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PREFACE

These notes were written during the summer quarter of 1986, when I taught
a course on denslty estimation Iln the Department of Statistics at Stanford
Untversity. I am grateful to the students (Naom! Altman, Tony Cooper, Joseph
Gagnon, Eric Holmgren, Yolchl Ii, Stephen Langlols and Jia Yang Sun) and to
the local and vislting faculty (in particular WIll Gersch, Petter Laake, Art Owen,
Davld Scott and Hermann Thorlsson) for Invaluable feedback.

The original manuscript was entitled A Summer Course On Density
Estimation, to reflect the warm relaxed atmosphere In which the book was wrilt-
ten, and to Indicate the potential market as a textbook for a summer quarter. In
this preface, we will explaln how the material of thls book hangs together, how
the text Is related to Devroye and Gyorfl (1985), where and how denslty estimates
are applled, and where more theoretlcal research Is needed In the area.

The contents.

An 11d sequence of n random varlables with a uniform distributlon on the
surface of the unlt sphere of R® has the Interesting property that the n =z-
coordlnates (projections) form an 1ld sequence with a uniform distribution on
[-1,1]. In general, 1t Is possible to define random vectors with a unlform distribu-
tlon such that thelr projectlons have a glven denslty [ : Just consider n iid ran-
dom varlables unlformly distrilbuted wunder the curve of f (l.e., on
{(z,y):0<y <[ (z),z€ER}); thelr projections form an 1ld sequence drawn
from f .

In density estimation, we are only presented with the projections, and are
asked to reconstruct, or estlmate, f . Usually, the density estimate ltself 1s a
density too, l.e. 1t Is nonnegative and integrates to one.

First of all, 1t 1s necessary to plck a criterlon for judging the goodness of an
estimate. This Is perhaps the most critical stage In the entire undertaking. In the
context of the projections discussed above, we can easlly construct such a cri-
terion: consider for example the minimal area we need to take away from the
estimate f, and glve (paste) to the estimated density f . The relocated area Is
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f|f,,—f | /2, which s also known as the total varlation. TFhe L, error,
J1fa=f |, 1s 2 number between O and 2. Interestingly, If we transform the
space by any one-to-one onto transformatlon, the L error 1s unaffected. In other
words, 1t 1s a unlversal measure of the closeness of f, to f . Some other dis-
tances, such as the Lp distance for p 751, are not even Invariant under a simple
rescaling of the axes. If f, Induces probabllity measure u,, and f Induces u,
then 1t is not difficult to see that the L, error is 2 sgp | o (A }u(A)| where

the supremum ls over all (Borel) sets A. Thls Interpretation In terms of
differences between probablllties makes the L ; criterlon unlque. When someone 1n
the fleld reports an error of 0.012, then we know that all probabllities of all sets
are off by at most 0.006. L, errors are not only easlly Interpreted, they are also
easlly visualized: the visual Impresslon of the distance between the plots of f,
and f is preclsely the area between the curves, f | /o= |. The visual aspect
Is of course Increasingly lmportant in view of the lnvaslon of graphical tools for
presenting one’s results on workstations, terminal screens and laser printers. One
often filnds technical reports and papers In which plots of densitles are shown
besldes tables of distances between those densitles, where the distance 1s not the
L | distance. In many cases, there 1s no contlnuous relationship between spaces of
densitles that are endowed with different distances, so that the plots do not
necessarlly show close denslitles when the numbers In the tables are small, and
vice versa. In chapter I, we will relate the L, distance to other distances
between densltles, such as Lp distances, Helllnger distances and distances based
upon Kullback-Leibler numbers. Often one can deduce results Indirectly by using
an appropriate Inequallty between distance measures. The existence of such Ine-
qualltles Is also dlscussed In chapter I. One lmportant point to note here is that
the L, distance ls just one of many distances that one can define on the space of
all densitles. This, of course, will lead to a theory that Is uncluttered by hard-
to-verify conditlons.

Our criterlon is global slnce most of the Interesting applicatlons demand glo-
bal goodness of one or more density estimates. Local criteria, such as polntwise
convergence, are much less lmportant, slnce they are obllvious to the role of a
density as a probabllity measure: It s possible to construct estlmates that are
very good at one or more polnts, but Integrate to Infinity.

In chapter II, we Introduce the denslty estimation problem, and derlve
several density estlmates, based upon the fact that a denslty f , the Radon-
Nikodym derivative of a probabillty measure u with respect to Lebesgue measure,
can be approxlmated by a ratio of an empirical measure of a small ball to Lebes-
gue measure of the same ball. Estimates constructed In thls fashlon are deslgned
to work for all f, and will be called nonparametric. "Unlversal” estimates
would have been a better term, but it would be sllly to replace a term that has
been in use for over 20 years. It Is possible to tallor-design estlmates for partlicu-
lar classes of densities; for example, a beta density can be estimated by another
beta denslty In which the two beta parameters are data-based estimates of the
unknown beta parameters. The risk of this approach Is that If the assumptlon
that the data are beta distributed s false, then all Is lost, for there Is no hope of

a
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approaching the underlylng density. But the beneflts can be sweet, for If the
assumption is correct, we will latch on to the beta denslty, and obtaln very good
estimates. Estimates in which a finite number of parameters are estimated {n an
otherwise Inflexible model are called parametric. Tallor-designed estimates on the
other hand are estlmates that are designed to perform well for a proper subclass
("target class™) of all densltles; they can but don't have to be parametric.

In the notes, we wlll concentrate on nonparametric and tallor-designed esti-
mates. We wlll deal with some parametric estimates in the exercises. We malnly
studs’r the kernel estlmate, first Introduced by Parzen and Rosenblatt. This estl-
mate is nothlng but an equlprobable mixture of n simllar-shaped densitles (ker-
nels) centered at the data polnts. It easy to understand, analyze, and modlify.
The flexlbillty comes from our abllity to plck the shape of the kernel, possibly as
a functlon of the data. Unfortunately, we can’t show here that the kernel
estimate’s performance matches that of most other estimates for most densltles,
silnce that would force us to lntroduce other estimates to find out later that we
didn’t need them In the first place. The reader will Just have to trust our judg-
ment. Note however that the kernel estimate is not a cure-all: we wlil ind out
that it does a fairly good Job for most densities, but that It can’t compete with
tallor-deslgned estlmates for specific small target classes of densitles, such as the
class of all normal densitles, or the class of all mixtures of two beta densltles.

In chapter III, we show that the kernel estimate 1s guaranteed to converge
to f 1If we choose lts parameters In a certaln way. Slnce f | f.-f | 1sa ran-
dom wvarlable, we can study many modes of convergence. However, the story Is
quite simple, slnce all modes of convergence are equlvalent to each other. Furth-
ermore, there Is no denslty for which the kernel estimate 1s not consistent. This Is
due to the fact that the collectlon of nlce densltles (where "nlce” could mean
bounded, of compact support, and Inflnltely many times contlnuously
differentiable) 1s dense In the L | space of all densltles, so that each pathologlcal
denslty 1s surrounded by Infinltely many nlce densitles. In fact, a sample of slze
n drawn from f can be thought of as a sample drawn from a nlee nelghboring

density ¢ 1f we are allowed to replace a few (about —271 f | [ -9 i ) data points by

other ones. Close densltles requlre very little sample surgery.

There are many other Issues that matter when one estimates a density. Some
of these are sprinkled throughout the text, without any strong sense of order.
Chapters IV, V and VI deal with unlversal properties of all density estlmates, and
Introduce notlons that can ald users In decidlng which density estlmate they
should choose for the problem at hand.

For example, In chapter IV, we define robustness for density estimates in
terms of L, distances, and verlfy that many estlmates we think of Intultlvely as
non-robust (or hyper-sensitlve) are indeed declared non-robust by our robustness
criterlon. The kernel and hlstogram estimates are very robust, since the removal
or replacement of one data polnt hardly affects the overall estimate, 1ts welght in
the kernel mixture belng only 1/n. Robustness Is not a selection criterion per se.
The maln polnt of chapter IV Is to show that robustness Is equivalent to Insensi-
tivity to small surgery on the sample.
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The maln selection criterlon 1s of course [ | f,—/ | Itself. Unfortunately,
this Integral Is a random varlable,”as 1t 1s a functlon of the data. Should we com-
pare means, medlans, 90 percentiles, or mean-plus-standard-deviation? Pessim-
Ists, always assumlng the worst possible scenarlo, would consider ess
supf | fo—f | (where ess sup Is the essentlal supremum). This Is nearly always
2, since we take in fact the essentlal supremum with respect to all posslble sam-
ples of slze n . Gamblers may want to argue on the basls of the mean, taklng the
risk that when the standard devlatlon Is much larger than the mean, f, behaves
erratically. If [ | /,~f | has mean J, and varlance 0, % 1t Is not difficult to
show that o, <+/2J, -J, % where equallty can be attalned. Since J, —0 In the
cases of Interest to us, 1t Is possible to have (J, +0,)/J, —oc. Thus, J, +0, and
J, can tend to zero at different rates. The same Is true for J, and m,, the
median of [ | f,—f |, slnce we can have m, =0 for any value J, <1. In other
words, we are faced with a cruclal declslon about the cholce of a deterministic
number that 1s representatlve of the "usual values” of [ | f,~f |.

Lucklly, most nonparametric estimates such as the kernel estimate and his-
togram estlmate are relatively stable, l.e. f|f,,—f | /E (f | fo=f {)—1 1n
probabllity. For example, they satlsfy the property that o, /J, —0 as n —oo.
This law of large numbers Is proved In chapter IX, where more Information is
glven about the closeness to the limit In terms of exponentlal Inequalitles. It can
be explalned by the fact that the L 1 error Is an integral, and that the Integral, In
first approximation, Is a sum of many independent Integrals over small nonover-
lapping sets (In the case of a histogram estlmate, thls statement would be correct
If the sample slze were Polsson; In the case of the kernel estlmate, some extra
work Is needed). The fact used here s that every data polnt has only a very
local effect. In any case, what matters for now 1s that for many nonparametric
esttmates, E (f | f,~/ |) 1s Indeed a good gauge of the L, error. Unfor-
tunately, thls 1s not the case for some tallor-deslgned estimates such as some
parametric estlmates, but we will nevertheless keep using the mean as our stan-
dard of comparison.

The performance of an estimate for a particular f depends upon f . It 1s
qulte a task to compare estimates with one another, because of this dependence.
It 1s helpful to know how bad any estimate has to be as measured by the
minlmax error

lfnnffs%%E(f]fn—f 1

where F 1s a given class of densitles. The minlmax error, a functlon of n and F
only, tells us about the error any estimate has to make on at least one density in
F. It palnts a pessimlistic plcture, as the L 1 error for a glven f » and a glven
f/ €F can be much smaller than the minlmax error. On the other hand, assume
that we want to glve a person a guarantee (l.e., an upper bound) about the
expected L ; error of a glven estlmate commlitted on densltles In F, and that for
that class, the minlmax error Is 0.23. Then our guaranteed performance cannot be
smaller than 0.23.'In this respect, minimax errors are often used as lower bounds,
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and If minilmax errors can't be computed exactly, one should try to compute a
lower bound for them.

In chapter V, we glve a systematlc overview of how one can compute such
lower bounds by Information-theoretic methods. But the maln message is con-
talned In the lower bounds themselves. A class F can be colned a fat class if its
minlmax error does not tend to zero wlth n . For fat classes, we can’t provide any
nontrivial performance guarantees for any estimate. What transpires In chapter V
is that the class of all densitles on [0,1] bounded by 2 and the class of all unimo-
dal densities with infinltely many continuous dertvatives are both fat. This
implles that to study uniform performances over given classes, lmposing tall con-
ditlons alone or smoothness conditlons alone Is not sufficlent. At the very least,
we need to combine these kinds of conditlons. There are even smaller fat classes,
such as the class of all normal scale mixtures, the class of all densitles whose
characteristic function has support on [~1,1], or the class of all densltles in an e-
ball around a central denslty f ;. The fact that the latter class s fat 1s not at all
surprising slnce every density 1s surrounded by mllllons of ugly densltles of very
different shapes. A blg drawback of the L, theory is that the L, distance does
not attach a great deal of Importance to shape slmllarities. Shapes can be com-
pared in terms of derlvatlves. Every e-ball around any denslty f o tontalns many
Jagged densitles f for which the set of polnts at which f has a derivatlve has
measure Zero.

Classes for which the mlnimax error tends to zero with n Include for exam-
ple classes of densitles on [0,1] that are defined via a Lipschltz condlition on the
k-th derlvative. Or the class of monotone densities on [0,1] bounded by a con-
stant B. Or the class of all normal densltles with unknown mean and varlance.
For all these classes, one may ask for an estimate f, for which the expected L ,
error 1s uniformly bounded (over f €F) by a universal constant tlmes the
minlmax error. Ideally, this constant should be one, but that s often difficult to
achleve In practice. Estlmates with this property are sald to be minimax-optimal
for F'. They carry a uniform performance guarantee. The construction of such
estimates is often ad hoc: sometimes we stumble by accldent upon a minimax-
optimal estimate (we will show In chapter VII that the Xkernel estlmate Is
minimax-optimal for many large classes F); sometimes we apply our common
sense (thls often works for small parametric classes F). But there Is also a sys-
tematic construction of minimax-optimal estimates, based upon minimum dis-
tance estimates, described In chapter VI,

The idea Is simple enough: cover the set F by a finite number of ¢-balls (¢ Is
carefully picked), and deflne the estlmate as the density at one of the centers that
Is closest to the standard empirical measure according to a criterion that Is rem-
Inlscent of the L, criterion. This method requires a finlte cover, and hence F
should be L ;-totally bounded. The latter restriction can be relaxed, but at some
cost.

Chapters V and VI provide us with a lot of informatlon about what can be
achleved by denslty estimates, and what 1s unreasonable to ask. We glve many
expliclt Inequalities, so that one can plug In one's sample size and class descrip-
tors to see what Kinds of performance can be expected. If we can make a point
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with expliclt Inequallties, we will do so, for rates of convergence without accurate
informatlon about constants and asymptotlc error terms are often less appealing
to practicing statisticlans. Density estimation In general can be compared to an
infinlte-dimenslonal parameter estimatlon problem. We want to convey to the
students In a quantitative fashlon, not by experiments, Just how difficult denslty
estlmatlon 1s. How bad are the two troublemakers, the lack of smoothness of f ,
and the slze of the tall of f ? How large should n be for us to be able to do any-
thing meaningful with a given estimate, or any estimate for that matter?

In chapters VII and VIII, we study particular estimates. The long chapter
VII deals with the kernel estimate. We study the rate of convergence to O
without trying to exclude any density f from the study. This requires some prel-
Iminary work and some generalized definitlons of k£-th derivatlves of a density.
The effort Is well spent. Among other things, we will see that for some kernels,
the rate of convergence Is llmited by the form of the kernel, while for other ker-
nels, the rate 1s determined solely by the smoothness and the tail of f . Always
derlving expliclt constants, we wlll see how the shape of f affects the perfor-
mance, and we can answer such questions as: whlch denslty Is easlest to estimate
by the kernel method for a fixed glven kernel K ?

In chapter VIII, we present a case study on monotone density estimatlon,
and compare varlous estimates for thls problem.

Finally, chapter IX deals with the Issue of relatlve stabllity, which was so
cruclal 1n the determlnation of our error criterlon (see above).

Devroye and Gyorfi (1985).

The L y approach of the sublect is not unllke that of our research mono-
graph with Laszlo Gyorfl ("Nonparametric Denslty Estimatlon: The L, View”,
John Wiley, 1985, hereafter referred to as DG). However, the present text is not
a research monograph. We only seek to explain, often sacrificing some deep
results for shallower ones with simpler more dldactic proofs. The exercises at the
end of each chapter should make the text useful for a graduate course on density
estimation. We move qulckly from one subproblem to another, with very few
pauses, trylng to maxlimize the number of ldeas and technlques In a book that
can be covered ln one quarter or trimester.

DG Is just one of several reference texts that can be considered for further
reading and consultatlon, glving a more comprehenslve (but still limited) treat-
ment of the fleld. It offers a deeper and broader study of some topics touched
upon in the present text. For example, DG studies more kinds of estimates, such
as automatic kernel estimates (DG, chapter VI), generalized kernel and histo-
gram estimates (DG, chapter VII), transformed kernel estlmates (DG, chapter
IX) and orthogonal serles estlmates (DG, chapter XII). In additlon, DG discusses
several applications, Including simulation (DG, chapter VIII), discrimination
(DG, chapter X) and detectlon (DG, chapter XI). The present text Is organized
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Itke lecture notes for graduate students. The readers willl however appreclate
that we have kept the notatlon conslstent throughout both books.

There 1s some new materlal presented here, not found In DG, such as the
Introductory notlons on robustness (chapter IV) and minimum distance estlma-
tlon (chapter VI), and the In-depth studles of monotone density estimation
(chapter VIII) and relative stability (chapter IX).

The notes are geared towards students who have never been exposed to den-
sity estimation, but who do have a baslc background Iln analysls and probabllity.

Applications.

Exploratory data analysis is concerned with the extractlon of Informa-
tion from data ln order to choose appropriate statlstical procedures for analyzing
" the data. Obviously, nonparametric density estlmates seem prime candldates for
such a qulck analysls, especlally when comblned with a good graphlcs package
and a frlendly workstation.

‘We should not forget the Important role of denslitles and thelr estimates in
probability theory. Denslty estimates define smoothed empirical measures. For
the ordinary atomlc emplrical measure p, (which puts mass 1/n at each data
polint), we have the disappolnting property that

sup | o A)yuA)| =1,

where 4 1s the measure induced by a denslty f , and the supremum ls over all
Borel sets A . However, If the expected L, error for f, tends to O, then

Ilm E[sup V[ fa-f1 |]=0.
n —00 A A A

Thus, when densltles exist, f, defines an empirical measure that 1s more pre-
clse than the standard empirical measure. Interestingly, thls property does not
necessarily carry over when the collectlon of Borel sets In the supremum Is
replaced with all left-Infinite Intervals (~oo,z |, ylelding the Kolmogorov-Smirnov
statlstlc.

If one has drawn samples X,, ..., X, and Y,, ..., Y, from unknown
densltles f and ¢ respectlvely, and one has to declde which density (f or g ) a
new sample Z,, ..., Z; Is drawn from, the maximum likellhood principle
("choose f U T[S (Z;)/g(Z;)>1 ") Is not directly applicable. Replacing f and
g by estimates [, and g, In the likellhood products Is risky. Thils issue and
some solutions to the detection problem are discussed In chapter XI of DG.

Perhaps the most popular application of density estimatlon Is in discrimi-
nation (or: pattern recognition). Assume that X; and Y; samples are given
as In the detectlon problem, and that one s presented with a single random varl-
able Z, which 1s known to have density f or ¢g. The best possible (or: Bayes)
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rule for thls problem states that we should assign Z to f If f (Z)>¢(Z), and
to g otherwise. It should be obvlous that if / and g are unknown, then sult-
able estimates of them can lead to rules that perform almost as good as the
Bayes rule. Both the detectlon and dlscrimination problems requlre derivatives of
probabllity measures, and cannot be solved without directly or indlrectly estimat-
ing or approximating these derivatlves. Good starting points for further study
are Cover (1969), Cover and Wagner (1975) and Duda and Hart (1973).

Estimating a tail probability based upon a sample of slze n drawn from
o

an unknown denslty f can be done by a frequency count: f f s estimated by
z
1-F, (z) where F, Is the standard emplrical distribution function. When tall

probabllitles are needed for testing 1t becomes important to have estimates that

are smooth and have small relative errors and vartances. In such cases, one can
[ee]

replace 1-F, () by ff, where f, is an appropriate denslty estimate, which 1s
z

sometimes based upon a model one has constructed of the shape and slze of the
tall of f .

Clustering 1Is one of the maln tools of data analysls. Data polnts with an
unknown denslty f can be clustered by an analysis of the estimated shape of [ .
Good candidates for cluster centers are the modes (or peaks) of f ; hence the
need to estimate modes. Separatlng boundaries between -clusters roughly
correspond to the valleys of f ; hence the need to reconstruct the valleys of a
denslty. Mode estimation s discussed by Wegman (1972), clustering Is studled
by Hartigan (1975), and the connectlon with density estimation Is apparent from
Hartlgan (1981).

Some applications demand the evaluation of a functional of [, such as
ff 2, f(f’z/f ) (Fisher's Informatlon criterion), or ff logf (minus the entropy
of f ). These quantitles are Important in classical statlstlcs. For example,
Fisher’s Informatlon criterlon appears In the Cramer-Rao Inequallty (see e.g. Pit-
man, 1979). The entropy Is related to the performance of maxImum llkelthood
estimates. The estlmatlon of these functionals from a sample can help statisti-
clans in thelr declslon-makling processes.

In simulation, the following problem often occurs: data X v, X, are
collected at some cost, and 1t Is assumed that the X;'s are 11d with a common but
unknown density f . In a simulatlon run, new data from f are required, but It
Is too expensive or unfeasible to collect new data In the fleld. Rather, one Is
forced to do with the avallable Information. If & new data polnts are generated
from a denslty estimate f,, then one commits an error. This error can be meas-
ured In terms of the minlmal number of the newly generated data that need to be
replaced by other polnts in order to turn the new sample (from f, ) lnto a sam-
ple from f . It turns out that the minlmal number 1s binomlally distributed with

parameters £ and % f1fa~/ |. which once agaln polnts to the Importance of
the L, criterion. See chapter VIII of DG.

a
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Estlmating the shape of a density 1s much more difficult than estimating a
denslty in L ,, for shapes are altke If all (or most) derlvatlves are allke, assuming
that derivatlves exlst. Thus, In shape estimation, distances between densltles
should be measured in terms of derivatives as Is done for example In Sobolev
spaces (Adams, 1975). As an alternative, we could compare the frequency spectra
of two densitles (to draw an analog, consider that close frequency spectra of volce
slgnals indlcate that the volce signals have similar shapes). But the frequency
spectrum of a density Is nothlng but its characteristic function ¢. If our estimate
fn has characteristic function ¢, , then the distance between [, and f can be
defined by

sup | a (6)-0(t) | .

Further work.

All the appllcations mentloned above require denslty estimates, but each
application Imposes 1ts indlvidual demands on the estimate. Only a few of them
require densities that are close in the L | sense. Hence the need to study density
estimates that are good In other respects. Because of the cruclal and natural role
played by L, It Is felt that the results from the L, theory wiil aid substantlally
In the derlvatlon and understanding of non-L ; propertles.

Many estlmates are tallor-designed for target classes F'. They are often use-
less outslde the target classes. On the other hand, nonparametric estimates are
rellable for all f but generally speaking Inferlor on F to a tallor-designed esti-
mate for that class. Thus, we should try to combine estimates In such a way that
on F, the resulting estlmate performs as the tallor-designed estlmate, and outslde
F, 1t Inherits the consistency and rate of convergence of the nonparametric estl-
mate. Such comblned estimates are for example required In automatlc computer
packages for density estimation. The cholce of an estimate can be based upon
the L, distance between the varlous estimates: nonparametric estimates could be
replaced by tallor-deslgned estimates If they fall in an e-ball (a halo) around one
of the latter estimates, where € 1s a carefully plcked radius of Influence. See Dev-
roye (1988).

Some researchers take the point of view that we should first choose a class of
estimates, and then try to make the best of It. They are wllling to accept the
consequences of this strategy, l.e. thelr expected L, error is bounded from below
by

A
V(/ ’n)=f1n€fCE(j|fn—f |):

where C is the class of estimates under conslderatlon. For some classes C,
V(f ,n) can be readlly computed. Sometimes it is even possible to compute non-
A

trivlal lower bounds for V(n )=lrfxf V(f .,n). V(n) indlcates the absolute
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limitations of the glven class of estimates. Even If one were shown which f s
belng estimated, and picked the best f, In C accordingly, the expeéte_d L, error
would stlll have to be at least V (n ). It Is Instructive to compute V (n ) for many
popular classes. For example, for the class C of all kernel estimates,

1

V528 n
(Devroye, 1988). If only nonnegative kernels are allowed, we have for all f ,

V() > 0.86+: (1)

Vin) 2

nb

(Devroye and Penrod, 1984). The last lnequallty basically Implles that to make
the expected L, error less than 0.01 with such kernel estimates, n should be at
least 100,000, regardless of how nice the density Is that Is belng estlmated. One
can conslder these lower bounds as the costs assoclated with the use of the kernel
estimate (nothing Is free). It Is also necessary to verlfy what costs are assoclated
with the estimatlon of one particular f , as measured by V (f ,n). For the ker-
nel estimate, an L, analog of V(f ,n) has been computed In a mllestone paper
by Watson and Leadbetter (1963) (see also the follow-up papers by Davls
(1975,1977)), but V(f ,n) seems much more difficult to compute In L,. A
detalled study of V (f ,n) Is essentlal for a solid understanding of the kernel estl-
mate.

The sample size restrictlons imposed by the kernel estimate even on the best
f are nearly unacceptable. We feel therefore that the major practical break-
throughs In denslty estimation will not be on nonparametric estimates in thelr
general forms, but on tallor-designed estimates. The target classes on which
advances should be made are somewhere In the grey area between finlte-
parameter classes and fat classes. A prime example of this Is the class of mono-
tone densitles, for which good estimates were developed by Grenander (1956) and
Birge (1983,1984). Particular versions of the kernel estlmate perform well for tar-
get classes deflned In terms of the smoothness of f , as Is shown In chapter VII.
However, how does one handle Important classes such as the class of all log-
concave densltles (this class Includes normal, gamma, Welbull, beta, exponentlal
power, loglstic, hyperbollc secant, generallzed inverse gausslan, extreme value and
Perks distributions), the class of all normal scale mixtures, or the class of all den-
sitles of sums of k 11d random varlables with density supported on [0,1]?

With every class C of estimates we have assoclated lower performance
bounds V(f ,n) and V(n ). It would be nlce If, based upon the data, we could
select an f, from C for which the lower bound V (f ,n) Is attalned modulo a
multiplicative constant. Such a data-based selection rule for C Is excitlng since
we would In fact be able to obtaln the best possible rate of convergence within C,
sometimes wilthout knowing what the rate of convergence 1s. A good starting
polnt for further research Is Stone (1984,1985) where a slmllar problem Is success-
tully solved in L, for the kernel and histogram estimates.
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Let us conclude by mentlonlng the difficult problem of the estimatlon of
f17a=f |, on which absolutely no headway has been made to date. It should
be noted that If we could estlmate [ | f,-f | accurately (e.g., with an expected
error much smaller than E ([ | f,~f |)), then we would be able to make a lot
of progress In the data-based selection problem mentloned In the prevlous para-
graph.

Dedication.
Thils book Is dedlcated to Bea.

Luc Devroye

School of Computer Sclence
McGlll University
Montreal, Canada H3A 2K6






Chapter One
DISTANCES BETWEEN DENSITIES

The distance between two densitles f and ¢ on the Borel sets of R 4 can be
defined in many different ways. First and foremost, there Is the Lp dlstance

[flf—y | P ]1/,, (c0o>p >0)

L79)=esssup [1-g| (p=c0)

The Hellinger distance is defined by
1/p
H(f9)=(JUr-gvry )" (>0,

Finally, the distance between f and ¢ can also be measured In terms of an
entropy-related quantity, the Kullback-Leibler number

[7 log——fg— Irf <<y

K(f.9)= o otherwise

In thls Introductory chapter, we will establish relatlonships between these quantl-
tles, and explore the propertles of L, in more detall.

1.1. THE TOTAL VARIATION.

The total variation between two probability measures u and v on the
Borel sets of R ¢ 1s defined by

V =sup |pA)urA)] .

It should be noted that 0< ¥V <1 In all cases, and that 1t Is well-defined even If u
and/or v do not have densltles. When V is 0.01, we know that for any set A ,
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the probabllity assigned to it by p differs at most by 0.01 from the probabllity
assigned to 1t by v. In other words, V Is a practlcal easy-to-understand quantity.
When p and v have densitles / and g, we have

Theorem 1.1. Scheffe’s theorem.

f17-91 = 25w [ [f-fg |
A« A
=2[(f-g),=2f(¢-f ).

Proof of Theorem 1.1.
Intultlvely, Scheffe’s theorem is clear from figure 1.1.

JU =)= Jo-rn=3111-41

Figure 1.1.
Two densities.

The Integrals of (f —¢g ), and (g—f ), are equal, and sum to (1/2)f | f -¢ |.
Scheffe’s theorem states that the supremum Is reached for the set B={f >¢}
(or, equivalently, for the set { g>f }). To prove this formally, consider first that

17-g| =2f(f-a)<2sw | [f-fg] .
B A 4 a4
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To prove the other inequallty, note that

[ [f-fal=1fU-a)+ [ F-0)]
A A

ANB AnNB¢

smax[ [ (=) | (g—f)]

ANB ANB°*

' Smax[f(f 0. [le-1))
B B )

1
=gf|f—g|-.

One of the most remarkable propertles of L, Is that L ,(f ,g) Is Invarlant
under rich transformatlons of the coordinate axes, where a transformatlon T Is
called rich it {T71B | BEB}=B, and B denotes the Borel sets of R¢. Note
that this necessarlly lmplles that the mapping Is one-to-one. For example, a
transformation In which each coordlnate Is transformed separately via a strictly
Increasing mapping will do. Assume that random varlables X ,Y have densmes
f .9, and that T (X ), T (Y) have total varlation V. Then

Jlf-g| =2 sgp | P(XEA)»P(YEA)| (Schefle’s theorem)
=2 sup |P(T(X)ET(A)-P(T(Y)ET(A))| (one-to-one mapping)
=2 sup | P(T(X)EA)»-P(T(Y)EA)| (TUA}={ANT (R}
=2V .

This means that the L, distance between f and g, hldden In Infinite talls, can
be visualized by plotting the densltles of transformed random varlables. For
example, the transformation z:—z /(1+ | £ | ) maps the real llne to [-1,1], and
the talls show up at near the ends of this interval. This is especlally useful for
displaylng Infinite-talled densltlies on a termlnal screen.
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normal

Cauchy ———— transformed normal
wrapsformed Cauchy - == ===

Figure 1.2a. Figure 1.2b.
Two densities on the real line. Densities of figure 1.2a after transformation
yi=z /(1+ |z |).

1.2. THE SPACE L,.

Needless to say, L, Is the natural space for all densltles. When we mentlon
something Involving L, (f ,g) for some p 541, 1t Is always understood that
fi9€L,, Le. [f P <oo,fg? <co.

Let us first note that there cannot exlst any direct lnequallties between
L,(f .g)and L,(f ,g) for p 7#1. To see thls, It suffices to note (see figure 1.3
below)
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L. %l

18-
16 Every point in rectangle is possible
14+
. 12

10 -

(Lolf 9 )Ly (f 90

Ly(f .9)

Figure 1.3.
(L 1,Lp ) plane

that for every polnt In the plane [0,2]X[0,00), there exlsts a palr of densitles
(f ,g) such that the z-coordinate 1s L ,(f ,¢ ), and the y -coordinate 1s L, f ,9).
Once a pair (f ,¢) is fixed, changing the scale takes the polnt along a vertlcal
Journey in the plane. This follows from the observatlon that If f ,g are the den-
sitles of X ,Y, and f *,g* are the densltles of aX ,aY where a 1s a real number,
then

w2
Ly(f*.g*)=1a ? L,(f .9).
In other words, only L, 1s unaffected by a rescallng. And thus, only L(f ,g)
can have a universal Interpretation.

If one denslty (say; f ) s kept fixed, we can stlll cover most of the plane by
varylng ¢, although there are some restrictlons. These are perhaps best captured
in
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Theorem 1.2.
Let f be a fixed denslty on R ¢, and let p >1. Assume that f ELP . Then
there exlsts a sequence of densltles f, €L, such that
L](fn!f)_’O’Lp(fnhf )-’OO

However, the converse Is not true: If L,(f,.f)—0 as n—oo, then
Ly(fn,f )0

Proof of Theorem 1.2.

Find a sequence of densitles g, for which (fg,,” We — a, — 0. Deflne

b, =min(1,1/+/a, ). Set
fo =171 (@-b3)+g, b, . :
‘We verlfy easlly that
J1fa~f | <25, >0,
(F17a-r 12) = (S 100a-burs 12
> b, [(fy,,p)l/p—((ff PyYp ] — co (Minkowskl) .

This proves the first part of the theorem. For the second part, we take a number
M so large that 2 f f s as small as destred. Then,
-M.M)

Jlia=t | =2f(f-fa)r <2 [ +2

M. M)  [-M M)

1 1
=< 2[ f dz]q(f|fn_j | ? ]p+2 f f (Holder;%+%=1)

M .M} M .M
= o (1)+2 f f .
-M.M)
This concludes the proof of Theorem 1.2. i

1.3. HELLINGER SPACES.

H, shares many nice features with L : for any pair (f ,¢), H, (f . )1s non-
negative and flnlte, the maximum possible value belng 2l/P | 1t 15 easy to verify
that Hp remalns Invarlant under “rich” transformations, and Is thus scale-
Invarlant. This can be proved based upon a relationship between Hp and the
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probabllitles of sets. See exerclise 1.2, for example. The most lmportant values for

p are 1 and 2. Clearly, H,(f ,¢)=L ,(f ,g). Furthermore,

Theorem 1.3.
For any palr of densltles (f ,¢),

H22(f vg)SHl(f sg)SH'z(f rg)v4_H22(f ’g)_<_2H2(f ,g)

and
1 2
2-H.(f ,9) > [1—;H22(f g )] .

The last inequallty is equivalent to LeCam’s inequality (LeCam, 1973)

fmnts )2 L(VTT)"

Proof of Theorem 1.3.
In the proof, we wlll drop the arguments (f ,g ). We have

Hy=[f-¢| =[IVI Vg | IV] +Vg |
> [V Vo y=
Also,
H?2< [(Vf Vg P[(Vf +Vg P (Cauchy-Schwarz)
= HX2+2[V g )= H,*4-H,? .
LeCam'’s Inequallty can be obtalned very slmply as follows:

(L) =LV

|/ <s J f<g
< f L 1) f [ f (Cauchy-Schwarz).
Trer T f<g
Comblnlng this with a slmilar lnequality for the set {f >g }, we have

(IVIg)'<2 [ 142 [ o =2fmu(f ).

I <g g<f

Flnally, use the fact that [min(f ,g )=1-H /2, and that H,’=2-2{Vfg .l
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Holf .9}

Allowed area

/ LeCam’s bound

1 2
Hyf .9)

Figure 1.4.
(H 1,H 5) plane

Let us Interpret these lnequalltles In the plane formed by H, and H,, l.e. In
[0,2])([0,\/5]. Figure 1.4 above shows that only a thin banana-shaped area
around the dlagonal Is possible. In partlecular, H, and H, have to converge to
zero together. This could be a potentlally useful fact for proving the conslstency
In one metrlc uslng consistency In the other metric. A word of cautlon. The rates
of convergence to zero can differ widely, slnce H, can be made to decrease
linearly or quadratically In H,. LeCam's Inequality cuts out an area near the top
right corner of the rectangle, providing us with Informatlon regarding the rate
with which 2-H, tends to zero when v2-H, tends to zero. At this point, the
reader may wonder why one would be Interested at all In that part of the plane,
H, belng so far away from zero. Observe that If f ,g are replaced by n -fold pro-
ducts (as In the case of a sample of n 1id random varlables drawn from f or g),
then the Hp -values for the products are pushed towards their upper bounds as n
Increases (unless f =g ). It Is preclsely in those situations that we will need the
behavior of H, near ol/p
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1.4. ENTROPY. KULLBACK-LEIBLER NUMBERS.

The quantlty f f logf has often been related to the entropy of a density
f (actually, minus this quantity Is the standard definltion). Note that the func-
tlon z logz for z >0 Is convex, taking the value O at O, dipplng underneath the
axls, reachlng a minlmum -1/e at £ =1/e, crossing the axls agaln at z =1, and
Increasing to o0 as r —oo. Thus, there are no problems with Olog O in the
integral, since this should clearly be Interpreted as O.

ff logf can take all values In [-oo,00]. To force It to take the value co, an
Infinite peak 1s needed. To force It to take the value —oo, an Inflnite tall Is
required, l.e. the probabllity mass has to be smeared out thinly. Note that there
could be a possible problem with the Integral when both Its positive and negative
components are co.

The Kullback-Leibler number
K(fg)=[foel,

defined when f <<g (f s absolutely continuous wlith respect to ¢ ) ls asym-
metrle In f ,g, and can therefore not be a distance. Nevertheless, there are
Important relationships between K and L,. Its maln use Is when f ,g are
replaced by n -fold products. The Kullback-Lelbler number for the product densl-
tles Is preclsely n times K (f ,¢g ). This facllltates certaln computations dramati-
cally.

As with all Integrals that can be written as f f ¢(L) for some function

(examples include K and H, for all p), K Is Invariant under rich transforma-
tlons. In other words, K (f ,g) depends on the relative shapes of f ,¢ only.
Note first that K >0, with equallty occurring If and only if f =g . This follows
from Jensen’s Inequality:

~K(f 9) =[] 106 < tog([f-})=0.
Note however that K (f ,g) can be co even though f <<g. Thls means that
the (L ,K) plane cannot posslbly be restricted from the top in the y-dlrectlon.
It Is true however that when K 1s small, L, has to be small. Several Inequalities
can be Invoked to decide just how small L ; has to be.
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Theorem 1.4. -
Let K=K (f ,g),and L =L (f ,9). Then
L, < V2K

Kemperman (1969)), and

(the Kullback-Cslszar-Kemperman Inequallty; see Kullback (1967), Csiszar {(1987),

L, <2Vi-e® <o-eK |

(the Bretagnolle-Huber inequallties; see Bretagnolle and Huber, 1979). The last

Inequality can be restated as follows: fmln(f g) > %e'K(f 4,

K.

Bretagnolle-Huber bound ]

2

Figure 1.5.
(L ;,K ) plane

Ly(f .9)
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Proof of Theorem 1.4.

‘We begin with the Bretagnolle-Huber lnequalities. By a simple application
of Jensen's lnequallty, the following 1s true:

-[7 1og% = [f log(mln(Tg,l))—f—ff log(max(%,l))

< log(fmin(/ ,g )+log(fmin(f ,¢)) = log((—f | / —g | /2)a+[ | f -9 | /2))

= tog(1-([ | / ¢ | )
N

The second Inequality of Bretagnolle and Huber is rather obvious. Turning to the
Kullback-Cslszar-Kemperman lnequallty, we Introduce the followlng notation: [
Is the Indicator function, A ={f >g¢ }, h=¢l, /q. ¢ =fg , D =ff . First,

A A

PN B A
£flogg f glogg/{g
> h—{]—log( f h%) fg (Jensen’s inequality)
A

= [f1oe(f] /fg)=rplogt .
4 A A q

Thus, repeating thls argument for the complement of A, we have

K(f.9)>p xog%+(1—p )log{% = H(p,q) (definttion of H(p,g)) .

Assume that p =g +r for some r >0. Then, wrlting H () Instead of H(p,q ),
we have

H(r) = (g +r log(1+—)+(1—g —r Jlog(1-——)
q 1-¢

H'(r ) = log(1+—)log(1-———) ,
q 1-q
1
—_ L >4,
p(-p) — *

Thus, by Taylor's serles expanslon with remalnder,

H'(r)=

2

2
K(fg)zal —20-¢=2(/17-¢1) M

Flgure 1.5 shows the areas cut out by the Inequalltles of Theorem 1.4.
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1.5. STANDARD IMPROVEMENTS OF DENSITY ESTIMATES.

The question dealt with In thls sectlon 1s very simple: If ¢ 1s replaced by a
common sense Improvement, Is the new lmproved ¢ closer to f than the old ¢ ?
Very often, the answer 1s positive.

For example, 1t cannot hurt to restrict a density estimate to the support of

f.

Theorem 1.5.

Let g be a functlon with fg =1, and let f be a denslty vanishing off S.
Deflne

g* =gls/[g .
s

Then [ | g*-f | < [lg-f |.

Proof of Theorem 1.5. )

/ \ g ===

Figure 1.6.
Density restricted to support of another density.

J17-g%| =2f(/ ——g—)+ (Scheffe’s theorem)
E; fg
S
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< 2£(f -gu<2f(f-9)u=f17-¢! N

It also can’t hurt to normalize a density.

Theorem 1.6.
Let g be a functlon with fg =1, and let f be a fixed density. Deflne

9* =gls /[y
S

where S ={g >0}. Then [ |g*-f | < []g-f |.

Proof of Theorem 1.6.

y#

Figure 1.7.

Function integrating to one, and corresponding normalized density.

f1f-¢%] =2£(y*—f ). (use f[g=1)




14 1. DISTANCES BETWEEN DENSITIES
=2f(g*-f )2 [(g*-f )
5 g€
=2[(¢*-f )y
S
< 2£(y—f =2f-f=f17-¢] N

For other possible reasonable Improvements, see exerclses 1.5 and 1.8.

1.6. PROJECTION ESTIMATES.

Assume that [, Is a density estlmate, and that F.1s a class of densitles con-
talnlng f . If we know F, then we would often like to estlmate f by another
member of F. Think for example about the class of all unimodal densltles on the
real line. The projection of f, onto F 1s g, where

A

flgn_fn I =;2£,f|g_fn | .

For very small (usually parametric) classes, the projectlon g, Is usually much
closer to f than f,. This has been explolted by Beran (1977, 1981) for obtaln-
Ing robust parametrlc estimates. When F Is falrly rich, it turns out that g, Inher-
1ts the rate of convergence of f, . In other words, projection estlmates are ”safe”
if we know that f €F. The statement about the rate of convergence Is Implicit
In

Theorem 1.7.
For all f €F, the prolection ¢ of & onto F satlsfles:

flo-f | <2f|h-f 1.
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Proof.of Theorem 1.7.
Jlo-1 | <flb=f | +[Ih-g |
<2[|h-f | N

1.7. EXERCISES.

1.1. Construct a density which does not belong to any L, for p 1.
1.2. Show that

HXf .9)=2 sup Aom,[l-i fffg]~

all partitions A, . . i=1 A; A

See flgure 1.8.

Figure 1.8.
Partition of [0,1] X [0,1]

Note that this equality can be used to deflne the H, distance between two
measures even If densitles do not exist,
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1.3.

14.
1.5.

1.6.

1. DISTANCES BETWEEN DENSITIES

Let T be any mapplng:R —R. Let X,Y have densitles f.,g, and let
T(X),T(Y) have probabllity measures u,v. Uslng the total varlatlon
Interpretation of H,, and the property of H, glven In exercise 1.2, show that

H, (pv) < H,(f ,9)
for p =1,2.
Prove that K (f ,g)>-2log(1-H*(f ,9)/2)>H ([ .9)
Prove or disprove: assume that ¢ >0, f ¢ <1. Let g* be any density satlsfy-
Ing g* >¢. Then [ | g*-f | <f|g-f | for any density f .

Let f >0 be | on [0,1], and let ¢ >0 be T on [0,1]. Deflne g* as the func-
tlon with constant value f g on [0,1] and the value O outslde [0,1]. Show
that

[le*=1 | < [le-f | .



Chapter Two
DENSITY ESTIMATION
AND DERIVATION OF MEASURES

2.1. OUR MODEL.

We assume that a sample X,, . . ., X of id random vectors with unknown
density f 1Is glven. Unless explicitly mentloned, this 1s the only Information
avallable to us regarding f . A density estimate [, 1s a Borel measurable func-
tlon of z and the data X,, . . ., X,,:

fa=tale Xy X))

Usually, f, Is a denslty In z, l.e. It I1s nonnegatlve and Integrates to one.

When f has probabllity measure 4, and X Is Lebesgue measure, then [ Is
almost everywhere equal to the Radon-Nlkodym derlvative i’; . This means that
for all Borel sets A ,

[F =u4).
A

‘We wlll see that most estimates attempt to approxlmate the derlvative of u with
respect to .

2.2. POPULAR DENSITY ESTIMATES. )
The empirical measure y, s the frequency count of a set, divided by n :

un(A)—-—EIA(X)

l—‘l
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It can be used as an approximation of u(A ). Thus, If we partltion the space R ¢
Into a countable collectlon A ,A ,,..., and all A; s are small, then
Hon (Ai )

,TEA; ,

d : )
can be expected to be a reasonable approximation of d—’;;For the approxlmatlon

to be good, we need two things:

A. Every u(A; )/M(A; ) should be close to f , L.e. the A; 's should be small.

B. p, (4;)/p(A;) should be close to Its mean (1). For this to be true, n should
be large.

The estlmate f, defined by a frequency count on a partition Is called the
histogram estimate. An example with d =1 Is shown In figure 2.1.

Figure 2.1.
Histogram estimate.

Typlcally, the partitlon conslsts of a regular grid of equal slze lntervals or
hyperrectangles. We wlill encounter sltuattons In which 1t 1s to our advantage not
to choose Intervals of the same size. Furthermore, the partition 1tself can some-
tlmes depend upon the data, In which case we call the estimate a variable par-
tition estimate. One can easlly verlfy that If all the A,’s have finlte Lebesgue
measure, then f, Integrates to one.
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In 1956, Rosenblatt proposed the moving window estimate
b (S(z,h))
S (z,h))
- where S(z,h) 1s the ball of radlus kb centered at £. This radius Is also called
the smoothing factor. On the real line, f,(z) counts the number of data

polnts In [z -k ,z +h] and dlvides thls number by 2hn. Note that for large n
and fixed k, f, Is close to

[a(z)=

u(S (z,h))
XS (z,h)’

which In turn is close to f (z) If A is small enough. Agaln, we will have to find
a good value for A as a function of n. Typlcal drawings of f . have discontlnui-
tles that are reminlscent of the histogram estimate. In fact, slnce f, has zero
derlvatlve almost everywhere, 1t can be consldered as a varlable partition histo-
gram estimate. Users often demand smooth eye-pleasing estimates. The theory
will support thls common sense request, as we willl see further on. The simplest
way to generalize the moving window estimate 1s by replacing the window (which
can be consldered as a uniform denslty) by a general functlon K, called a ker-
nel:

f2@) =2 KX,
1 =1

where
1 z
K,(z)= —/K ().
a(z) X )
This estimate 1s known as the kernel estimate or the Parzen-Rosenblatt esti-
mate (Parzen (1982), Cacoullos (19686)).
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Ki(z) = 22837,

Figure 2.2.
Kernel estimate with 17 =10. Ten data points are shown on axis.

Agaln, 1t 1s easy to verlfy that f, Is a density when K Is a density. Remarkably,
[, remalns a density even If K and/or & depend upon the data (but not upon
z ). Nearly every desirable property of the histogram estlmate Is shared by the
kernel estimate, so we won't have to bother too much with histogram estlmates.

The derlvative can be approximated In yet another way, by making the
radius of the ball depend upon £ and the data:

P (S (2R )

= SEERy

where R, 1s the minlmal value for which u, (S (z,R; ))=*k /n. Thus, the ball
centered at £ has radlus equal to the distance between z and lts k-th nearest
neighbor In the data sequence. First introduced by Fix and Hodges In 1951 (see
also Loftsgaarden and Quesenberry, 1985), thls estlmate s called the nearest
neighbor estimate.

‘We have
k/n
)= ———t——
1@ =GRy

_ MEE.Ry))

2 m (k large)
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~

k
™ f (=) (Z small) .

For good performance, we will once agaln need to balance two conflleting require-
ments: k should be large, but k¥ /n should be small. The key property of the
nearest nelghbor estimate Is that f f 4 =00, so that 1t Is 1mposélble to study 1ts
properties In L ;. To see this for the case d =1, note that

k
z)> —m—— ,z>X,,,,
falz)2> (@ -Xg) )
where X (> are the order statlstlcs. See ﬂgﬁre 2.3 below.

Vertical Hnes drawn at X (4 and X (5

Area under tall is o0

Figure 2.3.
Nearest neighbor estimate with n =10,k‘ =—4. Data points are shown on axis.
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2.3. DIFFERENTIATION OF INTEGRALS.

In the study of the kernel estlmate, we will need to know about the proper-
tles of the convolution (or smoothlng) operator *. For two functions f ,g In L,
we have

fra@)=[f (We@-y)dy = [g(¥)] (z-y) dy .
‘We begin with

Theorem 2.1. Young’s inequality.
Itfug€lythen [|f*% | < [{f |[la].

Proof of Theorem 2.1.
TV i @e@-y)dy | de <[]/ )] |g(z-y)| dy dz
=[{fW)|fle@-y)| dwdy=[|F|flg]| M

It Is also necessary to recall from real analysls the following fact:

Theorem 2.2.
The continuous densitles with compact support form a dense subclass In the

class of all densitles. In other words, for every €>0, and for every denslty [,
there exists a contlnuous density ¢, of compact support, such that

J1f-9] <e

Thils theorem is Just a special case of a more general theorem which states
that the continuous compact support functlons are dense ln L 1- The consistency
of denslty estimates can often be obtalned by first proving the consistency for a
dense subclass of nlce densltles, and then invoking Theorem 2.2,
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Theorem 2.3.

Every kernel K with [K =1,{ | K | <oo Is an approximate identity, ..
for every f €L ,, we have

tmf |/ *Ks-f | = 0.

Proof of Theorem 2.3.

Assume first that the statement 1s true for a dense subspace of functlons ¢ .
Then, for arbltrary [ €L ,,

JUS* =1 | S [1T-g [ * 1K [+[1f =g | +]19*Kp~g |
SUIK[+Df1f-g | +0(1).

The first term on the right-hand-side of thls expression can be made as small as
deslred by cholce of ¢, and the finiteness of f | K 1 . Thus, we need only prove
the L ; convergence for a dense subclass, such as the class of contlnuous functions
with compact support.

Defilne
L=KI||;|<m

for some large constant M.Let A be {z:| | z-z | | <M for some z € Support
(f ) }. Let us furthermore Introduce the modulus of continuity

w(g,h)=y’zzlsiuyp| < lg@-y)g=)]| .

Then the following chaln of lnequallties 1s valld:
J19*Ky—g | = [|9*Kh~g [K; |
Sflg*Lh—gth | +f|9 |f|Kh‘Lh | +f|9*(Kh‘Lh)l
<[flgG-yre@)| | Liy)| dy do +2 [|K-L |
A
< wlg MRY[[|Ly(y)| dy dz +2f | K-L |
A
< w(g MAONAY L | +2f | K-L |

=o(1)+2f|K-L |

and this can be made as small as desired by our cholce of M. ||
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2.4. CHARACTERISTIC FUNCTIONS.

It f/ and K are denslties with characterlstic functlons ¢ and ¥ respectively,
then the convolution f *K, has characteristic function ¥(tk )¢(¢). This observa-
tlon allows us to deduce qulte a bit of information. For example, by the unlque-
ness of characteristic functlons, we see that )

1 f*Ky~f | =01t and only If ¢(th )@(¢t) = ¢(¢) for all ¢ .

But this Is In turn equivalent to the condition that for all ¢, elther ¥(th )=0 or
#(t )=0. Slnce ¢(¢ )20 In a nelghborhood of the origin, we need Y¥(th }=1 for
that same ¢ -nelghborhood. But ¥ can be one only at the origln. This forces & to
be zero. Thus, for any h 70,

JI7*Ky-f | >o0.

Parseval's 1dentity states that the Integrals of the squares of functions are
equal to the Integrals of the squares of the Fourler transforms (or characteristic
functions). Unfortunately, such a nice ldentlty does not exlst between the L,
norm of a functlon on the real llne and the L, norm of the corresponding
Fourler transform. However, we have

Theorem 2.4.
Let f ,g be densltles with characteristic functions ¢ and . Then

J1f-g1 Z s [gt)>0t)] .

Proof of Theorem 2.4.
| t)-yt)| = | fe® f(z)dz-fe*™ g(z) dz |
<fle® | |f(zrg@)| de=[f|f-g| W

Consequently, uslng % agaln for the characteristic functlon of our kernel K,
we have

JUSKi=f | Zsup [ g(8) ] [1-w(th) | .

From this, we can deduce that If A, s a sequence of numbers for which

lim flf*Kh‘—f ’ =0,
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then h, —0. For If this were not the case, then there would exlst a subsequence
n’ along which h,,—H €(0,00) as n’'—co. For ¢ 5£0, we would then have

WtH) (H <oo) (contlnulty of )
,,%lf?oo Wik, ) = o (H =c0) (Rlemann-Lebesgue)

By the L ,—L o, Inequallty, and the fact that ¢(¢ )£0 In a nelghborhood of the ori-
gln, we see that lim nff | f *K), —f | >0, which Is a contradiction.
n’—o00 *

2.5. INTEGRAL CONVERGENCE FROM POINTWISE CONVER-
GENCE.

The notlon of polnthse convergence 1s stronger than that of Integral conver-
gence. This provides us with yet another tool for establishing the consistency of a
denslty estimate. Scheffe (1947) first observed thls Interesting fact:

Theorem 2.5. Scheffe’s theorem.

If f, 1s a sequence of densitles (not estlmates), and f, —f almost every-
where where f 1s a density, then [ | f,—f | —0 as n —oo.

Proof of Theorem 2.5.
By the Lebesgue dominated convergence theorem,

[l ot | =20/ ~fa)s—0. N

Scheffe’s theorem 1s not directly applicable to density estlmates because the
sequence f, needs to be deterministic. The vold is filled by

Theorem 2.8. Glick’s theorem (Glick, 1974).

If f, 1s a sequence of density estimates converglng almost everywhere to a
denslty in probabllity (or almost surely), then f | f»-f | —0 in probability (or
almost surely).
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Proof of Theorem 2.5.

The "In probabllity” half 1s proved by applylng the Lebesgue dominated
convergence theorem (LDCT) twice:

f 2 (f =f4 )y — O In probabllity, a.e.
implles, by LDCT,
I 2 E(f~f,)s—0 ae
and thus, agaln by LDCT,
E(f17-1aDD=JE( -fa)s—0.
The almost sure part follows by a double application of Fublinl's theorem:

P(w:f,z)# S (z)) = 0 for almost all z (\)
if and only If

{w,z):f,(@z)#f (z)} has P X\ measure 0
if and only if

Mz :f,(z)# [ (z)) = 0 for almost all w(P ).

Thus, for almost all w(P ), we have [ | f, -/ | —0 by Theorem 2.4. i

Polntwise convergence at almost all polnts usually requires a theorem in the
spirit of the Lebesgue density theorem, stated here In a general form (see e.g.
Wheeden and Zygmund, 1977):
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Theor_eni 2.7. The Lebesgue density theorem.
Let B be a subclass of the Borel sets with the property that
A(Bo)

wp ——— < ¢ <

B NB) =

for some constant ¢, where B, Is the smallest centered cube contalning B (see
figure 2.4 below). Then, at almost all z,

[ 1 f@)»f@)| dy

S
B

m 2P =0
7 =00 \(B,) o
as X\(B, )—0, where B, €B for all n. For the same z,
f () dy
lm = J'IB‘ lm wz+5,) /(@)
—_— = ———=f(z).
n—00 AB,) n—o0 Nz +B,)

These  are called Lebesgue points.

(0.0)

Figure 2.4.
B, is the smallest centered cube containing B
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Theorem 2.7 1s valld for shrinking balls and for shrinking centered hyper-
cubes. Note that the last statement in the Theorem Is equivalent to f *g, —f
a.e. where g, 1s the unlform denslty on B, . We need something slmllar with g,

replaced by K, : : .
Theorem 2.8.
Let K be an \ntegrable function, satisfying

JK=1,]K]| <c¢c <oo,K =008S(0,M).
Then, for any density f ,
f*Ky — [ at almost all z

as h }O.

Proof of Theorem 2.8.
| ¥~ | = | f(J @-y)-f @K, (v) dy | (fJK=1)
ST f@-y)»f()]| | K@) dy

< [ | f@-y)f@)|ch? dy
S(0,Mh)

=ch™? o \(S(O,Mh))) = o(1)as k|0 .1

The conditlons on K In Theorem 2.7 are too strong. Steln (1970) has
pointed out that one only needs f K =1 and an Integrable radlal majorant:

K dz < .
Ly 59, 1K@ de < oo

2.6. EXERCISES.
2.1. Construct a sequence of densitles f, and another denslty f on [0,1] having
the property that [ | f,—f | —0 as n —oco, yet lmsup | f,~f | >0 for
n —o0
all z.

2.2. Conslder the nearest nelghbor estimate In R ¢ with k =k, varylng In such a
way that
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2.4.

2.5.

llm & = o0, llm£=0.
n —00 n—oco N

Show that f,—f In probabllity for almost all z .

. Construct a kernel K with [ | K | <oo,{K =1, for which the conclusion of

Theorem 2.8 is false.

Conslder the kernel estlmate with kernel satisfylng the conditlons of
Theorem 2.8. Assume that A =h, Is such that A —o0, nh? —0o as n —oo.
Prove that | f,~/ | —0 1n probablllty as n —oco for almost all z. Con-
clude that [ | f,—f | —0 In probability for all densitles f . Hint: note that
E(f,)=f*K;, and use an approprlate probabllity Inequallty for
| fa-E(fa)]-

There Is no converse to the Inequallity of Theorem 2.4. Construct densitles
f+f v ---, fpas- with characteristic functions ¢,¢;, . . ., ¢, ,... such that

sup | ¢t >0, (2) |
lim
n —00 flf —fa |




Chapter Three
CONSISTENCY OF THE KERNEL ESTIMATE

3.1. THE EQUIVALENCE THEOREM.

The objJect of thls chapter Is to Illustrate varlous technlques for proving the
consistency In L, of nonparametric estimates. We take as our maln example the
kernel estilmate, because most of the problems encountered In practice can be
illustrated clearly and simply.

The maln result states that the kernel estimate Is elther consistent (In which
case 1t converges In the strongest possible sense for all f ) or not conslstent (In
which case It does not converge in any standard sense for one single f ). There ls
no "inbetween”.

Theorem 3.1. (Devroye, 1983)

Let f, be the kernel estimate with arbitrary denslty-kernel K, and let the
smoothing factor A depend upon n only. Then the followlng statements are
equlvalent:

A. f | fa—f | —0 In probability for some f .

B. [|f.~/ |—0In probablitty for all f .

C. [|Ja-f |—0 almost surely for all f .

D. For every €20, there exist r ,n >0 (with r independent of f ,K ) such that
P([|f,-f | > < e™ ,n>ng,all [ .

E. Imhk =0, lmnh¢® =c0.
n —0C n —00

(E) implles (D) even If we allow negative-valued Kkernels, as long as
f [ K | <00, f K =1. But (A) does not generally Imply (E) for these kernels.
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‘We wlll take most of thls chapter to prove thls. Readers who are only
interested In weak convergence are referred to a very short proof of weak conver-
gence alluded to In exerclse 2.4. Since (C) => (B) => (A), and slnce (D) =>
(C) by the Borel-Cantelll lemma, 1t suffices to prove (A) => (E), and (E) =>
(D). At the end of the chapter, we will extend Theorem 3.1 to the kernel estimate
with data-dependent smoothing factor.

3.2. SIMPLE SPLITS INTO BIAS AND VARIATION.
The following trivial lnequallties will be needed throughout:

TVia=f | ST1IE=f | + [ | pa *Ki~1 Ky |

(the first term s called the bias, and the second term Is called the variation; we
also used the fact that f, =pu, *K, ),

E(f|fa-f D[S |-
(by Jensen's Inequallty, and the fact that E (f, )=/ *K} ), and

E([|fa=f D)2 FE( | ta K=/ K |) .

The last inequallty follows from
E(flug *Ko-f*Ky NS [T~ | +E | fa-f DS 2E(| [ ])

where we used the prevlous Inequallty. We first conclude that E(f | f,~f |)
tends to zero If and only If the blas term and the expected value of the varlation
term tend to zero.

We can also obtaln the first half of (A) => (E): indeed, If (A) holds, then
E(f|fa-f |)>0 for some f (stnce  [|f,-f | <2). Hence,
[ | J*K,—f | —0. By a corollary of Theorem 2.4, h —0 as n —co.

3.3. A LARGE DEVIATION INEQUALITY FOR THE MULTINO-
MIAL DISTRIBUTION.

When K has compact support, 1t Is easlly seen that the behavior of f, (z)
Is nearly Independent of the behavior of f,(y)If z and y are further than ch
apart for some constant ¢ . Thus, the Integral criterlon f | fo—f | sums very
many nearly lndependent random varlables, which Is why we can expect to
obtaln some Inequallty like (D). One of the obstacles we have to deal with Is the
dependence due to the fact that the total sample slze Is n; thls dependence s of
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a multinomial nature. The tool needed in our proof Is

Theorem 3.2. A multinomial distribution inequality. .

Let N, ..., N, be a multlnomlal random vector with parameters
n,p;, ..., Pr. Then

kN
P(S | Soop | 29 <2846 a0

=1

Proof of Theorem 3.2.
By Scheffe’s theorem,

ko N; N(A)

——p; | = 2su —— P(A
Ellnp,l up | —= 4]
where A ={all 2¥ possible sets of Integers from 1,....k }, and IV (4 ) Is the cardl-
nality of A. By Bonferronl's lnequallty and Hoeffding's Inequality (Hoeffdlng,
1963),

[

P[Sgp IN—(:—)—P(A)I 2 i] < ofge~2 (/2" g

3.4. PROOF OF (E) => (D).

Theorem 2.4 states that [ | f*K;~f | —0 when A —0 and K 1s merely
absolutely Integrable with Integral equal to one. Thus, It suffices to prove (D) for
the varlation only. This wlll be done In three steps, first for K =alp where a s
a constant and R Is a rectangle, then for nonnegatlve K, and finally for abso-
lutely Integrable K .

For K =alp, It helps to conslder the partitlon IT of the space Into hyper-
cubes of sldes k /N, as shown below 1n figure 3.1.
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E h/N
[ 1
h /N - |~ hR’i k/N
h/N :
iR DM/
Origin
h/N
Figure 3.1.
Partition T
‘We have
[l pn Ki=f Ky | = || [ | pp @ +hR )p(z +hR) [ b~ do .

Also, If we deflne Shell, as r+AiR minus the unlon of all sets B €IT for which
B Cz +hR , then Shell, Cz +h (R -R*). Thus,

| #p (z +hR yu(z +hR)| < by | o (BYp(B)| + (p+u, )(Shell, )
Bell, B Cxz +AR
< ¥ | by (BY-p(B)| + (u+p, Xz +h(R-R*)).

Ben,BCz +hR
Collecting thls ylelds

J | b Ky ~1 *K |

< |alht [ P | o (BY-u(B)| + (utp, Xz +h(R-R*))| da
Bem, BCz+hR
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|| b [2 | un BYu(B)| [ de +2>\(h(R—R*))]
Ben .

BCz+hR

(Young's Inequallty) .
|| MR) S |#a (B)u(B)| +2|a| MR-R*). (Young’s inequallty)
Ben :

Let us take the last lnequallty as our starting polnt. For 6>0, and any density
K, we can find a kernel L of the form

Ny
L = E a, IR
i=1
with the property that
JIK-L | <56,

where N, Is a constant, the ¢; 's are constants not exceeding some number M In
absolute value, and the R;’s are disjoint finite rectangles. Note that L =0 out-
slde some hypercube [-H ,H]%. A standard triangular Inequallty ylelds

Tl ug *Ky—1 *Ky |
Slba*Ly=F*Ly | + oo * | Kp=Ly | + [f* | Kp-Ly |

No
<2 a;|at f | oo (z +AR; »u(z +hR;) | dz + 2§ (Young's lnequality)

$ =1

[EIG.IX(R)] > [ uB)u,(B)| +26+ 2210‘:!)\(3—3*)

=1 i=1

The third term on the right-hand-side can be ma.de smaller than é§ by chooslng N
large enough (each R*; tends to R; as N —oo). The coeflicient of the first term
on the right-hand-side Is equal to f | L | <1+6. Thus, we have shown so far that
for every 6>0, we can ind N large enough such that

Jlpa Ky ~F*K | <36+ (1+8) Y | (B )n, (B) |
Bel

<564+ 3 |wB)u,(B)|
Bell

N depends upon § and K only, and II depends upon & /N . We are almost In a
positlon now to utilize the multinomial lnequallty of Theorem 3.2, were 1t not.for
the fact that the partition IT Is infinite. Thus, It Is necessary to "cut off” the talls
of the distributlon. To do thls, consider the partition Il, and a finlte partition
II, , consisting of those sets of IT that have a nonempty Intersectlon with [-r ,r 19,
where r >0 Is a constant to be picked further on. Let IT¥, be IT, U[-r,r]%°.
See figure 3.2 below.
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*/N

Figure 3.2.
Partitions ITII, .

The cardinallty of IT, 1s at most
[ 2riN

d
b +2] =o(n).

To take care of the talls, we argue as follows: let T stand for the tall set, l.e. the
complement of [-r 7 ]¢. Then

D luBYu, B)| £ 2 1 8B»u, (B)Y| +w(T)+ u, (T)

Ben Bet,
< 5 BB, (B)| +2(T) + | W(T )y, (T)]
Berl,
< 2 | uBru,B)| +2uT).
Belr+,

Now, 2 u(T) can be made smaller than § by cholce of r. Recapltulating, this
glves the Inequallty



36 3. CONSISTENCY OF KERNEL ESTIMATE
Tl *Ku—f*Ky | <66+ Y | uBru,(B)] .
B €Ir#,

where r depends upon §,f , and N depends upon 6,K . By the multlnomlal Ine-
quallty of Theorem 3.2, for €>>8 §, and p€(0,1),

P([ L ua a1 | > €) SP[ 5 | 4B )ua(B) | >e—65]

Belr*,
-2 n(e-607
< 22+(2+2rN/h)‘ e 2
2
-1
S € 2 ] n Z no(P,ny 1f :{h }) M

This concludes the proof of (E) => (D) for nonnegatlve K. Note that the ine-
quallty can be forced to hold for all n ,A with
d+1
n > 16+4 ,
pe?
42%(2rN )®

pe

§=Sl1-4/1-21.
6 2
It K can take negatlve values but 1s absolutely Integrable with integral one,
we have

nht >

If we plck

JILISJIHL|-|K||+[]|K]
<[IL-K | +[|K| <é+[|K]|.
This ylelds the inequality

Jlpa*Ky-f?K, | <86+ [|K | 82 | W(B)-u, (B)] .
€I1#,

We can thus conclude that for every €>0, p€(0,1), there exlsts an
no(6p K ,f {h}), such that

2
X3
1-p)——
—(;a)2

P(f ia K1 %K | > €] < e n >,
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3.5. PROOF OF (A) => (E).

The necessity of the conditlon A —0 was already established above, so we
need only be concerned with the condltlon nk ¢ 0.

Observe first that

[ /4+-f | =0 n probability
=>

E(flfn_f |)—’0
=>

E (| un *Ey—f *Ey |)—0.

Also, o '
E(f | o *Ky=1 Ky 1) 2 E(f [ "Ly=f Ly |)-2[ | K-L |,

where L 1s a function close to K, defined by
min( | K | ,M)stgn(K)
fmin( | K | ,M )sign(K )

L =

l.e., L 1s equal to K, truncated at =M . This lnequallty Is obtained by applylng
Young's lnequallty twlce:

| J Vit *En~f *Kn | = [ | o "L =f "Ly | ]
SSoa* | Ka-Ly | + [f* | Kh-Ly | =2 [|K-L| .
We wlll assurhe that K has compact support, vanlshing off T = [-C /2,C /2]¢.
This 1s used In
E(f |pg *y=f*Ly |) > [ | F*Ly, | P(z+hT 1s empty) dz
= [/ | Q-p+AT)" dz .

By Theorem 2.8, f *L, —f almost everywhere as k —0 (since L has compact

support, 1s bounded, and |Integrates to one). Thus, as h—0,

p(z +hT )~(hC)? [ (z) almost everywhere. By Fatou's lemma and the standard
z

Inequallty 1-z > e ™, valld for 0<gz <1, we have, If b —0 as n —o0,

—limsupl"_M
Nminf E ([ | py ¥Ly—=S*Ly |) > [ e 1p(z +hT)

Assume that along a subsequence, nh¢ —s €[0,00). Then h—0. The previous
inequallty can be applled to this subsequence in which case the right-hand-side
should be replaced by

ffc-sC‘f
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Thls shows that
2 [|K-L| > [re=c't
But because M was arbltrary and 1;1{1’ 2 f | K~L | = 0, we conclude that -
fr e*C'l —o.

This can only be the case If s =00, which Is a contradictlon. The proof Is com-
plete If we can extend 1t to the case of kernels with unbounded support. See exer-
clse 3.2,

3.6. DATA-BASED SMOOTHING.

Assume that the smoothing factor A 1s a Borel measurable functlon of the
data. We wlill write H Instead of A to stress the fact that the smoothing factor is
a random varlable. The maln result of thils section Is

Theorem 3.3.
Let K be an arbitrary denslty, and assume that

H —0 1n probabllity (almost surely, completely),

nH?% o0 in probablllty (almost surely, completely).

Then [ | f,~f | —0 In probability (almost surely, completely).

The proof Is based upon the fact that small changes In A do not affect the
estimate very much. This Is captured In two simple lemmas:

Lemma 3.1.
For any density K,

}}lmf[K;,—Kll =0.
—1




3. CONSISTENCY OF KERNEL ESTIMATE 39

Proof of Lemma 3.1.

When K s contlnuous, K, =K, for all z. Hence, [|K;-K,|—0 by
Scheffe’s theorem. For arbltrary K,

f|Kh—K1l SflKh‘Lh | +f|Lh‘L1[ +flL1‘K1|
=2 [|K-L|+[|L-L,] .

where L 1s a contlnuous denslty. The last term 1s o (1) because L 1s contlnuous.
The first term can be made arbltrarlly small because the contlnuous densitles are
dense In the space of all densitles. JJ]

Lemma 3.2.

Let f,, be the kernel estimate with kernel K (K 1Is a density), and with
smoothling factor 4. Then

IVfmTue ) <020y st
where

A
¢(6)= D flKu—Kl -

su
1-6<u <146

Proof of Lemma 3.2.

Jlpn *Kp—pn ¥y | < [ KK | = [ 1 Kpp-K,| ‘A

Lemmas 3.1 and 3.2 together show that small fluctuations in A have small
effects on f,, . With thls observation, we can establish a uniform lnequallity In
the spirit of (D) of Theorem 3.1:
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Lemma 3.3. The key inequality.

Let H, =[h', ,h"", ] be a sequence of determinlstic Intervals, where A", —0
and nh'? —00 as n —co. For every €0, there exist n >0 and r >0 such that

Pl s - > € <c""“2,n>n .
[hél};"j,fnhfl ]_ — "o

-

The Inequality states that after seelng the data, and knowlng f , and choos-
Ing the worst k2 1n a certaln set H, In functlon of thls knowledge, the kernel estl-
mate remalns almost surely conslstent in the L , sense.

Proof of Lemma 3.3.

The proof 1s based upon a reductlon of the supremum over an uncountable
set to a supremum over a fnite set. The interval H, Is partitloned as shown In
figure 3.3.

Figure 3.3.
Partition of H, =[h', ,h"" , |=[h, g,hp, ] into 1 intervals.

The Interval slzes In the partitlon grow geometrically, and the boundarles
are deflned by

hai = (148, Y b, , 0<i <n,
where

. "o YR ';‘ 1
1+6, )" = ==
" B, nh', ¢
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Observe that §, —O. For 1<: <n, we have

sup - . < sup ¢
ha 2 <h <hy IRRE PN b i< <ha (h,. it

—-1) (Lemma 3.2)

_—
< & 3 M 1) = ¢(5,) (definition of ¢ and §,)

n i-1

< € for all n large enough, since §, —0 .

Thus, we have

S im-1 1< S [flfnh,,,:_,_/ | + sup f‘fnh_fnh,.,»_ll]

hy ia<h <hy;

< su - € (alln >n)).
_1Si%nf|fnh""f|+ ( 2n,)

By Bonferron!'s lnequality,
. n
P[sup FUmt | >2e] < SP(f 1 f it | >¢)
hed, i=1

2

AP
2

<ne

when n >n,, n>c,, nh', ¢ >c, and A", <c, for some posltive constants ¢;
obtalned in the proof of Theorem 3.1 In the previous sectlon. The constant
PE(0,1) 1s plcked by the user and affects these constants. Thus, there exlsts a con-
stant n, such that the right-hand-side of the last chaln of inequalities does not
exceed

This concludes the proot of Lemma 3.3. i

Proof of Theorem 3.3.
First observe that

I[h +nh{)i>¢ — O completely
Implles

There exists an €, |0
for which I, 4 ppéyine, | — O completely.

Choose H, =[h', ,h" | where

B, =€, , by = (ne, VY9 , €, = max(¢', , n Y4
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Verlfy the followlng statements:
A", —o0.

nh!
I[h Hnh{yi>e,] —* O completely. .
B, <k, (because (ne, ) <e, ).

Iy ¢pr, —0 completely.

Statement (E) follows from (C) and

¢ =1/¢, —oc0.

o owy

1
Tt pzent = 5 (L +enbt mzhoa) + b ot i conr, 4
1 1
Z E—[Ilh >ht,] + I[h Sh'l]] = ;I[heHn] :

From (E) and Lemma 3.3, we have

< I[hsh/-] +I

' 0 letely .
I[flf.—f | > — [f;‘,}’flfnn-/ !>6]—+ completely

Note that we can replace the word "completely” In the proof by "almost surely”
or "in probability”. i

3.7. EXERCISES.

3.1. Conslder a histogram estlmate on the real line defined by the partitlon
[th (¢ +1)h ), tor ¢ =...,-2,~1,0,1,2,.... Here h plays the role of a smoothlng
factor. In the notation of Theorem 3.1, prove that (E) => (D).

3.2. Extend the proof of (A) => (E) in Theorem 3.1 to cover the case of kernels
with unbounded support.



Chapter Four
ROBUSTNESS

4.1. DEFINITION.

An estimator Is robust If small changes In the underlying distribution lnduce
small changes In the estimator. In other words, the estimator Is not hypersensl-
tive to the distribution. Omne possible deflnition of robustness, adapted from
Bickel (1978), states that a denslty estimate f, Is robust at f 1If

sup B, []g,-9g |
sup LASIYAL) <C <™

n2>1,€e>0 €+Eff|fn‘f |

for some constant C. Here S(f ,¢) Is the L | ball of radlus ¢ centered at f . The
notatlon Ef denotes the expected value with respect to a sample of slze n drawn
from f . The function g, Is ldentical to f,, but the distinction Is made to
stress the fact g, uses data drawn from g¢.
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Figure 4.1a. Figure 4.1b.
Crude illustration of size of region in which ¢,  Crude illustration of size of region in which g,
is liowed to fal. is allowed to fall,

In figure 4.1, we roughly lllustrate what thls means. Belng a blt sloppy In
our statement, we might say that g, should be In a ball centéred at g of radlus
not exceeding C(f|f -¢g | + [| f,~f |). When g Is very close to f , the
second term dominates, while for g far away from f , the f | f —¢ | term dom-
inates. C could be called a coefliclent of elasticlty, as It reflects how a sudden
move of slze [ | f -g | can Influence a move of the estimate, which Is of size

flfn_gnl'
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4.2. AN EXAMPLE: A PARAMETRIC ESTIMATE.

To lllustrate the definitlon of robustness glven In the previous sectlon (which
Is by no means the only possible definltion), conslder the exponentlal density
f(z)=1¢€"" , 2 >0. The estlmator f, Is the standard parametric estimator,
l.e. It Is an exponentlal denslty with parameter equal to the sample mean

12 X
=X
LOF Y

Conslder a density g €S (f ,¢) constructed as follows:

9 =021 + 2

where ¥, 1s a spike uniform denslty functlon of helght M and width 1/M with
support on [M ,M +1/M]. Note that indeed, [ | g-f | <e.

Figure 4.2.
Mixture ¢ =0.95 €% +0.05 1905, Where g, is the uniform density on
[50,50.02]
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Clearly, g, 1Is exponentlal with parameter at least equal to M /n If one of the
X; ’s 1s drawn from the ¥, part of the mixture. Thus,

su E - >2P Blnomlaln,i >0
€50t o flon-g 1 22P( () >0

=2 [1—(1——;—)" ] — 2as n—00 .

By the weak law of large numbers, we know that the sample mean converges In
probablllty to one. Therefore, by contlnulty of the exponential denslty, f, tends
to f/ In probabllity at all z, and thus E; f | fo—f | =0 by Glick's theorem.
This implies that

sup F -g
38 Bl 10 | S 2

n>1 e+Efflf,,-fl} €’

Therefore, the estimator 1s not robust.

4.3. THE KERNEL ESTIMATE.

The kernel estimate Is robust at all f , and for all cholces of A and K. In
fact, we wlll prove the followlng lnequality:

Theorem 4.1.
Let f, be the kernel estimate with absolutely Integrable kernel K, and
arbltrary smoothing parameter A >0. Then, for all n >1,6>0 and f ,

sup FE g, =g
) o J19ng ]

6+E/f|fn_f I

<i+f|K | .

Proof of Theorem 4.1.

The numerator of the left-hand-side 1n the Inequality 1s bounded from above
by In the usual manner:

Eyflgn_gl
SE [ fuf | 410 +E ;| fn0al -
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<E [ fa-f | +€+E; of | fn—0al -

Note that the expected value F 1 ¢ 18 With respect to two samples. Nothing keeps
us however from maklng these samples depend upon each other. In fact, we will
show that there exists a probabllity space (an embedding) such that

Er o[ Ta-0a | STIK|[1f-9] Sef|K| (stnce g€S(f ,e)) -
Once we have shown that, we have

sup E, [|g,-9 |
gES(S ©) Sl‘l“l‘ sup Ef,gflgn—fn |
A N €180 0

<i+f|K|.

This would then conclude the proof of the Theorem. |

The embedding device.

The object here Is to construct two dependent samples of slze n each, one
drawn from f , and one drawn from ¢, such that

By g f 1 fa-gu | SIS0 | [IK| .

Observe that there iIs no hope of obtaining this with two Independent samples,
for as h —0, the L, distance between f, and g, tends to 2 almost surely. The
constructlon of the samples can be done as follows (see Devroye, 1985): define

1
A=gf|f—9l-

Then define the foliowlng densltles:
foo= min(f ,g)
min

1-A
fo= [ -min(/ ,9)
A
_ g-min(f ,9)
Jgo= —— -

A
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Figure 4.3.
/ and ¢ are shown. Samples are drawn from densities proportional to

(f ~9)49-f )4 and min(f ,g).

Four Independent samples of 11d random vectors are consldered:
Uy o U~ f uin

Vi oo Ve~ 1o
W,..., W, ~g

Z,,...,Z, ~ Bernoulll (A).

Then, deflne
X, =X;=U; tZ; =0,
Xi=V, X, =W, 1Z; =1,1<i<n .
We clalm that
X, . ... X))
Is an 11d sample drawn from f , and that

Xy, .. ., X))
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1s an 11d sample drawn from ¢ . This is based upon the mixture decomposition
[ =02 qn+Af,.

What matters Is that the X;'s and the X';’'s agree except In N components,
where N 1s binomlal (n,A). Let E be the expected value with respect to the
probabllity measure defined above. Then

Ef|fa—9,1 =Ef EK,,(x—X )——EK,,(z—X )| dz

t-—l 1—1

Lk @V
;iél p(z-V;)

dz

<EJ

dz +Ef|—:L-EK,,(z—W,-)

=1

< [ ]flKl—flf 1 fIK| W

4.4. APPLICATION: BERAN'S ROBUST PARAMETRIC ESTI-
MATES.

Robust nonparametric estimates such as the kernel estlmate can be used to
deflne robust parametric estimates. In this sectlon, we follow a suggestion of
Beran (1977). Let 6 be a parameter and let F = {f ;0€©} be a famlly of denst-
tles parametrized by §. For example, 6 can be thought of as the vector (u,0%)
defining the locatlon and scale of a normal family. If f » 1s a sultable non-
parametric estimate of f , then It Is possible to estimate § by 6, where §, 1s the
solution of the followlng optimlzation problem:

Hof o0 n) = 108 Hy(f 0.f0) -

In our L, setting, we could define #, by the optimization problem

L(f 0,ifn)=;§él‘1(f ofa).

In other words, f 4 Is closest to f, In F.

Theorem 4.2.

The L, verslon of Beran's estimate Is robust at all §€©, provided that 1t 1s
based upon an estimator f, that Is robust at all f .
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Proof of Theorem 4.2.
Let f =f gfor some §€6. Then ,
E - < su E - +E - e
S E 10| _yES(I}’,e)( ST 00| +E 190, 1)

The last term In the Inequality does not exceed C(e+E; | f,~f |)1If [, Is
robust at f , and has robustness constant C (see definltlon of robustness). The
term In front of It Is bounded easlly:

Eg.[lfﬁ,._'gnl Sng‘gn_g’ +1%rflf6—g| Snglgn_gl"'e'

Therefore,

Sup Eyflfa,—g | S2C(E+Ef | fo—f l]+6

gES(S .€)
< @C+n)(e+Ey | 14-] l]-l

4.5. EXERCISES.
4.1. Prove or disprove: the histogram estimate based upon the partition
[k (i +1)k ), for ¢ =0,34:1,%2,... and fixed ~ Is robust at all f .

4.2. Let M, be the medlan of (X, ..., X, ), a sample of 1id random varlables
drawn from some denslty. Let f be the normal (0,1) density, and let f, be
the normal (M, ,1) density. Is [, robust at f ? Prove or disprove.

4.3. Conslder a kernel estimate with kernel K and data-based smoothlng factor
k. Verlfy the robustness, at all f , of thls estlmate when

(1) & 1s a functlon of n times the difference between the n /3 and 2n /3
quanttles 1n the data.

(1) % 1s a constant (depending upon 7» only) tlmes the standard sample
based estimate of the standard devlatton (Le. A2=(c /n)SUX; ~i)?
where [ 1s the sample average).

4.4. Show that Beran's estimate f , of sectlon 4.4 Is consistent for all f €F

when 1o the deflnltion of hls estimate, one uses a conslstent estimate [, .




Chapter Five
MINIMAX BOUNDS

5.1. MINIMAX THEORY.
Minlmax theory 1S concerned with the quantity

m(n,F)=1/nﬂrfsu€%E(f|fn-f ),

where F' Is a sultable class of densities and f, Is any estlmator based upon an 11d
sample of slze n drawn from [ .

Lower bounds for m (n ,F) are very Important, because they tell us about
the minlmal expected error committed by any density estlmate on at least one
member of F. They could for example be used to determlne whether a certain
sample size n suffices to obtaln a glven expected error with some estimate, for
the class of densities under investigation. In this chapter, we will excluslvely deal
with lower bounds. Wherever possible, we wlill also be concerned with the values
of the constants In the lower bounds.

Ideally, one would like to know m (n ,F') exactly, but thls Is often difficult to
compute. There are methods for determining upper bounds without actually con-
structing estimators. In chapter 68, a stralghtforward constructlve method is
developed. For large classes F, good upper bounds can also be obtalned by
analyzing the performance of one of the popular nonparametric estimates (see e.g.
chapter 7 on the kernel estimate). The real Issue of course Is the construction of a
minimax-optimal estimate f,, l.e. an estimate for which

?%%E(fifn_f |) < C m(nF)

for some universal constant C.
Here Is a partlal list of some posslble classes F:
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L, all denstties
Mg all monotone densities on [0,1]
bounded by B .
B, all densities on [0,1] bounded by
[
U all unimodal densities with a
mode at 0
LC all log-concave densities with a
mode at 0

W (s ,a,C) all densities on [0,1] with s-1
absolutely continuous deriva-
tives and
fOz)-f ) S C lz-y |

NS all normal scale mixtures
N all normal densities with mode
’ at 0

A word of warning. Deslgnlng estlmates for good minimax performance over
a set F could have negative slde-effects. As we will see, the estlmates may not
always be consistent for f ¢€F, or the rate of convergence for certaln f in F
could be Inferlor compared to that of other estimates. One common complaint s
that m (n ,F) has llttle or no Informatlon about m (n ,G) for small classes of den-
sities G properly contained In F.

‘We will Hlustrate three techniques for obtalning lower bounds:
A. The "low-probability method”. This method Is based upon Devroye (1983).

B. Informatlon-theoretic methods based upon the work of Assouad (1983), Bre-
tagnolle, Huber (1979) and Birge(1986). These make use of the H, distance
or the Kullback-Leibler numbers.

C. Methods based upon reductions to sufficlent statlstics.
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5.2. THE LOW-PROBABILITY METHOD.

The first technique s applicable when F s a rich famlly of densltles. One
first partitions the space R d Into very many sets A;, and asslgns a probabllity

p; to each set A; In the partitlon, where }}p; =1. On A;, we define two nonne-
d
gatlve functions g¢; ,h; such that

fo. =k =p;,
Jlei-hi | =2p; .
These condltlons force g;,h; to be disjolnt. Next, define a subclass parametrized
by
6 = 0.0,0,0,0, - - (blnary expansion)
wlth as a typical member
. g"(l'), $€A,‘,ai=1
f9($)= h,-(z), $€Ai,0,’=0'
In other words, the blt #; Is used to choose between g¢; and h; on A;. We

require of course that {f 4} be a subclass of F. Usually, this can only be done
when F Is exceptionally vast. Three examples follow.

Theorem 5.1.

If F' 1s a class containlng a subclass of the type descrlbed above (for any pro-
babllity vector (p ,,p g,...)), then

mtsup E(f|f,-f |)=>1.
fo [EF

Proof of Theorem 5.1.

The proof uses the following construction: consider n 11d random variables
drawn from each of the densitles g; /p;, h; /p;, and let all samples be Indepen-
dent. Conslder furthermore three other Independent random varlables or vectors,
O, (0y,...,0,), and (N ,N,..), where © is uniformly distributed on [0,1],
(64, - ..,0,) s a unliform random permutatlon of (1,...,n), and (N ,N,,..) s
multlnomially distrlbuted with parameters (n;p,pg...). Define (X, ..., X,)
as (Y,, ..., Y, ) (a random permutation of the Y;’s) where the Y;’s contaln
the first k£ random varlables of the g; /p; sequence If V; =k and ©; =1, and the
first k£ random varlables of the h; /p; sequence If N;=Fk and ©;=0. Observe
that the X;'s form an 1ld sample drawn from f g (glven ©). Furthermore, on
N; =0, ©; and X, ..., X, are conditionally Independent. We argue as follows:
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E(flf.—
Fup, Sl fa-1 D
Zs%pE(flf,,-fol) (subclass of F) .

>E(f|fa-fel) (randomization)

=E[E,{{ I fn_gi IIO,'=1+ If,,—h,' IIG;=O}}

> E[EI[N;o]f{ | fo=9i 1 Lo, =1+ | fa—hi | Ie.-=o}]
i A;
1
=E ZIIN;=0]E f{ lfn_gi l + lfn_hi l }
i A
(conditional Independence)
1
> E[EI[M=O] 5 T 1g:=h; | ]
i A
1
=3 X(2p 1-p;)"
H
= Zpi (I—P,‘ )n -
!
The proof Is complete If we can show that
sup pi(1-p;)" =p .
PLP2. P 20,5 =p Zs: ' '

This s most easlly seen by taking p; =p /M for 1<i <M. Then

M n
Yei-p) = [1—%}] —1asM—oo . i

=1

5.3. EXAMPLES OF RICH CLASSES.

F=B, : the class of all densities on [0,1] bounded by 2.

It should be clear that the subclass conditlon of Theorem 5.1 Is appllcable to
B,
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Figure 5.1.
A partition for B ,.

It suffices to take all the g;'s and ;s equal to 2, for some set A ; for g¢;,
A s the leftmost half of A;, and for h;, It Is the rightmost half of 4.

F consists of all densities with infinitely many absolutely continuous
derivatives, and | f )| <C, for s =0,1,2,....

Not all arbltrary sequences of constants C, are posslble. We just assume
that the constants are such that the class has at least one compact support
member ¢, In the constructlon of a subclass for Theorem 5.1, we let all ¢;’s and
k;'s be translates of ¢, setting

g (z-¢;) =p;go(z),
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hi(z-d;) = p;go(2),

for some constants ¢; ,d; . See figure 5.2 below.

g1 Ay
92 hy
93 hs
P P2 /\
A, Ay As

Figure 5.2.
Subelass of F.

Note that every f 41s In F because
9; Nz -¢;) =99, Xz).
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F consists of all monotone densities on [0,00) that are bounded by 1.

The lower bound of Theorem 5.1 s valld for this case too, but the proof
needs some fine-tuning. Conslder a set A ;=[0,1], and an arbltrary number p,.
On A |, deflne densitles g and & as follows:

hiz)=1,

—;--1+5 (0<z <9

9(z)=|; (6<z <1)"

10r

B o————

§is 0.1 In this example,

Figure 5.3.
Fundamental building block for f 4

Observe that [|g-h | =2f(h-g), = 2(1-8° > 2(1-28). Partition [0,00)
Into adjacent Intervals, and deflne g; ,h; on each Interval as p; tlmes a properly
translated and rescaled version of ¢,k . The translatlon 1s necessary because the
Intervals are nonoverlappling, and the rescallng Is necessary to make the density
monotone. We can assume without loss of generallty that p,>p,>ps> - - .
On every A;, the functions g;,h; are relatlvely posltloned as In flgure 5.3. See
figure 5.4.
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g192
07

0.8

1 E. S

o3|

0.2}

Figure 5.4.
Partition of real line, showing ¢ 1,¢ 5,2 1,h 5 for p ;=p ,=0.5.

For monotoniclty, one should make sure that If /; Is the length of the 7 -th inter-
val A;, then

;i )
=461 ,alli .

v

P;
-1——1+(5) 1+1

(
6 b

From thils equation, and /,=1, the lengths of the Intervals can be determined In
a recurslve manner. The lower bound In the proof of Theorem 5.1 should be
replaced by

>pi(1-p; )" (1-26),
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which can be made arbitrarlly close to 1 by cholce of the p;'s and 6. In other
words, Theorem 5.1 remalns valld.

We conclude from this partial list of very rlch classes F that no rate of con-
vergence results are possible under tall conditlons alone (see first example), under
smoothness conditions alone (see second example), and under monotonlclty cond!-
tlons alone (see third example). It Is not difficult to see that the third example
can be modifled so that smoothness and monotoniclty conditions alone again do
not suffice to get minimax errors converging to zero. The same is true under any
combination of tall conditions and monotonicity conditions (by playing on the
infinite peak at the origin). In all cases, the culprit for

m(n,F)>1

1s the fact that the space Is 50 blg that we can construct enough virtually non-
overlapplng denslties that can be comblned In a convex manner to create a gigan-
tlc subclass of F'. In other words, the "slze” of the space of densitles should be
Iimited 1n some sense.

5.4. INFORMATION-THEORETIC METHODS.
‘We begin with
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Theorem 5.2. Assouad’s theorem.

Let r >1 be an Integer, and let F contaln all f ,'s where 9=O.€16‘2 ce
can take 2" possible values. If ¢; agrees with # except in the 7-th bit, if
AgA,, ..., A, Isapartition of R¢, and If

f\/faf . >8>0 (forallf),

Jlfefel 2a>o0 (rorau'a),

3

then
2 1oz )
re gn '

4

Another lower bound s %r a(1-v2n (1-0)).

Proof of Theorem 5.2.
S%PE(f‘fn_fdl)_>.E(flfn_fel)

(© Is uniform over Its 2" possible values)

=2 N[ [a@x,)f oz)]| dz TIS oz;) dx,
)
(xn =(‘T]1‘ ~~;$n))

=20 5 [ | fn(@xa)S oe)] do [T/ da;) dx,

8 Q=1 A

=32l 3 %{ J U1 000 do T1 o.05,)

=1

+ [ 1 fal@xe )T o(z)] dz TI/ e,._u,-)}dx,.

1

(0; i +) agrees with d subject to §; =0(1))

> o Ef é %mln(ﬂf 6,.(z;) . TI/ 8.-_(Zj)] dx,
]

i=1

= r—Za—lon;rf mm(Hf 9,+(:Ej) 1/ 0,_(%')) dx, .
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The last Integral can be bounded from below by

2 (J/TTT 0@ T ate) dxa )

= (VT 0@ T o) ds; )|

1
> —pn
-2

The Integral can also be bounded as follows from below:
1
-5 L (T1S 008 T1S 05 ) 2 1-Ha(T17 0,(25), T/ 0.(55))

= 1-y/22[/I1S 0,05, T .(z;) dx,
>1-vVo-26" 1

Assouad’s theorem tells us that we should find a subclass of 2" densltles,
which can be pictured as slttlng at the vertlces of a cube in R ", such that the L
distance between all nelghbors Is at least o, the L, distance between vertices k
edge-lengths apart 1s at least k@, and the H, distance between nelghbors is not
too large (see the condition lnvolving f):
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Hypercube with 7 ==3 needed in Theorem 5.2.

Several examples of such constructlons follow in the next few sectlons.

5.5. A CENTERED CLASS.

In a first example, we take the class of all densitles that are within (L ;) dis-

tance € of a central density f *.
out for Helllnger balls by Blrge (1985).

The example Is analogous to an example worked
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T‘heorem 5.3.

inf  sup E - > €.
P T J1f.-f =

We can Interpret this theorem as follows. The estimator f,=/f* 1Is
minimax-optlmal for the class F since s%pf | f#-f | <e. Thus, If minimizing

the minimax criterion Is our goal, then there Is no need to conslder the data; the
data can in fact be thrown away, and we can take [, =f*.

Proof of Theorem 5.3.

Partition the space (without loss of generallty, we will take [0,1]) Into r sets
of f *-lnduced probability 1/r. We will restrict F to all densitles in S (f *,¢)
that have support [0,1]. On the ¢-th set A; In the partitlon, we deflne

(1+¢€)f * , between leftmost and medlan polnt of 4;

i = {(l—s)f * , between medlan and rightmost polnt of A; ’
(1-¢)f * , between leftmost and medlan point of A;

9 = {(1+e)f * , between medlan and rightmost polnt of A4; -

The medlan polnt In an Interval Is the polnt at which the Integrals of f * over
the two sublntervals deflned by the point are equal. See figure 5.6.
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/'4’

Figure 5.8.
Partition of [0,1] into 7 ==10 equal probability segments.

Observe that

2 A
Jlhi—gi | = = =a,
4 r

[17 %] = fef* = (thus, ol ] o€F),

/T of o = r;l +—1—V1~62 (all 1)

= 1——1—(1—\/ 1-€2 i A.

From Theorem 5.2, we obtaln the lower bound

5 (=-vezs) - [1-\/ 2-2(1-—(1-V/1-¢%)" ]
> e (1~ %ﬁ(l—v 1—62)]
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which Is arbltrarily close to € If r Is plcked large enough. .

5.6. A LIPSCHITZ CLASS.

For the first tlme In this chapter, we conslder a truly small class, l.e. a class
for which m (n ,F) decreases with n as n —oo. Let F be the class of all Lipschitz
deansltles on [0,1] with Lipschitz constant not exceeding C':

jf@)-f@W)| £Clz-y |

We also call this class W (0,1,C ), where 0" refers to the fact that the Lipschitz
condlition Is for the O-th derlvative of f , "1 refers to the power of | z -y | 1 in
the Llpschitz lnequallty, and C Is the constant. Not all constants C are possl-
ble. In fact, W(0,1,C) Is not empty If and only If C >4. We wlll prove the fol-
lowing

Theorem 5.4.

Let C >4 be fixed and deflne p= 1—%. Then
2 YL
162 C /i ? 8
Inf su E - >
f,.f€W((IJ),1,C) (flf"fl)_[loooon] [25n}
3
2

-1.22 C 3n 6p

The inequallty 1s valld for all n and all C 24. It is particularly useful to
get a crude ldea of the performance of any density estimate for a fixed value of
n . Furthermore, for fixed C, the bound decreases as a constant tlmes (C /n )Y/3.
To better the bound by a factor of 10, n should be Increased by a factor of 1000.
A sneak preview of things to follow: the kernel estimate wlll be shown to be
minlmax-optimal for W (0,1,C) for particular choices of K ,h .
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A subelass of F Is constructed by partitloning [0,1] Into r Intervals of width

66
Proof of Theorem 5.4.
£—, where p= l—ic, and two Intervals near the endpolnts, accountlng for a
r
total length of 1-p.
by —————|
P—
h A
WY
[V
Yy
Y

Slope is C

A i L .} L 1 1 L
0 0.05 0.10 0.15 0.20 0.26 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.85 0.70 0.75 0.80 0.85 0.90 0.95 1.00
with

Example

Figure 5.7.
subclass for W (0,1,C).

of a

Construction
r =7,p=0.7,C =7.84313725490.

The two triangles near the endpolnts are fixed: they do not vary with n. The
2h .

slopes of the hypothenusas is C', and the helght of the triangle is A where
1-—— =y,
c P

2
Laaue

g—(l—p). The value of p can be determined from the requirement that

Le.

the Integral under the trapezoidal curve shown In figure 5.7 Is one:
2h
h(1-—) +
( C ) C



5. MINIMAX BOUNDS ’ 67

This ylelds the value of p suggested above. Every density in the subclass Is equal
to the central density with a small modificatlon on each of the r central inter-
vals. The functlons h;,g; are as shown In the flgure; the slopes of the curves are
+C . Note that regardless of the value of § (used In pleking g; or A; in Interval
A; ) [ gls a denslty. We also have

C p2 A
4r?

hiegs | = -0 L = .
[ I hi-g; | 2r 27 “

1
and
P

4r
INToad o =1+4 [ (VE+Ca)h Cr)-h) do
[s]

£
™ 2 2
=1—4hf[1— -2 ]d:c
o h?
L
4r C2$2
>1-4h | dz (slnce V1-u >1-———=— for 0<u <1)
) 2h2; 1-C2%z%/h? 2v1-u
£
4r 2.9
>1-4h f—iz—- dz
o 2h%¢(r)
where
1 1
#(r)= o2 = 7
16 1242 4 r%(1-p)?

Observe that ¢(r ) Is decreasing In r . Taking the Integral shows that

C? p]a
TA/Fef o, 2120 ¢(r) ah? [;)

_ ., pCer) 2
- 48 r3(1-p) s

Assouad’s lower bound now reads

r o [1—\/2_177] = g’:g [1— npfC4r)

24 r 3(1—p)

2 [ np3C ¢(r
2 Cp 1- —p_.M (all«rZro)
8r 24 r3(1-p)

a 1 B
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The right-hand-side of this expression should be maximized with respect to r.
Setting the derlvative with respect to r equal to zero ylelds the value
2 ’

,___[.S_B]?

2

(1=

2

-3F

Figure 5.8.

1 B
The function —————— for B =1.
ropr 5/2

Unfortunately, r has to be lnteger, a problem we will deal with further on. The

maximal value Is
2
213 A 2 3
— 1-—)= —
[ 5 ] 2 ( 5 ) 5 [

2
5B, |3
r0= 2 y

where B Is deflued as B with ¢=1, then r >r, In vlew of B >B,. Resubstitu-
tlon of the selected value of r ylelds the bound

2
¢t s (2)5( 2600 |3
8 5|5 np30¢(ro)]

N’
[ARTM)
w | >

If we take




5. MINIMAX BOUNDS 69

4 2 1 1
|31 ctanr (, p* ]3
10 1 4(1—P)2702}
n
Now, use the fact that
2
1-p > =
=%
and that
2 2 4 2
5|38 np3C |3 2 12 |25 np3C |3
1=pV2r 2 — (1-02 | 2 _nee > [_ 2onprY
(=p)ro” = ( p) [2] [24(1—p)] Y 96

2
2] 25n |3
”[240

to obtaln the bound

1
182 C 8
10000 n 25 n ’
Thils 1s the desired bound If we can make a final adJustment for the fact that r 1s
not Integer. If we take
r = [r opt ]

where 7 ¢ 1s as before, then the maximal value obtalnable for the lower bound as
a function of r Is at least equal to the value at 7., (computed above) minus

AB/ roms. The correctlon factor Is thus
10 z
45 _(ZyT4 e
7 opt 5
4 7 8

<1.22C 8%n 8p 2

where we used the facts that ¢(ry)>1,1-p<4/C, and

[ 93737

20 ] = 1.21085... . i

o |~

For the class W (s,a,C), 1t 1s possible to obtaln a bound of the folowlng
nature:
1

C ] T+e(s +a)

n8+a

lfn“ffev;\(lsga,c)E(f | o= 1) 2 (c(s,0)+0(1)) [
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where ¢ (s ,0) Is a functlon of s and « only. Obsefve that this provides us with

1
a contlnuum of polynomtlal lower bounds with powers In the range (——2—,0).

.

5.7. MIXTURE CLASSES.

Mixtures form lmportant subclasses of densltles. Conslder for example the
slmple class F' conslsting of densltles of the form

141

. A .
1+ eg (z—%) (z €4; =(§, ),

where ¢ =0,1,2,...,7~1, "1” is the unlform dens!ty on [0,1}, and ¢ Is a fixed func-
tlon on [0,-}—] satlsfylng the following condltlons: |g¢ | <1 (otherwlse we
r

wouldn’t have nonnegative functlons), and f g =0 (to assure that all functlons
Integrate to one). The constant €€[0,1] Is allowed to vary within F. The 4 gives
us a cholce for each of the r Intervals. Therefore, for each ¢, we have 27
members In our famlly.
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-
, ————
| | .é. =
A~ i ~ ! o~ o~ ~_
7 \ ! ; \ / \ y N i/ \ L
v v v N v
! A R ., A R A
\ IR . A N P \ R 3 A

Figure 5.9.
Construction of a mixture class.

Theorem 5.5.

For the mixture class F defined on r inter-
vals,

1fnnffsu€%E(f|f,.—f ) >
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Proof of Theorem 5.5.

{m

r A B
[lhi-gi ] =J2]lg9| =0,
0

0

-

v A
Il =1-fa-Vig)=¢.
4]

Substltutlon of o and £ In Assouad’s lower bound (I—ég—(l—VZn(l—ﬂ)) with
| g | =€<1 ylelds the lower bound

€ [1— Erﬁ(l—v 1—62)]

> e—¢? 2n
= r
= T (take e== L ).
32 n 8n

The cholce of € maximizes the bound. The condition €<1 Implies that we should
have r <s8n. ||}

This slmple bound llustrates clearly how doubling the number of Intervals
In the class can be balanced off by merely doubling the sample size n. Many
other families have subfamllies of the form dealt with In Theorem 5.5, possibly

even with r Increasing with n . In those cases, Theorem 5.5 provides a useful
tool. See also exerclses 5.2, 5.3.

5.8. CONVOLUTION CLASSES.

Assume that F={f ;*u | all probability measures y on the real lne }. Here
f o 1s a fixed "central” denslty, and "*" is the convolution operator. An example
of a related class Is the class of all normal scale mixtures, Le. the class of all
densitles of random varlables X distributed as NY where N Is a normal (0,1)
random varlable and Y Is an arbltrary random varlable. See the table below.

e o
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Y X=NY
1/normal Cauchy
1/v2 exponential Laplace
V2a /gammafa /2) | ¢,

Observe that log | X | 1s distributed as log [ N | +log | ¥ | so that log| Y |
deflnes the probabllity measure 4 In the convolution, and the central density f
Is the density of log | N |. Convolution classes are harder to handle than the
classes seen so far since member densltles cannot convenlently be constructed on
partitlons of the space. Nevertheless, 1t Is possible to prove

Theorem 5.6.
For any convolutlon class (1.e., any central density f ),

lfn_f;‘uE%E(flfn-f [)>1.

In other words, meaningful minlmax lower bounds are nonexistent if one
looks at the class of all normal scale mixtures. Observe that the smoothness of
each density in thils class Is determined by the smoothness of f o» the normal
(0,1) denslty, and that all members In the class are necessarlly unlmodal.

Proof of Theorem 5.6.

‘We will work with two parameters, a real number 6>0, and an Integer
r > 1. First, it 1s necessary to find a number M so large that
M
)
Jfo>1-—.
M 2
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M 1]
_j;uf >17

-M M

Figure 5.10.
Definition of M .

Conslder next atomlc measures y; with mass one atoms at polnts z;,
i =-1,~7 +1,.../1,0,1,...,r =1,7 , where z; ==4iM . The polnt will be to force the
densltles f o* y;'s to be virtually non-overlapplng. In a construction of a sub-
family for Assouad’s theorem, we define & as in the theorem (8 has r blts), and
set

1
fo= y

R

[f O*Nilﬂl=1+ fO*lJ’—iIG,=0] .
1

Deflne
A; = [4M-M 4iMAM) U [~4M-M,~4M+M] .

Observe that
M +M

Aj:lfﬁ‘f;,|2%f (o*l‘i—-fo*ﬂ_i)




5. MINIMAX BOUNDS 75

Also, using the notation

|
(s

%[/ o7 a,_] ,

>

8= (ot o)
we have
Tod o =1-[(Ti~VTo.T5)
- J(F-VT+aTi—a))
=1 [T (VAT
(A~ = (f o*mi=f o*i)/2r)

2

>1-jf

(Vi-u 21-u for 0<u <1)

Zl—flA.-I (lag [ <1y)

> -1
T

Assouad’s lower bound now becomes

(b “’][ B —en0/B

The lower bound Is arbltrarlly close to one If we choose § small enough and 7
large enough. JJj

5.9. FANO’S LEMMA.

Assouad’s theorem 1s based upon a subclass of size 2" of F. The relation-
ship between the member densitles was lllustrated with the help of a hypercube
with 27 vertlces (see figure 5.5). In some cases, 1t is convenlent to define subc-
lasses of r +1 densltles f 4 which can be viewed as vertlces of a simplex In r -
dimensional space (see figure 5.11):
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Figure 5.11.
Simplex with 7 ==3 needed in Theorem 5.7.

The L , distance between all densitles must be at least equal to a:

al;g,flfrfal >a;

furthermore, the Kullback-Lelbler distance between any palr of denslitles cannot
be too large:

[
sup | f glog(——) < 8.
644 ! fe
The latter condltion can be thought of as the counterpart of the upper bound on

the Helllnger distances for the hypercube model. Assouad and Birge obtalned the
following generalizatlon of Fano’s lemma:
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Theorem 5.7. Generalization of Fano’s lemma.

Let F be a class of denslties with a subclass of 7 +1 densltles f 4 such that
for any 054£6',

Lifefe)2a,
K(fofo) <58
Then

a n f+ log2
fsuel%E(fIfn—f ”Z?[I'—_logr ]

‘We wlill proceed via two lemmas, Including Fano's original lemma.

Lemma 5.1.

The entropy -Y,p; log(p;) of any probability vector Py --., P, does mot
¢
exceed log(n ).

Proof of Lemma 5.1.
Let ¢ be a nonnegatlve convex function. Then

1 1
S 000) 2 nd(Tm)
(Jensen's Inequallty)
=né(L).
n

Now, use the fact that z log(z ) 1s convex In z . ]
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Lemma 5.2. Fano’s lemma.

Let X be a random varlable with density equal to one of r +1 possible den-,

stiles f , ..., f,41, Where K(f;,f;)<P for all 155 . Let P(X)E{1,..5r +1}
be an estlmate of the Index. Then

sup P; (W(X )7#41) > L Blog2

logr

where P; Is the probabllity Induced by f;.

Proof of Lemma 5.2.
Let © be a random varlable uniformly distributed on 1,...,7 +1. Then

P (O=i | X) log(P (0=i | X))

= P(6=%X)| X) log(P (0=9%(X) | X))
+ P (079X ) | X ) log(P (054¢%(X ) | X))

P(o=i | X) Po=i | X)
P X)X
+ P(O#YX) | X) ‘.#%X)P(G#TIJ(X) | X) [ Pe#¢p(X) | X) ]

> ~log2 - P(O6£YWX )| X)) logr ,

where we applled Lemma 5.1 twice. The quantlty on the left-hand-side of this
chaln of inequalities will now be bounded from above. Observe that

447
J

Thus,
E[EP (©=i | X) log(P (0=i | X))]

—f[;zfm ° [sz(z)]] o lOly
7 j

fx(z)
= P | | o
J

fi(=)
2] f.(x)]f,-(z)dz—log(r-%—l)

(r +1)2

(use log[——z}f] ]>-———210€(f ))
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=Gy Ef (fi:f ;)= log(r +1)

S ﬂ - log(r +1) .
‘We conclude that
B —log(r +1) > -log2 ~ P (©z£%(X Nog(r ) .
Thus,
sup P (WX )7#1) 2 P (HX)7#6)
> log(r +1)-F-log2
- logr

which was to be shown. i

Proof of Theorem 5.7.

Let X be the shorthand notatlon for (X,, ..., X, ), let © be as In the
proof of Lemma 5.2, and let g, be defined as follows:

fo ¥[|fa fa|<°l/2

In =1y Wx) otherwise

Here (X ) 1s defined arbitrarlly (say, (X )=1) in the "otherwise” case, and
WX ) 1s defined to be 6 1 [| f,—f 5| <a/2. Observe that the L, balls of

radlus «/2 centered at the functions f , do not overlap (by assumption). See
figure 5.12.
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: f"u—’f «X) ‘
|

Figure 5.12.
Non-overlapping balls of radius & / 2 needed in the proof of Theorem 5.7.
Distance between any two centers s at least &.

The argument Is very simple:
max B[ | fo=f01) 2 S max Pyf | fo~F o] = 2
> 2 - > %
=3 m?xpe(f’gn fal 2 2)

> Smax P y(4(X )746)

> —ci(l— n B+ log2
- 2 logr
by Lemma, 5.2, and the fact that

)

. n ﬁfi(xlc) . .
K (X [i,X [;)= [log| “=——1| T1/:(z) T1dz
=1 k=1 — =
Hfj(zk) k=1 k=1

: k=1
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=n K(f;,/;)<n B,
when 147 . |}

5.10. LOWER BOUNDS VIA SUFFICIENT STATISTICS.

There is yet a different method for obtaining lower bounds, which uses the
fact that the best estimators depend upon sufflclent statistics for the family only,
and that the properties of simple sufflcient statistics are often well-known. As an
example, we take the class

F={f|f=pg+Qa-p)h ,p€oi]}

where ¢ ,h are known denslties with disjolnt supports.
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144

Figure 5.13.
A simple mixture.

Theorem 5.8.
Let f, be any denslty estlmate with [ f, =1. Then

0.030153
)T e
?ue%E(flfn‘f )= 0.0849...+0 (1)
vn
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Proof of Theorem 5.8.
Define p, =fjn where A Is the support of g . We first clalm that
A

Gn =Pp § +(1-Pp Jh
is at least as good an estlmate as f, . This follows from

Jloa-f 1l =fglpa2 |+ [h|pi-p]|
A Af¢
=2|p,-p | =2 [(fo-f)]
A

< [|fa-f | (Scheffe’s theorem) .

Next, we note that N, the cardlnallty of A, Is a sufflclent statistic for p . Thus,
we should be able to reduce the data to /N. This can be done by Invoking the
conditional form of Jensen’s lnequallty:

E(flfn"f ])ZzE(lpn_p l)
>2E(|E(p, [N)p |)
=2E(|¥N)p |)

where 9 1s some measurable function, which can be consldered as an estlmator
based upon N only. The dependence upon n Is suppressed temporarlly. Observe
that the Jolnt density of the data glven N is

n
'—E H/(xo',) H g(xa]-)
o i=1 j=N+1
where 0=(0,, . . ., 0, ) 1s a permutation of 1, . . . , n. Thls denslty Is Indepen-
dent of p. (This s another way of statlng that In this problem, /V Is a sufflclent
statlstic for p.) This Is why E(p, | V) 1s ¥(IN) and not ¥, (V). Now, we can
randomlze p, by maklng p equal to 1/2 with probabillty 1/2, and equal to
1/2 + ¢ /v/n  with probability 1/2. Let NN, be binomlal random varlables
with parameters (n,1/2) and (n,1/2 + ¢ /V/n ) respectively. Then

sup E,(f|fa.-
> gngm-f |)+%E%+%(flfn-
> E(JNV )5 )+ E( 9N -G+ )
> 5 [Iw(j)—%IP(N1=J')+ |96 -5 —jT)lP(NFj)]

i<

n|a

> [|¢m——|+|¢<m+ )I]P(N —

1l
2
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¢ n
> P(N,S—
vn 2
; 1
binomial (n ,~) _
¢
binomial {f ,—4—m) T
nomial (n 2'l- ‘/n_)
A3 J
0 500 515 1000
Figure 5.14.
Two smoothed binomial discrete densities. The parameters are 72 ==1000 and

=15/+/1000.

Now, let Z be binomlal (n ,-;— —E—). Then

NEY
Z-E(Z) -cVn
Pz <Z)=P <
2 VVvar(Z) \/n(é_+7%")(%_\/_c{')
~ &(-2¢)

where & Is the normal distribution functlon. Here we tacltly used the central
lim!t theorem and a contlnuity argument. Thus, our lower bound Is
7=
~ L e (2¢)to (1)]
n
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and has the largest possible value when

2¢ = 0.7517915241... .|

5.11. CONSTRUCTION OF GOOD MINIMAX ESTIMATORS.
It would be cruel to develop many lower bounds and not to give examples of

how one milght find minlmax-optimal estimators. Unfortunately, there seems to
be no systematlc approach at thils polnt in time. '

For very large classes F, a sultably modified nonparametric estlmate usually
works well. A case In polnt Is the kernel estimate for the Lipschltz classes
W (s,a,C). More drastlc modifications are needed for classes defined by order
restrictions: this wlll be lllustrated In another chapter for monotone denslties.

Still for large classes F, there are some attempts at making the construction
systematlc: In the next chapter, we wlll discuss minimum distance estimation
(Yatracos, 1985); and the use of e-nets advocated by Blrge (1986) can also be
helpful.

Finally, for small F, the nature of the classes can differ so dramatically that
no general rules for constructing minimax-optimal estimators can be formulated.
Each case needs to be handled separately.

5.12. EXERCISES.

5.1. Mimlck the proof of Theorem 5.4 for the class W (1,1,C ), and obtain a lower
bound with as maln term a constant times C1/®n~2/5, Hint: replace the tri-
angularly shaped g¢;,h; In the conmstruction of a subclass by quadratically
shaped functions.

5.2, Improve the bound of Theorem 5.5 to —lj—_Z—(Q\/r /n , where o (1) refers to
asymptotics as r /n —0.
5.3. Conslder the famlly of all densitles of the form
r
f =3pa,
i=1

where the p;'s form a probabillty vector, and the g;'s are (possibly overlap-
plng) densities. The g;'s are known, but the p;’s are not. Derlve 2 minimax
lower bound for this class in terms of n, r and possibly the distances
between the g;’s.
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5.4. Conslder the class F of all zero mean normal densltles. Prove that
¢

xfgrfstleg,E<f|fn—f N2 —= .

for some constant ¢ . In a second step, construct a mlnlmax-optimal estl-
mate f, . ‘

5.5. Conslder a famlly F satisfylng the condltlons of Assouad’s theorem
(Theorem 5.2), but with the upper bound on the Hellinger distance replaced
by an upper bound on the Kullback-Lelbler numbers

/
ffalog[——’JSﬂ
fs’;
for all # and all ¢. Show that
Inf sup E - > Zebn
inf sup J1fat )2 e

where « s as In Theorem 5.2 (Bretagnolle and Huber, 1979).

5.6. Conslder the class F, o of densltles on [0,1] with the property that each
member f has s -1 absolutely continuous derivatives, and
23

Ds(f)i(flf(‘”l]ﬁ[f\/f]mso <.

Observe that D, (f ) Is a scale-lnvarlant factor. Show that
8§

Iminfinfn 2+ sup E(f|f,~f |) 27 C
f €F, ¢

n—00 f,

valld for all C larger than some C,, and some unlversal posltive constant

7s depending upon s only. Hints: deflne a subclass as In figure 5.7, with h,-
and g¢; replaced by smoother verslons. Improperly scaled versions of a
difference functlon ¢ can be obtalned as follows: g ,=¢ ,*g, Where g, is a

denslty with support in [—%,%—] and continuous (s -1)-st derlvatlve, and ¢,

Is the uniform density on [—%,é]. " Note that

9 )=g Nz +1/2)-g ,* V(z-1/2), so that [ | 9.0 | =2f | go*"|
Deflne g ==¢ ,(x +—2—)—g oz —%) to force fy =0. Observe also that ¢ =0 out-

3 3
slde [—E,—z—]. Construct g; as f ,+g¢, and h; as f ;—g where f ;1s a central

denslty, and ¢ s translated and rescaled to fit the partition model. Apply
Theorem 5.2 or the lnequallty of the previous exerclse (Bretagnolle and
Huber, 1979).

5.7. Verlfy that the bound In Theorem 5.8 should be halved If the restriction
that [/, =1 Is dropped.

3
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5.8. Let F be the class of all convex densltles on [0,1]. This class Includes the J-
shaped and U-shaped beta densitles. Show that m (n ,F)>c¢ for some posi-
tive constant ¢ and all n.

5.9. Prove that for the class of all concave densities on [0,1], m (n ,F)>cn /® for
some unlversal constant ¢ >0. Can thils bound be lmp.roved?

5.10.Let F be the class of all densltles whose characteristic function Is zero out-
side [-T,T ]. Show that llm Inf m (» ,F)>0. Hint: to obtaln a lower bound
n —o0

for the distance between two densitles f ,g In the class, use the Inequality
f | f-g | >sup |é-|, where ¢, are the characterlstic functlons
t

corresponding to f ,g.



Chapter Six
MINIMUM DISTANCE ESTIMATORS

6.1. DEFINITION.

‘We can now present a rather systematlc, albelt computationally Inefficlent,
method for constructing minimax-optimal estlmates. Some conditions will have to
be Imposed on F, so the constructlon Is not unlversally applicable. However, the
ideas are so Interesting that 1t s difficult not to spend some tlme on minlmum
distance estimates.

The theory of minlmum distance estimatlon for parameter estimatlon goes
back to LeCam (1966). Other key papers Include Pfanzagl (1968), Beran (1977),
Pollard (1980), Millar (1981, 1983) and Yatracos (1985). Our treatment 1s malnly
based on Yatracos (1985). :

We recall that the empirical measure for X, . . ., X, Is defined by
1 n
b (A) ==Y 1xca
nisy

where A s any Borel set. We do have one standing condition on F, our class of
densities: F Is an L ,-totally bounded collection of densltles, l.e. for every e>0, F
can be covered by a finite number of radius ¢ balls. In fact, 1t will be helpful to
use speclal notatlon for such a cover: F, Is a finlte collectlon of densltles such
that

!%Fg 549

covers F'. Sometimes Is It useful to ask that F, C F, but we will not Impose thls
addltional restriction.




6. MINIMUM DISTANCE ESTIMATORS : 89

Figure 6.1.
F is covered by radius € balls
centered at a finite number of densities from F'.

Let us also define a number that measures how "rich” F Is,

A
Ne=lI§f |Fe| ’

where |.| 1s the cardinality operator. Thus, /N, Is the size of the smallest e-
cover of F. The quantity log,/V, is also known as the Kolmogorov entropy of
F.

We are now ready for the definition of a minlmum distance estlmate. Flirst
choose ¢ according to the eventual expected error envisaged, and construct an -
cover of F. The centers of the covering balls form a finite collection F,. Let A be
the famlly of sets

{z:f o(z)>] o(2)},

where f g, f o EF,. Note that |A| < |F.|% We call f, the minimum dis-
tance estimate of f if
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J €F..
and

2 sup I,j{fp—un(A)l = pin [2513\ l/{frun(A)l ]

Observe that sup | [f gu,(4)| approximates the L, distance between f 4
AE€A A

and p, . Obviously, had A be the collection of all Borel sets, then the dlstance
would trivially have been 2 (as all discrete probabllity measures are at distance 2
from all absolutely contlnuous probability measures). On the other hang, If A is
too small, there 1s no hope of extracting a reasonable f ? from the collection.

Hence we need a compromise on the slze of A. We should also keep In mind that
the cormputatlon of f » requires tlme at least equal to | A| i no speclal compu-

tational shortcuts are used.

6.2. THE KEY INEQUALITY.
The purpose of thls section Is to prove

Theorem 6.1.

For |A| >3,

s E( L] D<sert \/;7 (1+2vice TAT) .

The uniform upper bound depends upon 7, € and | A | only. In fact, If we
construct our e-covers well, then the bound depends upon ¢, n and the Kolmo-
gorov entropy only. For a smallest possible bound, it Is necessary to choose € such
that

5e+ —\/_;T- (1+2\/2lo—gNE]

Is minimal. Since [V, Increases and € decreases as €}0, the minimization problem
Is well-defined. We wlll see further on that ¢ Is a functlon of n and the class F.
Thus, this method tallors the estimates after the class F and n. This Implies
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that there could be an awful mismatch If n is not as planned, or f ¢F. In fact,
this method Is usually not conslstent when f &F.

The proof of Theorem 8.1 Is In four stages:

Lemma 86.1.
For all f ,g €F,

< 4¢ + 2 su - Yatracos
< sup |£f £g| ( )

J17-91]

> 2,5135% ]if —;{g | (Schefte)

Proof of Lemma 6.1.
Find § and ¢ such that f €S (f 4¢) and g €S (f 4,€). Then

f1r-al £f17r-fel +f1feTfol +[]e9]
<2+2 [ (Jefo)

fe>fw
<2+2 [ (Uef)+2 [ (F-0)+2 [ (9-f4)
fo>fe fo>fo fe>/¢

< 4€¢ + 2 su - .
- A€%|£f £g| .

Lemma 6.1 establlshes that the L, distance between two densitles and the
maximal deviatlon of induced probabllities differ by at most 4¢. Thus, there
indeed Is hope to obtaln meaningful L ; results by consldering only sets from A..
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Lemma 6.2. Gordon’s inequality.
For ¢ >0,

02 t2 ’
v s

fe * dv £ ¢ 2 (Gordon’s Inequality) .

t

(o]

This 1s a speclal case of a more general Inequallty, valld for functlons ¢2>0,
¢ 20, ¢'t, ptoo:

e ~9(t)

()

o
fe—rt(v) dv <
t

Proof of Lemmma 6.2.
‘We wlll only prove the second part, as the first part Is a simple corollary.

Je 9 dy < f%))‘ e~*) dy
t 4

_1 o0
= d (e ®)
qs'(t){ (™9
e ~KE)
= 7o §

Lemma 6.3.
For any probability measure u and emplrical measure y, (based upon an 11d
sample drawn from u), and for any collection of sets A with | A | >3,

_ 2Vieg |A] +1°
E(:%%lun(A)ﬂ(A)l]S—w—m :
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Proof of Lemma 6.3.
By Hoeﬁdlng’s inequality (Bennett, 1962; Hoeffdlng, 1963), for any set 4 ,

P(|pa(A)yua)| >t)<2e™ (¢>0).

Thus,
[Sup [ o (A)-u(A) | )

on

[e )

< J2dt +f2|A[ e 2" gt
]

(use E | X | f—~fP( | X | >t) dt and Bonferron!'s lnequality)
0

1}
—26+—|—— f e 2 dv (t=v/(2v7m )
vn 26Vn
1Al 1 _m® (Gordon's lnequallty)

“Vn  26Vn

—a log|A| [A] - 1 1 P /log | A |
2n vn o V2ig |A] A 2n

< 2\/10g\/|2;:_ +1 (1A |>3).

<26+

The cholce of § In the last line Is approxlmately optimal for large | A | . Indeed,
the derlvative of

26 + lAl e-2n$
26n

with respect to 6 1s

2-@t——2) |A] e P g2 |Al e

which Is zero for the given cholce of § (note that for this cholce, 2n §—oco as

|A|—c0.). R

Proof of Theorem 6.1.
[1fyf | S4c+2swp | [fpff | (Lemmas.1)

§4e+2§\g\ I{f;;—u,,(A)I +2.§l}5€\ l,u,,(A)—if

§4e+2ité%|£frun(x4)l +2 sup lu,,(A)—l{f l
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(for some f €5 (f ,€))
<4+ 2 sup l£fr£f l +4 sup lun(A)-{lf [

The expected value of the last expression does not exceed

5¢ + Tg___n— [1 +2Vieg [ Al ) (Lemma 6.3) . Il

6.3. CONSTRUCTION OF AN COVER.

Let us explicitly construct an e-cover for the Lipschitz class W (0,1,C), }
which In this section wlll simply be called the Lipschitz class. Conslder first a \
grid as In figure 8.2. The Interval [0,1] Is divided Into 1/§ equal intervals, where
1/6 1s an integer to be plcked further on. For technlcal reasons, we also assume
that 1/(C 6) and C are lnteger-valued. The y-axls Is cut up 1nto equal Intervals
of length C 6. Conslder as F, all grid functlons (functlons that are allowed to fol-
low the grld lines only are called grid functtons), taking the value zero at z =0
and r =1, and moving up one level, or down one level, or not moving at all at
each mesh polnt (see figure 8.2). In additlon, the area under each f 5 must be
one (since the area Is a multiple of C §, this Is feasible only If 1/(C &) is integer-
valued).
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C4

Figure 8.2.
Grid for the construction of Fe‘
A typical f 4is shown.
f g takes steps 0,41 from strip to strip.

One can easily verlfy that

1
|Fe| <3°

because at each mesh point, we can only make one of three declslons. Further-
more,

1

|A| <2°
+ 1

In view of the fact that there are only 2 § possible subsets of —g elements. For a

tunction f €F, find the values f (¢ 8) for all Integer ¢, and round these to the
nearest mesh polnt value (multlple of C §). Then conslder a grid function ¢ (not
necessarlly with the correct area) passing through these polnts (see figure 6.3).
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Figure 8.3.
A Lipschitz density with C' =15, and its grid approximation g.

For thls functlon g, we compute the area, and obtaln a grid function f €F,
with the property that

Jiree | =11-fg |

(this 1s always possible). We have

fla-f | S%-;—[%052+§-062]=c§.

Furthermore, since | fg-1| <C8 wehave [ | f of | < 206 < ¢, If we take

a5 2]

Hence, we have an ¢-cover of F. Observe that log | A | <log, | A | <1/6, so that
by Theorem 6.1,
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4 2
f‘le%E(fIfa—f I)S56+—\/2—T [1+75—]

4 8v2C 1 _ 4C
< 5¢ + + —<— for e<2
- Van Vne (6‘ € =2)
. 2L s
= +3435% | == optimal cholce of €) .
van [ n ] (

The optimal cholce of ¢, obtalned by settlng the derivatlve with respect to ¢

equal to zero, Is
2 i
. i 3 20]3
- 5 n) ’

For this to be smaller than 2 (a condltlon used In the chaln of lnequalitles), we
need to require that n >4C /25.

It should be noted that the upper bound matches a lower bound obtalned in
chapter 5 up to a constant. In other words, the minimum dlstance estimate 1s
mlnlmax-optimal. There is a price tag: the computation tlme grows roughly
speaking as

1 1
20 ~~ 20»“

for some constant ¢ depending upon C only. When C is not integer, replace C
by rC-l 1n the upper bound, and observe that in any case, I-C]SSC /4.

6.4. KOLMOGOROYV’S ENTROPY.
Kolmogorov and Tikhomlrov (1959) and Clements (1963) have shown that
tor W(s,0,C)In R¢,

e
)
N, =~2\¢ .

For W(s,n,C) and d=1, It 1s possible to comstruct a collection F, with
|A| <N The corresponding minlmum dlstance estimate satisfles

4 16 loglv
sup E. - < 56 + —== + _,
JeF (f | f ) f | ) = \/571- n
which, In view of the asymptotlc expression for N ¢ (valld as €]0) forces us to
minlmize
1

c =
5¢ + ——¢ 28 +0)
vn
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where ¢ =V186 log2. Thls Is minimal-for
s t+a

c? T142(s +a) .
E=]—— , .
100 (s +a)® n

Resubstltutlon in the original bound glves us the result
_ S+ ]
sup E _f = Oln 1+2(s +a) .
U, U1 D J

Observe that this matches lower bounds obtalned via Assouad’'s theorem
(Theorem 5.2), at least when one only conslders the dependence upon n .

The Lipschitz classes W (s ,a,C ) are perhaps the most widely studled totally
bounded classes. Another example is the class of all nonincreasing densitles on
[0,1]) bounded by a constant ¢. But some rather small classes are not totally
bounded, such as the translation class

{f(z-a)|a€R}

or the scale class
1 z
—_— — o 0
{5/ ()1o>0}

where f s a fixed density. Examples include the normal densltles with varlable
mean and/or variance. :

6.5. EXERCISES.

8.1. Glve an expllcit construction of an L, minimum distance estimator, com-
plete with a good upper bound for | A | and expllclt expressions for € and
other parameters as a functlon of C,an, for the class W (0,&,C) where
a€(0,1]. The constructlon of section 6.3 for a==1 should be a speclal case of
your constructlon. '

6.2. Let F be the class of densltles on {0,1] with modulus of continulty not
exceeding w(6). Show that there exlst posltlve constants ¢ ,,¢, such that

¢,
log(N,) < ————— .
(N = w e 2€)

(Lorentz, 1968).




Chapter Seven
RATE OF CONVERGENCE
OF KERNEL ESTIMATES

7.1. SCOPE OF THIS CHAPTER.

The purpose of this chapter Is to give some 1dea of the relatlonship between
the smoothness of a density and the best possible rates of convergence that can
be attained by the Kkernel estimate. The story also depends upon the cholce of
K : for example, it does matter whether K >0 or not.

The classes of densities we are deallng with are very large. Although there
are other estlmates that can provide good rates of convergence for these classes,
the kernel estlmate certalnly ls the most Important one from a didactic polnt of
view.

We wlill study two quantitles, the uniform performance
sup E(f | fo-f |)
sup B(J | £/ |
and the individual performance

E(|f.-F ).

Unfortunately, it Is once agaln necessary to llmilt our treatment somewhat. In
both cases, we wlll study small sample and asymptotic upper bounds. In the case
of the uniform performance, that 1s not a major concesslon, since the upper
bounds usually match minimax lower bounds for the glven classes up to a small
constant (In other words, the kernel estimate 1s minimax-optimal). It is unfor-
tunate that we won't be able to cover the Indlvidual performance in detall.
Lower bounds for E (f | f,-/ |) provide us with informatlon about how large
n should be for any glven denslty. For example, a result for d =1 not covered
here Is

2
inf ImInfinfn’ E - > 0.86 .
jnf lim fof 1n 1 f.-F N>
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Here the Infimum Is over all f , all smoothlng factors A and all nonnegatlve ker-
nels K (Devroye and Penrod, 1984). This result roughly states that we are
bound to make L | errors at least equal to 0.86 n%/5. To have errors of the order
of 0.01, we would need n of the order of 100000 or blgger, even for the nicest f .
For practitloners, thls Is a soberlng result. It Is possible to do better If speclal
estlmates are used for speclific classes of densities; these estimates could be disas-
trous if used on densitles outside the deslgnated classes, but at least we can get
somewhere with moderate sample slzes for some f . -

Flnally, we should stress that we are not concerned for the time belng with
methods of choosing A as a functlon of the data. In this chapter, h 1s allowed to
depend upon n only.

7.2. CLASSES OF KERNELS.

The maln class of kernels of 1nterest to us Is the class of symmetric (about 0)
functions Integrating to one. These are called the class O kernels. They include
all symmetric densities. A class s kernel Is a class 0 kernel for which

Jlz | |K(z)] dz < o0,
and
fziK(z)dz =0

for all ¢ =1,...,6 -1, where s Is a posltive Integer. Thus, most class O kernels are
In fact class 2 kernels, the only addltlonal condition belng that |z | 2K (z) have
a finlte Integral. However, nonnegative class O kernels cannot possibly be class s
kernels for s >>3. In view of the symmetry of all kernels consldered here, we need
only discuss even values of s .

The order of a class 0 kernel Is the largest Integer s such that K belongs to
class s. If K Isln class s for all s, then K Is called a superkernel.

Let us give a few examples before moving on to other kinds of kernels. The
kernel

K(z)= %(1—22)+

Is nonnegative and symmetric, and Integrates to one. Its order Is 2 slnce it has
compact support. However, the Cauchy denslty has order O, since Its first absc-
lute moment ls Infinite. If we want to construct order 4 kernels of compact sup-
port, we have to conslder negative-valued functions.

Class 25 kernels can be constructed In a systematic manner In a number of
ways. For example, K can be fit Into a symmetric polynom!lal model on a com-
pact set with s unknowns. There are s conditions to be satisfled, which yleld s
linear Inequalitles with s unknowns. For example, If we assume that
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K(z)=a + bz?

on [-1,1], then K Is In class 4 If

a -+ i — i :
3 2
a b
—4—=0,
3 * o
The solutlon is K (z) = %{9—15:2] {l#.]<1)

L i ST TS

Class Txernel 2{1-2%) (| z | <1)

Class 4 kerlgl ~(3-6 %) (] z | £1) ———

cnssssenank
..
o
-'F'
el

bl
-
TR e —————

rrmm——
-

Pt L]
]
-
-

Figure 7.1.

3
A class 2 kernel (K (2 )—_~Z(1—ﬂ: 2}+), and a class 4 kernel.

For the constructlon of superkernels, one needs to devise another method
silnce we would need to solve an Infinlte number of equations with an Infinlte
number of unknowns. A completeness argument shows that compact support

1

superkernels do not exlst since fz:"f (z) dz=0 for all n >0, f €L ,0,1)
0
together lmply f =0 on (0,1) (see e.g. Theorem 22 of Hardy and Rogosinskl

(1962)). In fact, thls concluslon remalns valld If the condition were to hold for a
subsequence of Integers n,;<n,< ‘- for which »n; l=00 (Muntz's theorem,

i
see e.g. Stelnhaus and Kaczmarz, 1935). We recall here that If K has charac-
terlstic functlon % (l.e., 9Y(t )= f e ¥ K (z )dz ), then 9(0)==1 for class 0 kernels,
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and 9% 1Is real and even by the symmetry of K. Also, for even s,
(1) /24fe )(0)=fz3 K (z)dz. Thus, for class s kernels, with s even, It sufflces
to Invert a real even 1 with %(0)==1 and ¢f*)(0)=0 for all even i <s. To lllus-
trate thils, we start with a functlon % with all zero derivatlves at the orlgln, such
as .

1

W) =1-¢ ¥,
or

1on {~1,1]
Pey=(2-]¢t }),-(-|t ) =52t ] on[-2,-1Juf1,2].
0 outside [-2,2]

L
2

p=1l-e! _

Y= (2=t )= {)o rmormmrer]

Figure 7.2.
Two characteristic functions used to construct superkernels.

Since { |1 | <o In both cases, the followlng lnverston formula Is valld: -
K(z)= —;——fcos(tx)w(t) dt .
T

The kernel X can be a superkernel. The second 4 shown In figure 7.2 1s flat In a
nelghborhood of the origin. The corresponding kernels willl be referred to as
flattop kernels. (Note that the kernels themselves do not have a flat part; the
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characterlstlc functlon % 1s 1 on an interval [-T,T].) If we recall that (1-{¢ | ),
1s the characteristic function of the de la Vallee Poussin density
sln(g—)
Viz)=—

@) =5 |
2
shown in flgure 7.3, then a small argument shows that the characteristic function
(2=}t |),—~(1- |t | )y corresponds to the kernel

[4 sin®(z ) - 4 slnz(g)

K(z)=4V() V()= —
' 271z

sln(g)sln(%) .

[2 cos(z ) — 2 cos(2z )] =

27T 2
This kernel is also shown In figure 7.3. A simple computation shows that
||
JIK| <3,sw |K(z)] S—[-———=i.
- z 2m 2T

de la Vallee Poussin density V (z)
4V (22)V(z)

L ! i 1
-40 -35 -30 -25 -20

15 -10

. Figure 7.3.
de la Vallee Poussin density,and corresponding flattop kernel.

Observe that [z?| K (z)| dz==00, so that strictly speaking K Is not In class 2
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. (even though jz { K (z) dz =0 for all poslttve 7). To force K. to have an Infinlte
order, It Is necessary to consider ¥’s that are a lot smoother. The first charac-
teristlc function of figure 7.2 is so smooth that all derivatives exist, and are cdn-
tinuous and absolutely integrable. By the lnequality

vl
oo |z |°

valid for s ==0,1,2,..., 1t 15 easlly seen that K 1Is indeed a superkernel. See exerclise
7.1. '

| K(z) |

‘We will also need the notlon of an associated kernel L, as introduced by
Bretagnolle and Huber (1979). The function L defled by

-1
L(x)—(—l)“f(y 2’ g y)dy (z>0)

-1

L(-z)=(-1)L(z) (z<0)
Is the kernel assoclated with kernel K. Sometlmes we will say that L has
parameter s, since this figures In the definitlon of L . When K Is symmetric, L
is symmetric. Furthermore,

Nl s 1zl K@) da

for all nonnegative integers s. For s =0, we deflne L =K . For K >0, we have
the equallty

e =%f{zlsK(z)dx.

Finally,

z¢ iz =0, s odd
JL =fs!K(z) = 1=0, s even, and the order of K is >s°

These statements are easily proved:

flLl—2f f(y “’1), K(y)dy|do
wly

<z2f fg—_f_-)—dz [K(y)| dy
clo

=2/ L k) a0
[

Here we have equallty when K >0. For even s, we have, stmilarly,

[L =2(-1)8f f(y =) gy dy| dz

-1
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o)y

. of_1)\$ (y-z)° !
= 2 | [UEE e ) dy

=20 Lok @) dy = [LK () dy

The last kind of kernel needed Is called a mollifier, because of its excep-
tional smoothing propertles. The term Is commonly used In mathematlical texts,
see e.g. Adams (1975). Molliflers are class O kernels, nonnegative, and zero out-
side [-1,1]. They also have Infinttely many continuous derivatives. An example of
a molllfier 1s

1

K@@)=Ce ¥ | |z|<1

(see figure 7.4), where C 1s a normalization constant.

1
K@z)=20Cc¢e =2 |z | <1

Figure 7.4.
A mollifier.
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7.3. UNIVERSAL DERIVATIVES AND MOLLIFIERS.
Following Butzer and Nessel (1871), we say that f Is absolutely contlnuous
z .
when there exlists a functlon g €L, such that f (z )=]g . In that case, we
oo .
have ¢ = f' almost everywhere. When a density f has s -1 absolutely continu-
ous derivatives, then f (s exists almost everywhere, so that the functional

D, =11

1s well defined for s =0,1,2,.... We run Into problems when we study rates of con-
vergence for densitles for which the stated condltion 1s not satlsfled, unless we
can somehow properly generallze D, without explicitly using the (non-existent)
values of f (*). We define

AN
D, = nrfllnrj | (f *K, )7 |
o

where K 1s a mollifler. Such a deflnltlon would make sense If three condltlons
are satisfled:

A. D, " 1s well-defined for all f .
B. Its value Is Independent of the form of the mollifler K .

C. For densitles f with s-1 absolutely continuous derlvatives
(J1/©®)] <o0), D, "=D,, Le. the quantlty coincldes with the usual func-
tlonal of f (4),

In this sectlon, we would merely llke to point out that condltions A and C
are satisfied- It is a bit harder to show that B Is also valid. This will be done 1n
the next sectlon for the value s =2 only. Omne of the Interesting propertles of
convolutlons Is that K €C*® (K Is a mollifier) implles that

Ky*¥¢eC®
for all functions ¢€L ;. Furthermore, by Young’s Inequallty,
JTK *9] < Tlé] <oo.

Finally, (K, * #}*)=(K, )*)* ¢. Thus, D, * s indeed well-deflned. To show that
condition C holds, constder f with s -1 absolutely continuous derlvatlves. Then
(K, *f Y$)=K, *f (), and thus

JIB e < [
and
JIER ) = [ 18]

as h |0, a property shared by all kernels when f ()€l .
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7.4. THE BIAS OF THE KERNEL ESTIMATE FOR CLASS s KER-
NELS.

We wlll use Taylor's expanslon ln this sectlon to derive relatlonships
between D, " and the blas term of the kernel estimate when a class s kernel Is
used. This will be done in several steps. We begin first with upper bounds for
the blas:

Theorem 7.1. Upper bounds for the bias.

Assume that K 1s a kernel of order at least s , and that L 1s the kernel with
parameter s assoclated with K . For all densities f ,

JUIE =1 | Sk L | D,7(f).
If f has s —1 absolutely contlnuous derlvatives, then
JUS*Bu=1 | SASJIL | Dy(f).

Let K have order greater than s. If f €W (s ,a,C) for some s >1 (l.e. f van-
1shes off [0,1], has s -1 absolutely continuous derivatlves and f ) s Lipschltz
(a,C)), then

[11%K—i | <20k |5 % |L(@)| do .
I f €eW(0,0,C) (l.e. f{ vanishes off [0,1], and f s Lipschitz (a,C )), then
f|f*Kh—f|§2Ch°‘f|x|°‘|K(:r)|dz.

Proof of Theorem 7.1.

Let us start with the case that f has s —1 absolutely continuous derivatives.
Then, by Taylor’s serles expansion wlth remalnder,

[+l @)= 5 —-f ey + | Py g

frant) ! 9 (s -1)t
so that, for class s kernels K,

-] = [(J @+y)-] (o ))Kh (y) dy ( recall that [K =1)

f‘”(u)du Kh(y)dy

00 0 o e-1
= [79) f(””—JEsl;—l”)—!)—Kh(y)dy o

- ff“”( ) f%}—fl—Kh(y)dy o
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= []©Nu) 1) L)y (ﬁ -z) du - ff ©Xu) (-1)(-1)° (-1 (L )y (z—u ) du

’

— ff(")u)(L),,(x —u) du __f(S)*(L)h =4t f(s)*Lhr

~Co

where (L ), Is the kernel assoclated with K, and L 15 the kernel assoclated with
K . Therefore, by Young's Inequallty,

JUI*=1 1 Shef1f@y | S fIL{f1f @]

For general f , we first plck a mollifler ¢ (we can’t use the notation K, slnce
K 1s reserved for our class ¢ kernel), and note that by the Lebesgue density
theorem,

| 7Ky =1 | = hmtnf | (4K =1 ) 8, |
for almost all z. Thus,

J1s#~f | < um xnrf [ (f*Kh~f)*¢, | (Fatou's lemma)
= iim 1nffl(f*¢ VK ~(f * 6,) |
<k fIL| Urflglffl_(f* 9 S| (f*d, €C°°)
=h*[|L |D,"(f) (definition) .

For the remainder of the proof we assume that the order of K Is greater
than s (hence, f L =0 for the parameter s associated kernel L ). Assume also
that s >1. If f isln W(s,a,C), then

_ y’ "ayy-u)t
J@+y)>f (@)= E] .f‘”z)+£ o=

(s @xurs (“(x)) du
- {i’:izs-’i%l):l—du f @)y .
Thus,
JHG~f =k [ CNz) 1AL, + k2 (f CX)-f CN )L,
and uslng the fact that {L =0, and thus 1*L; =0, we have
JUI*E=f | Sk [ ()1 CAa )DLy (e-y) dy | da .

The Inner Integral has a zero Integrand unless 0<y <1 or 0Lz <1. Let us
define sets I,=[0,1]X[0,1], I,==[0,1]X{0,1]°, and [I,=[0,1}° X[0,1]. By our
assumptlons on f (¢,

T #Ky~f | < h® [f+f+f]01x—y || Ly (z~y) | dz dy .

I Iy Iy

[



7. RATE OF CONVERGENCE 109

Now, the Integrals over I, and I, taken together do not exceed
. ;

ffC’h"‘]z—y |*|L(z-y)| dy dz < Ch®[ |z |*|L(z)]| dz .
)

The Integrals over [ 1 and I a taken together are bounded by the same expression,
by symmetry. Therefore,

JIf*Ky=f | S20h°*ef |z |*[L(z)] ds .

Let us flnally handle the case s =0. Then, | f (z+y)-f ()| <C |y |7,
and by an argument simllar to the one used for s >0,

I Sf GHy)E () dy - f (8)] do

< N | [ @+y)-f ()] [ Ky(v)| dy do
o<z +y <1,0r 0<z <1
< NI Cly|® |Ky(y)| dy da
o<z +y <10r 0<z <1
1 1

<ffCly|® |Ky(y)] dy dz + [[C |z-2 |® | K (e-2)| do dz
(v} o

=2Ch* |y | |K(y)| dy ‘A

The first two results of Theorem 7.1 apply to class s kernels. They baslcally
imply that for finite D, *(f ), the blas 1s O (h*). One might wonder whether for
smoother densltles f , the blas does not tend to zero faster with A . If the order
of K 1s s, and thus [z°K (z)5£0, then this rate s optimal: no matter how
smooth f s, we are In fact ”stuck™ Wwith the rate h® for the blas. In other
words, the kernel itself limlts the performance. At first glance therefore, it seems
important to Insure that the order of K be as large as possible. In fact, superker-
nels have Infinlte order, and show the capabllity of adapting to nearly any degree
of smoothness of f . Let us glve some results about the bullt-in limitations of
kernels of finite order s :
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—

Theorem 7.2. _
Let K be a kernel of order s. If f has s-1 absolutely continuous derlva-
tives, then
| fAEy~f |
lim d ; =D.(f).
sy 2
R ~ K (z) dz |

Observe that the Integral In the denomlnator 1Is fL where L 1s the assoclated
kernel with parameter s .

The statements following now are valld for all densitles f . For a class 2
kernel with K >0,

*K —
ilm ._'.[_i_f__zh—fl- =Ds *(f )
P K (o) de

In other words, the definltion of D,*(f ) Is Independent of the cholce of a

molllfler. Furthermore, for kernels K of order s possessing compact support,
*

and denslties f with D, ., (f )<oo,

*K_
lim [17%K | =D,"(f).

ko zs
he | [=K () de |

Ir Ds_,_l*(f )=00, and K has order s (but possibly Infinite support), we stlil
have

*E,
lim Inf fiszh f >D,"(f).
MO he | [E K (2) da |

s!

Proof of Theorem 7.2.

Assume first that f has s-1 absolutely contlnuous derlvatives. Since
f 17 )] <co by assumptlon, we have

| f*Ky=1 |
h3
= | fOfL + (7 O-7 OfL)] .
Stnce [ | L | <oo, we have
J1Fe»,-fCOfL | —o.

— ‘f(s)*Lh ]
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Therefore,

LIRS L pireni.

Let us now look at arbltrary f with finite D, (f ) (the case of Infinlte values
can be handled by a large compact set argument). Then,

JVIE=f [/ 2 [ *¢a )K= *¢5) | /h°
(¢ 1s a molilfler , a 1s arbitrary)
—>f | (f*d, )] |fL | (as h |0, by the first part) .
Thus, ‘
lhl{llgﬂffl fH*—f | /h° 2 fl;%fl(f*m)(”l | fL | 2D, (/) | JL | .
The upper bound of Theorem 7.1, and the lower bound proved here agree when
K >0 and 1s In class 2, since | L |=[|L |=[(z?/2)K(z) dz. There are

other Instances In which they agree. Assume for example that D, *(f )<oo
and that K has compact support. Then

J1F*K—f | /k®
STUF =T | /R + [ 1 [*ba-f*0 *Ky | [0 + [ | [*8, *K ] *K, | /h°
S2f [ f ¥ |/h® + [ (f*6, )%, | .
The last term Is not greater than
JIU*0 ) TJL |+ [1(f*8)%y — (J % Y[ L |
STLU* )| 1L +[1U*60™ b [IL] [IM|

where M 1Is the kernel of parameter s +1 assoclated with L /fL . If we let a |0,
then the upper bound for f | F*Kp-f | /h® tends to

0+ D, "L | +D4,"UIR[IL] .

provided that f | M | < 0o. This Is certalnly the case when K has compact sup-
port. Next, let & |0, so that this upper bound agrees with the lower bound esta-
blished above. |
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7.5. SATURATION AND UNBIASEDNESS.

It wlll help to conslder the followlng simple table . ’
KERNEL : ORDER 2 ORDER 4 ORDER s ORDER o0
SMOOTHNESS
OF f
No restriction o (1) o (1) 0 (1) o (1)
D, (f )<eo ~h? o (k% o (k%) o (k%)
D, (f )<oo l ~zh? =ht o (k% o (kY
D,"(f)<oo ~zh 2 ==ht 2zh’ o(h*)
Bounded spectrum ~=h? m=ht ~h° o(h®) for any s
Bias [ | f*K,-f |.

It should be noted here that the blas Is o (1) In all cases, a fact discussed at
length In chapter 2. For order 2 kernels, the blas can decrease at the rate A2 but
not faster; there Is not a single exceptlon. In particular, this rate Is best possible
for all nonnegatlve kernels. This phenomenon Is known as saturation (for more
on saturation, consult Butzer and Nessel, 1971). A slmllar thing happens for
order s kernels, only at the rate h®. Order s kernels do not allow the blas to
tend to zero faster than h°. Interestingly, superkernels adapt automatically to
the smoothness of f as long as smoothness Is measured In terms of the polyno-
mlal rate of convergence of the blas (In A ).

The smoothest densltles are perhaps those with bounded spectrum, l.e. the
densitles whose characteristlc functlon vanishes outslde a compact set (-7 ,T].
Let us call this class BSy. Densitles In this class are necessarlly analytic (since
the characterlstlc function s O (e~ | 1) as | ¢t | —o0; see e.g. Kawata (1972, p.
439)). For these densltles, 1t Is possible to have zero blas, as we will now see.
Assume that K 1s a flattop superkernel (for the existence of such kernels, see
exerclse 7.2) with characterlstic functlon 9 where ==1 on [-1,1] (wlthout loss of
generallty). If f has characteristlc functlon ¢, then f *K, —f has characterlstlc
function

¢(t)[¢(m )-1] :

This Is Identlcally zero (and hence [|f*K,~f |=0) If 9(th)=1 for all

|t | <T. This Is In turn satisfied If & <1/7 . We have thus shown the remark-
able fact that
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Ky =T

for f €BSp, b < %, and any flattop kernel K with characteristic function of

value 1 on [-1,1). Thus, for flattop kernels, we can truly state that they adapt to
the smoothness of f for all f . Superkernels without the flattop property do not
necessarily yleld unblasedness on BSy. See exercise 7.3.

7.6. THE VARIATION OF THE KERNEL ESTIMATE.

In this sectlon, we relate the varlation E ([ | f,-f *K}, |) to two quantlties,
f\/f_ , a measure of the heaviness of the tall of f , and sz, a measure of how
large K 1s. We have seen that the blas term is small when f Is smooth and K
has a large order s (l.e. K oscillates a lot). Unfortunately, smooth densities
smear their mass out In such a way that f \/f_ 1s large, and osclllatlng kernels
have generally speaking larger values f K ? than monotone kernels with similar
wldths. Thus, we already have a preview of the compromise ahead of us: what Is
good for the blas 1s bad for the variation, and vice versa.

Theorem 7.3.
Let f, be the kernel estimate with kernel K .

E(f|fa-f*E 1) S [VVar ([,-T*K}) <

JV I E?,
Vnh '

Proof of Theorem 7.3.
Use the Cauchy-Schwarz inequallty and the following inequality:

E(( =] *3)) = —5nE (K (=X )~ K )
< B (K Mz -X )

=#K%H@f|



114 7. RATE OF CONVERGENCE

For small &, the upper bound of Theorem 7.3 1s roughly speaking equal to a
constant times f\/f— /Vnk . The 1/Vnk term is due to the effect of the ceptral
lmlt theorem because locally, f, is an average of about nh observations. The
tail factor [V 1s somehow related to E | X | where |X | has density f .

In most cases, the tall factor and E | X | are finite or Infinite together. See how-
ever exerclse 7.5.

To relate f v/ more precisely to the tall of f , we need

Lemma 7.1. Carlson’s inequality (Carlson, 1934).

Let g >0 be a measurable function on the real line. Then
1 1

00 [} :’ oo :
fo <va|1o| | Te%0] "
Q 0 [¢]
Jg <Varm| [g? [z%g®
-0 -0 ~00

Proof of Lemma 7.1. .
We will use the Cauchy-Schwarz Inequallty, and the fact that

J 4z l=m

vV g2+a2z2g?
= €R
[9 = [—— RV e (e €R)
< \/f(g2+a2x292) f(1+a2z2)‘1
_ \/ fg2+a2fx292)
=y/m/[ \/fz

If we choose the optimal value for a, l.e.

All Integrals were from Q to co. .
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If we take ¢ =V f In Carlson’s lnequallty, then we have

1
Vi < VerE*(X?

where X has density f . Slnce the left-hand slde s translation-invarlant, we
obtain

Lemma 7.2.

For any density f wlth variance o2,

[V < Vero.

When [ 1s regularly varying of order r, l.e.

o L)

zoc0 [ (2)
for all ¢t >0, and f =0 on the negative halfline, we have f\/ f =00 lf r >-2 and
f\/f <oo If r <-2. This again relates the finiteness of the tall factor to that of

_f | z | /. The finlteness of fvf 1s lmportant for us because of Theorem 7.3
and

Lemma 7.3.

If K Is a square 1ﬁtegrab1e kernel, then

JVI*&Y, > [V7 /[K?.

Proof of Lemma 7.3.

VIFED, [ JED 2V * (K, /[K?

by Jensen's lnequality. [Jj

As a corollary, we see that f V[ =o0 makes the bound of Theorem 7.3 use-
less. Of course, for this to happen, f mneeds to have a fat tall; Carlson’s
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Inequallty tells us that at the very least, the varlance must be infinlte. Unfor-
tunately, as shown In exerclse 7.8, the upper bound of Theorem 7.3 can, be
infintte (ff * (K %), =oo for all h>0) even If [V <oo. Furthermore, the
bound obtalned In Theorem 7.3 1s not loose, because the 1 /\/_ rate of conver-
gence for the varlation Is lmpossible to achleve when f \/—— =00 (see exerclse
7.7). It Is therefore necessary to analyze the upper bound of Theorem 7.3 a bit
further. We will do thils by establishlng yet another explicit bound, slnce explicit
bounds are needed to prove the minlmax optlmallty of the kernel estlmate later
on.

Theorem 7.4.
Let f be a density with varlance o< oco. Assume that K 1s a kernel for

which f(1+2%)K2<co. Then
VK VT
Vnk

If h —0 as n —0o. The o (1) term can be taken equal to
IEN S
JK*® f Vi

where Q =K?2/ f K2 1s the quadratic associated kernel.

E(f 1 fa-1*K NS (140 (1)

20%+h? f Ff*@-1 |,

Proof of Theorem 7.4.

That the o (1) term defined In the statement of the theorem Is Indeed o (1)
follows from. the fact that all kernels are approximate identities for all densitles.
‘We wlll also need the fact that f \/f_ < oo (which follows from the finlteness of
o, and Lemma 7.2). We begin with the upper bound for the variation given In

Theorem 7.3:
VK [\T*Q,
vVnh ’
Note that

VTR < VT + [VTT-7%4, ]
< f\/f— + \/5;(] | f~f*Q, | fo | f=-1*Q, | )I (Carlson’s Inequality)

1
4

SIVT V([ 1114y | @P+or+h?[a?K % [ED)* W
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7.7. MINIMAX UPPER BOUNDS.

The expllcit bounds for the blas and varlation can now be put to good use.
They can be combined to yleld upper bounds for the expected L, error, unl-
formly over some class of densitles. We wlll conslder the class F=W (s ,«,C)
only. We Inherit the following notation from the previous sectlons: L 1is the
parameter s assoclated kernel, K 1s assumed to have order greater than s,

o®=[z%f (<1). In additlon, we will use the fact that [vV[ <+/[/ =1, and
we will assume that

po=[z|%|L(z)]| dz < o0.
Using
EISf~faDSTISf~1*Ky | +E( | [*K~f0 |),

we obtaln the followlng lnequallty from Theorems 7.1 and 7.4:

VIKVT
nh

E(flf_fn I)S20h3+a”a+

NeTY
1 1
\enf[K?® [zK? |4 "
+ = | 20%+h2—— sup *Q, —
which can be put In the form
(140 (1) [Ah sta 4 i]
{ Vnh
If we choose h such that A —0 and nh —oo. For the verification of the fact that
s%pf | f*Q,—f | =o0(1), see exerclse 7.13. The constants A and B can be

taken as follows:

N a
A =2Cp,,B =+/[K*?.

The functions Ah**®, B /v/nh and thelr sum are shown in figure 7.5.
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Ahs+o! —_—— ——
Ab** 1+ B pk ————|
B/ah e —
1 ]
0 2 3

Figure 7.5.
Function to be minimized with respect to A .

The sum of the functlons shown In figure 7.5 1s mlnimal when
B

A s+ h3+a+l ——— =
(o +) 2v/n h3/2

=0,

l.e. when
1

R B s+a+%
Tl 24 (5 +a)Vn ’

and the minlmal value 1s

—1_ _ s+a
O* [ABz(s +a)]2(“’ e+l s tartt ,

where
1

Cc* = (2(3 +a)) Aera)tt (g 4 1

2(s +a)) ’

In other words, we have just shown
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Theorem 7.5.

Let fn be the kernel estimate with kernel K of order greater than s, and
wlth smoothling factor
S

\/ﬁ s+oz+—
- 4C g, (s +a) \/—
Then
s+a 1

- - 2(s +0) s+a ) Hstar
S BT ~fa ) S @ho@) €% n T (20, (fK7 )

where C¥* and p, are defined above.

It 1s perhaps worth noting that the minlmax lower bound for the Lipschitz
classes, which 1s of the form

1

2(s +a)+1
(C (s «a)+o (1)) [ = ] exe
depends In the same manner upon C and n as does the upper bound for the ker-
nel estimate given here. It should also be stressed that the kernel estimate Is com-
pletely deflned 1n terms of n,s,o,C. For W(s,a,C), the given kernel estlmate
1s minlmax-optimal. Other more sophlsticated estimates can at best Improve the
constant in the upper bound. This brings us to the issue of the best form of K,
l.e. the form that mlnimlzes the upper bound.

7.8. THE OPTIMAL KERNEL.

Let us try to find out for which kernel(s) the minimax upper bounds of the
previous section are minlmal. What we need to minimize is

(/&2) ™ [l 1Ly

Here K 1s a kernel of order greater than s, and L 1s the parameter s kernel
assoclated with K. We wlll conslder only two cases, s =0 and s =1. For s =0,
L =K, so that we need to minlmize

(7x2)* f1s 171K |
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‘We have

Lemma 7 .4.

For all kernels K of order at least equal to one,

(fx2)" Fiz 1ok | z;[““ ]

2a+1 2a+1

Equallty s reached for

Kofe) = - (-2 |, .

Proof of Lemma 7.4.
‘We first observe that

. ey 1 2 oFl
fK°_"1’”x[K°*2a+1’fK° 2a+1

and that K Is symmetric. The product In the statement of the lemma Is scale
invartant, so we need only consider kernels for which f | z | *K =1/(2a+1). For

any other kernel of order at least one, [(K -K)=0, and [ |z | *(K-K,)=o0.
Therefore,

JK?= [(K-K o+ [K, 2+2f°‘+1 2H |z | YK -K )

= [(K-K+ [K2+2 | "‘“ (]2 | *-1(K -K )
Ly°

2 [(K-Kof + fo
when K Is a denslty (the Integrand of the last term In the mlddle expression Is
nonnegatlve on {~1,1]¢). Thus, for densitles K, we have proved the result. For

kernels that can be split into a posltive and negative part, K =K ,-K , we see
that

(7&2) flzjeikx | 2 (J&.2) [lo 1K,

and this s at least equal to the value of the product at K, (slnce [K ,>1). This
concludes the proof of Lemma 7.4. JJj




7. RATE OF CONVERGENCE 121

=05 ————

Figure 7.8.
Several optimal kernels are shown.

For the ordlnary Lipschitz class W (0,1,C), a quick computation shows that
with the optimal kernel (1-z ), (recall that s +a==1), and

1
=21,
8nC?

the kernel estlmate has the following unlform upper bound:

1

E([|fa-f 1)< Qo) l“‘(’]

f eW(ox C)

This should be compared with the lower bound we obtalned for thls class,

1
4 [ 182C )%
140 (1 — | ===
(140 (1)) C [1mm0n]

As n —0c0, the ratlo of upper to lower bound tends to

80000 |° o 8499599/4 / 1-— .
1296




.
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The optlml;atlon of Lemma 7.4 Is generally applicable when K >0. We
observe for example that when I 1s the parameter s kernel assoclated with a
kernel K >0, then

flz|®|L(z)]| dz —2fx°f(y( zl))' K(y)dy dz

__2fK(y)f_z__(1/__x_)____ dz dy

1)
— " & +a va(l“” ).s—l
__2£K(y)y + {———————(s—l)l dv dy

I(a+1)

===t K s t+a dy .

F(a+s+1)f w)ly | y

Since K must have order greater than s for the uniform bounds to be applicable,
the computation of f |z | *| L | Is only useful for s =0 or s =1. We conclude
that the optimal kernel for W(1,a,C ) has the form

at+s+1 +a
2ats) (1-lz |7,

For W(1,1,C), the uniform bound obtalned with the kernel estimate Is asymp-
totlc to a universal constant times CY/5/n?%/5,

7.9. INDIVIDUAL UPPER BOUNDS.

There 1s a discrepancy between best possible rates of convergence for indivi-
dual f , and unlform rates over classes F. In fact, we can regard Indlvidual rates
as unlform rates over F={f }. For example, for the kernel estlmate, we have
very often

, ! E(flfn_f 1

hl;lfK?ue%E(flfn 1

— 0 asn—o0,

where F 1s a class contalning f . In other words, for most densltles, we can do
much better than what we might think Is possible merely by studylng mimimax
results. In one case however, there Is relatively little difference between minimax
upper bounds and Individual upper bounds, 1.e. when K Is nonnegative.
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Theorem 7.6.

Assume that f 1s a density with D,” (f )<oo, and [z%f <co. If K Is a
nonnegative order 2 kernel, for which [(1+z%)K?<oo, then

R 2

hlI;foE(flfn—f )< (+o () @°+2 ®) oK) (S ) n ®

where

cnlw

sy = (fo2x JE2)°

and

01|»-

wH = (D" VT)*

The inequality is valld for example when
1
Ure) (v7)*

(20" (7 )s7K)

oo

h =

oo

Proof of Theorem 7.6.
If A —0 and nh —o0, we have

VIK* V]
E(ffaf 1) S Q+oDA®D,7(f ) fzzK + Q+o (V) ——F=— f

Here we used Theorems 7.1 and 7.4. If we lgnore the o (1) terms, then we are left
with a simple minimization problem with respect to A . The "best” A s given in
the statement of the Theorem, and satisfles the conditions A —0 and nh —co.
The corresponding upper bound Is the one given in the statement of the theorem:.

The upper bound deserves some speclal attentlon. First of all, it depends
upon a product of three factors, n~2/%, ¢(K ) and 9(f ). The dependence upon n
Is the same one achleved In the minlmax theory for the (Bretagnolle-Huber) class
of all densitles on [0,1] for which f and f' are absolutely contlnuous, and
W[ )<r for some constant r. We have already hinted that
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2

ot B(f17a=1 132 (CHo) oYU I *
for some constant C, and all densitles f . Thus, the upper bound Is fine modulo
a small unlversal constant. The factor (K ) Is minimal for Bartlett s kernel
(Bartlett, 1962)

K(z)= 2-2%, .

and the minimal value Is —;—(—3)2/5 (see Lemma 7.4). Flnally, the factor 9(f )

could truly be called the difficulty factor for kernel estimates, slnce It seems to
indicate how hard It Is to estlmate f with a (nonnegative) kernel estlmate. It 1s
obviously scale and translation-lnvariant, depending only upon the shape of f . ‘

W(f )} is Infinite for one of two reasons: either the tall of [/ Is too big
(f\/_—oo) as 1S the case for the Cauchy denslty, or f osclllates too much
(D, (f }=o0). Examples of densitles with D, (f )=oco Include all densitles
with a simple discontinulty (such as the uniform denslty on [0,1] or the exponen-
tial density), and all densities with an infinlte peak (ess sup f (2 )==c0). Not all

finlte values for 9(f ) are possible elther. It Is known (Devroye and Penrod, 1984)
that

11f1r D, (f)= 33/5 22 166007458615 .

The Infimum is attalned for the isosceles trlangular denslty (1- | z { ), and all 1ts
shifted and rescaled verslons. Conslder for example the plane formed by DQ* )
as the z-axls, and f\/T as the y-axls (Agure 7.7). The region below the curve
zy*<c (c s some constant) is forbidden. The lIsosceles triangular density moves
on the border of the forbidden region as 1ts scale changes. The lower bound for
W(f ) 1s really due to the fact that when one has to draw a density, one elther
needs to create a big tall {f the density is to be smooth, or one needs a lot of
oscillation if the tall 1s to be small.
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)
f\/f— Cauchy density foo

¢ density (C /(1+3%/3)3)
=

Laplace density (le“ 1y
o 2

Normal density

-}

Exponential density —oo
a

Uniform density on (0,1] —oc0

Isosceles triangular density on [0,1] -

FORBIDDEN REGION

° . N
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 16 16 17 18 19 20 21 22 23 24 25

Dy'(f)
Figure 7.7.

Pla.neoff\/—f_ versusDz*(f ).

If a glven denslty satisfles the conditlons of Theorem 7.6, l.e. the value for
W(f ) 1s finite, and the varlance 1s finlte, then by taklng an order 4 kernel, 1t 1s
relatlvely easy to establish that the blas Is o (h %), so that
2

ot E(f[a=1 N=0(n ®)

but It is difficult to glve an expliclt formula for A In terms of f , unless one
assumes more (e.g., D ,*(f )<oco). Essentially, as observed as early as 1962 by
Bartlett, and rediscovered later by others, If D, *(f )<oo for even s, and we
choose an order s kernel K, 1t is possible to insure that

8

E(f | fa-] |)=0(n 2+1)

by taklng h ~n~1(25+1_ As 5 grows, we get better rates of convergence, but
these rates apply to a shrinking collection of densltles. Usually, we don’t know
anything about f , let alone the fact that D, *(f ) Is finite. Furthermore, If one
chooses b ~n ~/(25+1) but f is not as smooth as originally thought so that the
blas decreases e.g. as ~h, then the particular cholce of A 1s actually disastrous,

as the bias alone decreases as n~*/(2**1) (in this artifelal example) instead of
n-? /(28 +1)_
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7.10. MODIFIED KERNEL ESTIMATES.

The design of a kernel estimate bolls down to the choice of & and X . Under
certain conditlons on f , 1t is possible to glve formulas of the form s

h = ofn)p(f)

for the smoothling factor so that a relatively good upper bound on the expected
L, error s minimized. Here a(n ) Is a functlon of n, such as n Y5, and B(f )1s
a functional involving f (see Theorem 7.8). Slnce f s unknown, A(f ) Is unk-
nown, and we have a viclous clrcle. There are a few ways around this problem.

Some statlsticlans suggest making a parametric assumptlon about f , and
estimating the parameter or parameters from the data. These estimates are then
plugged back Into the parametrlc model g, , which In turn s used to compute
B(g, ), which hopefully Is not too far from the unknown S(f ). This has worked
well In some applications, In which exploratory data analysls had already esta-
blished that the unknown density could almost be fitted by some parametric
method. See e.g. Deheuvels (1977).

Others argue, qulte correctly, that the formula ofn )F(f ) for A 1s based
upon non-verifiable condltlons on f . They suggest golng back to general prinet-
ples ltke cross-valldatlon and maximum llkellhood in an attempt to obtain the
best cholce of h directly. Ideally, one would hope to fnd a function
h=h(X,, ..., X,)suchthat forall [,

Ef11a-f 1)
mt E(f 1w~ 1)

as m —co, where f,, Is the ordinary kernel estimate with determlnistic £, and
f» Is the kernel estimate with data-based & . It Is still unknown whether such a
formula exlsts. If 1t does, we would achleve the asymptotlcally optimal rate of
convergence without actually knowlng the rate of convergence. Stone {1984,1985)
has obtalned a result in this spirlt for the expected L, error of the kernel estl-
mate and the histogram estimate. Hls data-based smoothing factor uses least-
squares cross-validation: for further work and references, consult Hall (1983), Bur-
man {1985), Marron (1985) or Scott and Terrell (1986).

A data-based smoothing factor A supposedily adjusts Itself automatically to
the smoothness and size of the tall of f . For extremely smooth densities, the
Imlting factor is the order of K, because of the saturatlon phenomenon 1n the
blas of the kernel estimate. It 1s necessary to Jack the order of K up to the maxl-
mal smoothness expected In f . The Issue of the cholce of the order of K can be
clrcumvented If one plcks a superkernel. The cost of doing this Is conslderable:
the fact that f, can take negative values and that K has Infinlte support
implles that a lot of computational time Is required to obtaln f, ./ f f 4 the
normallzed density estimate. Furthermore, the constant term In asymptotle
expresslons for the expected L, error (see Theorem 7.8) typlcally grows as the
order of the kernel grows, and !s large for superkernels.
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One should questlon whether it Is approprlate to spend a lot of tlme and
effort on'the choice of A and/or K, because dolng so Is admitting that one is wil-
ling to accept the asymptotic performance of the kernel estimate, which we now
know 1s a complicated functlon of f . Recalllng that In many cases 1t Is a func-
tlon of 9¥(f ), 1t 1s perhaps wiser and easler to try to transform the data in such a
way that ¥(f ) becomes smaller, to estlmate the density of the transformed data
by the kernel method, and to retransform the density estimate. By the Invari-
ance of the L, distance under contlnuous one-to-one transformations, it suffices
to analyze the expected L , error for the transformed data, with Its presumably
better value of 9¥(f ). Ideally, with nonnegative K, one would like to transform
the data in such a way that f becomes trlangular (see Theorem 7.6 and lts dis-
cusslon). The question remalns of how one can construct a good data-based
transformation with provably excellent propertles. See for example Devroye,
Machell and Penrod (1983) or Devroye and Gyorfl (1985).

7.11. RATES OF CONVERGENCE WITH SUPERKERNELS.

One of the advantages of a flattop superkernel Is that it can be used for all
densltles; provided that we are able to choose h properly, we can adapt to any
degree of smoothness. The varlation for superkernels 1s dealt with In Theorem
7.6: 1t 1s not different than for any other kernel.

The blas term can be handled differently. Since K has an Infinlte order, all
the results of Theorem 7.1 apply. Thls has the drawback that densities have to
be dealt with according to membershlp In classes defined In terms of the s-th
generalized derivative. There s another way of studylng the blas, which provides
us with a contlnuum of rates, based upon the behavlor of the characteristic func-
tlon g of f .

Assume that f has characteristic function ¢ and that K has "characteristic
function” %, where ¢=1 on [-T,T], and that both f and K are in L, The
tools for obtalning upper bounds for [ | f *K, —f | are essentally the Cauchy-
Schwarz Inequality or Carlson’s inequallty, and Parseval's identity (also called
Bessel's equality):

A. If f has support contalned In [0,1], then,

1
[17*K,—-f | < A/ J(f *K, —f ) (Cauchy-Schwarz) .
0 o

1
[17%K-f | < Var (J( K- )" (220 -1 )

(Carlson's Inequallty) .

N
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c.
J(f*K~f ) = El;-fw(t Y(th }~¢(t ))? di (Parseval's dentity) .

For our flattop kernel K , we deduce that

UK -F R < == [ ¢¥t)dt .

2T ) >T o

This can be plugged back into bounds for the blas:

f1r*& -1 | < O
Q

2T e yST

Thus, for densltles on [0,1], the blas Is directly related to a tall Integral of ¢2. As
an example of how one can obtaln bounds that are explicit in k, note that for
a>0,

1 |
[1050=1 | S\ e 1t 1) &

It should be observed that there are many densities on [0,1] for which
J 1t 19¢%(t) dt <oo for all a>0 (see exercise 7.11). For these densitles, the blas
tends to zero faster than any polynomlal rate In n. Thils implles that
hh;foE(f | fa=f |)=o0(n%/Vn )for any e>0.

Most ultra-smooth densltles, such as the normal density, have Infilnlte sup-
port. The reader Is urged to look at exerclse 7.12 to get an idea of how to cope
with the Infinlte support, since the Cauchy-Schwarz Inequallty s no longer useful,

Flnally, for the ultlmate ln smoothness, conslder a density / with bounded
spectrum (l.e, the characteristlc functlon ¢ vanishes off [-S,S] for some finite
constant S). For h <T /S, the blas Is zero. Thus, It Is hot necessary to let A
tend to 0 with n . In fact, since the varlation is roughly speaking a constant over
vnh , 1t 1s best to choose h as large as possible, l.e. =T /S . For a flattop
superkernel with f ¥ <00 and constant & <T /S, we have
IV &),

Vnh ’

E(flf.~f DE

which decreases as 1/Vn when JA/f * (K%, <oo. Employlng Theorem 7.4, the
numerator 1s further bounded by

L
4

VT + Var(aot+eh® oK/ [K?)* .

In other words, It Is finlte If the varlance of f , 0%, and [(1+z2)K? are both
finite.
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7.12. EXERCISES.

7.1. Show that If % 1s the characteristic functlon of a symmetric function K,
where 1) has a continuous absolutely integrable derivative of order s, then

J 142

|K ()] <
or |z |°®

where s 1s 8 nonnegatlve integer.
7.2. Conslder the "characteristic functions”

1 (]t <D)
i) = 1| | .
T (lt]>1)
and
' 1 ()t <1
#(t) = I |1 )

1-e (TETD7 (4] >1)

For ¢ and 1), prove or disprove that they are flattop superkernels. Hint:
elther derlve the expllelt form of K, or obtaln information about the rate of
decrease of K (z)as |z | —oo0.

Figure 7.8.
Are these characteristic functions of flattop superkernels?

7.3. Prove that there does not exlst an unblased Kernel estimate (for any K with
JK =1, [ | K | <o0) If one wants to estimate a density f whose charac-
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:ristic functlon Is nonzero for all ¢.

how that there does not exlst an unblased Kernel estlmate for any denslty
‘hen the kernel K Is restricted to be nonnegatlve.

ind densitles f ,g on the real line such that

flz1f@)ds <o, [V] =00,
[l2lg@)ds =0, [Vg <oo.

‘onstruct one denslty f for which [Vf <oo, yet f1/] * (K?), =00 for all
>0 and all bounded kernels K with compact support.

et f,. be a kernel estimate with smoothing factor h satisfylng A —0,
h —00 as mn—o00. Assume that K s an arbltrary kernel, and that
V[ =oco. Prove that

Nmint Ve E(f | fo~f*K, |) = oo

wssume that K 1s a kernel for which [{1+ ]z | ")K2<oco and that f Isa
ensity for which |z |'*f (z)dz <co for some €>0. Show that
“heorem 7.4 remalns valld, l.e.
E(f][a-f*K NS (140(1)) KT
- 0 _—
R DS vy

P h—0 as n —co.

Nith a nonnegatlve order 2 kernel, the best rate of convergence of
2(f{ fa-f |) achlevable with the kernel estlmate tends to 0 as n~%/5,

rovided that D,” (f )<oo and [V/f <co. Glve as accurate a statement as
)ossible about the rate of decrease (In n ) of

,ggfoE(flfn—f 1)

vhere f Is one of the followlng densitles:

@%(z (1-2))*7, 2 €O.1),

where 0<ae <1 1is a parameter. For ¢ =1 (the uniform density),
Dz‘(f )=00, but Dl*(f )< oo; for ¢ <1, even Dl*(f J=o0.
_e+1
3. The £, density f (z)=C,(1+z2%/a) % , z€R, where 0<a <1 1Is a
parameter and C, Is a normallzation constant depending upon a only.
Note that for all the values of a, f\/f_ ==00, but the size of the tall
depends very much on a .

\. The beta (a,a) denslty [ (z)=

Tor the second famlly, the tall (and thus the varlation) dominates, while for
he first famlly, the osclllatlon (and thus the blas) Is the maln contributor to
:he L, error.
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7.10.Conslder a log concave denslty (log f s concave) with a mode at 0 (log-
concave densities are unlmodal). Prove or disprove: 1t iIs possible to find
h=h, such that E([ | f,—f |)=0(n"'/%) as n —oo, where [, Is the
kernel estimate with fixed nonnegative order 2 kernel K .

7.11.Construct a denslty f on [0,1] for which [ | ¢ | *¢%(t) dt <oco for all >0,
where ¢ Is the characteristic function for f .

7.12.WIith the trapezoldal flattop kermel (2- |t |),—(1-| ¢ | );, how would you
choose h for a normal denslty f? What rate Is achlevable for
E(f | fo—f |)? Hint: use Theorem 7.8 for an upper bound on the varla-
tlon. Handle the bias term elther via an lnequality in the splrit of Carlson’s
inequality, or via an Integral split In whlch Cauchy-Schwarz Is used on a
compact (but growlng) central Interval, and crude bounds are used for
(shrinking) tail Intervals. Recall that if X 1Is normally dlstributed, then
P(X>u)~u7lf (u) as u —oo, where f 1s the normal density.

7.13.Let K be a nonnegative kernel, and let F be the class of uniformly continu-
ous densitles with support on [0,1] and modulus of continulty

|su < | f (z+y)>f (z)] bounded by a functlon w(6)—0 as §|0. Show
z, ]y | <

that

lim su *K, — =0.
hlofe%flf w1 |

Show that for all classes W (s ,0,C'), such a functlon w(§) can be found.

7.14.Unblased density estlmates can ex!ist for certaln classes of densitles. For -
example, Kolmogorov, and later Basu (1964) have shown that for the normal
family with unknown mean g and varlance o2, the followlng density Is an
unblased estimate at all z:

F( n2—1) . n—d
fal@)= 5 [1 Az(x—ﬂ)z] :
(=2 Waln 1) (n-1)0 +

2

Here i and & are the standard sample-based estimates of ¢ and ¢. Show that
the glven estlmate s Indeed unblased at all z, and prove that
E(J|f.-f |)=0 (1/vn ) uniformly In u and o2 For other examples and
more theoretical background on unbiased estimatlon, see Lumelskil and
Sapozhnikov (1969), Wertz (1975), Guttmann and Wertz (1976) and Seheult
and Quesenberry (1971), and the references found there.

7.15.Is every Lipschitz density f absolutely continuous (see definltlon at begln-
ning of chapter VII)? Prove your answer.

7.168.Show that If K 1Is a kernel with order greater than s, and D, (f )< oo,
then [ | f*Ky-f |=o(h®) as h|0O. Note: when f has s—1 absolutely
continuous derlvatives, the result Is implielt In Theorem 7.2.

7.17.Show that for any kernel estimate f,, lr}(fh E(f|fa=f |)=c/Vn for

some positive constant ¢ (¢ =1/V526 wlfl &o). Hint: use the realtionshlp
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with characteristic functlons, spilt blas and varlatlon terms, and employ the
lnequallty £ (| S, | )>E (| X |)Vn /8, which Is valid for all sims S, of n

i1d zero mean random varlables distributed as X . ’

8.Thls exercise should provide you wlith some ldea about the smoothness of j'
when f has bounded spectrum. Show that when a density / has bounded

spectrum, It has a Taylor serles expansion about the orlgin which Is uni-

formly convergent In any bounded Interval. Relate the coefficlents of the
series to the characteristic function ¢ of f .

9.The varlation of the kernel estimate can be larger than ¢ /Vnh when
f\/f ==0c0. Show that the lnequallty of Theorem 7.3 can be generalized as

follows: If | K | <K ., then
Itp
UK ) ®
E(flfn-f*Kh ')S2P(Kmax)2 1p ’
(nh)®
where p €(0,1). Find sufficient conditlons on f and K for the upper bound

1+p
to be finlte when ff % <oo.

.Let f be a very smooth denslty, In the sense that | ¢'/(t) | <C? e-it1/D
where ¢ Is the characteristic function for f/ and ¢’/ is assumed to exlst at all
t. In other words, the characteristic function decreases at an exponential
rate or faster. Deslgn a kernel estimate for which

E(f | fa-1 1)< (o) ED_iz_g(_nl

uniformly over thls class, for some unlversal constant y>0. Glve expliclt

formulas for A and K as a function of C and D . Compute acceptable

values for v and o (1) In the upper bound. Interpret C and D, and the
"difficulty factor v CD ", which depends only upon the shape of f . Con-
sider the plane of densltles with coordinates C and D (simllar to figure 7.7),
and show at least five densltles in thls plane, Including the normal density.




Chapter Eight
A CASE STUDY:
MONOTONE DENSITIES ON [0,1]

8.1. SCOPE OF THIS CHAPTER.

We study the class F=Mp of bounded monotone (nonlncreasing) denslties
on [0,1], where B is an upper bound for the value of the density at the peak (the
origin).

The estimators belng studled Include

A. Grenander's estlmate (also called the SCM or smallest concave majorant
estimate).

B. The Kernel estimate.
C. The hlstogram estlmate.
D. Birge's modified histogram estlmate.

The class F includes many smooth densitles, for which a modified kernel
estlmate can In fact achleve extremely good rates of convergence depending upon
the smoothness of the density (a modification Is needed to treat the discontinulty
at the origin; see further on). But smoothness Is not what we are Interested in
here. The monotonlcity ltself is the Interesting ingredient. How can we Incor-
porate that knowledge In our estimate, and what can we hope to achieve? To fix
a speclfic goal, we wlll begin with the computation of a minlmax lower bound In
Theorem 8.1. We wlll see that the kernel and histogram estlmates are not bad,
but they are not minlmax-optimal because none exploits the monotonlclty very
well. Birge’s modifled hlstogram estimate 1s minlmax-optimal, and provides us
with a splendld example of how estlmates can be tallor made for certaln classes of
denslties.

The key references are Grenander (1956,1981), who applies the maximum
likelihood princlple in the definitlon of an estlmate, Groeneboom (1983), who pro-
vides a thorough analysis of Grenander’s estimate, and Blrge (1983,1984).
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8.2. THE MINIMAX LOWER BOUND.

Theorem 8.1.

lfnlfsgfr;E(flfn—f H>1,

and

[V

1

tntswp E(f | [~/ )2 ~——F—v [%?] (8<5 <0.054n)
x Mp 8+4(%)3 .

where S =log(1+B ).

If we were to construct a subclass of monotone denslties based upon a partl-
tlon of [0,1] Into Intervals of equal length, then we would obtaln at best a lower
bound of the form ¢ /n'/® where ¢ Is a constant not depending upon B (for an
explicit computation of thls type, see Devroye and Gyorfi, 1985). To obtaln a
bound with the correct dependence upon B and n, not just n, Birge (1983)
observed that 1t Is necessary to conslder unequal Intervals. Theorem 8.1 and the
proof given below are essentlally hls. We took the llberty to shorten the proof a
blt; the price pald for It Is a slightly worse constant In the bound.

Proof of Theorem 8.1.

Let 0<e<0.6 be a real number, and let r >1 be an Integer, both to be
picked later. Then partition {0,1] Into r intervals

A; = [Z‘,'_I,Z‘,') , 1 =1,..,7 ,
where

o Gt

z; ,
(1+€)" -1

1==0,1,...,7 .
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]

9 8

hy § —m-memmannd

Zg z

Figure 8.1. )
Partition of [0,1] needed to construct subelass of F.

On A;, f 5 1s elther g; or h;, depending upon whether §; 1s zero or one. Recall
that §=0.6,0, - - - 1s a blnary expanslon of a number §€[0,1]. The functlons g¢;
and h; shown In figure 8.1 are stalrcase functlons, where

€
)\(1+—2—)

(1+¢) '
A(1+¢€) or A
a+e) | (1+e)

where

1+¢€

A= ((1+e)'—-1] .

€
1 —_—
T €( +2)
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Observe that [h;=[g; =2 since the length of A;is

A A; r .

_ a4e (4ot e+t 1
(1+€) -1 (14€) -1 Thy

Ty T

Let us now compute ¢ and f for use ln Assouad’s bound (see Theorem 5.2):

e
2
fihi-g; | = ey X length A;
Ae? €

= =
A1+e)((1+€)" 1) r(2+€)

Furthermore,

2 €2 €
[(VEVaY S )

A
=2-20.

The last inequallty 1s most easlly shown by wuslng the fact that
2
Vitz _>_1+_2”‘__L8- for  >0:

[VEva)

- g 2 [l( +EViTe? + 1o+ 1+i)2]
A+ -1 (1+e) L 2 2 2 2’

= _i¥e -;—[4+2e—2 1+—;—(1+\/1+e)]

1+e re(1+-€—)
2
1 € € e €
4+2e-2(1+ -~ Y2 b
= r(2+e)[+€ AL s)]

S SN S
r(2+e)| 8 32 128

2
62(1+.37:___16?) €2 €
= € < 16 r (1+Z) ’
167 (1+—2-)

We can plug everything back Into Assouad’s lower bound

_’Eoi[k\/z—zﬁ" ] > r—;‘-[l-\/m (l—ﬁ))

- € _ ne P _G'
- 2(2+e)[1 V 16r‘1+4)]'
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‘We can make the square root less than %, if we take

n ¢ €
r= |2 +<
[ 4 ( 4)

‘We are able to conclude that

m (n F) > —

—
8(1+E‘)

Thils expresslon, or %, should be maximlzed with respect to €, subject to the only

constralnt we have not verifled yet, l.e. that we Indeed have a subclass of F, l.e.
that ¢ ,=X<B. It Is Important to see at this stage how one should choose €.
Observe that A\=2e "¢, This Is at most B If r €<S, roughly speaking. Substitut-
ing r by Its approxlmate value, n €2/4, we obtaln that n ¢3/4<S. This Is why

the value
1
A
e= | —
L")
1s approximately optimal. WIith this value, we obtaln the lower bound that we
wanted to verify. It sufflces to show now that A<<B with thls cholce of e.
First four small observations: (1) S <0.054n Implles that €<0.8; (2)
r <1+£(1+%); (3) i((l—}—é)’ —~1) 1s nondecreasing In z for z>0; (4)
€ T
(1+-§)log(1+e)§ €. This Is used In the following chain of Inequalities:
N= 1 (4o
€
re(l+—
(a+5)

§(1+%)log(1+e)
: 1 -1
< e — L
e(1+—) S (1+=)1+—)
2 2 4
+
1+¢ 1+4+¢
(1+€)e 5.1 14
S +e €

1+
2

<

< e 5.1,
Only the last inequality requires explicit verificatlon. Thls bolls down to verify-
Ing

2
¢S (treri5-58) < 1eg-5€
2 2 2
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For § >3, we have e >10, and $-1+8 ¢/2>2>¢+€%/2. So, the left-hand slde
of the last lnequallty Is at most equal to

\ _
10(14et g8y .
2 2

Thus, we need to check that 9(S-1+S5 6/2)>6+10(€+€2/2) This Is Immedlate
from the fact that S >3 and that ¢<0.6. i .

8.3. GRENANDER'S ESTIMATE.

In 1956, Grenander studled an estlmator of a monotone density which did
not require knowledge of the support of f , and which itself was a monotone den-
slty. The latter restrictlon allowed hlm to apply the maxlmum likelihood princl-
ple very elegantly. In thls sectlon we will study some of the propertles of
Grenander’s estlmate, also referred to below as the MLE.

Grenander's estlmate [, Is defined as a monotone denslty with the property
that

170 ()

i=1

is maximal. We need a few lemmas that wlll enable us to say more about the
shape of thls estimate.

Lemma 8.1.

The MLE [, Is a step function with breakpolnts (Jumps) at the order statls-
tlcs X(,),lsl Sn .

The general form of an MLE 1Is shown below:
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o X0  Xo X

Figure 8.2.
General form of an MLE.

Proof of Lemma 8.1.

The log-likelithood of the sample with order
XnSX@< SXmys

A n
L(f)= Y loe(f Xuy) -
=1
Define
0 (z <0)
[¥)={Cf (X)) X<z <X(;y)
0 (z >X(n))

where C 1s a normalizlng constant. Observe that
Lf*)y=mnlog(C)+ L(f)=L(f)

139
X
statistics
X

since C >1 (thls follows from the fact that 33X ;X 1))/ (X )< [ f <L)
0

Thus, for every density f,, there exlists a step function f, *

with breakpoints at
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the order statlstics, for which L (f, ")>L(f,) W

‘We will also need some fact about entroples of discrete distributions:

Lemma 8.2.

Let py, ..., p, and q,, ..., ¢, be probabllity vectors with positive com-
ponents. Then

og(JLy >
Zq,og(p) 0.

=1

Proof of Lemma 8.2.

We can elther base the proof on the positivity of Kullback-Lelbler numbers
(l.e., ff log(-[-)ZO for all densitles [ ,g ), or prove it directly. Recalllng that
the function u log(z ) Is convex in «, we have, by Jensen’s inequallity,

épl —p—l ('—) 2 Z‘P.?—IOQ(EP, ——)——llog(l) =0 .|}

i==1 §=1 i f=1

From Lemma 8.1, we retaln that the form of the MLUE s that of a data-
dependent histogram. The third lemma applles to all histogram estimates, and 1s
presented In thils setting. It states that once we have settled on breakpolnts, the
MLE Is completely specified.
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Lemma 8.3.

Conslder a partition A, . . ., A, of a compact set A, and a histogram den-
sity estlmate f, taking the value g; on A;, sublect to the normallzatlon-
$20; M(A; )=1. Then, the maximum over all these histogram estimates of the

1
likellhood product

Is reached for the histogram estimate with

o My (Az)
9= N

where i, Is the emplrical measure for the data.

Proof of Lemma 8.3.

Deflne A; =M(4;), and C;= cardlnallty of A;, or n u, (A;). Observe that
for any vector g4, . . ., Gg»

n k c
H fn ('X.t) = H 9
j=1 =1
_ k g9s 0 Ay C; k
o il—zll( Ci ) i];[l(
k n
2004
=1 k
e AH(
> G P=t

C;

C:
TLA,‘)

G
N

<
n

(arithmetic-geometric mean Inequallty)

k
= TI(

§ =1

% o
nA; '

Thils concludes the proof of the lemma. i

When Lemma 8.3 Is appllied with A; =(X(;_;,X ;)] (with 0=X, by con-
vention, and 1<¢ <n ), then 1t Is easlly seen that among all step function densl-
ties with breakpolnts at the order statistics, the likellhood product 1s maximized
If we take a density which, on (X(;_;),X ;)] takes the value 1/(n (X ;=X (;1y))
(since the emplrlcal measure of each Interval Is preclsely one).
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‘We can now formulate

Theorem 8.2. Grenander’s theorem.

The monotone density on [0,00) for which the llkellhood product s maximal
Is the density whose dlstribution function is the smallest concave majorant of the
emplrical distribution functlon.

4 . Empirical distribution function

Z s - oo oo o

0 Xo) X Xg XgXgXe Xo Xg

Figure 8.3.
The empirical distribution function and its smallest concave majorant are shown.
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Proof of Theorem 8.2.

By Lemma 8.1, it suffices to consider only monotone histograms with break-
polnts at the order statistics. Conslder Just such a denslty, and let lts helght be
g; on the interval A; =(X;_;,,X ;). Let A; be the length of A;. Conslder a

partition of 1,...,n Into Intervals of Indices, I,,I,, . .., I, and define
Py = Z ngj )
jerl

g = lC:«erlnallty of U Aj ,
n JEL

i

q; .

hj = [—‘—]91 L J€L,
P

where 7 ==1,2,...,k . Note that the h;'s define another histogram density estimate,

and that 1t has the following propertles:

A. It integrates to one, as
k

Zth]- =3 [q_,] > gy Ay =1.
i

i=1{ P )jel

B. It has a better likelthood product than the g, 's, since

ng;

i k q;

IT I1A =11 [—] I19;

i1 i€l i= P j€r
k

i=1j€ek
by Lemma 8.2.

This improvement is applicable to any histogram estimate. We can plck any
partition we llke. In particular, we can partition the Indices by the breakpolnts
of the smallest concave majorant of the empirical distribution functlon. If we do
that, then the improvement hj agrees with the emplrical distribution function at
these polnts: Indeed,

b 'h
2 hif; = ——39;4A;
JEL t jel
=gq; = lCardlnallny of UA; .

n - JEL
Furthermore, slnce the 9; 's are nonlncreasing, the h]- 's are nonincreasing withln
one set I; (they may not be across Index sets). Finally, by our cholce of break-
polnts, we have that

Ajpt T higm > Bjqt o FA
m - k

for 1<m <k, as long as we stay in one Index set. Havlng started from
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91, - -, §n,and tmproved 1t to by, . .., A, , We now present a further lmprove-
ment to {,, . .., I,, which has the property that 1t 1s Independent of the orlginal
cholce of g;'s. The tmprovement colncldes with Grenander’s_estimate, and 1s an
MLE. All {;'s for 7 €; are equal to

3 hia;

i€l g
Y4 24
i€l i€l

l.e. they agree with Grenander’s estlmate: It suffices to show that we have a llkel-
thood product Improvement for every I;. To see this, we need to show that
A < I0Y
JE€L €l
for all ¢. By the arlthmetlc-geometric mean lnequallty, we have
1

[th]nq.- LY

ek " | N jer

which In turn does not exceed

PMLIEY,
i€l A |
EA ——
P
jel

by virtue of an Interesting assoclation lnequality explored In exerclse 8.1. This
concludes the proot of Grenander's theorem. Jij

This Is not the proper forum for exploring all the propertles of Grenander’'s
estimate. Clearly, the fact that 1t 1s completely deflned, without smoothlng
parameters and the like, 1s appeallng. Let us merely polnt out that the estlmate
Is conslistent for monotone densitles and Inconsistent for all other densitles
(Theorem 8.3). Furthermore, for smooth monotone densltles, the individual rate
of convergence s n~1/2 (Theorem 8.4). See also exerclse 8.2 about the minimax
error on small subclasses of monotone densltles.

Theorem 8.3.

Let f, be Grenander's estimate. Then f | fo—f | —0 almost surely if and
only If f 1s monotone.
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Proof of Theorem 8.3.
It f !s not monotone, then

flfa-r > mt [lg-f | >o0.

¢ monotone

When f Is monotone, F Is its distributlon function, and F, and # , are the
emplrical distribution functlon and the smallest concave majorant of the emplrl-
cal distributlon function respectively, then

f,,(a:)S%(F‘,,(x)—F’n(m—b')) (any §>0; by concavity)
< Zsw | P ()-F ()] +—ff ~f @)+ [ @)

The first term on the right-hand side Is not greater than % sup | F, (¥ )-F (y) |

by the concavity of F . It tends to O almost surely by vlrtue of the Glivenko-
Cantelll theorem. The Lebesgue denslty theorem lmplies that for almost all z,
we can find 6§ so small that the second and third terms taken together are as
small as desired. We can argue symmetrically on

[2@)2 5 @ +0-F @)

Thls shows that f, —f almost surely for almost all z. Since ff,, =1, we
can apply Glick’s theorem and conclude that [ | f,~/ | —0 almost surely. I

Theorem 8.4.

Assume that f has two bounded contlnuous derivatives on (0,00), and that
f'<0on (0,1). Then

N 1
wEG1 s D= f[3 1)

where f, 1s Grenander’s estimate and ¢ R20.82 Is a universal constant (Groene-
boom, 1983).

Theorem 8.4 Is not shown here. The rate 1s that predicted by the minlmax
lower bounds. In that respect, Theorem 8.4 states that Indlvidually, we observe
the same rate of convergence as we can hope to observe unlformly over F, even
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for the smoothest denslities in the class. But since we can construct much faster
converging kernel estimates (properly modified to handle the discontlnulty at the
origin, see next sectlon) for densltles dealt with In Thecrem 8.4, Theorem 8.4
should be regarded as a bad news message for Grenander's estlmate. There Is of
course still hope that the estimate Is minlmax-optimal: for one thing, the con-
stant In Theorem 8.4 has the right dependence upon § (see Lemma 8.4 below).
See also exercise 8.2.

Lemma 8.4.
Let f €F be absolutely continuous. Then

A f(f lf’i)a < 1+(10gB)? < 1483 .

1

) =o.

inf
f €F , [ absolutely continuous

Proof of Lemma 8.4.
Let u be a number In [0,1] with the property that f (v )=1 (see figure 8.4).

it lf’l)%SZf[f xf'|]’3“+}|f'|

S
3

(AN

=|[-d@ogf)| +1
0

= (1028)

The second half of Lemma 8.4 is trivial.

W {

+1.
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Figure 8.4.

A monotone density.

8.4. THE KERNEL ESTIMATE.
The symmetrized kernel estimate is defined by

fn(x)=/n*($)+fn*(—$),$>0,

where f, * Is the standard kernel estimate with a symmetric kernel K based
upon S, X,, ..., S5, X,, where S, . .., S, are 1ld random slgns. The support
of f, Is the positlve real llne. Equivalently, f, can be obtained from the raw
kernel estimate g, by deflning

fal@)=g,(z)+ g, (-2),2>0,

L.e. by flipping the part of g, to the left of the orlgln over and addlng 1t to the
part to the right of the orlgln, see figure 8.5.
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Figure 8.5.
A kernel estimate g, and its symmetrized form.f , .

The inequality
f‘fn‘f | _<.f|gn‘f 1

valld for any f with support on [0,00) Is of llttle help to us, slnce the f to be
estimated still has a discontinulty at the origln; 1t Just tells us that flipplng the
mass around is harmless. What s needed Is

Lemma 8.5.

Let f, be the symmetrized kernel estimate based upon a sample drawn
from a depsity f with support on [0,00), and let f, * be the kernel estimate
based upon a sample §,X,, ..., S, X,. Then

[Ua-1 1 S T 110" @5 e )] &
0 -

(Observe that f, * is the kernel estlmate of f (| z |)/2, a denslty with support
on the real llne.)
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Proof of Lernma 8.5.
The symmetry In X and the data can be exploited as follows:

flfn—f I =f|fn‘($)+fn*(_x)_f (x)l dz
0 0

<

| fo @5l @) de + |1, '(—:v)——;—f (z)| dz
[¢]

o~ 8

= [/ @5 (e D] &= W

The polnt Is that f (|2 | )/2 does not have a dlscontinulty at the orlgin, so
that f, * can possibly approximate it with errors of the order of n~%/% or better.
Here we won't even need to go that far In terms of errors. We wiil call f, the
F-tallored kernel estimate If 1t 1s a symmetrized kernel estlmate with

KE)y=0-1z |)4

- and

b (22 )

{ nB*?

The smoothing factor Is plcked for optimal performance uniformly over F:

Theorem 8.5.
Let f, be the F-tallored kernel estimate. Then

S 1
3 _ 3
llmsup?ue%n E(J|f.-7 |)<@BB)®.

n —00

Proof of Theorem 8.5.

By Lemma 8.5, 1t suffices to conslder the symmetrlc denslity
g(z)=f (| z |)/2, and the standard kernel estimate f, *, based upon a sample
of size n drawn from g. The quantity E(f | f, *—g |) 1s first bounded from
above by the blas term plus the varlation term. From Theorem 7.1, we recall
that the blas does not exceed

Rz |K llmllnffl(g*¢a)'|
e [0
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where ¢ Is a symmetric unlmodal mollifler (so that ¢* ¢, 1s symmetric unimodal
as the convolutlon of two symmetrlc unlmodal densltles). We have

flg*é, Y| =29%¢,(0) < 2suplg | [{¢,| =B . :

Thus, the blas does not exceed Bh [ |z | K. The variatlon 1s handled on the
basls of Theorem 7.3. We have

B(f 112" =0 |) S == [V/o* &),

nh
< VI (JVe + [VTTaaiT) (@@= [ic?
<A JK? (f\/g_ + Vot2h \/f | 9-9*Q; | ] (Cauchy-Schwarz)
< VK (V2 [VT +vaTek \/Bh[ |z | @7) ‘

so that

2{K*
E(f|f.~f DS Qo) B[z |K + fnh INT

The value of A for which the maln factor 1s minimized Is

L 2

h =n_%(2f[{2)3(f\/f—);[3f|z |Kx) .

The corresponding value of the maln factor In the upper bound Is

1
3

[2—§+2%]n—%[Bflx | K 2[1(2f2\/f_]

L
5(1+2)[—J§]3 B

(2

where we used the fact that for our K, [|z | K =%, fK2=—§—, and that

Vi <i.

The dependence upon n In the upper bound of Theorem 8.5 matches that of
Blrge's lower bound. Unfortunately, the dependence upon B Is suboptimal, as a
factor of log/3B 1is called for, Instead of B/3. This reflects the fact that the
kernel estimate does not make good use of the Informatlon that the denslity Is
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monotone. On the other hand, the kernel estimate Is consistent for all densities.
This distingulshes It from Grenander's estimate and the minlmax-optimal esti-
mate presented In the next sectlon. In partlcular, since every L ;-nelghborhood of
a monotone density contalns many non-monotone denslties, Grenander’s estimate
and the estimate of next sectlon are not robust.

It is not necessary to dwell on the standard histogram estimate with equal-
length bins, slnce the results are comparable to those obtalned with the kernel
estimate. Instead, we wlll close thls case study by presenting Birge's modified his-
togram estlmate (Birge, 1984), which s minimax optimal for F.

8.5. BIRGE’S MODIFIED HISTOGRAM ESTIMATE.

In 1984, Birge observed that a mlinlmax-optimal estimate for our class F
could be constructed merely by considerlng intervals with geometrically increas-
ing Interval widths, and flne-tuning the geometrical rate of Increase. Note that
the same technlque was used In Theorem 8.1 In the constructlon of a lower
bound. Mimicking the constructlons of the hypercublic subclasses In Assouad’'s
theorem often provides us with Important clues as to the constructlon of a
minimax-optimal estimate.

Birge’s modified histogram estimate is defined by
223 (Az )

fn(-’f)=‘m

s T GA, =[I,'_1'.’E,') ,1=1,2,...,m ,

where m 1s a parameter,
To=0,
e(1+€)i!

z; -2 = MNA;) = ,
P ! (14€)™ -1

m
and €>0 Is another parameter. Observe that z,, =1 and that Y A4,;)=L1.
i=1
Thus, the histogram has geometrically Increasing interval slzes. A typlcal estl-
mate 1s shown In figure 8.6.
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Figure 8.8,
Modified histogram estimate with 20 data points and m =86,
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Theorem 8.6. (Birge, 1984)
Blrge's modlfied histogram estlmate on [0,1] with

o = | (s)? .

satisfles

fsuE%E(fl/n—f < %[

for all n >2S.

If we recall that the lower bound for any estlmator over the class F is about
(1/8)(4S /n )3, we conclude that Birge's estimate Js minimax-optimal. Of
course, the estimator Is only useful when B (and thus S ) is known beforehand.
One may wonder what happens when S s poorly estimated. For fixed S, m
grows as n 1/ 2 and It can be shown that the estimate Is conststent for all densities
on [0,1]. The rate of convergence can be poor for some monotone densities and
many non-monotone densitles, because (not surprisingly) the estlmator does not
take the smoothness of f Into account. For monotone bounded densitles, one
can wonder whether there exists an estimate f, for which

n _3—
Iim sup sup | ——————— <e¢ < o0
n_.oop P [log(1+B)] fe F M “/" RIS

for some constant ¢? Note that the estlmate Itself cannot possibly use the
knowledge of B. In other words, 1t has to be adaptive, yet it should share the
minlmax optimality with Blrge's modlfled histogram estimate. Thils could be done
if we could estlmate B satlsfactorlly from the data. For the detalls, we refer to
Birge (1984).

Proof of Theorem 8.6.
Let us Introduce the notation g; = [ f /\(A4; ). Then

[V iat I =5 11a-
f=1A,

211 | fu-gi | + 517 -0 |

=14,

IIMa
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A
= VARIATION + BIAS .

‘Without yet using the exact value of m (because we want to show how the value
Is obtalned), we have

$< DN @S (@)
1=1

§ =2 i=1

= ‘i‘[f ONA Y + 5 (1+0f G M) - 331 (5:)NA; ).]

< %{B N+ e 5 g <z,~-1>x(A.~_l>]

=2

< -E—[H-—B——_ ,
20 @+9ma

where only the first Inequallty requires explanation. What we used there was the
fact that If / 1s a | denslty on [a,b] with average f , then

b
[17-T 1 < Fb-aXs (a)] (b))

as can be seen from figure 8.7.
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Figure 8.7.

In this figure, ¢ =f_—( f ——f_) Is nothlng but the mirror lmage of f about the
average f . Thus,

Ll 1, 2(f (a)>f)+2(f —f (b))
JUI=F 1 =5]1f-91 < Sb-0) :

at— o

- %(b—a XS (a)-f (B)).

The last lnequallty follows easlly from a standard monotonlclty argument as 1lus-
trated In flgure 8.8.
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_____ Y7 @)m -z St

{6t'any monotone f and any partition

of [0, by z,, ..., z,, .

rmmemememmm——m =

EP z) R zg

Figure 8.8.

To bound the VARIATION term, we let Z; be a binomlal random varlable

with parameters n and p; =f / » and proceed as follows:
A

E (VARIATION) = f; n—>\ZA-—)—>\(Ai JE(|Z:-E(Z;)])

=1

E((Z;-E (Z;))*) (Cauchy-Schwarz)

v/ np; (1-p; )

1

}T_‘, V2 (1-p;)
=1

< 7";——\/ %é}lp; (k—f;élm) (Jensen)

m -1

<1
n;

I M=

1

[
3|
INE

i

n

Comblning the bounds on the blas and the varlation, we have
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E - < £ B m-1
(flf,.fl)_2[1+(l+e)m_1]+ -

S
=i[1+ B + 4/ B (= ™)
2 CS—].J n

m -1

=€+ (definition of S =log(1+B))

n
s
Se’—1+\/z(anym—1<z§m).
n

The derlvative of the last expression with respect to = s zero for the solutlon of
3 S

z? =25Vne?® .

s

Roughly speaking, this solutlon increases with n, so that e * approaches 1 as
n —00., Therefore, the cholce

1

T = (4115’2]3 ,m = [z]

is reasonable. Plugging this back Into the upper bound for the expected L, error,
we obtaln

S
. 2 = 2
E(|fa-t |)§\/_ AN A (use e* 1<y +—e¥)
n T 912 2

1 2 1[25]_;
3 3 2 n
S[2S] (1+i)+l[25] 1,2
2’7 2 4

L
L 2
3|25 |3 ve {253
< 2|22 - 1== 1 < .
_Z[n + 3 [n] w25<zn). R

8.6. EXERCISES.

8.1. Thls exercise deals with an assoclation inequallty needed In the proof of
Theorem 8.2. Let h;>h,> - - - >h, be nonnegative numbers, and assume
that A,, ..., A, are positlve numbers with the property that for all
1<:<n,

Apt o+ Apk A,
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Thus, A; has a tendency to decrease in i, but may not be monoctone itself.
Show that

’

n

YA %ZA;'«

=1

hi Ai Z
1

b

1 1
n n;
Hint: use Induction on n . R
This exerclse Is about the minimax optimality of Grenander’s estimate f,.
Let F be the class of all monotone densltles on [0,1], bounded by B . Is the
estlmate asymptotically minimax-optimal, In the sense that there exists a
constant C such that

1
imsupsup n*E(f | f,~f |)<C S
n—oo F

|-

where we recall that S =log(B +1)?

Show' that for the unlform density on [0,1], Grenander's est!mate has an
0(1/\/_n_ ) expected L, error. (The same Is true for all finlte histogram-
shaped densitles.)

Let f be a density on [0,00). The ML histogram based upon the data Is a
histogram with breakpolnts at the data polnts and at the orlgin such that on
(X (iopX (i)l 1ts value 1s 1/(n (X (;5-X(;_1))), where X, Is the i-th order
statistic. Its distribution function Is obtalned by Jolnlng the upper vertices
of the empirical distributlon functlon by stralght llnes. See figure 8.9 below.
Show that for all f ,

Imint E(f|f,-f [}>0.
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’ Empirical distribution function

° Xu Xo Xo XoXeoXe Xo Xg

Figure 8.9.
The empirical distribution function and the distribution function of the ML histo-
gram estimate are shown.
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Chapter Nine
RELATIVE STABILITY

9.1. DEFINITION AND MOTIVATION.
A denslty estimate f, Is relatively stable when

n
———— ~— 1 In probabllity as n — oo,
E(Jn)
where J, = f |fn—S |- It 1s strongly relatively stable when the convergence 1s
In the almost sure sense.

The notlon of relatlve stability Is Important In comparative studles of den-
sity estimates. Comparing relatively stable denslty estlmates on the basis of
E (J, ) Is falr since the actual error J, 1s with high probabllity close to Its mean.
The situation Is more complicated for example when J, /E (J, ) tends to a nonde-
generate limlt law; the conservative elements among us could be tempted to
choose a density estimate with a larger asymptotic mean but a smaller asymp-
totle varlance. Dilemmas of thls sort do not occur for relatlvely stable density
estimates.

Another Important polnt 1s that simulations of the performance (L , error) of
relatlvely stable density estimates are very cheap since J, (the computed perfor-
mance) 1s with high probabllity close to E (J, ). In other words, 1t Is not neces-
sary to average over several simulation runs. As we wlill see below, J,l 1s already
an average of sorts because of the global Integral In Its definition.

The llterature on minlmax lower and upper bounds for the L, error deals
almost exclusively with E (J, ), and not with other quantities such as the p-th
quantiles of J, . In vlew of the relative stabllity of most nonparametric estimates,
1t is less Important to develop mintmax theorles based upon quantities other than
E (J, ), except In speclal clrcumstances. One such sltuation Is when the classes of
denslties consldered In the minlmax theory are very small (" parametric”), so that
speclally designed estlmates (" parametrlc estlmates”) are better sulted.

Most parametric density estimates are not relatively stable. Take for exam-
ple the class of densitles f =pg +(1-p )b where g ,h are known disjoint densities




9. RELATIVE STABILITY 161

( f gh =0), and p s the unknown mixture parameter, If p s estlmated from the
data by the obvious frequency estlmate p,, and f,=p, g +(1-p, )k, then
J.=2|p-p, |,and thus, by the central limlt theorem,

Jn
2Vp (1-p )/n
where N is a normal random varlable. It Is clear  that

J,/E(J,)—= | N |/E(|N |)In distribution as n —co. Therefore, the estimate
is not relatively stable for any density In the glven class.

— | N | in distributlon

In contrast, popular nonparametric denslty estimates such as the Kernel and
histogram estimates are relatively stable for all densities. Thls Is due to the local
nature of these estlmates: densities are estimated locally by consldering a limited
number of close data polnts. Locally, the error’s standard devlatlon can be of the
same order of magnltude as the error's mean. Yet, because the L, criterlon sums
a lot of many "nearly lndependent” local errors, the varlation In the local errors
averages out, rendering the estlmates relatively stable. Thus, If we had plcked a
local criterion such as | f,—f |/E(| f,~f |) to define relatlve stabllity, then
relative stabllity would effectlvely force the blas term to dominate the varlational
term Jde. E(| fo~f |)~ | E(f,)f |.For nonparametric density estimates,
one can usually achleve thls by taklng the smoothlng parameter large enough.
Yet, this 1s a suboptimal strategy because the smallest asymptotic errors are
obtalned by balancing the blas and varlatlon terms. Thus, "local relatlve stabll-
ity” and "locally optimal rate of convergence” are conflicting notlons.

‘We will show that for the kernel estimate, conslstency implles relatlve stabll-
ity. It suffices to note that everything that follows remalns valld for the hlsto-
gram estlmate as well. We conslder smoothing factors A that are functlons of n
only. Relatlve stability In the L, sense (replace J, by f(/,, —f)? I the
definitlon of relatlve stabllity) has been establlshed by Hall (1982) under some
regularity conditions on & ,f and K, when d =1. Later, Hall (1984) refined thls
result and obtalned the asymptotlc law of f (fn—f P when f has two uniformly
contlnuous derivatives on R ¢. Unfortunately, for a varlety of reasons, L, rela-
tlve stablllty cannot be obtalned from Hall's results.

9.2. MAIN RESULTS.

We consider only boxed kernels K, l.e. kernels K which vanish outslde
[-1,1]¢, and are In absolute value bounded by some finite value K max- vecall that
f K =1, but that K does not have to be nonnegative. The main result from
which most other results wlll be derlved is glven In Theorem 1:
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Theorem 9.1.

Conslder a Kernel estimate with boxed kernel K. There exlsts a universal
functlon W:(0,00)—(0,00) not depending upon f ,K or d such that for all
e>3f | K | /Vn ,

sup P(|J,-E(J,)]| > ¢
h>0,f

2 2¢ \I/(cKm,x)—CﬁE
18f | K |+4eef [ K | + 28+l pp e 24 3
¢ >0

< 2¢

We emphaslze that Theorem 1 Is valid for all densities on R ¢. Also, the
Inequallty 1s unlform over all A and all densltles f . It Is true that we pay a price
for the unlformlity; for particular cases, better lnequallties are obtalnable. Yet, 1t
is the uniformity that can allow one to establish the relatlve stability of
automatlc kernel estlmates (see Devroye, 1988). For the unlform kernel in the
unit hypercube, taklng ¢ =1, we obtaln the following upper bound, valid for all
e>3/vVn :

_ne Ve
ge 18466 | od+1 e 20 W) o rury )

The long proof of Theoremy 9.1 can be avolded If one Is willing to accept a weaker
lnequallty. The bound 4 f | K | /(n €?), obtalned In exerclse 9.5, Is valid for all
f+K,h,n ande.

Corollary 9.1.

Taking e=u /Vn for some constant %, and choosing ¢ =1, we obtaln for
all densltles f , for all sequences of smoothing factors A =h,, and for
v>3[|K |, '

im sup sup P(VWn | J,~E(J,)| > u)
n—o00 h >0,

u2

g
< 2e 18f | K| 4ol 1 2 WK md, —u /3 2¢)
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Corollary 9.2.

o]

The simple formula E(|X |)=[P(]|X | >t)dt can be used to show
0

that
E(|J,-E(,)]) < —=
=~ Vn
where we can take
t2
2 Vi ct
oo 18 | K |+6-=[|K | G
C=3[|K|+ [(@e I o + g+t o2 VKmd o 23y gy
0

The constant C 1s mlnlmized with respect to K when K 1s the uniform denslty
on [-1,1]¢, so that K ,,=2"%,[ | K | =1. As n—oo, C tends to a constant
depending upon ¢ and the kernel only. Thus, | J,~E(J,)| decreases to zero
roughly as 1/vn , which Is much faster than the rate with which E (J, ) tends to
zero, l.e. n~2/% or slower for any nonnegatlve kernel K and d =1.

Corollary 9.3.

If we take e=log(n )/vn , and choose ¢ very large In Theorem 9.1, then 1t
Is easily seen (apply the Borel-Cantelll theorem) that for all f/ and all sequences
of smoothing factors h =h, ,

vn | J,-E(J,)| = o (log(n)) almost surely as n —cc .

Corollary 9.4.

For symmetrlc nonnegative boxed Kernels, and all f , we have
2
lim inf 1nf n ®

n—oo h

E(J,)2~r>0

for some unlversal constant v which is at least equal to 0.8 {(Devroye and Gyorfl,
1985, p.79). Comblning this with the previous remarks ylelds strong relative sta-
bility. In fact, we have more Informatlon: regardless of how h =h, Is chosen as a
function of n, we have

| Jn—E (J,) | =
—————— = 0 (n 'Ylog(n)) almost surely as n —co .
50,) (n oeln)
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Corollary 9.5.

For any boxed kernel and any density f on R! and any sequence of
smoothlng factors A —0, the kernel estimate Is relatlvely stable. We used the
fact that for all boxed kernels K, A —0 implles \/‘n_E(J,L )—00 as n —oo (see
exercise 9.2; or Devroye and Gyorfl (1985, p. 138)). One questlon not answered Is
whether the condition A —0 can be dropped altogether. This Is dealt with In exer-
clse 9.1.

9.3. A MOMENT INEQUALITY FOR THE POISSON DISTRIBU-
TION.

‘We wlill prove Theorem 8.1 via a Polssonlzatlon argument. At a cruclal Junc-
tlon, 1t will be necessary to bound E {IN?) from above where p Is a large Integer,
and N 1s a Polsson (n ) random variable. The bound should be expllelt In n and
P , and should not Increase rapldly with p .

Lemma 9.1.
Let N be a Polsson (n ) random varlable, and let p >1 be a constant. Then
e b /1og(1+p /n)

E(N?) < (By

log? (1+'13g(1p_+/:7ﬂ)
and
_» Y
Furthermore,

s

4
nVy< ALY DU S
B = 60 {log(1+\/17)]

Proof of Lemma 9.1. ‘
For any nonnegative Integer ¢ and numbers §>1,p >0, we have

P < S Py s _ Py
S8 ) Cos®’

This follows after observing that the function z? §% Is maximal at the value
z=p [log(é). Thus,

2
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00 e—nni
E(NP)= p T
WPy = % =

0 -n {
< ( 4 )p en(6-1) E € 1(;” 6)

— p p ,n(6-1)
— " elog(d) ( e ’

e log(6)

i=0
‘We stlll have the freedom to choose 6. The expression Is minimal when § is the
solutlon of élog(8)=p /n . Since we want §>1, we should choose § for large values
of p /n approximatlvely as follows:

p/n___
log(1+p /n)
This glves the first inequallty. Since Slog(6)=¢6-1 for § near 1, we should pick

§=1+L
n

§=1+

when p /n Is small. The latter cholce gives the lnequallty

14
EWN?)< e? |[—LP— | = (np)? (nlog(1+L)y?
e log(1+%) n

< (np )P Jlog? (14p) .

Since this ylelds an adequate Inequality, the former choice of § will not be
explored any further. To show the last Inequallty, we begln with
NP <22-Yp? 4(N-n)?), and observe that for all §>1,

E((N-n)?) < ¢n(-1-log@®(__P__yp
e log(0)
(argue as before: (z-n)? §* 1s maxlmal for z =n +p /log(6)). The bound Is
minlmal (In §) when 6 Is the solution of (§-1)log(6)=p /n . For small p /n, the
solutlon is close to 1. Slnce log(8)=<6-1, we can take In first approxlmatlon
6=1+4+Vp /n . Resubstitution of this value and using the fact that
8-1-log(8)<(8-1)%/2 ylelds

?
- ey P
E((N-n))<e? 2[elog(5)]

< (ne)?/?

?
?
[ e Vn log(1+Vp /n )]

?
Dol P
=Y [1og(1+s/17)] -
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9.4. TWO FUNDAMENTAL TOOLS.

One of the problems with a random varlable of the form [ | f,~E(f,)] Is
that when the integral 1s written as a sum of very many Integrals of disjolnt sets,l
the terms In thls sum are dependent because of two phenomena: first of all, If K
has support contalned 1n [-1,1]¢, then a partlcular X; contributes to [ » (x) for
all z within the hypercube X; +[-A ,h ]d. Thus, at the very least, the integrals
over nelghboring sets In the partitlon are dependent. This dependence will be
taken care of by grouplng the sets lnto 2¢ classes: within each class, the sets are
all sufficlently far apart. The second phenomenon Is of a multlnomlal nature: the
cardinalities of the sets (In terms of the X;'s) are multlnomlally distributed. We
can elther work with the multinomlal random variables or use a Polssonlzation
argument. Since the former approach 1s a bit longer, we will employ Polssoniza-
tion to make the cardinallties of the sets Independent of one another.

Let us first establlsh our notatlon. X ;,X,,... Is an Infinlte sequence of 1lid
random Vectors with common density f . N 1s a Polsson (n ) random variable,
Independent of the Infinite data sequence. We deflne

In =7 % K@-X),

i<N
Iy =[1fn-1 1.
The space R Is partitioned Into sets Indexed by d-tuples a= T
1 d

where all j;'s are Integer-valued. The set' 4 , 1s defilned by
d
A, = TI[5.2h (5 +1)2R).
i=1

The d-tuples a are partlitioned In turn into 24 classes C’l, e, 024 according
to the 2¢ possible odd-even patterns for the d Integer components of a. See
flgure 9.1.
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Figure 9.1.
Grid with A ,=[2h5,2h (F{+1)X - - - X[2hj;,2h (4 +1)), where
o=y - s T0)

One class of sets A o s marked with crosses.

‘We define
= [ fn=f |1-EC fn-f )
Ay

It should be noted that when o,f€C;, and a#p, then Y, and Y 4 are Indepen-
dent. Notice that we have partitloned the space into 2¢ grlds, where each grid 1s
a translation of the first grid.

The second tool needed In our proof Is an Inequality linking

To=[1fa-f | 0o dy=[|fn-f |:
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Lemma 9.2.

Forall e>3f | K | /Vn ,
n €2

18 | K |+6cf | K |

PUR-BW) >0 S P(In-EU) | >5) + 26

Proof of Lemma 9.2.
By the trlangle Inequality,

P(|h-E()|>e€)
SP(|JN—E(JN)|>-§-)+P(|J’N—J,, |>§)+P(|E(J,,)—E(JN)|>§).
Observe that

| Tomdn | = 11 fa=f |=f1In-1 1]
<1 ainl <2 bpik )

A_[so, M—
n

I)f|K | <n~Y2[ | K | <¢/3. Furthermore,
p[J——LN;" JIK | >§]

—

3f|K |

< E(etIN-nl-tfn) (4 50) (Jensen’s Inequallty)

< e-ténE[et(N—n) + et(n—N))

— -tin [en(e'—l—t)+ en(t+e"—l)]

A
=P(|N-n| >6n) (6=

< g e tintn(e’-1) (qnee et 4+t <ef-t)
= 9 ¢ #(6(1+8)log(1+8)) (t =log(1+6))

X
< ge D)

The last Inequallty Is most easlly shown vla Taylor's serles expansion. JJj
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‘We conclude this section by glving two other Inequalities:

Lemma 9.3.

Let X be any random varlable with finlte mean, and let ¢ be an arbitrary
real number. Then

| | X-a | -E(|X-a )| < | X-EX)| +E(|X-EX)]).

Proof of Lemma 9.3.
Observe that

| X-a | - | X-E(X)]
S Je-EX)| SE(|X-a|),
and that
E(|X-a )-E(|X-EX)|)< E(|e-EX)])
=|e-EX)| < |a-X| + |X-EX)| . N

Lemma 9.4. Whittle's inequality.

Let X,,...,X, be lIld zero mean random varlables with finlte p-th
moment, where p >2 Is a real number. Then

P

1 2 3
E(| =X |?P)Svyn?
i1

where

1
=V

( The general form of the lnequallty Is due to Marclnklewicz and Zygmund
(1937), and the constant 7, was computed by Whittle (1960).)

P
szr(-‘nzi) .
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Proof of Lemma 9.4.
See Whittle (1960). Il

9.5. PROOF OF THEOREM 9.1.
‘We begin with

d

2
IN-E(N)=X T Y,
i =1la€C;

Thus, for all €>0,

P([In-EUN)| > < %:P[I 5 Y.l >%]
=1 acC; 2

< Se T([IEET)+ HE(e'tY°’)] (all £ >0) .

i=1 aEC; a€C;

Here we used Jensen's Inequallty and the Independence of the Y ,'s within the
same class C;. Thils Is the place In which the shifted grid argument s fully
explolited.

Everything now bolls down to an Investigation of E(ety") for all ¢{. From
Taylor’s serles with remalnder term, we have

o0 tli|Y J
E(etY")SE1+E | l | al
j=2 7!

Observe that

Yol < J 1w~ 1-ECLin=1 D)

< J(1/n-EUm +EU In-EU WD)
Aa—
(Lemma 9.3)

A
=7,.

The last Inequallty follows by repeated applications of the trlangle lnequallty.
Comblning this with the fact that E (Y ,)==0 shows that

t|iz]
E(Cty")SEl-f-%.‘; I , a
j=2 2!
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Note that

. J
zd = f[|fN—E(fN)|+E(|fN—E(me]]
Ay

SN (1 Tw-BUm 1+ In-E¢m D)

@

(Holder's Inequality)
< @) (| fy-E( M) T+BI(| IN-B(UN) D) -
Ao

Taklng expected values and applylng Jensen's inequality shows that

E(ZJ)< @hyi 2l [E( | [n-BE(/p) 1)
Ao

Let J be the set of Indices ¢ for which n <t <N or N <1 <n. Observe that
B(1/y-EUNIT)
=B( | Sn-EU )17 ) (BI y=F (N)E (K, )=nE (K, )

‘o 1 n N 1 .
<2 I[E[ | 3 (K (5 X )-E (K, o -X;)) | Y ] + E[ | ~ S Ky @-X;) | ]J :
§=1 ieJ
The first expected value In the last expression Is not larger than
J

yin 2E[ |K,,(z~X1)—E(Kh(z—X1))|f] (Lemma 9.4)

i _
<qjn 22 E( | Ky(z-X 0|7 )

g ,
_—_-2.7/7]n 2|Kh IJ*/ X

The second expected value 1s not larger than

n-fE[ | N-n |/ 'Nj"l lK,,(z—X,-)|j] (Jensen)

i=1
=n T B( | Kye-X) |7 JE(|N-n | )

=nTE(|N-n|7) |K, |7 %f
i .
Sn‘jﬁjn2 | Ky |7 #*f
R .

(&; ) (Lemma 9.1) .

. j
—_—J
[\/E-log(l-ﬂ/]_')]
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Thus,

i
B(2d) < @h)I0 [o9 2 (2layag; ) n * 1Ky 7%
Aor
A ) I ]
=p; pli-1d 4, 2 J VK |7+ .
Ao
Therefore,

i
[>'e] t2 2 p; , .
E(") <14 3] [7] = RO [ Ky |74
j=2 J: A
A
= 1+G (at) < e F(@t)

Note that G (a,t) 1s an even functlon of ¢, so that Ee Y can be bounded by
the same expresslon. Thus,

24
P(|IN-E(Nn)| > ¢ < Eze-ltIE/T‘ I eS@t
f=1 *€C,
2¢ . Y G(ant)
= 225"’t|5/2 eﬁci
i=1
E["‘—z]éﬂ-z“m )i
< gd+ig-|t et izl n) J!

where we used the fact that R NER
a€C; A

STUE 7% =[ 1K |[P=[ K [TR¢ <2l K, f A70%. Puiting

t?=nc?, we obtaln

P(|IN-E(Jy)| > ¢) < ad+1e=eVn /2

A
_ 2d+le—c\/n_e/2‘ e2d‘I’(CKnnx) ]

We need only show that for all positive constants u, ¥(u)<oo. By the
definitlons of £ j and v;, this Is equivalent to showlng that for all « >0,

ot _ ) * oo
=\ log@+V5 ) ) 5! ’

and

oo y 1 ’M"

sl S <o,

i=e 2 7!
This can be verlfled qulte easily using Stirling’s approximation for the factorial.
This concludes the proof of Theorem 9.1. J§

3
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9.6. EXERCISES.

9.1,

9.2,

9.3.

9.4.

Show that there exlst densitles f and kernels K such that the kernel estl-
mate With constant smoothing factor A 1s not relatlvely stable.

Show that for all boxed kernels K and all sequences of smoothing factors
h 10, the kernel estlmate f, cannot converge at the rate 1/vn , l.e,

im Vo E(f|f.,-f |)=o.

This is an Introductlon to the next exerclse. Assume that the L, distance
between two densitles f and ¢ Is estimated by Importance sampling in the
following manner: generate Y ;, . .., Y, , lid random varlables with density
J . Compute the estimate

m g(Yy)

T, =—2|1—2=],.

" i =1 f (Yz )

Show that E (T,, )=/ | f —¢ |, and that

Var (T,,) < M
m

Furthermore, P (| T, —f | f =g | | >¢€) Is bounded by the mlnimum of
m e?

2¢ 2

and
me?

4
— - + 4¢
mf!f g | .

2e

Note: these lnequalitles provide crude confldence Intervals for the L, error.
Compute a safe value for m such that with probabllity at least 95% T, Is
within 5% of Its mean, when f | / —g | takes the values 0.1,0.05,0.02,0.01
(this 1s the range of values usually of interest in density estimation).

Glve a distribution-free confildence Interval for T,,, when 1t Is used to estl-
mate E(f | fu=f |) where / is known, f, Is the kernel estlmate with
boxed kernel K and arbitrary h. The estimate T,, 1Is, as In exerclse 9.3,
based upon a sample of ild random varlables drawn from f,. In other
words, give a useful distribution-free upper bound for

P(|Tu-E(f|fa-f DI>0).

The bound should depend upon ¢,n, K ,m and d only. Show also that

E(Tm-E( | fa-t D)< 24E
m n

for some constant C' depending upon K and d only.
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9.5. Show that for the kernel estimate wlth arbltrary kernel K , we have

Var ([ | [n-1 ,)Sfﬂni'_,

Show that for the hlstogram estlmate and for the kernel estimate with non-
negatlve kernel, we have

Var ([ | /a=f 1)< =

Note that thls can be used to determlne the constant C' In exerclse 9.4, and
that weak relatlve stabllity follows from this result whenever
Ilm Vn' E(f| fa-S |)=co. Hmt: try uslng the Efron-Steln Inequality
n —00

(Efron and Steln, 1981), which states that
n+1 -—
Var (S(X,, ..., X)) < E[ E(S,~—S)2] .
=1

where X,, . .., X, ,X, ,, are lld random vectors, S (2, ..., Z,) Is 2 sym-
metric functlon of 1ts arguments,

S; =8, ..., Xi X, X)) t=1, ..., 041,

— fn+1
and S=(n+1)' 3} S;.

§==1
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