_ a +1

3. The ta densIty f (x)=Ca (1+x 2/a) 2, xER, Where O<a~lls a
parameter and Ca Is a normalizatIon constant dependIng upon a only.
Note that for all the values of a, Jff =00, but the sIze of the tall
depends very much on a .

~or the second family, the tall (and thus the varIatIon) domInates, whlle for
.he first family, the oscillatIon (and thus the bias) Is the maIn contrIbutor to
.he L 1 error.
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7.10.Conslder a log concave density (log f Is concave) with a mode at 0 (Iog­
concave densities are unimodal). Prove or disprove: It Is possible to find
h =hn such that E (J I f n - f I )=0 (n -1/3) as n -+00. where f n Is the
kernel estimate with fixed nonnegative order 2 kernel K .

7.11.Construct a density f on [O.lJ for which J I t ICl¢2(t) dt <00 for all a>O.
where ¢ Is the characteristic function for f .

7.12.Wlth the trapezoidal fiattop kernel (2- I t 1)+-(1- I t I )+. how would you
choose h for a normal density f? What rate Is achievable for
E (j I f n - f I)? Hint: use Theorem 7.6 for an upper bound on the varia­
tion. Handle the bias term either via an Inequality In the spirit of Carlson's
Inequality, or via an Integral split In which Cauchy-Schwarz Is used on a.
compact (but growing) central Interval. and crude bounds are used for
(shrinking) tall Intervals. Recall that If X Is normally distributed, then
p (X > u )~u -1 f (u) as U -+00. where f Is the normal density.

7.13.Let K be a nonnegative kernel, and let F be the class of uniformly continu­
ous densities with support on [O,lJ and modulus of continuity

suI> I f (x +y )-f (x) I bounded by a function w(8)-+0 as 8to. Show
%.11119
that

11m sup J I f *Kh - f I = 0 .
h)o f EF

Show that for all classes W (s ,a, C ), such a function w(8) can be found.

7.14.Unblased density estimates can exist for certain classes of densities. For
example. Kolmogorov. and later Basu (1964) have shown that for the normal
family with unknown mean J-l and variance 172• the following density Is an
unbiased estimate at all x :

r( n ~1 )

2 (f n (x) = 2 1
r(!!:"'='- )v'rr(n -1)0-

2

n-4

1 (x _p,)2) 2
(n -1)0-2 +

Here fl and 0- are the standard sample-based estimates of J-l and 17. Show that
the given estimate Is Indeed unbiased at all x. and prove that
E (j I f n - f I )=0 (1/.Jn) uniformly In J-l and 172. For other examples and
more theoretical background on unbiased estimation. see Lumelskll and
Sapozhnlkov (1969). Wertz (1975). Guttmann and Wertz (1976) and Seheult
and Quesenberry (1971). and the references found there.

7.15.Is every Lipschitz density f absolutely continuous (see definition at begin­
ning of chapter VII)? Prove your answer.

7.16.Show that If K Is a kernel with order greater than s. and D8 * (f )<00.

then J I f *Kh - f I=0 (h 8) as h to. Note: when f has s -1 absolutely
continuous derivatives. the result Is Implicit In Theorem 7.2.

7.17.Show that for any kernel estimate f n' Inf E (j I f n - f I)2: c /.In for
f ,K.h

some positive constant c (c =1/J526 will do). Hint: use the realtlonshlp
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1::L
E (J I f n - f *Kh I ) S: 2P (K max) 2

wIth characterIstIc functIons, spIlt bIas and varIatIon terms, and employ the
Inequallty E ( I Sn I)~E ( IX I )vn /8, whIch Is valld for all sums Sn of n
lld zero mean random varIables dIstrIbuted as X .

.8.ThIs exercIse should provIde you wIth some Idea about the smoothness of f
when f has bounded spectrum. Show that when a densIty f has bounded
spectrum, It has a Taylor serIes expansIon about the orIgIn whIch Is uni-.
formly convergent In any bounded Interval. Relate the coefficIents of the
serIes to the characterIstIc functIon 4> of f .

9.The variatIon of the kernel estimate can be larger than c /..;nF! when
Jff =00. Show that the Inequallty of Theorem 7.3 can be generallzed as

follows: If I K I S:K max' then

2:!:
(nh) 2

where p E(O,l). Find sufficient condItions on f and K for the upper bound
2±E..

to be finite When Jf 2 <00.

'.Let f be a very smooth densIty, In the sense that I 4>"(t) I S: C 2 e-I t liD
where 4> Is the characterIstIc functIon for f and 4>" Is assumed to exist at all
t. In other words, the characterIstic functIon decreases at an exponentIal
rate or faster. DesIgn a kernel estImate for whIch

E <I I f n - f I) S: Ct+o (1)) vi CD I:g(n)

unIformly over thIs class, for some unIversal constant "1>0. GIve expllclt
formulas for hand K as a functIon of C and D. Compute acceptable
values for "I and 0 (1) In the upper bound. Interpret C and D , and the
.. difficulty factor J CD ", whIch depends only upon the shape of f. Con­
sider the plane of densItIes with coordInates C and D (similar to figure 7.7),
and show at least five densities In this plane, Including the normal density.



Chapter Eight
A CASE STUDY:
MONOTONE DENSITIES ON [0,1]

8.1. SCOPE OF THIS CHAPTER.

We study the class F=MB of bounded monotone (nonlncreaslng) densities
on [0,1], where B Is an upper bound for the value of the density at the peak (the
origin).

The estimators being studied Include

A. Grenander's estimate (also called the SCM or smallest concave majorant
estimate).

B. The kernel estimate.

C. The histogram estimate.

D. Blrge's modified histogram estimate.

The class F Includes many smooth densities, for which a modified kernel
estimate can In fact achieve extremely good rates of convergence depending upon
the smoothness of the density (a modification Is needed to treat the discontinuity
at the origin; see further on). But smoothness Is not what we are Interested in
here. The monotonlclty Itself Is the Interesting Ingredient. How can we Incor­
porate that knowledge In our estimate, and what can we hope to achieve? To fix
a specific goal, we wl1l begin with the computation of a minimax lower bound in
Theorem 8.1. We wl1l see that the kernel and histogram estimates are not bad,
but they are not minimax-optimal because none exploits the monotonlclty very
well. Birge's modified histogram estimate Is minimax-optimal, and provides us
with a splendid example of how estimates can be tailor made for certain classes of
densities.

The key references are Grenander (1956,1981), who applies the maximum
likelihood principle In the definition of an estimate, Groeneboom (1983), who pro­
vides a thorough analysis of Grenander's estimate, and Birge (1983,1984).
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8.2. THE MINIMAX LOWER BOUND.

Theorem 8.1.

8. MONOTONE DENSITIES

Inf sup E Cf I f n - f I) 2:: 1 ,
f. UMs

and

Inf sup E (f I f n - f I) 2:: __1__ ( 4
n
S ) f

f. Ms 1

8 + 4( 4S)3
n

where S =log(l+B).

(3SS SO.054n )

If we were to construct a subclass of monotone densities based upon a parti­
tion of [0.1] Into Intervals of equal length, then we would obtain at best a lower
bound of the form c / n 1/3 where c Is a constant not depending upon B (for an
explicit computation of this type. see Devroye and Gyorft, 1985). To obtain a
bound with the correct dependence upon Band n, not just n. Birge (1983)
observed that It Is necessary to consider unequal Intervals. Theorem 8.1 and the
proof given below are essentially his. We took the liberty to shorten the proof a
bit; the price paid for It Is a slightly worse constant In the bound.

Proof of Theorem 8.l.

Let 0<£SO.6 be a real number. and let r 2::1 be an Integer. both to be
picked later. Then partition [0,1] Into r Intervals

Ai = [Xi_l.Xi) • i =l,...•r •

where

Xi
(1+£)i -1

(1+£)' -1
, i =O,1, ... ,r
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Figure 8.l.

Partition of [0,1] needed to construct subclass of F.

On Ai' f 8 Is either gi or hi' depending upon whether 0i Is zero or one. Recall
that 0=0.0/)2 . .. Is a binary expansion of a number OE[O,l]. The functions gi
and hi shown In figure 8.1 are staircase functions, where

A{1+~)
2

hi = .,
(l+E)'

A(HE) A
gj = ---. ,or ---. ,

(HE)' (HE)'

where



136 8. MONOTONE DENSITIES

Observe that Jhi = Jgi =2- since the length of Ai Is
Ai Ai r

(1+€)i _(I+€/-1 €(I+€)i-1
Xi-Xi_l = =

(1+€)' -1 (1+€)' -1

-1
= rh

i

Let us now compute Q and {3 for use In Assouad's bound (see Theorem 5.2):

A~
2J I h·-g· I = --. X length A·

A, "(1+€)' '

A€2 € A
------ = --- = Q .
2(1+€)«(1+€)' -1) r (2+€)

Furthermore,

( )
2 €2 €1 yh;-...[i: ~ ~ (1+"4)

A

= 2-2{3 .

The last Inequality Is most easily shown by using the fact that
x x 2

Vl+X >1+--- for x >0:
- 2 8

We can plug everything back Into Assouad's lower bound

r
2

Q (I-V2-2{3n ) ~ T (l-v'2n (1-{3))

€ (./n€2 €)
= 2(2+€) I-V 16 ,(1+"4) .
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We' can make the square root less than ~, If we take
2

r
n £2 £ 1r = -4-(1+4) ,

We are able to conclude that

m (n ,F) 2: --'----­
8(1+":"')

2
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This expression, or ..:..., should be maximized with respect to £, subject to the only
8

constraint we have not verified yet, I.e. that we Indeed have a subclass of F, I.e.
that g l~A~B. It Is Important to see at this stage how one should choose £.
Observe that A~e rE. This Is at most B If r £~8, roughly speakIng. Substitut­
Ing r by Its approximate value, n £2/4, we obtain that n £3/4~8. This Is why
the value

£=

Is approximately optimal. With this value, we obtain the lower bound that we
wanted to verify. It suffices to show now that A~B with this choice of £.

First four small observations: (1) 8 <O.054n Implles that £~O.6; (2)

r<1+~(1+":"'); (3) ~«1+£)X-1) Is nondecreaslng In x for x>O; (4)
£ 4 x

(1+":"')log(1+£)<£. This Is used In the following chain of Inequalltles:
4 -

<

A = 1+£ (1+£)' -1 )
r £(H":"')

2

~(l+~ )Iog( 1+<)
(1+£)e < 4 -1

Only the last Inequallty requires expllclt verification. This bolls down to verify­
Ing

S £2 8 £ 8 £
e (1+£+--8--) < 1-£-8-- ,

2 2 2
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For S >3, we have e S 210, and S-1+S€j2222€+€2j2. So, the left-hand side
of the last Inequality Is at most equal to

€2 S €
10(1+€+--S--) .

2 2

Thus, we need to check that 9(S-1+S€j2»€+10(€+€2j2). This Is Immediate
from the fact that S 23 and that €.:::; 0.6.•

8.3. GRENANDER'S ESTIMATE.
In 1956, Grenander studied an estimator of a monotone density which did

not require knowledge of the support of f , and which Itself was a monotone den­
sity. The latter restriction allowed him to apply the maximum likelihood princi­
ple very elegantly. In this section we will study some of the properties of
Grenander's estimate, also referred to below as the MLE.

Grenander's estimate f n Is defined as a monotone density with the property
that

Is maximal. We need a few lemmas that will enable us to say more about the
shape of this estimate.

LemmaS.I.
The MLE f n Is a step function with breakpoints (Jumps) at the order statis­

tics X (i ),1':::; i .:::; n .

The general form of an MLE Is shown below:



8. MONOTONE DENSITIES

Figure 8.2.

General form of an MLE.
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I

Proof of Lemma 8.1.

The log-llkellhood of
X(1):$X(2):::; ... :::;X(n) Is

the sample with order statistics

t;. n
L (f ) = :E log(f (X(i))) .

;=1

Define

where C Is a normallzlng constant. Observe that

L (f *) = n loge C) + L (f ) 2: L (f )

X(.)

since C 2:1 (this follows from the fact that :E(X(i)-X(i-1))! (X(i)):::; J f :::;1).
o

Thus, for every density f n ' there exists a step function f n * with breakpoints at
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the order statIstIcs, for whIch L (J n - )2L (J n)' •

We will also need some fact about entropies of dIscrete dIstrIbutIons:

Lemma 8.2.

Let PI' ... ,Pn and q l' ... ,qn be probability vectors wIth posItIve com­
ponents. Then

n qi
L: qi log(-) 2 0 .
i=1 Pi

Proof of Lemma 8.2.

We can eIther base the proof on the posItIvIty of Kullback-Lelbler numbers

(I.e., f f IOg(.L)~O for all densitIes f ,g), or prove It dIrectly. Recalllng that
9

the function u log(u ) Is convex In u , we have, by Jensen's Inequality,

n qi qi n qi n qi
L: Pi -Iog(-) ~ L: Pi - log( L: Pi -) = 1 log(l) =0 .•
i=1 Pi Pi i=1 Pi i=1 Pi

From Lemma 8.1, we retaIn that the form of the MLE Is that of a data­
dependent hIstogram. The thIrd lemma applies to all histogram estImates, and Is
presented In thIs setting. It states that once we have settled on breakpoInts, the
MLE Is completely specified.
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Lemma 8.3.

Consider a partItion A l' ... ,Ak of a compact set A , and a histogram den­
sity estimate f n taking the value gj on A j , subject to the normallzatlon·
~gi A(Ai )=1. Then, the maximum over all these histogram estimates of the

llkellhood product

Is reached for the histogram estimate with

Il n (Ai)
gj = A(A j )

where Il n Is the empirical measure for the data.

Proof of Lemma 8.3.

Define Aj =A(A i ), and Ci = cardinality of A j , or n Il n (Ai)' Observe that
for any vector 9 l' ... , gk ,

k C·II (_'_)C;
i=1 nAjk

~Ci
i=1

k
~gi n Aj
j=1

n k C
II f n (Xj ) = II gj ,
j=1 j=1

k gi n Ai c- k Ci cII( ) , II(--) ,
i=1 Ci i=1 n Aj

n

<

(arithmetic-geometric mean Inequality)

k C·
= II (_'_)C;

i=1 nAi

This concludes the proof of the lemma.•

When Lemma 8.3 Is applled with Ai =(X(i-1),X(i)] (with o=X(O) by con­
vention, and 1:S i :s n ), then It Is easily seen that among all step function densi­
ties wIth breakpoints at the order statistics, the IIkellhood product Is maximized
If we take a density Which, on (X(i-1),X(i)], takes the value l/(n (X(i)-X(i-1)))
(since the empirical measure of eacll Interval Is- precisely one).
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We can now formulate

8. MONOTONE DENSITIES

Theorem 8.2. Grenander's theorem.

The monotone density on [0,=) for which the likelihood product Is maximal
Is the density whose distrIbutIon function Is tile smallest concave m"ajorant of the
empirical distribution functIon.

,
",,,,

",,,,,

,
",",,,

",,,,
,,',

",,
","

Smallest concave maJoran;. ,

""..
""..

"..
""....,,..,..

,"..
Empirical distrIbution function

Figure 8.3.

The empirical distribution function and its smallest concave majorant are shown.
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Proof of Theorem 8.2.

By Lemma 8.1, It suffices to consider only monotone histograms with break­
points at the order statistics. Consider just such a density, and let Its height be
gi on the Interval Ai =(X (i _1)'X(i )1. Let Ai be the length of Ai' Consider a
partition of 1, ... ,n Into Intervals of Indices, 11'1 2, ... , Ik ' and define

Pi = :E gj Aj ,
j Eli

1qi = -Cardlnallty of U A j ,
n jE4

h j = r!.!-) 9j , fEl, '
l Pi J

where i =1,2,... ,k . Note that the h j 's define another histogram density estimate,
and that It has the following properties:

A. It Integrates to one, as

:EhjAj = ~ r!.!-) :E gj Aj = 1
j i=1l Pi JjEli

B. It has a better llkellhood product than the gi 's, since

k k (qi) nq,
IT IThj = IT - ITgj
i=1 jEl, i=1 Pi jEli

k

2: IT IT gj
i=1 jEl,

by Lemma 8.2.

This Improvement Is applicable to any histogram estimate. We can pick any
partition we llke. In particular, we can partition the Indices by the breakpoints
of the smallest concave majorantof the empirical distribution function. If we do
that, then the Improvement hj agrees with the empirical distribution function at
these points: Indeed,

qi
:E hjAj = -:E gjAj
jEl, Pi jEl,

1= qi = -Cardlnallty of .U A j
n J Eli

Furthermore, since the 9 j 's are nonlncreaslng, the hj's are nonlncreaslng within
one set Ii (they may not be across Index sets). Finally, by our choice of break­
points, we have that

Ai+l+ ... +Ai+m

m

for 1::; m ::; k, as long as we stay In one Index set. Having started from



144 8. MONOTONE DENSITIES

g l' ... , gn ' and Improved It to hI' . , hn ' we now present a further Improve­
ment to ll' ... , En ' which has the property that It Is Independent of the original
choice of gi's. The Improvement coincides with Grenander's.estlmate, and Is an
MLE. All lj 's for J' Eli are equal to

I; hjAj
jE!;

I.e. they agree with Grenander's estimate; It sufi1ces to show that we have a likel­
Ihood product Improvement for every Ii' To see this, we need to show that

for all i. By the arithmetic-geometric mean Inequality, we have
1

which In turn does not exceed

by virtue of an Interesting association Inequality explored In exercise 8.1. This
concludes the proof of Grenander's theorem.•

This Is not the proper forum for exploring all the properties of Grenander's
estimate. Clearly, the fact that It Is completely defined, without smoothing
parameters and the llke, Is appeallng. Let us merely point out that the estimate
Is consistent for monotone densities and Inconsistent for all other densities'
(Theorem 8.3). Furthermore, for smooth monotone densities, the IndiVidual rate
of convergence Is n -1/3 (Theorem 8.4). See also exercise 8.2 about the minimax
error on small subclasses of monotone densities.

Theorem 8.3.

Let f n be Grenandel"s estimate. Then J I f n - f I --+0 almost surely If and
only If f Is monotone.
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Proof of Theorem 8.3.

If I Is not monotone, then

J I I n- I I 2: Inf Jig -I I > a .
9 monotone

145

When I Is monotone, F Is Its distribution function, and Fn and t n are the
empirical distribution function and the smallest concave maJorant of the empIri­
cal distribution function respectively, then

1· .I n(x) :S 8'(F n(x )-F n(x -0)) (any 8>0; by concavity)

%

2· 1 J:S 8'sup I F n(y )-F (y ) I + 8' I - I (x) + I (x) .
y %-0

2
The first term on the right-hand side Is not greater than 8' s~p I Fn (y )-F (y) I
by the concavity of F. It tends to 0 almost surely by virtue of the GlIvenko­
Cantelll theorem. The Lebesgue density theorem Implies that for almost all x,
we can find 8 so small that the second and third terms talcen together are as
small as desired. We can argue symmetrically on

1 . .
I n(x) 2: 8'(F n(x +8)-F n(x)) .

This shows that In ..... I almost surely for almost all x. Since JIn =1, we
can apply Glick's theorem and conclude that J I In - I 1.....0 almost surely. II

Theorem 8.4.

Assume that I has two bounded continuous derivatives on (0,00), and that
I' <0 on (0,1). Then

1

I) ..... C J(+I 11'1)3

where I n Is Grenander's estimate and c ~0.82 Is a universal constant (Groene­
boom, 1983).

Theorem 8.4 Is not shown here. The rate Is that predicted by the minimax
lower bounds. In that respect, Theorem 8.4 states that Individually, we observe
the same rate of convergence as we can hope to observe uniformly over F, even
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for the smoothest densities In the class. But since we can construct much faster
converging kernel estimates (properly modified to handle the discontinuity at the
origin, see next sectIon) for densities dealt with In Theorem 8.4, Theorem 8.4
should be regarded as a bad news message for Grenander's estimate. There Is of
course still hope that the estimate Is minimax-optimal: for one thing, the con­
stant In Theorem 8.4 has the right dependence upon 8 (see Lemma 8.4 belo,?,).
See also exercise 8.2.

Lemma 8.4.

Let 1 EF be absolutely continuous. Then
1 1 1

A. f (f I I' I )3 S H(logB)3 S H8 3
1

B. f EF ,f ab~~~eIY continuous f (I If' I )3 = °.

Proof of Lemma 8.4.

Let u be a number In [0,1] with the property that f (u )=1 (see figure 8.4).

1 u 1 1 1

f(1 1/'I)3sff(1 1/'1)3+fl/'1 3
o U

< {/(7)+ + 1 (U)+

< [£ I;:Ij+ + 1

[£ -d (log/)r+ 1

1

(10gB) 3 + 1 .

The second half of Lemma 8.4 Is trIvIal.
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1 - - - ------- ----- - - - --- - - - -- - -- - - --- -- f
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Figure 8.4.

A monotone density .

•

8.4. THE KERNEL ESTIMATE.

The symmetrized kernel estimate Is defined by

f n (x ) = f n * (x ) + f n * (-x) , x >0 ,

where f n * Is the standard kernel estimate wIth a symmetric kernel K based
upon S IX v ... , Sn Xn , where S I' ... ,Sn are lld random signs. The support
of f n Is the positive real line. Equivalently, f n can be obtaIned from the raw
kernel estimate gn by defining

f n (x) = gn (x) + gn (-x) , x >0 ,

I.e. by filpping the part of gn to the left of the origin over and adding It to the
part to the right of the origin, see figure 8.5.
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The Inequality
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Figure 8.5.

A kernel estimate gn and its symmetrized form.f n .

valid for any J with support on [0,00) Is of IlttJe help to us, since the f to be
estimated stili has a dlscontlnulty at the origin; It just tells us that ftIpplng the
mass around Is harmless. What Is needed Is

LemmaS.5.

Let J n be the symmetrized kernel estimate based upon a sample drawn
from a density f with support on [0.00). and let J n • be the kernel estimate
based upon a sample SIX 1> ••• , Sn X n . Then

00 00

J I Jn - J I ::; J If n • (x )-+J ( I x I) I dx .
o -00

(Observe that Jn • 1s the kernel estimate of J ( I x I )/2, a density with support
on the real line.)
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Proof of Lemma 8.5.

The symmetry In J( and tile data can be exploited as follows:

149

00 00

J I f n - f I = J I f n * (x )+ f n * (-x)- f (x) I dx
o 0

00 00

::; J I f n * (x )-..!. f (x) I dx + J I f n * (-x)-..!. f (x) I dx
o 2 0 2

00

J I f n * (x )-+1 ( I x \) I dx .•
-00

The point Is that f ( I x I )/2 does not have a discontinuity at the origin, so
that 1n * can possibly approximate It with errors of the order of n -2/5 or better.
Here we won't even need to go that far In terms of errors. We will call 1n the
F-tallored kernel estimate If It Is a symmetrized kernel estimate with

J( (x) = (1-\ x 1)+

and

The smoothing factor Is picked for optimal performance uniformly over F:

Theorem 8.5.

Let 1n be the F -tailored kernel estimate. Then

1 ~

11m sup sup n 3 E (J lin -1 I)::; (3B) 3 .
n .....oo f EF

Proof of Theorem 8.5.

By Lemma 8.5, It suffices to consider the symmetric density
g (x )=1 ( I x I )/2, and the standard kernel estimate 1n * , based upon a sample
of size n drawn from g. The quantity E (J I f n *-g I) Is first bounded from
above by the bias term plus the variation term. From Theorem 7.1, we recall
that the bias does not exceed

h J I x IJ( 11m Inf J \ (g* rP a )' I
a to
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where ¢ Is a symmetric unimodal moIllfier (so that g* ¢a Is symmetric unimodal
as the convolutIon of two symmetric unimodal densities). We have

J I (g* ¢a )' I = 2g* ¢a (0) ::; 2 sup I 9 I J I ¢a I = B .
,

Thus, the bias does not exceed Bh J I x I J(. The variation Is handled on the
basis of Theorem 7.3. We have

E(J If n * -g*J(h I)::; ~ J Jg*(J( 2h

::; vJle (J,;g +J-J19-9*Qh I) (QLl.J(21fJ(2)

::; VJJ( 2 (J,;g + .../2+2h VJig -g*Qh I) (Cauchy-Schwarz)

< VJJ( 2 ( J2 J ff + .../2+2h VBh J I x I Q2 )

so that

The value of 4 for whIch the maIn factor Is minimized Is

1 ..!.. ~ _~

h =n-3 (2JK 2)3(Jff)3(BJIX IK) 3.

The corresponding value of the main factor In the upper bound Is

where we used the fact that for our J(. J I x I J( =~. JJ(2=~, and that
3 3

The dependence upon n In the upper bound of Theorem 8.5 matches that of
Birge's lower bound. Unfortunately, the dependence upon B Is sUboptimal, as a
factor of IOgl/3B Is called for, Instead of B 1/3. This refiects the fact that the
kernel estimate does not make good use of the Information that the density Is
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monotone. On the other hand. the kernel estimate Is consistent for all densItIes.
This distinguishes It from Grenander's estImate and the minimax-optImal esti­
mate presented In the next section. In partIcular, since every L I-neighborhood of
a monotone densIty contains many non-monotone densitIes, Grenander's estimate
and the estimate of next sectIon are not robust.

It Is not necessary to dwell on the standard hIstogram estImate with equal­
length bins, since the results are comparable to those obtained with the kernel
estimate. Instead, we will close this case study by presentIng Birge's modified hIs­
togram estimate (Birge, 1984). Which Is minimax optImal for F.

8.5. BIRGE'S MODIFIED HISTOGRAM ESTIMATE.

In 1984, Birge observed that a minimax-optimal estimate for our class F
could be constructed merely by considering Intervals with geometrically Increas­
Ing Interval widths, and fine-tuning the geometrical rate of Increase. Note that
the same technique was used In Theorem 8.1 In the construction of a lower
bound. MimIcking the constructions of the hypercublc subclasses In Assouad's
theorem often provides us with Important clues as to the construction of a
minimax-optimal estImate.

Birge's modified histogram estimate Is defined by

f (x) = J.l
n (Ai) ,x EA i =[Xi_I,Xi) • i =1,2, .•"m ,

n )"(Ai )

where m Is a parameter,

X o = 0,

m

and E>O Is another parameter. Observe that xm =1 and that :E >-(Ai )=1.
i=1

Thus, the histogram has geometrically Increasing Interval sizes. A typical estI­
mate Is shown In figure 8.B.
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Figure 8.6.
Modified histogram estimate with 20 data points and m =6.



8. MONOTONE DENSITIES

Theorem 8.6. (Birge, 1984)

Birge's modified histogram estimate on [0,1] with

m = r(4n3
2

) +1'
S

€=e m-l,

satisfies

153

sup E cJ I f n - f
f EF

I

for all n 2:23.

If we recall that the lower bound for any estimator over the class F Is about
(1/8)(43 /n )1/3, we conclude that Blrge's estimate Is minimax-optimal. Of
course, the estimator Is only useful when B (and thus 3) Is known beforehand,
One may wonder what happens when 3 Is poorly estimated. For fixed 3, m
grows as n 1/3, and It can be shown that the estimate Is consistent for all densities
on [0,1]. The rate of convergence can be poor for some monotone densities and
many non-monotone densities, because (not surprisingly) the estimator does not
take the smoothness of f Into account. For monotone bounded densities, one
can wonder whether there exists an estimate f n for which

1

Um sup sup ( n B ) "3 sup E cJ I f n - f I) ~ C < 00
n -+00 B log(l+) f EF=Ms

for some constant c? Note t.hat the estimate Itself cannot possibly use the
knowledge of B . In other words, It has to be adaptive, yet It should share the
mInimax optlmaUty with BIrge's modified histogram estimate. This could be done
If we could estimate B satisfactorily from the data. For the details, we refer to
Birge (1984).

Proof of Theorem 8.6.

Let us Introduce the notation gi = f f /'A(A i ). Then
Ai

m m
< E f I f n -gi I + E f I f -gi I

i=IAi i=IAi
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t:.
= VARIATION + BIAS.

Without yet using the exact value of m (because we want to s):l.OW how the value
Is obtained). we have

m 1
BIAS::; E -)"(Ai )(f (xi -1)-! (Xi»

i=1 2

1(m m)= 2" ! (O».,(A I) + i'Jd}H€)! (X'_l».,(A i -I) - i"f:/ (Xi »"(Ai )

::; 2-(B)"(A I) + €.~ f (Xi-1».,(A i - 1»)
2 '=2

<.:.-rH B ),
- 2 ~ (H€)m-l'

where only the first Inequality requires explanation. _What we used there was the
fact that If f Is a ! density on [a ,b J with average f , then

b

J I f -I I ::; t(b-a)(f (a)-f (b»

as can be seen from figure 8.7.
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,,,

,,,

,
/ =_l_J1

b -a (I,

- - - - - - - - - - - ,,~ - - - - - - - - - - - --,
,,,

,,
/"g =/ -(I -/)

-,-.-­_... - ......

Figure 8.7.

b
= 2-J I f -g I < 2-(b_a)2(f (a)-f )+2(f -f (b))

2 a - 2 2

1= -(b-a)(f (a)-f (b)).
2

In this fi.zure, 9 = f -(f -f) Is nothing but the mirror Image of f
average f . Thus,

b

JIf -1 I

about the

The last Inequallty follows easily from a standard monotonlclty argument as lllus­
trated In figure 8.8.
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L; f (x, )(x, -X,_l)Sl

to'rlany monotone f and any partitIon

of [0,11 by xl" . 1 Xm ·

f,
,,
,,,,
'---------

Xo Xl X2 X.

Figure 8.8.

X, X,

To bound the VARIATION term, we let Zi be a binomial random varIable
wIth parameters n and Pi = JJ , and proceed as follows:

Ai

E (VARIATION) = i~l n ).,~i ) )"(Ai )E ( IZi -E (Zi ) I )
1 m

:S - I:; JE ((Zi -E (Zi )?) (Cauchy-Schwarz)
n i=l

1 m
= - 'E Vnp· (I-p. )

n ;=1 1 J

m 1 m
= -- I:; VPi (I-Pi),;n m i =l

1 m 1 m
- 'E Pi (1-- 'E Pi) (Jensen)
m i =l m i =l

=~.
CombInIng the bounds on the bias and the variatIon, we have
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EcJlfn-f 1)~~(1+ B )+ym-1
2 (1+€)m -1 n

€ ( B 1 ~-1 ..§..= - 1 + -- + -- (€=e m_1)
2 e S -1 J n

~= € + Y ----;;--n- (definItIon of 8 =Iog(1+B))

~ . r;-
~ e % - 1 + Y -n (any m-l<x ~m).
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The derIvatIve of the last expression wIth respect to x Is zero for the solution of
3 S

x'2 = 28!ne ..

~

Roughly speakIng, this solution Increases with n, so that e % approaches 1 as
n .......00. Therefore, the choice

1

X = (4n8 2 ) 3" ,m = rx 1

Is reasonable. PluggIng thIs back Into the upper bound for the expected L 1 error,
we obtain

E(j If n-f I) < . r;-+ §.... + ~e f (use eU-1<u+~eU)- Y -n x 2x 2 - 2
1

~ (28)+(l+.!..)+.!..f 28 )f.!..e+(2:r
n 2 2tn 4

1 2

~ : (2: )3" +V; (2: )3"(If 28 ~ n ) . •

8.6. EXERCISES.

8.1. This exercise deals with an association Inequality needed In the proof of
Theorem 8.2. Let h 1~ h 2~ ... ~ hn be nonnegatIve numbers, and assume
that tl. 1, ... ,tl.n are positIve numbers wIth the property that for all
1~i ~n,

n
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Thus. ~i has a tendency to decrease In i, but may not be monotone Itself.
Show that

HInt: use InductIon on n .

8.2. ThIs exercIse Is about the nllnlmax optImality of Grenander's estImate f n •

Let F be the class of all monotone densItIes on [O,lJ, bounded by B . Is the
estImate asymptotIcally mInImax-oPtImal, In the sense that there exIsts a
constant C such that

~ 1

11m sup sup n 3 E cJ I f n - f I) ~ C S 3
n -+00 F

where we recall that S =log(B +1)?

8.3. Show that for the unIform densIty on [O,lJ, Grenander's estImate has an
0(1/';:;;) expected L 1 error. (The same Is true for all finIte hlstogram­
shaped densItIes.)

8.4. Let f be a densIty on [0.00). The ML hIstogram based upon the data Is a
hIstogram wIth breakpoInts at the data poInts and at the orIgIn such that on
(X(i-l),x(i)]' Its value Is 1/(n (X(i)-X(i-l)))' where XCi) Is the i-th order
statIstIc. Its dIstrIbution functIon Is obtaIned by joInIng the upper vertIces
of the empIrIcal dIstrIbutIon functIon by straIght lines. See figure 8.9 below.
Show that for all J •

11m Inf E (J I Jn - f I) > a .
n-+oo
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EmpirIcal dlstributIon function

"",-'

ML histogra-m estlma.te

---------------------

o

Figure 8.9.

The empirical distribution function and the distribution function of the ML histo­

gram estimate are shown.



Chapter Nine

RELATIVE STABILITY

9.1. DEFINITION AND MOTIVATION.
A density estimate Jn Is relatively stable when

I n
E (I

n
) - 1 In probabl1lty as n - 00 ,

where I n = IIJ n -J I. It Is strongly relatively stable when the convergence Is
In the almost sure sense.

The notion of relative stablllty Is Important In comparative studies of den­
sity estimates. Comparing relatively stable density estimates on the basis of
E (In ) Is fair since the actual error I n Is with high probabl1lty close to Its mean.
The situation Is more complicated for example when In/E Un ) tends to a nonde­
generate limit law; the conservative elements among us could be tempted to
choose a density estimate With a larger asymptotic mean but a smaller asymp­
totic variance. Dilemmas of this sort do not occur for relatively stable density
estimates.

Another Important point Is that simulations of the performance (L 1 error) of
relatively stable density estimates are very cheap since I n (the computed perfor­
mance) Is With high probabl1lty close to E (In ). In other words, It Is not neces­
sary to average over several simulation runs. As we will see below, I n Is already
an average of sorts because of the global Integral In Its definition.

The literature on minimax lower and upper bounds for the L 1 error deals
almost exclusively with E (In ), and not With other quantities such as the p -th
quantlles of I n • In view of the relative stability of most nonparametrlc estimates,
It Is less Important to develop minimax theories based upon quantities other than
E (In ), except In special clrcumstances. One such situation Is when the classes of
densities considered In the minimax theory are very small (" parametric"), so that
specially designed estimates (" parametric estimates") are better suited.

Most parametric density estimates are not relatively stable. Take for exam­
ple the class of densities f =pg +(l-p)h where g ,h are known disjoint densities
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(j gh =0), and P Is the unknown mixture parameter. If p Is estimated from the
data by the obvious frequency estimate Pn , and f n =Pn g +(l-Pn )h, then
In =2 I P -Pn I, and thus, by the central llmlt theorem,

J
n -+ IN I In distribution

2Vp {1-p )/n

where N Is a normal random variable. It Is clear that
In / E (In ) -+ I N I /E ( I N I ) In distribution as n -+00. Therefore, the estimate
Is not relatively stable for any density In the given class.

In contrast, popular nonparametrlc density estimates such as the kernel and
histogram estimates are relatively stable for all densities. This Is due to the local
nature of these estimates: densitIes are estImated locally by considering a llmlted
number of close data points. Locally, the error's standard deviation can be of the
same order of magnitude as the error's mean. Yet, because the L 1 criterion sums
a lot of many "nearly Independent" local errors, the variation In the local errors
averages out, rendering the estimates relatively stable. Thus, If we had picked a
local criterion such as I f n - f I /E ( I f n - f I) to define relative stablllty, then
relative stablllty would elIectlvely force the bias term to dominate the variational
term ,I.e. E ( I f n - f I) ~ I E (f n )-fl· For nonparametrlc density estimates,
one can usually achieve this by taking the smoothing parameter large enough.
Yet, this Is a suboptimal strategy because the smallest asymptotic errors are
obtained by balancing the bias and variation terIns. Thus, "local relatIve stabll­
Ity" and "locally optimal rate of convergence" are confilctlng notions.

We wlll show that for the kernel estimate, consistency Implles relative stabll­
Ity. It suffices to note that everything that follows remains valld for the histo­
gram estimate as well. We consider smoothing factors h that are functions of n
only. Relative stablllty In the L 2 sense (replace In by f(f n - f )2 In the
definition of relative stablllty) has been establlshed by Hall (1\)82) under some
regularity conditions on h,f and K, when d =1. Later, Hall (1\)84) refined this
result and obtained the asymptotic law of f(f n - f ? when f has two uniformly
continuous derivatives on Rd. Unfortunately, for a variety of reasons, L 1 rela­
tive stablllty cannot be obtained from Hall's results.

9.2. MAIN RESULTS,
We consider only boxed kernels K, I.e. kernels K which vanish outSide

[-l,l]d, and are In absolute value bounded by some finite value K max' Recall that
f K =1, but that K does not have to be nonnegative. The main result from
which most other results wlll be derived Is given In Theorem 1:
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Theorem 9.!.

ConsIder a kernel estImate wIth boxed kernel K. There exIsts a unIversal
functIon 'li:(0,00)--+(0,00) not dependIng upon f ,K or d such that for all
€>3f IK I/vn,

sup P( I In-E(Jn ) I > €)
h >0./
n <'

o 2' 'lie K",..) c..;n <
S 2e 18J I K I +6<J I K I + 2d +I Inf e c -2'"3

c >0

We emphasIze that Theorem 1 Is valld for all densities on Rd. Also, the
Inequallty Is unIform over all h and all densItIes f . It Is true that we pay a prIce
for the unIformIty; for partIcular cases, better Inequalltles are obtaInable. Yet, It
Is the unIformIty that can allow one to establlsh the relatIve stablllty of
automatIc kernel estImates (see Devroye, 1986). For the unIform kernel In the
unIt hypercube, takIng c =1, we obtaIn the followIng upper bound, valld for all
€>3/vn :

The long proof of Theore~ 9.1 can be avoIded If one Is wllllng to accept a weaker
Inequallty. The bound 4f IK I /(n €2), obtaIned In exercIse 9.5, Is valld for all
f , K, h ,n and €.

Corollary 9.!.

TakIng €=u /vn for some constant u, and choosIng c =1, we obtaIn for
all densItIes f, for all sequences of smoothIng factors h =hn , and for

u >3f IK I,
llm sup sup P (vn I I n -E (In ) I > u)

n ......oo h >0./
u·

< 18(IKI +2d+l 2''li(K",..) -U/(32')_ 2e e e .
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Corollary 9.2.
00
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The simple formula E ( IX I )=1P ( IX I > t) dt can be used to show
o

that

where we can take
t 2

c = si I K I

The constant C Is minimized with respect to K when K Is the uniform density
on [-l,l]d, so that K max=2-d ,I IK I=1. AB n ->00, C tends to a constant
depending upon c and the kernel only, Thus, I In -E (In ) I decreases to zero
roughly as 1/,[;; , which Is much faster than the rate with which E (In ) tends to
zero, I.e. n -2/5 or slower for any nonnegative kernel K and d =1.

Corollary 9.3.

If we take E=log(n )/,[;; , and choose c very large In Theorem 9.1, then It
Is easlly seen (apply the Borel-Cantelll theorem) that for all f and all sequences
of smoothing factors h =hn '

,[;; I In -E (In ) I = 0 (Iog(n )) almost surely as n ->00 .

Corollary 9.4.

For symmetric nonnegative boxed kernels, and all f , we have
2

11m Inf Inf n 5 E (In ) ~ '"Y > 0
n ~oo h

for some universal constant '"Y which Is at least equal to 0.8 (Devroye and Gyorfl,
1985, p.79). Combining this with the prevIous remarks yIelds strong relatIve sta­
blllty. In fact, we have more Information: regardless of how h =hn Is chosen as a
functIon of n , we have

I In -E (In) I
--'""::-:--=-----'"" = 0 (n 10 log(n )) almost surely as n ->00 ,

E (In )
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Corollary 9.5.

For any boxed kernel and any density f on R 1 and any sequence of
smoothing factors h --"'0, the kernel estimate Is relatively stable. We used the
fact that for all boxed kernels K, h --"'0 ImplIes -InE (In )--"'00 as n --"'00 (see
exercIse 9.2; or Devroye and Gyorfl (1985, p. 136)). One questIon not answered Is
whether the condItIon h --+0 can be dropped altogether. ThIs Is dealt wIth In exer­
cIse 9.1.

9.3. A MOMENT INEQUALITY FOR THE POISSON DISTRIBU­
TION.

We wlll prove Theorem 9.1 via a Poissonization argument. At a crucIal junc­
tIon, It wIll be necessary to bound E (NP ) from above where p Is a large Integer,
and N Is a Poisson (n ) random varIable. The bound should be expllclt In nand
p , and should not Increase rapIdly wIth p .

Lemma 9.1.

Let N be a PoIsson (n) random variable, and let p 2:1 be a constant. Then

peP Ilog(l+p In )
E(NP) ~ (-)P -,-__

e IogP (1+ pin )
Iog(l+p In )

and

E (N P ) < n P ( P r.
- Iog(HP) J

Furthermore,

E«N-n)P) ~ (!:)fr pViJ r.
e lIog(H p ) J

Proof of Lemma 9.1.

For any nonnegatIve Integer i and numbers 8>I,p >0, we have

i P < 8j (-p_)P 8-P/log(6) = 8j ( P )P.
- log(8) e log(8)

ThIs follows after observIng that the functIon x P {)X Is maxImal at the val ue
x =p Ilog(8). Thus,
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00 -n i
E(NP)= L;iP~

;=0 z!

p 00 e -n O(n 8)i< ( )P e n (0-1) L; . = ( p )P e n (0-1) .
- e log(8) ;=0 z! e log(8)

165

We stlll have the freedom to choose 8. The expressIon Is minimal when 8 Is the
solution of 8Iog(0)=p In. Since we want 8>1, we should choose 8 for large values
of pin approximatively as follows:

8=1+ pin
log(I+p In)

This gives the first Inequallty. SInce 8Iog(8):::O::O-I for 8 near I, we should pIck

8 = 1+.E. when p In Is small. The latter choIce gIves the Inequality
n

E(NP)~ep[ p jP =(np)P(nIOg(I+~)rp
e log(I+.E.)

n

~ (np )P IlogP (I+p ) .

SInce this yields an adequate Inequallty, the former choice of 8 will not be
explored any further. To show the last Inequality, we begin wIth
N P ~2P -1(n P+(N-n )P ), and observe that for all 8> I,

E «N -n )P ) ~ e n (0-1-log(0))( P )P
e log(8)

(argue as before: (x -n)P 8-x Is maximal for x =n +P Ilog(O). The bound Is
mInImal (In 0) when 8 Is the solution of (0-1)log(8)=p In . For small pin, the
solution Is close to 1. Since log(8):::0::0-1 , we can take In first approxImatIon
8=1+,;p;:;;. Resubstitution of this value and using the fact that
O-l-log(0)~ (0-1)212 yields

E «N -n )P ) ~ e P/2 ( P ) P
e log(8)

< (ne )P /2 ( P ) P
- e vn log(I+~ )

< ('!:)P /2 ( P )P .•
- e log(I+vP )
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9.4. TWO FUNDAMENTAL TOOLS.

One of the problems wIth a random varIable of the form J I f n -E (f n ) I Is
that when the Integral Is wrItten as a sum of very many Integrals of dIsjoInt sets,'
the terms In thIs sum are dependent because of two phenomena: first of all, If K
has support contaIned In [-l,ljd, then a partIcular Xi contrIbutes to f n (x ) for
all x wIthIn the hypercube Xi +[-h .h ]d. Thus. at the very least, the Integrals
over neIghborIng sets In the partItIon are dependent. ThIs dependence will be
taken care of by groupIng the sets Into 2 d classes: WIthIn each class, the sets are
all suIDclently far apart. The second phenomenon Is of a multlnomlal nature: the
cardlnalltles of the sets (In terms of the Xi'S) are multlnomlally dIstrIbuted. We
can eIther work wIth the multinomial random varIables or use a Polssonlzatlon
argument. Since the former approach Is a bit longer, we will employ Polssonlza­
tlon to make the cardlnalltles of the sets Independent of one another.

Let us first establlsh our notatIon. X I'X 2•••• Is an InfinIte sequence of lid
random vectors wIth common densIty f . N Is a Poisson (n) random varIable,
Independent of the InfinIte data sequence. We define

1
f N = - E Kh (x -Xi) •

ni$.N

I N = J I fN-f I
The space R d Is partItIoned Into sets Indexed by d -tuples ex=(j 1> .•• I jd)
where all ji 's are Integer-valued. The set A a Is defined by

d
A a = II [j 12h .(j IH)2h ) .

;=1

The d -tuples ex are partItIoned In turn Into 2 d classes ell ... I C 2' accordIng
to the 2 d possIble odd-even patterns for the d Integer components of ex. See
figure 9.1.
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~ ~ ~ X [>( X X

X rx X X X X rx
X X X X X X rx
rx X rx X rx X X

X X X X X X X

X X rx X rx X X

X X X rx X iX X
A a .2h

I
2h'

Figure 9.!.

Grid with A ,,=[2hj 1'2h (j l+l))X ... X [2hjd ,2h (jd +1)). where

cv.=(j 11 ..• , jd ).
One class of sets A " is marked with crosses.

We define

YQ = J ( I f N- f I-E ( I f N- f I))·
A a

It should be noted that when cv.,(3E Ci , and cv.'!-(3, then Y Q and Y f3 are Indepen­
dent. Notice that we have partitioned the space Into 2 d grids, where each grId Is
a translatIon of the first grid.

The second tool needed In our proof Is an Inequality linkIng

In=Jlfn-f I toJN=JlfN-f I:
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Lemma 9.2.

For all €>sI IK I /v:n,

9. RELATIVE STABILITY

Proof of Lemma 9.2.

By the triangle Inequality,

P( I In-E(Jn ) I >E)

:::; P ( I I N -E (IN ) I >f) + P ( I I N -In I >f) + P ( IE (In )-E (IN ) I>f) .
Observe that

IJn- JN 1= IIlfn-f I-IIfN-f II
:::; I I f n - f N I :::; I N -n I I IK I .

n

Also, E( I N-n I) I IK I :::;n-I / 2I IK I <€/s. Furthermore,
n

p( 1N:n I I IK I > f)
A €

= P ( IN -n I > 6 n) (6
sIlK

:::; E (e tiN -n I-t on) (t >0) (Jensen's Inequality)

:::; e-tonE(et(N-n) + et(n-N))

= e-ton (e n(e'-l-t) + e n(t+e-'-l))

:::; 2 e-tOn+n(e'-I-t) (since e-t +t :::;e t -t)

= 2 e n(8-(1+8)log(1+8)) (t =log(l+6))

nO'
:::; 2 e - 2(1+0) .

The last Inequality Is most easl1y shown via Taylor's series expansion.•
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We conclude this section by giving two other Inequalities:

Lemma 9.3.

Let X be any random variable with finite mean, and let a be an arbitrary
real number. Then

I IX -a I - E ( IX -a I) I :S IX -E (X)) I + E ( IX -E (X) I ) .

Proof of Lemma 9.3.
Observe that

IX -a I - IX-E (X) I
< I a -E (X) I :S E ( IX -a I),

and that

E ( IX -a I) - E ( IX -E (X) I ) :S E ( I a -E (X) I )
= I a -E (X) I :S I a -X I + IX -E (X) I .•

Lemma 9.4. Whittle's inequality.

Let X 1> ••• 1 X n be lid zero mean random variables with finite p -th
moment, where p 2:2 Is a real number. Then

1 n _l..
E ( I - ~ x,. I P ) :S "Ip n 2

ni=l

where

( The general form of the Inequality Is due to Marclnklewlcz and Zygmund
(1937), and the constant "Ip was computed by Whittle (1960).)
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Proof of Lemma 9.4.

See WhIttle (1960), •

9.5. PROOF OF THEOREM 9.1.

We begIn with

·9. RELATIVE STABILITY

2'

IN-E(JN) = L: L: Y""
i=l",EC,

Thus, for all €>O,

P( I IN-E(JN ) I > €) ~ j~lP( I "'~i Y", I
, €

~ ,E e -t2T ( II E (e tYa) + II E (e -tYa»)
1=1 "'EC, "'EC,

(all t >0) ,

Here we used Jensen's Inequality and the Independence of the Y",'s wIthIn the
same class Cj • This Is the place In which the shifted grId argument Is rully
exploited,

Everything now bolls down to an Investigation of E (e tYa) for all t, From
Taylor's serIes wIth remaInder term, we have

Observe that

I Y", I ~ J II f N-f I-E ( I f N-f I) I
A a

~ J(I fN-E(fN) I+E( I fN-E(fN) I»)
A a

(Lemma 9,3)

A

=2""

The last Inequality follows by repeated applicatIons of the trIangle Inequality,
CombIning thIs with the fact that E (Y",)=0 shows that

E('<Y1~Eh~ It j~Z,fI
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Note that

zj = (lJ I IN-EUN) I+E( I IN-EUN) I))r
~ ).,i -l(A a)IJ I IN - E UN) I+E( I IN - E UN) I )) f

(Holder's Inequality)

~ (2h)U -l)d 2f-1 f ( I I N-E (f N) I f +E f ( I I N-E UN) I )) .
A",

Taking expected values and applying Jensen's Inequality shows that

E (Z,j) ~ (2h )U-1)d 2] f E( I I N-E UN) I ] ) .
A",

111

(Jensen)

Let J be the set of Indices i for which n <i ~N or N <i ~n. Observe that

E( I IN-EUN) If)

= E( I I N-E Un) If) (EI N =E (N)E (Kh )=nE (Kh ))

~ 2 f - 1 [E( I ..!-.fj (Kh (x-Xi )-E (Kh (X-Xi ))) If) + E( I ..!-;EKdx-Xi) If) J.
n I =1 n I EJ

The first expected value In the last expression Is not larger than

f
If n -"2E( IK h (x -X l)-E (Kh (x -X 1)) If) (Lemma g.4)

f

~ If n -"22f E( IK h (X-Xl) If)
_1

= 2 f If n 2 IK h If *1 .

The second expected value Is not larger than

. ( . I N-n I . )
n -3 E I N -n I 3 i~l I K h (x -Xi) I 3

= n -f E( IKdx -X 1) I f )E (IN-n

= n -f E ( IN -n If) IK h If *1
1

~ n -f €f n 2 I K h I f *1

6 ( . )f(€f = ve J..fJ ) (Lemma g.l) .
e log(H J )
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Thus,
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j

E(Zj):::; (2h )U-1)d 2j J2j-1(2j'j+~j) n -2 IKh I j *1
A",

_.L
n 2 J IKh I j *1

A",

Therefore,
j

E(e tYO'):::; 1+ ~ (~)2~ h(j-1)d
j=2 n J.
L!.
= l+G (a,t) :::; e G(".t) ,

Note that G(a,t) Is an even function of t, so that Ee-tY
O' can be bounded by

the same expression. Thus,
2'

P(IJN-EUN)I >€):::; ~2e-ltl</2' ITeG(",t)

;=1 "EG,

2'
~ 2e -I t 1</2'

;=1

I; (.!:.. Jt p.', 2' (Kmax)'
:::; 2d +Ie -I t 1</2' e j=4 n J.

where we used the fact that t J IK h I j *1
"EGiAO'

:::;JIKh Ij*I=JIKh li=JIK lih-{i-1)d:::;2dKmalh-{i-1)d. Putting
t 2=nc 2, we obtain

P( I IN-E(JN ) I > €):::; 2 d+le-cvn </2'

L!. ,
= 2d+1e-CV;;-</2' e2 '1t(cK...,J

We need only show that for all positive constants u, Ilt(u )<00. By the
definitions of ~i and 'i' this Is equivalent to showing that for all u >0,

~ ( j vr )i U,i < 00 ,
i=2 10g(1+ J ) J!

and

~ r( j +l )~ < 00
i=2 2 j! '

This can be verified quite easily using Stlrllng's approximation for the factorial.
This concludes the proof of Theorem 9.1. •
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2e

9.6. EXERCISES.
g.1. Show that there exIst densItIes I and kernels K such that the kernel estI­

mate wIth constant smoothIng factor h Is not relatively stable.

9.2. Show that for all boxed kernels K and all sequences of smoothIng factors
h to, the kernel estimate I n cannot converge at the rate 1/vn , I.e,

11m vn E (J I I n - I I) = 00 .
n->oo

9.3. This Is an Introduction to the next exercise. Assume that the L 1 distance
between two densities I and 9 Is estimated by Importance sampling In the
following manner: generate Y l' ... , Ym , lid random variables wIth density
I . Compute the estimate

1 m g(Y,.)

Tm = -;;j~1211- I (Yj ) 1+·

Show that E (Tm )=J I I -g I, and that

Var (Tm) < 2J I I -g I
- m

Furthermore, P ( I Tm - J I I -g I I > E) Is bounded by the minimum of
m ,2

2

and

2e
..i.I I f -g I + 4'
m

Note: these Inequalities provide crude confidence Intervals for the L 1 error.
Compute a safe value for m such that with probablllty at least 95% Tm Is

wIthIn 5% of Its mean, when J I I -g I takes the values 0.1,0.05,0.02,0.01
(this Is the range of values usually of Interest In density estimation).

9A. Give a distribution-free confidence Interval for Tm ' when It Is used to esti­
mate E (J I I n - I I) where I Is known, I n Is the kernel estimate with
boxed kernel K and arbitrary h. The estimate Tm Is, as In exercise g.3,
based upon a sample of lid random variables drawn from In' In other
words, give a useful distribution-free upper bound for

The bound should depend upon E,n , K ,m and d only. Show also that

E((Tm-E(J I I n-I 1))2):::; ~+~
m n

for some constant C depending upon K and d only.
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9.5. Show that for the kernel estimate with arbitrary kernel K • we have
2

4J IK I
VaT cJ I f n - f I) ~ .

n

Show that for the histogram estimate and for the -kernel estimate with non­
negative kernel, we have

4
VaT cJ I f n - f I) ~ - .

n

Note that this can be used to determine the constant C In exercise 9.4, and
that weak relative stability follows from this result whenever
IIm,;n E cJ I f n - f I )=00. Hint: try using the Efron-Stein Inequality

n-+oo
(Efron and Stein, 1981), which states tb.at

(

n +1 _)
VaT (S(X lJ ... ,Xn )) ~ E i-E1(Si-S)2

where X 1J ••• J X n ,Xn +1 are lid random vectors, S (x 1J ... , Xn ) Is a sym­
metric function of Its arguments,

Si = S(X lJ ···, X i _1,Xi +1,···, X n+1), i=1, ... J n+1,
_ n+1

and S =(n +1t1 L; Si'
i=1
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