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ABSTRACT. The generalized Lagrange probability distributions include the Borel-Tanner
distribution, Haight’s distribution, the Poisson-Poisson distribution and Consul’s distri-
bution, to name a few. We introduce two universally applicable random variate generators
for this family of distributions. In the branching process method, we produce the gener-
ation sizes in a Galton-Watson branching process. In the uniform bounding method, we
employ the rejection method based upon a simple probability inequality that is valid for
all members in a given subfamily.

1. Lagrange probability distributions.

The purpose of this note is to point out a few properties of the generalized Lagrange
probability distributions (GLPD) that are useful for the purpose of generating random
variates with these discrete distributions. First introduced by Consul and Shenton (1972),
the probabilities defining the discrete distributions typically have complicated analytic
formats that do not lend themselves to fast methods of random variate generation. Also,
the vastness of the family makes any investment in efficient universal methods for the
family a worthy one.



At the basis of the GLPD family is Lagrange’s formula given below in a form that
can be found e.g. in Dieudonné (1971).

PROPERTY 1. Let f be analytic in a disk D(0,7), r = 0, and let f(0) # 0. Then there
exists an R = 0 and an analytic function g on D(0, R) such that

9(5) = 5/(9(s)) , all s € (0,R) .
Furthermore, if y is analytic on D(0,r), then for all s € D(0, R),

o) =10+ 3 5 [ W ENUE)

|
n: =0

In particular, if f and y are generating functions for probability distributions, and f(0) # 0
and f'(1) <1, then y(g(s)) is the generating function of a random variable N defined by
1 [ d. i
PV=n) =& | WEUE!] nzo,

z=0

n!

Lagrange’s formula provides us with exact expressions for P {N = n}. Consul and
Shenton (1973, section 3; 1975, Theorem 2.1) have pointed out the relationship between
GLPD’s and the number of customers served in a busy period of a single-server queueing
process started up with Y customers at time 0. This connection, when translated into
an algorithm, leads to complexities of the order of EN since each customer is handled
individually. A relationship between the above queueing process and branching processes
was pointed out in Exercise 14 on p. 64 of Athreya and Ney (1972). We will introduce
below the branching process method, in which N is generated based upon the partial
recreation of a certain branching process. The advantage of this method is that no heavy
numerical computations are required at all.

In the second part of the paper, we will show that certain GLPD subfamilies have
the property that if # is the collection of parameters,

sgp Do < ¢

for all i, where py; o P{N =i}, and }_,¢; < oco. Families with this property can be
dealt with by employing the rejection method based upon rejection from a distribution
with probabilities proportional to the ¢;’s. (Note: if {p;} is a probability distribution
saisfying p; < ¢; for all 7, then a random variate with distribution p; can be obtained by
the rejection method by generating pairs of independent random variates (X, U), where
X has distribution {cg;} for some constant ¢ and U is uniform [0, 1], until Ugx < px, and
returning X.) More importantly, the design does not



have to be altered in any way when 6 changes, so good speed should be expected when 6
changes frequently between calls. We will refer to this as the uniform bounding method.
The method is extremely simple to implement and comprehend.

There are instances in which none of the two methods discussed above will satisfy
the true perfectionist; indeed, for some GLPD families, the expected running time cannot
be uniformly bounded over all members in the family. In those cases, one has to look at
the limiting members in the family in order to design good rejection methods. Consul
and Shenton (1973) have shown that for many families, one can obtain the normal law
in the limit, as well as the entire family of inverse gaussian distributions. Based on this
observation, Devroye (1989) worked out the details of a uniformly fast algorithm for the
Poisson-Poisson distribution of Consul and Jain (1973). For other families, similar ad hoc
algorithms can be derived as well.

A list of some GLPD distributions can be found in Consul and Shenton (1972). It is
convenient to say that a distribution is an (f,y) GLPD when f and y are the generating
functions of the probability distributions employed in the definition of the family. An
important subclass is that of the (f,s*) GLPD, or so-called delta GLPD’s, in which
y(s) = s* puts mass one at k. The following property shows why the delta GLPD’s play
a key role for us — its proof is a simple corollary of the results on the branching process
method.

PROPERTY 2. IfY is a random variable with generating function y(s), and given Y, X
is a random variable with the (f,s¥) GLPD, then X is (f,y) GLPD.

In other words, we never need to look at the general (f, y) case as the delta GLPD’s
are the basic building blocks with which we shall work. Here are a few important delta
GLPD’s:

A. THE BINOMIAL-DELTA GLPD. CONSUL’S DISTRIBUTION. Here we take f bino-
mial (m,p) (with mp < 1) and y(s) = s*. This yields
P{N — Z} — E(ml )pi_k(l _p)mi-i-lc—i 0> k.
1\t —k

If X is binomial-delta with m =1 (i.e., it is Bernoulli-delta), then X is distributed

as k + Y, where Y is negative binomial (k,p). Thus, the geometric and negative

binomial families are shifted Bernoulli-delta GLPD’s!
B. HAIGHT’S DISTRIBUTION. THE GEOMETRIC-DELTA GLPD. Haight (1961) intro-
duced a distribution which corresponds to a GLPD with y = s (hence Y = 1) and

f(s) =1 =p)/(1—ps), p € (0,1/2) (the geometric distribution). This leads to

the probabilities
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il —1)!
Note that in this simple case, the generating function g for N can be obtained

P{N =i} = (1—p),i>1.

without great difficulty as the solution of g(s) = sf(g(s)):
s —sp

g(s) = ————,

) = T 00(5)

or of pg?(s) — g(s) + s — ps = 0. This yields

1= \/1—4p(1—p)s

= % :

This gives us another interpretation for the Haight distribution: g¢(s?)/s is the

g9(s)

generating function of the first visit to 4+1 in a simple asymmetric random walk on

the integers in which a positive move is made with probability 1 — p.

. THE NEGATIVE-BINOMIAL DELTA DISTRIBUTION. Consul and Shenton (1972)

discussed the generalization of Haight’s distribution, called the negative-binomial

delta GLPD, in which y(s) = s*, f(s) = ((1 —p)/(1 —ps))™, k > 1, m > 1 and

mp/(1 — p) < 1. They obtain

) ET(mi+i—k) , ,

PAN =i} ==

. THE BOREL-TANNER DISTRIBUTION. THE P0ISSON-DELTA GLPD. The Borel-

Tanner distribution (Tanner, 1951, 1953, 1961; Haight and Breuer, 1960) is the

(f,s") GLPD, in which f(s) = e**~Y is Poisson (\) with A < 1. It has probabilities
) k e—/\i()\i)i—k )

PAN =i} =7 TR
and was identified by Otter (1949) as the distribution of the size of a branching
process with Poisson reproduction distribution, when the process is started up with
one father (k = 1). Tanner (1953, 1961; see also Takacs, 1963) showed that N is
the number of customers served in a busy period of a single server queue with &

(1—p)™  i>k.

customers at the start, Poisson arrivals, and constant service times. For k = 1, we
obtain the Borel distribution:

(Ni)i-leAi
2!
This is also the shifted Haight mixture distribution (Haight, 1961, entry 8.89), for

which a uniformly fast generator is given in Devroye (1989).

P{N=i}= Ci> 1



Other examples are given in Consul and Shenton (1972). Among the important
GLPD’s that are not of the delta type, we cite the Poisson-Poisson distribution, the
binomial-binomial GLPD, and the Poisson-geometric GLPD. All of these will be briefly
commented upon in a further section.

Consider next the following property due to Consul and Shenton (1972) — also a
simple corollary of the branching process interpretation of N (see further on).

PROPERTY 3. If X and W are independent (f,s*) and (f,s') GLPD random variables
respectively, then X + W is (f, s**!) GLPD.

Thus, random variates for the (f, s¥) GLPD can be generated if we have generators avail-
able to us for the (f, s) GLPD’s. These distributions are truly the atomic building blocks.
Examples include the geometric-delta distribution and the Borel distribution. Unfortu-
nately, summing £ i.i.d. random variates with these distributions leads to methods whose
running time grows linearly with k. As we will see below, the branching process and uni-
form bounding methods do much better, reducing the times roughly to O(logk) and vk
respectively. Nevertheless, we will give indications for good generators for these important
atomic GLPD’s.

2. The size of a branching process.

The generating function f(s) for a nonnegative discrete random variable X is
defined by

f5)=> pis' =Bs",
=0

where p; = P {X =i}. In a Galton-Watson branching process started with one element,
every element produces children in an independent fashion according to the distribution
defined by f. Such a process is known to be be finite with probability one (i.e. the
population becomes extinct) if f has mean m = EX <1 (in the case m = 1, we assume
that p; # 1). We define the size N of such a process to be the number of elements that
ever live in such a finite population. The generating function of N is g(s).

PROPERTY 4. For s € [0, 1], the generating function g(s) is equal to the unique solution
u of the equation

Thus, the total population size N is (f,s) GLPD.



PrOOF. We trivially have u < f(u). Also, uf'(u) < f(u) by a simple geometric argument.
Thus, f(u)/u ] 1, since (f'(u)/u) = (f(u)/u®) = (uf'(u) = f(u))/u* <0. Hence, u/f(u) 1
1 and the given equation has indeed a unique solution. If the father of the entire population
has X kids, then N =1+ . N;, where the N;’s are i.i.d. and distributed as N. Thus,

g(s) = Bs™ = Bs'"2isx M = 5By (s)* = 5f(g(s)).0

PROPERTY 5. If we begin the branching process with Y fathers, where Y is a random
variable having generating function y(s), then the generating function for N is Eg(s)¥ =
y(g(s)), where g(s) is as in Property 4. The distribution of N is (f,y) GLPD.

3. The branching process method.

The branching process algorithm for generating N merely mimicks the definition:

Branching process method.

generate Y with generating function y(s)

N «+Y

while Y >0 do
generate 7 with generating function f¥(s)
(N,Y)«— (N+Z,2)

return N

Let us look at the expected time per random variate. We note first that the
sequence of Y’s generated in the algorithm corresponds to the number of elements in sub-
sequent generations of the branching process. The number of iterations through the while
loop corresponds to the number of generations before the population becomes extinct. We
must distinguish between several situations. If a random variate with generating function
f™ can be generated in expected time O(1), then the total expected time is bounded by

C1 ETy + ¢9 :ET’G7



where T}, is the time needed to generate a random variate with generating function y(s),
and T is the number of generations in the branching process. The ¢;’s are constants. If
a random variate for f” is generated as a sum of n i.i.d. random variates with generating
function f, then the expected time is of the form ¢;ET} + ¢c;EN. This follows from the
fact that every element ever alive is once and only once considered as a potential father.

But EN is simply the sum of the expected values of all elements that live in all

generations, and thus
EY

o
J— [ —

EN =EY ; m'=
If m =1, EN = oo. In the inversion method (Devroye, 1986, p. 86), the expected
complexity as measured by the expected number of comparisons is E(1 + N). This is
comparable with this version of the branching process algorithm. The difference is that
in the inversion method, we need to have access to the probabilities P {N = i}, whereas
no steps in the branching process algorithm involve heavy numerical computations. The
generator for f should of course be fast; since m < 1, it too could efficiently be handled
by the inversion method; depending upon the situation, a table method may prove to be
convenient here.

In the important GLPD families, f is Poisson, binomial or negative binomial,
so that f" is again Poisson, binomial or negative binomial. If we use a uniformly fast
generator for these families, then the complexity is largely reduced, and we only have to
look at ET¢, the expected number of generations. To analyze this, we will first look at
the finiteness of ET, and then obtain upper bounds for this quantity.

THE FINITENESS OF ET;.  We note that if y(s) = s (i.e., we have one initial element),
and if Ny = 1, Ny, N,,... denote the sizes of the generations, then N; has generating
function f,(s), where f,,(s) = f(f(f(... f(s)) is the n times iterated version of f. See e.g.
Athreya and Ney (1972, pp. 1-6). Thus,

ETz =Y P{Ta=n}=) P{N,=0}=> (1—fu(0)).

By definition, fy(s) = s. If we begin with k fathers, then P {N,, = 0} = (/.(0))*, so that,
in general, starting with a random number Y of fathers, we have

ETq =) E(1— (fa(0)") =) (1 - y(fa(0))).

As n — oo, we have f,(0) — 1, hence 1 —y(f,(0)) ~ ¢'(1)(1 = £,(0)) if ¥'(1) = EY < oo.
In such cases, the finiteness of ETy is solely determined by the finiteness of ETy in the
single father case y(s) = s. Assume thus y(s) = s (and Y = 1).



e If m < 1, we have 1 — f,(0) = P(N, = 0) < EN, = m", so that ETg <
1/(1—m) < oc.

e If m =1, then the situation depends upon the behavior of f near one. If 02 < oo,
where o is the variance for f, then 1—f,,(0) ~ 2/(no?) (Kolmogorov, 1938; Kesten,
Ney and Spitzer, 1966; see Athreya and Ney, 1972, pp. 19-22), so that ET = oc.

e Finally, if m = 1 but 02 = oo, both ET; < 0o and ET = oo can occur. []

PROPERTY 6. Ify(s) = s, then

1—
ET; <1+ f(o)ﬁ ! .
—m 1—-m
If y(s) = s* for k > 1 (i.e. Y = k), then
1+1
ETGgl—i—Lgk.
—m

Finally, for general Y,
1+Elog, Y <14 1+log, EY

Elg <1+ <
—m 1—m

Y

where by definition log, x =logz when v > 1 and log, x =2 — 1 when 0 <z < 1.

PROOF. Note the relationship f(s) > 1—m(1l —s),i.e. 1 — f(s) < m(1 — s). Thus,
1= fu+1(s) < m(1 — fu(s)).

By induction, 1 — f,,(0) < m™~'(1 — f(0)). Hence, if y(s) = s,

g0

ETo <1+> m"'(1-f(0) =1+ —
n=1

For the second part, we use 1 — f,,(0) < m™, so that

ET, < iu — (1 —m™Fk)

n=0

< inf (Z+ka">
n=I[

[ integer

k [
— inf <z+ = )
[ integer 1 —m

log k 1
+ Tog(L/m) + 1 (take [ = [logk/log(1/m)])

—m
1+ logk
1—m

<1+

The third part of Property 6 follows if we replace k& by Y and take expected values. Note,
in particular, that we used Elog, Y <log, 8EY since log, is concave. [J



The cases of interest are when one or both of EY', 1/(1 — m) are large. Note that
if f¥ is handled by generating sums ZZY:1 N;, where the N;’s are i.i.d. with generating
function f, then the expected time complexity has as main term EY/(1 —m). If however,
we replace it by a method with uniformly bounded generation times for f¥, then the main
term in the expected time complexity is reduced to something smaller than a constant
times log, (EY')/(1 — m). This results in spectacular savings. The savings are even more
outspoken in the case m = 1. Since we have to compare infinities, it is perhaps better
to look at the expected work done up to n generations. Assume that Y = 1 and that f
has a finite variance o2. In the “sum” method, we have work that grows as the expected
number of elements in those n generations, which in turn grows linearly with n. In the
“shortcut” method, we have work growing as > (1 — f;(0)) ~ 20 *logn.

UNIFORMLY BOUNDED TIMES FOR STANDARD DISTRIBUTIONS. For the Poisson, bi-
nomial and negative binomial distributions, we refer to the general treatment in De-
vroye (1986). Recently developed fast methods include Stadlober (1989), Kachitvichy-
anukul and Schmeiser (1988, 1989), Ahrens and Dieter (1987), Stadlober (1988) and
Pokhodzei (1985). O

THE Po1ssON-DELTA GLPD. The expected running time is O(logk/(1 — \)). O

THE BINOMIAL-BINOMIAL GLPD. This distribution is obtained by taking f(s) = (1 —
p + ps)™ binomial (m, p) and y(s) = (1 — p + ps)* binomial (k,p). Here mp < 1 (Consul
and Jain, 1973; Consul and Shenton, 1972). We have

< —f—mZ)pl(l _p)k+mzfz , i Z 0.

k+ma
The expected time is bounded by ¢; + ¢; log(kp)/(1 — mp). O

P{N=i}=

i

THE POISSON-POISSON DISTRIBUTION. If f(s) = €’¢~Y (§ < 1) and g(s) = A~ we
obtain the so-called Poisson-Poisson GLPD of Consul and Jain (1973), given by

P{N =i} = AA+0i) te M1 i>0.

The branching process algorithm leads to a very simple method of expected complexity
roughly bounded by ¢; + cplog(A)/(1 — ) when 0 < 1, where ¢; and ¢y are positive
constants. Devroye (1989) has developed uniformly fast generators for this family for all
A =0 and 0 € (0,1], but the code becomes more involved, and the



overhead per variate is more substantial. Occasional users are probably better off with
the branching process algorithm. For § = 1, we obtain the Abel distribution, and for
0 = 0, the Poisson distribution. Although applicable, the branching process algorithm
is not recommended for the Abel distribution. The branching process method and the
algorithms of Devroye (1989) are not applicable when 6 > 1. For an in—depth study, see
Consul (1989), and for yet another view of generalized Poisson distributions, see Consul
and Shoukri (1988). O

THE BINOMIAL-DELTA GLPD. The expected time is bounded by ¢; +¢;log k/(1 —mp) .
U

THE NEGATIVE BINOMIAL-DELTA GLPD. The expected complexity of the branching
process method grows as logk/(1 — mp(1 —p)). O

THE Po1ssON-GEOMETRIC GLPD. 1In 1973, Consul and Shenton introduced the GLPD
with f Poisson (8), 0 < 6 < 1, and y(s) = y1(s)y2(s), where y,(s) = e**~1) is Poisson
(A), and ya(s) = (1 — 0)/(1 — Os) is geometric with parameter . The corresponding
probabilities are

P{N =i} =(1—-0)(\+08i)e A%/ i>0.

This is the distribution of the busy period of certain single server queues. The expected
time complexity of the branching process method grows as O((1—0) *log, (A+60/(1—0))).
This is not an atomic GLPD family, as random variables can be obtained as sums of
random variables that are (Poisson (), Poisson (\)) GLPD and (Poisson (¢), geometric
(0)) GLPD respectively. The probabilities in the latter case are given by

P{N=i}=(1-6)@)e’/i,i>0.0

4. The uniform bounding method.

In the uniform bounding method, we find the supremum with respect to one or
more parameters of P{N = i}, and apply the rejection method based on these suprema.
This principle cannot be applied to just any family. For example, for a Poisson (\)
distribution,

e\ (i)' 1 1
P _<£> A Vomi
as ¢ — 0o. The upper bound in this case is not summable, and is therefore useless in the
rejection method. Interestingly, for many GLPD subfamilies, the uniform

10



bounding method does work. We consider in each case an (f, s¥) GLPD with fixed k —
the parameters are thus all borrowed from f. We will call the parameter or parameters @,
and we will write pg; for the probabilities in question. In the examples considered below,
we will obtain inequalities of the form given below.

PROPERTY 7. Consider the binomial (m,p)-delta (with m > 2, mp < 1), Poisson (\)-
delta (A > 0), and negative binomial (m,p)-delta (mp < 1, m > 0 real-valued) GLPD’s,
with k fixed. Then
_ s E'?k), if i > k;
Suppg; =~ § VU~
0 1, ifi1 =k,

where c is a constant depending upon k only. We can take ¢ = 1/v/27 for the Poisson-delta
GLPD, ¢ = e'/?* |\ /7 for the binomial-delta GLPD, and c¢ = €'/'? /\/2r for the negative
binomial-delta GLPD.

PRrROOF. Take the Borel-Tanner distribution (Poisson-delta GLPD) with parameters & > 1
and A € (0,1):
def k 6_)‘i()\i)i_k
Prxg = ———F 5
i (i—k)!
Note in particular that for a,b > 0, sup,-,u®e"" = (a/be)®. Using this, we see that
E((i—k)/e)™

<
s =R

7i2k7

1>k

Y

Apply Stirling’s approximation (i! > (i/e)'y/27i) to the last expression.
Next, consider the binomial-delta GLPD in which the binomial has parameters
m > 2 and p € (0,1/m):
P{N =i} = f(,”” )pi_k(l — )i
1\t —k
This is maximal with respect to p for p = (i —k)/mi. Resubstitution shows that for i > k,

: .o\ ik S mit+k—i
=) () ()
» 1\t —k mi mi

< Eel/l2mi mi
4 2m(i — k)Y (mi—i+ k)’

where we used Stirling’s approximation. But mi/(mi — i+ k) < 2i/(i + k) when m > 2,

so that we have

11



E o 2
P N — v < = 1/247,
jSup PIN =i} < e \/27r(¢ "G+ k)

Lel/24k
< ——— .,
T Vmivi—k
Consider finally the negative binomial (m,p) distribution as a generator for the
negative binomial-delta GLPD:
. kT(mi+i—Fk) , 4
P{IN=i}=-—+———2p
W= =G o mm)
Considered as function of p, this probability is maximal for p = (i — k)/(mi +i — k).
Resubstitution of this value yields, for ¢ > k,
mik D(mi+i—k+1) (i— k)% (mi)™
i(mi+i—Fk) (i —k)T(mi+ 1) (mi+i— k)miti-k

< E mi oL/ (12(mi+i-k))
“ i\ 2r(mi+i—k)(i—k)

k

= i/ 2m(i — k)

In view of property 7, we need only be concerned with one rejection algorithm.

We take the standard method of defining a continuous density p(x) that is related to the
probabilities p; = P{N = i} in the following manner: f(z)=p; fori <z <i+ 1. With
this understanding, we have p(x) < h(x), where the dominating function h(x) is given by

(L—p)™, i>k.

supP {N =i} <
p

el/12

1, E<zx<k+1;
h(z) =< ¢/vVa—1—k, k+1<z<2k+1,;
ke/(x —1— k)32, 2>2k+1.

If h(z) is used in the rejection method, then the rejection constant, or the expected number
of iterations, is [ h(z)dr =1+ 4cvk. Also, h is well-suited for the inversion method
because

0, x < k;
xh, o z—k, E<xz<k+1;
. (y)dy = 142z —1—F, E+1<x<2k+1;

1+4evVEk —2ke/vVo —1—k, 2k+1<uz.

12



The uniform bounding method based on Property 7.

define ¢
Poisson-delta: c=1/V2r7
binomial-delta GLPD: c = e'/?*/\ /1
negative binomial-delta GLPD: c¢ = e/12/y/271
repeat
generate U uniformly on [0, 1]
V(1 +4eVE)U
case
V<1: return X + &k
1<V <1+2Vk: YV k+1+(V—1)2/4c¢
T+c/\ /(Y —=-1—k) (=22/(V—-1))
V>1+26\/E: Y(—k—f—l—f‘(%)Q
T + ke/(Y —1 — k)32
generate W uniform [0, 1]
until WT <py|
return X < Y|

We observe that the parameters enter in the algorithm only via p|y|. The expected number
of iterations before halting is 1 + 4cv/k. In all cases considered here, this is O(V/k).
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