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PREFACE 

About three years ago, an idea was discussed among some colleagues in 
the Division of Statistics at the University of California, Davis, as to the 
possibility of holding an international conference, focusing exclusively on 
nonparametric curve estimation. The fruition of this idea came about with the 
enthusiastic support of this project by Luc Devroye of McGill University, 
Canada, and Peter Robinson of the London School of Economics, UK. The 
response of colleagues, contacted to ascertain interest in participation in such a 
conference, was gratifying and made the effort involved worthwhile. Devroye 
and Robinson, together with this editor and George Metakides of the University 
of Patras, Greece and of the European Economic Communities, Brussels, formed 
the International Organizing Committee for a two week long Advanced Study 
Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic 
Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses 
between July 29 and August 10, 1990. 

Nonparametric functional estimation is a central topic in statistics, with 
applications in numerous substantive fields in mathematics, natural and social 
sciences, engineering and medicine. While there has been interest in 
nonparametric functional estimation for many years, this has grown of late, owing 
to increasing availability of large data sets and the ability to process them by 
means of improved computing facilities, along with the ability to display the 
results by means of sophisticated graphical procedures. Nonparametric curve 
estimation has become a subfield of statistics in its own right, and has attracted 
the interest of many distinguished scholars in probability, theoretical and applied 
statistics, economics, several areas of engineering, medicine and other· fields. 
Probabilists are attracted by nonparametric curve estimation because of its 
relation to empirical processes. For theoretical statisticians, the nonparametric 
approach poses many fascinating and challenging intellectual problems. For 
applied statisticians, it provides a powerful tool for exploratory data analysis. It 
is used by control engineers for systems identification, and by modern electrical 
engineers for pattern recognition. It is used, in information theory, for 
establishing lower bounds on the performance of estimates and for understanding 
the limitations of our capabilities. In medicine, it is used for diagnostic purposes, 
among other things, by way of discriminatory information extracted from huge 
data bases. 

xi 
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The main objective of the ASI was to provide an opportunity for an 
extended interaction among research workers from diverse fields, with a view 
toward bringing the participants up to date on past and current research activity, 
and to stimulate new research and applications. 

The ASI attracted 84 participants, consisting of eminent statisticians, 
established scientists and younger researchers. Most of the participants came 
from 13 NATO countries and a few came from 3 non-NATO countries. The 
scientific activities were organized around a series of two hour lectures delivered 
by prominent experts. All of the remaining participants had the opportunity to 
present formal lectures of varying duration. The lectures were presented in a 
"tutorial" style as advised by the NATO Scientific Affairs Division. Modified 
versions of 51 of the presented lectures are assembled here and are grouped in 
six distinct subtitles labeled as: Curve and Functional Estimation; Parameter 
Selection, Smoothing; Regression Models; Dependent Data; Time Series 
Analysis, Signal Detection; and Various Topics. 

Chapters I and II consist of 14 papers in the general area of curve and 
functional estimation. Chapter ill comprises 7 papers dealing with the problem 
of parameter selection and smoothing procedures. Another 7 papers on 
regression are grouped together in Chapter N. Dealing nonparametrically with 
dependent data has received extensive attention the last few years, and 7 papers 
on this subject constitute Chapter V. Time series analysis is another area where 
the application of nonparametric methods has found fertile ground. Various 
aspects of nonparametric time series analysis methodology are discussed in the 
6 papers which constitute Chapter VI. Finally, 10 papers are divided equally into 
two final chapters, Chapters VII and vm, under the heading of various topics. 
These papers deal with a variety of important issues of theoretical and applied 
interest within the framework on nonparametric functional estimation. Their 
contents range from complexity regularization to designing prediction bands, to 
analysis of observational studies, to cross-validation, to nonparametric function 
estimation involving error-in-variables. Other topics include goodness-of-fit tests, 
semiparametric estimation, integrable linear statistical models, nonparametric 
techniques in image estimation, and regularized deconvolution. It is hoped that 
this volume will be a source of useful information, and will be accessible to a 
wide spectrum of readers. 
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The ASI was held at the Anargyreios and Korgialeneios School of Spetses 
where space was rented to us by the Greek Government. The NATO Scientific 
Affairs Division was the sole source of financial support for the conference. To this 
organization, we owe a debt of gratitude for the generous financial support, the 
explicit and helpful guidelines, the materials we were provided with, and the general 
assistance and encouragement. All of the above led to a successful meeting for 
which we wish to register here our deep appreciation. The National Science Founda­
tion of the USA provided the travel expenses for six graduate student participants. 
On their behalf, our appreciation is expressed herewith. The local arrangements 
committee, consisting of D. Ioannides, G. Kokolakis, and E. Xekalaki (Chair), 
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I. Curve and Functional Estimation 



REPRODUCING KERNELS AND FINITE ORDER KERNELS 

A.BERLINET 
Unite de Biometrie 
ENSA.M, INRA, Montpellier II 
9, place Pierre Via/a 
34060 Montpellier Cedex 1 
France 

ABSTRACT. Recent literature on density and regression function estimation has shown 
the interest of kernels of order s, i.e. kernels with (s-1) vanishing moments. We define 
here a multi-stage procedure to build estimates based on increasing order kernels and 
leading to a data-driven choice of both the order and the smoothing parameter. Some 
asymptotic as well as non-asymptotic results are provided for the estimates. 

1. Introduction 

Let (Xi)iE IN be a sequence of real-valued independent random variables with 
common density f and cumulative distribution function F. Let fn (respectively, Fn) be an 
estimate of f (respectively, F) built from Xlo ... , Xn and to be specified later on, and let 

:IF n(t) = 1. I. ll]-oo, t](Xj) be the empirical distribution function associated with the sample. 
n j=l 

Following Devroye (1987), let us define D; (f) = li~,l.~nf J I (f * Mh)(r) I where Mh = k ~h ) 
and M is a mollifier; that is a positive symmetric function integrating to one with compact 
support [-1, 1] and infinitely many continuous derivatives. Let us suppose that fn is a 
standard Parren-Rosenblatt kernel estimate built from the sample; that is 

1 n f -Xi) fn(x)=T L K -h-
n n i=l n 

where (hn)nE IN is a fixed sequence of positive real numbers tending to zero and K is a 
measurable function integrating to one. Let L be the Bretagnolle-Huber kernel associated 
with K; that is 

f+OO (y _x)r-l 
'v'x>O L(x)= (_l)r x (r _ I)! K(y)dy,L(-x)=(-I)TL(x). 

Then we have (Devroye, 1987) : 

J I Efn - fl:5; h~ JiLl D;(f) (1,1) 

3 
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provided K is of order at least (r+ 1) (i.e. K has at least (r+ 1) fmite moments and the first r 

moments vanish). The same bound is valid for supl EFn(t) - F(t) I with Fn(t) = it fn(x) dx. 
te2 -00 

This result has been fIrst stated for densities with (r-I) absolutely continuous derivatives. 

For these densities D;(f) = J I f{r) I and the proof of the property is based on a Taylor 

,.. 
series expansion of f. The introduction of Dr (f) and the inequality (1,1) clarifted the fact 

that the interest of kernels of order r was not restricted to densities with r derivatives. 
Attention will be paid to both global errors and bias terms, since reduction of bias terms 
entails variance increase, and vice versa. Roughly speaking, if a kernel of order r is used 

to estimate a density with r derivatives, the bias is of order ~ and the optimal MISE (Mean 

Integrated Squared Error) = E(J (fn(x) - f(x»2 dX) is of order n-2r/(2r+l) (Rosenblatt 

(1956), Bosq and Lecoutre (1987»; a uniform bound for Ll-errors can be found in 
Devroye (1987). 

In part two, we construct finite order kernels from reproducing kemels and show 
that estimates of the density based on these kernels are actually derivatives of estimates of 
the cumulative distribution function defined as best L2-approximations to the empirical 
distribution function. In part three, we focus on products of polynomials and densities and 
on the choice of the order and of the smoothing parameter. Computational aspects are also 
considered. The selection of the order was first considered by Hall and Marron (1987). By 
performing a mean integrated squared error analysis of the problem, they investigated 
theoretical properties of kernels with Fourier transform exp (- I t IP ) and proposed cross­
validation as a method for choosing the kernel order and the smoothing parameter. We 
define a multi-stage procedure to construct estimates based on increasing order kernels and 
leading to a data-driven choice of both the order and the window width. Finally, we give a 
strong uniform consistency theorem for multivariate density estimates based on these 
kernels, extending previous results (Abdous and Berlinet, 1986), and showing how this 
theorem applies to different kinds of estimates. 

2. Construction of finite order kernels 

A measurable function K is said to be a kernel of order p E IN ,.., if 

{
I for j = 0 J x.i K(x) dx = 0 for j = 1, ... , p-I 

C ~ 0 for j = p . 
A common construction of fmite order kernels is obtained through piecewise polynomials 
(Singh (1979), Muller (1984) and Gasser et al (1985» or by a Fourier transform (Devroye 
(1987) and Hall and Marron (1987». We shall mainly be concerned here with products of 
polynomials and densities. With this type of kernels any choice of support, regularity 
conditions (such as continuity, differentiability etc) or tail are possible. 
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Let Ko be a density function, called the initial kernel. Consider a Reproducing 
Kernel Hilbert Subspace V ofL2(Ko) : 

V, endowed with the scalar product (cp, '1') = J cp(x) 'I'(x) Ko(x) dx, is a Hilbert 

space of real functions and there is a function %(x, y) (the reproducing kernel) such that 
V'xe JR, %(x,.)e V 

V'CPe V, V'xe JR, J %(x, u) cp(u) Ko(u) du = cp(x). 

Such a framework is encountered for instance in density estimation when using the 
orthonormal functions method: let I.\. be a positive ()"-finite measure on (JR, ~ R) with 

density Ko = dl.\.. Let us suppose we are given a sample Xl, ... , Xn of i.i.d. random 
dA. 

variables with common density dPxl lying in 0(11) in which a basis (CPihe IN has been 
dl.\. 

dPx q(n)l n 
chosen. Then f = __ 1 can be estimated by fn(x) = L - L CPi(Xj) CPi(X) Ko(x) , where 

dA. i=l n j=l 
q(n) has to be suitably chosen. 

q(n) 
The function %q(n)(x,y) = .L CPi(x) CPi(y) is the reproducing kernel of the subspace V q(n) 

1=1 

of 0(1.\.) generated by CPl,ql2 '''., CPq(n) and fn(x) can be rewritten as : 
1 n 

fn(x) = n j~l %q(n/x,Xj) Ko(x). 

For details see Bosq and Lecoutre (1987), and Gyorfi (1974) for the sequential case. 
When f eo L2(Ko), the estimate exhibits an erratic behavior. From the robustness point of 
view the kernels under consideration below will provide much better estimates. 

Theorem 1. 
Let K(x) = %(x, 0) Ko(x) and V r be the space of polynomials of degree at most r. 
(a) If the constants belong to V, then"i/ y e lR, %( . , y) Ko( . ) integrates to 1. 
(b) If the monomial (xj) (j ~ 1) belongs to V, then J xj K(x) dx = O. 

(c) If J xr+l K(x) dx is finite and different from zero and if Vr C V, then K is a 

kernel of order (r+l). 

Proof: 
By the reproduction property, for any constant function C(x) = C and any mono-

mial (xj) G ~ 1), we have: J C %(x, y) Ko(x) dx = C I X=Y = C 
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and J xj K(x, 0) Ko(x) dx = (xj) I x=O = O. 

Conversely, under very mild assumptions, satisfied by all reasonable kernel, a kernel of 
order r can be written in the form K(x, 0) Ko(x) (Berlinet, 1990). 

Theorem 2. 

Let fn(x) = ;h j~ K r- -h Xi, 0) K«- -h Xi) be the standard kernel estimate of f 

defined by means of the kernel K(x) = K(x, 0) Ko(x). Let Fn(t) = f~ fn(x)dx be the 

natural estimate ofF obtained by integration. Then Fn(t) = n (t) where 

Proof: 

Fn(t) = - L 11]'00, t] (Xj + hv) K(v, 0) Ko(v) dv. (2,1) 1 n J 
n j=l 

The integral in (2,1) is the value at Oofthe projection of 11].00, t] (Xj + h.) on the subspace 
V and Fn(t) is the average of this values. Therefore Fn(t) is the value at 0 of the projection 

n 
on V of the function.! L 11 ],00, t] (Xj + h.); i.e. the solution to the following problem: 

n. 1 J= 
find 1t in V minimizing the norm of (1t (.) - IF n (t - h .») and set Fn(t) = n(O). 
The conclusion follows. 

Corollary. 

Under the hypothesis of Theorem 2, if the mapping 1t(.) ~ 1t (T) is one-to­

one in V (as it is the case when V = Vr, the space of polynomials of degree at most r), then 
Fn(t) = n (t) where 

n = arg ~ J (1t(u) - IF n(U»)2 K0l- it U) duo 

This last property has been pointed out by Lejeune and Sarda (1989) in particular cases. 

Comments : Theorem 2 shows that estimating a density with a kernel like K amounts to 
simply deriving the best L2-approximation to the empirical distribution function IF n by a 

function x(T) (1t lying in V) with weight K«T) Such an interpretation tends to 

indicate that the cumulative distribution function should be more widely used in the 
determination of the smoothing parameter or of the dimension of models. This is all the 
more true since the empirical distribution function appears as an intrinsic reference whereas 
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no equivalent reference exists for the density. Sarcla (1990) and Abdous (1990) have done 
some work in this direction recently. 
Many familiar estimates of the density function are actually derivatives of least squares 
estimates of the cumulative distribution function. As an example, let us consider again the 
orthonormal functions method mentioned in part 2 and use the same notation. 

1 n q(n) 
Set Fn(t) = J fn(x) dx = - I. J n ]_00, t](x) I. 'Pi(Xj) 'Pi(X) Ko(x) dx. (2,2) 

n j=l i=l 

The integral in (2,2) is the value at Xj of the projection of nl-, tl (.) on the subspace V q(n) 
and Fn(t) is the average of these values. 

Theorem 3. 
If d(.) = f(x - h. ) (respectively, D(.) = F(t - h . » E O(Ko), then the expectation 

offn(x) (respectively, Fn(t» is the projection of d (respectively, D) on V. 

Proof: 

Efn(x) = (k K( h)· f)x) = J f(x - hv)%(v, 0) Ko(v) dv. 

The proof is similar for Fn(t). 
In part 4, we give a strong uniform consistency result. 

3. The polynomial case 

In this part, we investigate the case where V = Vr, the space of polynomials of 
degree at most r. No additional work is needed to deal with kernels of order (m,p) used to 
estimate derivatives of regression or density functions (Singh (1979), Gasser and Muller 
(1979), Gasser et al (1985), Gasser (1989» and defined as follows: 

a measurable function K is said to be a kernel of order (m, p), m E IN, p E IN ., 
m ~p - 2, if 

f xj K(x) dx = {~_l)m m! 

C::I:.O 

(the last condition is removed when p = +00). 

for j E {O, ... , p - 1} and j ::I:. m 

for j = m 

for j = p 

A superkernel is a kernel of order (m, +00). Muntz's theorem implies that such a 
kernel cannot have a compact support. 

Ko is a density with fmite moments up to order 2s (s ~ 1). We have the inclusion: 

Vs C L2(Ko). All the conditions of orthogonality will refer to L2(Ko). For simplicity, we 
identify functions and their classes in L2(Ko). 

Let Po == 1, PI, P2, ... ,Ps be the sequence of orthonormal polynomials of Vs and 
let %s be its reproducing kernel: 
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Theorem 4. 

Let K be a kernel of order (m, p), p ~ 2, vanishing with Ko and belonging to 

Ltio) Then the function ~ 11 Ko;tO has, in O(Ko), a projection on Vr 

(r S; min(p - 1, s» which is independent of K and which represents in Vr the operator 

m d I (-1) dxm . 
x=O 

Proof: 

The function ~ 11 Ko;tO is obviously in L 2(KO). Its projection on V r is the 

polynomial II given by 

ll(x) = r x,r<x,y) K(y) dy = f Pi(X) J Pi(y) K(y) dy 
J(KO(Y)"'O) i=O 

r J i 1 (k) I. Pi(X) I. k' Pi (0) yk K(y) dy 
i=O k=O . 

ll(x) 

if r < m 

if r ~ m. 

This proves the fIrst part of the assertion. 

Now let j e {O, ... , r} and ab, aj
l , ... , a1 be the coordinates of xi in the basis Po, ... , Pr. 

(-I)m J xj f p(.m)(y)P. (x)Ko(x) dx = (-I)m i a~ p~m)(y) = (-I)m (xj)(m)I . . 
'=0 1 I '=011 
I I ~y 

Theorem 5. 
Among the kernels satisfying the assumptions of Theorem 4 with p = r+ 1 (r ~ I) 

and m S; r S; s, only one is the product of a polynomial and Ko : 
p-l 

Krm(x) = (-I)m I. p(.m)(O)p' (x) Ko(x) . 
. I I I=m 

Proof: 
. j j 

For j e {O, ... , p-I}, let xl = I. a k Pk(x). From Theorem 4 
k=O 

{
o if j < m 

J xjK~(X)dX= .i(-I)m p\m)(O) a{ ifje {m, ... ,p-I} 
I=m 
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and therefore ~m is a kernel of order (m, p). 

3.1. DETERMINANTAL EXPRESSIONS 

To give an explicit formula for ~m, we introduce some notation: for k ~ 1 and any 

sequence ~ = (~j) of real numbers, let us denote by ~ the Hankel matrix of order k built 

from ~q' ~q+ 1 , .. "~q+2k-2' and by H~ its determinant: 

~= 

~q ~q+I 

~q+I 

~q+k-l ... 

~q+k-l 

~q+2k-2 

H~ = det(M~ ). 

Finally, let H~ m(x), x E JR, m E {I, ... , k} be the determinant of the matrix obtained , 

fromM~ by replacing the mth line by 1, x, x2, ... , xk-l. 

Theorem 6. 
Let ~ = (~)OS;i~s be the sequence of (2s + 1) first moments of Ko. 

Then V x E JR, K~(x) = (-I)m m! H~+l,m+l(x) Ko(x) /H~+l' 
Proof: 
Writing ~m(x) in the basis 1, x, x2, ... , XC and applying the definition of a kernel 

of order (m,p), one gets a linear system in the coefficients of K~(x) with matrix M~. 

Straightforward algebra gives the result. 

REMARK: The determinantal form of K~(x) can be used either in practical computations 

with small values of r, or in theoretical considerations. 

In most cases the integration by parts formula shows that kernels of order (m,p) can be 
obtained as derivatives of kernels of order p. From now on, we will focus on such 
kernels. 

3.2. EXAMPLES 

Any choice of Ko, with finite moments up to order 2s (s ~ 1), provides a sequence 
of kernels K(x) = K(x, 0) Ko(x). This choice, possibly made from the observations, has 
to be further investigated, especially when information is available on the support of f. 
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(a) Ko(x) = ~ .[-1, 1](X) leads to piecewise polynomial kernels: Legendre kernels. 

(b) Ko(x) = (21+1I2k r(1+1I2k»)"1 ex~- X~k) gives rise to Gram-Charlier kernels 

when k = 1. The derivatives of the orthononnal polynomials are in this case linear 
combinations of a bounded number of polynomials of the same system. 

(c) Ko(x) = (j r(a;1)Jl 1 x laexp(- I x I~) gives rise to Laguerre kernels when 

a=Oand~=1. 

(d) Ko(x) = A exp(- ~ (x-P)4 - ! (x-P)2 )(a~o; 1> 0 ifa= 0). This family of 

distributions is characterized by the same property as in (b) with a number of poly­
nomials less than or equal to two. 

Some of these kernels have been discussed in detail in the literature (Deheuvels, 1977a). 
Numerous results concerning orthogonal polynomials with weights, such as those given 
above and many others, can be found in Freud(1973), Nevai (1973a, 1973b, 1979), 
Brezinski(1980). 

-4. 4. 

Figure 1. The three ftrst Gram-Charlier kernels represented on [-4, +4]. 
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3.3. COMPUTATIONAL ASPECTS 

Only straightforward methods of numerical analysis are needed to calculate our 
estimates. The orthononnal polynomials can be computed by means of the following 
relationships : 

.Qn{& 
Pn(x) = II Qn II ' 'i/ n E IN; 

Qo(x) = 1; QI (x) = x -f x Ko(x) dx; On(x) = (x - an) Qn-I (x) - I3n On-2(X), n ~ 2 

f x Q;_I(x) Ko(x) dx f Q;_I(x) Ko(x) dx 

with a.n = -f 2 and ~n = f- 2 
Qn_I(x) Ko(x) dx Qn_2(x) KO(x) dx 

The kernel can be computed either iteratively or by means of the Christoffel-Darboux 
fonnulas, when the Qj's are known explicitely : 

'i/ x # 0, CV' (x 0) = ~ P'(x)P'(O) = _1_ fr+ I (x)Qr(O) - Qr+ I (O)Qr(X») 
""r, ."" 1 1 II n 112 x 1=0 '-a 

3.4. THE MULTIPLE KERNEL ESTIMATION PROCEDURE FOR THE DENSITY 

Above, we argued in favour of the use of the empirical distribution function in the 
determination of the smoothing parameter, whereas in this subsection, we choose any 
cross-validation criterion, CV, which preferably would be consistent. For relevant 
discussion and references, see Berlinet and Devroye (1989). CV is a score function of the 
sample and of the smoothing parameter h estimating either the likelihood of the sample or 
some measure of deviation between the estimate and the true unknown density. This 
includes double (Devroye, 1989) or multiple (Berlinet, 1990) kernel methods. 

We start with an estimate fn,o based on Ko with smoothing parameter hO optimizing 
CV(Ko, h). Then we compute fn.1 based on KI with smoothing parameter hI optimizing 
CV(KI, h), and so on. We decide to stop the procedure or not according to the behavior of 
the sequence CV(Kj, hJ. The order in of the kernel is chosen so as to optimize CV(Kj. hj). 
The smoothing parameter corresponding to Kia is hia . 
It seems possible to mimick the paper by Hall and Marron (1987) to show that for the 

minimum MISE = E (f (fn(x) - f(x»2 dX)= 

(1) iff is not too "smooth", then there is a finite optimal order, whereas iff is very 
"smooth", then, at least asymptotically, the optimal order is infmite; 

(2) choosing the smoothing parameter and kernel order by cross-validation is, 
asymptotically, as good as using the optimal values. 
However, in order to implement the procedure on the basis of a fixed sample size, one 
rather needs theoretical results on the non-asymptotic behavior of CV(Kj, hj),such as, for 
instance, convexity properties. Our choice of the order is still empirical : we stop the 
procedure when no "significant" decrease of CV has occured in the last estimation. 
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The proposed algorithm is as follows: the quantities n and Xl. ... , Xn are given. 

Start out with fo,ho(x) = n~ ~ Kor ho Xi), where ho optimizes CY(Ko, h). 

Then go from step k to step k+ 1 by means of the following relationship 

fk+l,h(X) = fk,h(X) + Pk~~(O) t/k+1r -hXi)Kor -h Xi} (3,1) 

Note that the second tenn of the sum in (3,1) which appears as the correction at step (k+ 1) 
integrates to zero. 
Much computing time is saved by optimizing CY(Kj, hj) only over a grid G and storing 

the values fk,h(X) and KoC -h Xi) for h E G. In most cases, to evaluate CY (Kj, h), only 

the values of fk,h(Xj), 1~ i ~ n, will be used. The Fourier Transfonn of K is easily derived 
from that of Ko; this is interesting when using the Fast Fourier Transfonn, especially in 
case of large sample sizes (Silvennan, 1986). 
All this is easily transposed to the cumulative distribution function. 
Further developments and numerical results will appear in a forthcoming paper. 

4. Strong uniform consistency of random kernel-type density estimates 

In this section, we study the asymptotic behavior of density estimators based on 
kernels K(x) = X,(x, 0) Ko(x) but with more general dependence with respect to the 

estimation point x and the observation Xi than through the ratio x h Xj, where h = hn is 

deterministic. Indeed we consider a wide class of multivariate density estimates for which 
we give sufficient conditions for strong unifonn consistency. This class contains all usual 
kernel estimators and allows non affine random dependence with respect to the 
observations or the estimation point. Theorem 7 is an extension to nonpositive kernels of 
the result given in Abdous and Berlinet (1986). 
The independent identically distributed random variables (Xj)jE IN are supposed to be 
defined on a probability space (0, ~, P) and to take their values in IRk. Their common 

density f is supposed to be continuous and bounded. For x E IR k and 00 E 0, f(x) is 
estimated by 

1 n 
fn(x,oo) =fi L K(en(oo, x, Xi(OO») I In(oo, x, Xj(oo» I (4,1) 

i=1 
where 

(i) en is a real valued mapping defined on ° x IRk x IRk satisfying the following 
conditions : 

(cl) For almost all 00, en(oo, x, . ) is, for all x, a diffeomorphism in IRk 

with Jacobian In(oo, x, . ) and inverse e~l(OO, x, . ); 

(c2) 'V (x, j) en( . , x, Xj( . » and In( . , x, Xj( . » are measurable. 
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(ii) K is a linear combination of bounded real-valued functions (Kjh~j~ defined on 
R k, such that 

(c3) K integrates to one; 
(c4) V j e {I, ... , q} IKjl is Riemann integrable; 

(c5) V j e {I, ... , q}, J;ootk-1Lj(t)dt < +00 where V t ~ 0, Lj(t) is the 

essential supremum of Kj on [t, +00[; 

The following properties of (en) and (In) will be needed in the sequel: 

e-I (c6) Almost surely (a.s.), for all (x,y), lim n (00, x, y) = x; 
n~ 

(c7) a.s., V ~ > 0, sup { R I ).,k(B(O, R) (l En,S(OO»=O} ~ +00 
where 

En,S(oo) = U En,S(x, 00), En,S(x, 00) = { y I II e~ 1(00, x, y) - x II ~ ~ } 
xeA 

A is a non-empty subset of Rk, ).,k is the Lebesgue measure and B(O, R) is the ball 
of radius R centered at the origin; 

(c8) a.s., V R > 0, sup II e~I(OO, x, y) - x II ~ 0; 
x e A 

Ilylis R 

(c9) There is a sequence of real numbers (~n)n~1 tending to infinity such 

that a.s. sup I In(oo, x, y) I :s; ... J n . 
x,yeRk '1~nLogn 

REMARKS (i) (c7) is entailed by (c8), which is often easier to check. 

(ii) (c5) is satisfied, if V ~ > 0, lim II x IIk+S K(x) = O. 
I Ix 11-+00 

Theorem 7 : strong uniform consistency. 

Assume (cl) to (c5). If en and In satisfy respectively (c7) and (c9), and if f is 
uniformly continuous on R k then 

sup I ~(x, 00) - f(x) I ~ 0 a.s. 
x e A 
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The proof is based on the inequality : 

1 fn(x, ro) - f(x) 1 ~ 1 fn(x, ro) - gn(x, ro) 1 + 1 gn(x, ro) - f(x) 1 

where gn(x, ro) = J K( 9 n(ro, x, y») 1 In(ro, x, y) 1 f(y) dy. 

Under our hypothesis, the existence of gn is a consequence of a change of variable. As a 

by-product, we get gn(x, ro) = J K(y) f(9~1(ro, x, y» dy and the property that 

(K(9 n(ro, x, y») 1 In(ro, x, y) I)ne H is a random delta sequence (Prakasa Rao, 1983). 

Theorem 8. 
(a) Assume (c6). Then 'r;;f x e Rk, gn(x,ro) -+ f(x) a.s. 
(b) Under (c7), iffis uniformly continuous then 

sup 1 ~(x, ro) - f(x) 1-+ 0 a.s. 
x E A 

From Theorem 8, it follows that (cl)-(c6) and (c9) entail the a.s. pointwise convergence of 
the estimate fn. 
We quote a lemma of Devroye and Wagner (1980) in order to fix the notation. 

Lemma 1. 
Let K be a positive, bounded and Riemann integrable function defined on lR k. 

For every 1'\, S, P > 0, there exists a function 

* N k K (x) = L ai lE.(x), 'r;;f x e R 
i=1 1 

such that: 

(1) al"'~ are positive real numbers ; 

(2) E1, ... ,EN are open disjoint rectangles of [_p,p]k; 

(3) K*(x) ~ sup K(y) =~, 'r;;f X e Rk; 
yeRk 

(4) I K*(x) - K(x) I ~ 1'\ on [_p,p]k () DC ; 
M 

(5) DeB c.U Bi where the Bi's, i e {I, ... , M} are disjoint rectangles of [-p, p]k and 
1=1 

A,k(B) < S. 
Lemma 2 below sums up the conclusions of the different steps of the proof which 

follows those in Devroye and Wagner (1980). 

Let 



I2,n(ro,x) = IIRk IJn(ro,x,y)1 K*(en(ro,x,y» dF(y) -

IRk IJn(ro,x,y)1 K*(en(ro,x,y» dFn(y) I , 
I3,n(ro,x) = IRk I In(ro,x,y) I I K*(en(ro,x,y» - K(en(ro,x,y» I dFn(y) , 

cl,n(ro,x) = {y : en(ro,x,y) E [_p,p]k}, 
Ml = sup f(x) , 

xeRk 
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Iln denotes the empirical measure.!. f BXi and Il denotes the measure with 
n i=l 

density f. 
3 

We have sup I fn(x,ro) - gn(x,ro) I ~ L sup Ii n(ro,x). 
xeA i=l xeA ' 

Lemma 2. Let q = 1 and let K be a probability density. Let Tl, 0, P > 0 be fixed quantities 
as those employed in Lemma 1. Then we have the following bounds: 

a) sup Il,n(ro,x) ~ 20MlM2 + 11Ml (2p)k + 
xEA 

sup r IJn(ro,x,y)1 K(en(ro,x,y» dF(y) ; 
XE AJcl,n(OO,X) 

b) sup I2,n(ro,x) ~ NM2 sup Illn(Ej) - IlCEj)1 ; 
xEA l~j~ 

c) sup I3,n(ro,x) ~ TlMl (2p)k + 2MlM20 
xEA 

+ 2MM2 sup 1(lln - 1l)(Bi)1 + Tl 1(lln -Il)([-P, p]k)1 
l~~M 

+ sup r I In(ro,x,y) I K(Sn(ro,x,y» d Fn(Y) ; 
XE A JCl,n(OO,X) 

Under condition (c5), the sum of the integrals in a) and c) is bounded by means ofVapnik­
Chervonenkis-Devroye inequality for classes of rectangles. To get the conclusion of 

Theorem 7 when q = 1 and K is a probability density, it is sufficient to let 0 and 11 tend to 

o and p tend to +00. Theorem 7 follows in a straightforward manner. 

5. Applications 

The class of estimates described above contains many standard kernel estimates, as 
is, for example the so-called automatic kernel estimates with smoothing parameter 
depending on x. Many applications could be given for density, regression and hazard 
function estimation. We will limit ourselves to five examples concerning the density. 
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(i) Deheuvels's estimate (1977) is obtained for 9n(ro, x, y) = An(x-y) where An is 

an automorphism. In this case, (c8) is satisfied if II A -111* ~ 0, and (c9) is satisfied if n 

(n / Logn) I det An 12 ~ +00. 

(ti) The automatic estimate of Devroye and Wagner (1980) is obtained for 
9n(ro,x,y) = (x-y)lhn(ro), \;;/ x, ye ]Rk, \;;/ ro eO; (hn(ro»n~1 is a sequence of positive 

real numbers depending on the observations ~, i e {I, ... , n}. A sufficient condition for 

(c8) is that ~(ro) ~ 0 a.s. ; if there exists a sequence (Pn)~1 such that Pn ~ + 00 and 
n--+oo 

nh~ (ro) I Log n ~ Pn a.s., then (c9) is satisfied because I In(ro,x,y) I = IIh~(ro) . 

(iii) Chai Genxiang (1984) reexamined this last estimate assuming that K has 
compact support [-p,p ]k, P > 0, and that hn depends both on the observations and on the 

estimation point x. We have 9n(ro,x,y) = ap.(x-y)lhn(x,ro), \;;/ x, y e ]Rk, \;;/ ro eO; a is 

a constant (a > 1). Condition (c8) is fu1lfilled whenever sup hn(x,ro) ~ 0 a.s. ; (c9) is 
xeA n--+oo 

satisfied if there exists a sequence (Pn)~1 such that 

Pn ~ +00 and inf <hn2k(x,ro})(n/Log n) ~ Pn a.s. 
n--+oo xeRk 

The nearest neighbour estimate is a particular case. 

(iv) Bierens 's estimate (1983) is defined by 

fn(x,ro) = k 1 r. K (S~lfl (x--V~ Xi - (1 --V~ x)~ 
nh IDet Sn1 1{l i=1 h 

n n 

- n n _ _ 
where X = (lin) LXi' Sn = (lin) L (Xi - X) (Xi - X)t and (~)n is a sequence ofreal 

i=1 i=1 
numbers in ]0,1] ; this estimate can be written, up to a multiplicative constant, as the 
estimate in (1); by Theorem 1, 

ifhn ~ o and ni(k/Logn ~ +-,then sup Ifn(x,ro)-f(x)I~Oa.s. 
n--+oo n--+oo xe A n--+oo 

(v) A transformed kernel estimate, close to the one of Devroye and Gyorfi (1985), 
introduced to estimate heavy-tailed densities : 

fn(x) = Ihk .r. K(!(x) -h T(Xi»)1 JT(Xi) I, 
n 1=1 \ 
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where T : IRk -+ ]-1, l[k is a diffeomorphism and JT its Jacobian. Theorem 7 applies with 
e ( ) _ T(x) - T(y) 

n ro,x,y - h . 
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ABSTRACT. We obtain laws of the iterated logarithm for density 
estimates. Our results are based on functional laws of the iterated 
logarithm for the increments of empirical processes due to Deheuvels 
and Mason (1990). 

1. INTRODUCTION 

Let UI ,U2 , ... be a sequence of independent random variables with a 
uniform distribution on (0,1), and let Un(t) = n-I#(Ui~t: l~i~n} 
denote the empirical distribution function based on UI , ... ,Un' 
Consider the uniform empirical process an(t) = n l / 2 (Un (t)-t), and, 
for O<a<l, O~t~l-a, and O~s~l, set En(a,t;s) = an(t+as)-an(t). 

A sequence of constants (an,~l} will be said to satisfy the M. 
Csorgo-Revesz-Stute ([CRS]) conditions if 

(log(l/an))/loglog n ~ 00 as n ~ 00; 

nan/logn ~ 00 as n ~ 00. 

(S.l) 

(S.2) 

(S.3) 

Recently, Deheuvels and Mason (1990) obtained the following functional 
law of the iterated logarithm [LIL] for the sets of functions 
(En(an,t; .), O~~l-an}' In order to describe this law, we need to 
introduce some notation. To this end, denote by B(O,l) the set of all 
bounded functions on [0,1], and, for any fEB(O,l), set 
II fll=suPO~*~ll f(s) I· Endow B(O, 1) with the topology defined by the 
sup-norm 11'11, and, for any £>0 and ACB(O,l), set A£ = (fEB(O,l), 
II f -gll<£ for some gEA}. Furthermore, denote by S the set of all 
~bso1utely cont~nuous functions f on [0,1] having Lebesgue derivative 
f such that II f2(s)ds~1. The definition of S is due to Strassen 
(1964). The ~forementioned result of Deheuvels and Mason (1990) may 
now be stated in the following Theorem A. 

19 

G. Roussas (ed.), Nonparametric Functional Estimation and Related Topics, 19-29. 
© 1991 Kluwer Academic Publishers. 



20 

Theorem A. Let (au,~l} be a sequence satisfying the [CRS] conditions. 

Then, for any £>0, there exists a.s. an n£<oo such that for all 

~n£, [€n(a n ,t;')/(2anlog(1/an»1/2 :Ostsl-an}CS£. Moreover, for any 

£>0 and heS, there exists a.s. an N£<oo such that there exists for all 

~N£ a OStn - tn,£,hSl-an such that II€n(a n ,tn ;·)/(2anlog(1/an»1/2-hll<£. 

Proof. See Deheuvels and Mason (1990), §3 .• 

As a consequence of Theorem A, Deheuvels and Mason (1990) gave new 
proofs and extensions of the laws of the iterated logarithm due to 
Stute (1982) and Mack (1983). The corresponding results are stated 
in Theorems Band C below. Before stating these theorems, we will 
introduce some further notation. In the sequel, X1 'X2 ' ... will be a 
sequence of independent and identically distributed random variables 
on (-00,00), having common distribution function F(x) - P(X1Sx) and 
density f(x) - F'(x) assumed to be continuous and positive on a given 
bounded non-void interval [A,B]. Let Fn(x) - (l/n)#[Xisx :lsiSn}, 
and consider the following estimators of f. Let 

-1 n j -1 -1 
fn(x) - (n~n) ~ K«x-Xi)/~n) - ~ K(~ (x-t»dFn(t) 

i-l -00 n n 
(1.1) 

be the kernel estimate of f (Rosenblatt (1956), Parzen (1962» based 
on a sequence [~n,~l} of positive smoothing parameters (bandwidth) 
satisfying suitable assumptions specified below. The kernel K(') 
satisfies the following conditions: 

K(') is of bounded variation on (-00.00); 

j K(u)du - 1; 
-00 
For some O<M<oo, K(u) - 0 for all lul~. 

Another estimate of f is as follows. Let 

be the nearest neighbor density estimator (Fix and Hodges (1951), 
Loftsgaarden and Quesenberry (1965», where [~n,~l} is another 
sequence of positive smoothing parameters. Furthermore, set 

and 
Efn(x) - j ~-lK(~-l(x-t»dFn(t), 

-00 n n 

Mfn(x) - ~nlinf[h>O :F(x+h/2)-F(x-h/2)~~n}' 

(K.l) 

(K.2) 

(K.3) 

(1. 2) 

(1. 3) 

(1.4) 

In the sequel, we will assume at times that ~n is random and depends 
on X1 , ... ,Xn . In this case, it is noteworthy that Efn(x) is not 
equal to the expectation E(fn(x» of fn(x). On the other hand, if 
~n is non-random, we have Efn(x) - E(fn(x». 
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" We have the following LIL's for fn and f n . 

Theorem B. Let (An,~l} be a non-random sequence satisfying the [CRS] 
conditions. Then, under (K.l)-(K.2), and for any A<C<D<B, we have 

(fn(X)-Efn(X»)( nAn )1/2 (r'" )1/2 
lim sup ± 21 (l/A) = J K2(u)du a.s. (1.5) 
n->oo C:sX!>D jf (x) og n _00 

Theorem C. Let (~n,~l} be a non-random sequence satisfying the [CRS] 
conditions. Then, for any A<C<D<B, we have 

lim sup 
n->oo C:sX!>D 

a.s. (1. 6) 

Proofs. See §4 in Deheuvels and Mason (1990). See also Stute (1983), 
Mack (1983) and Hall (1990) .• 

The motivation for this paper is that, in the recent literature, there 
has been a considerable interest in kernel estimators where the 
bandwidth An depends on the data Xl'" .,Xn , and eventually, also on 
x. A typical example of such data-driven bandwidth selections is as 
follows. Consider the Mean Inegrated Square Error defined by 

(1. 7) 

where I is a specified sub-interval of (-00,00). Assuming some 
further regularity conditions (such as the existence of a square 
integrable second derivative f" of f), it may be proved (see, e.g., 
Devroye and Gyorfi (1984» that any choice of An which minimizes 
MISE(An ) satisfies 

- -115 
An = (l+o(l»En as n->oo, (1. 8) 

where E is a constant depending on I and f. Many authors have 
proposed techniques enabling to choose An = A(n;X 1 , ... ,Xn ) in such a 
way that 

An /(En- 1/S ) ~ 1 as n->oo (in probability or almost surely). (1.9) 

We do not offer here a discussion of such methods (for such a 
discussion, see, for instance, Park and Marron (1988) and the 
references therein), and limit ourselves to the observation that 
theorems such as Theorem B or Theorem C cannot be applied in the 
case of such data-driven bandwidths. In the sequel, we will adapt 
the methodology of Deheuvels and Mason (1990) to show that versions 
of Theorems Band C still hold in this case. 

In Section 2, we will present LIL's of this type. In Section 3, 
we will review further functional LIL's for increments which are 
actually available. 



22 

2. LAYS OF THE ITERATED LOGARITHM FOR DATA DRIVEN KERNEL ESTIMATORS 

In this section. we will assume 
bandwidth An - A(n;x;X1 •...• Xn ) 
conditions. Below. assume that 
non-void sub-interval of [A.Bl. 
assumptions on An. 

that f n (') is as in (1.1) with a 
satisfying the following general 
[C.Dl is an arbitrary (but fixed) 
We will make the following 

There exists a function H(·) which is positive and 
continuous on [A.Bl. and a sequence (an.~l} of 
(possibly dependent upon X1 •...• Xn ) positive random 
variables such that 

- 1 - 1 sup la H(x) A(n;x;X1 •...• Xn)-ll ~ 0 
C:sxsD n 

a.s. 

(L.l) 

(2.1) 

Let (an.~l} be as in (2.1). There exists a sequence (L.2) 
(bn.~l} of positive constants such that the complement of 

(lip :S anfbn:S p} holds a.s. finitely often for all p>l (2.2) 
sufficiently large. 

We will denote likewise by (L.3) and (L.4) the assumptions obtained 
by replacing formally in (L.l). (2.1) and (L.2). (2.2). respectively. 
almost sure convergence by convergence in probability (for (2.2). 
this amounts to assume that both an/bn and bnlan are Op(l) as n~). 

The following examples illustrate (L.l)-(L.2) and (L.3)-(L.4). 

Example 2.1. Moore and Yackel (1977) and Mack and Rosenblatt (1979) 
consider the choice of A(n;x;X1 •...• Xn> taken equal to the distance 
of x to its k-th nearest neighbor in the sample X1 •...• Xn. By 
choosing ~n - kin. we see that this choice amounts to taking 

" where fn(x) is as in (1.2). Assume that k-kn satisfies the 
conditions: 

kn/logn ~ ~ and kn/n ~ 0 as n~. 

Then. Devroye and Wagner (1977) have proved that 

sup Ifn(x)-f(x)I ~ 0 a.s. 
C:sxsD 

It follows that for An as given in (2.3). assumptions (L.l) and 
(L.2) hold with an - bn - ~n - nkn and H(x) - 2/f(x) for C:SXSD. 

(2.3) 

(2.4) 

(2.5) 

Example 2.2. Let I - [A.Bl. and set R(g) - f I g2 (x)dx. For j-l •...• n. 
denote by fj:n the leave-one-out kernel estimator constructed from the 
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data Xl' ... ,Xn with Xj deleted, ~s in (1.1). Next, choose 0<E1<E<E2<~' 
where E is as in (1.8), and let An - A(n;X1, ... ,Xn ) to be the 
largest minimizer, over the interval [E1n- 1/S , E2n- 1/5 ], of the cross­
validated score function 

(2.6) 

Assuming some appropriate smoothnes~ conditions on K(') and f('), 
Hall and Marron (1987) showed that An' as defined above, satisfies 

1/10" - 2 n (An/An - 1) ~> N(O,a ), (2.7) 

where "->" denotes convergence in distribution, Xn is as in (1.8), 
and a 2 ig a constant depending on f. 

" From, (1.14), it follows that An - A(n;X1 , ... ,Xn ) satisfies (L.3)-
(L.4) with an - in' bn - Xn and H(') - 1. 

The main results of this section are stated in the following two 
theorems. 

Theorem 2.1. Assume that (K.l)-(K.3) hold, together with (L.l)­
(L.2). Furthermore, assume that (bn,~l}, as specified in (L.2), 
satisfies the CRS conditions. Then, we have 

+_ (fn(X)-Efn(X») ( nAn )1/2 _ (jK2 U du)1/2 
~~ C~~D jf(x) 2log(1/An ) _~ () a.s. (2.8) 

Theorem 2.2. Assume that (K.l)-(K.3) hold, together with 
(L.3)-(L.4). Furthermore, assume that (bn,~l} as specified in 
(L.2), satisfies the [CRS] conditions. Then, we have 

lim su + (fn(X)-Efn(X») ( nAn )1/2 _ (jK2(u)du)1/2 
n~ CS~D - jf(x) 2log(1/An) -~ 

in probability. 

(2.9) 

Proof. We follow the argument of the proof of Theorem 4.1 of Deheuvels 
and Mason (1990) with simple modifications. In the first place, assume, 
without loss of generality, that M = 1/2 in (K.3), and set 

- (1) _1 n _ 
fn(x) - fn x + -2 An - (nAn) L K«Xi-x)/An), 

i-I 
(2.10) 

where K(u): - K(~ -u). Since f is continuous and An~ a.s., all we 

need for (2.8) to hold is to show that, for any A<C<D<B, we have 

. + (fn(X) -Efn(X») ( nAn ) 1/2 (1-2 ) 1/2 
11m sup - j 21 (l/A) - J K (u)du a.s. (2.11) 
n~ CsxsD f(x) og n 0 
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For later use, note that (K.3) implies that K(u) - 0 for u ~ [0,1]. 
Without loss of generality, set Fn(x) - Un(F(x», where Un (·) is as 
in Section 1. Following Deheuvels and Mason (1990) (see their §4), 
it can be verified that 

(2.12) 

Next, we assume that x varies in a small sub-interval (c,d) of [C,D]. 

Here, we choose d-c>O so small that sUPo~us1IF(x+Anu)-F(x)-~nul~~n6, 

where 6>0 is an arbitrary constant and ~n: - &nsup(f(x)H(x) :c~~d}. 

Now consider en(~n,F(x);u) - Qn(F(x)+~nu)-Qn(F(x» for xE(c,d) and 

O~usl. Under the assumptions of Theorem 2.1, there exists almost 

surely a p>l such that, for all n sufficiently large, bn/P~~n~pbn. 

Since [bn,~l} satisfies the [eRS] conditions, so does [pbn,~l}. 

Applying Theorem A to this case, we see that, for any given £>0, we 
1/2 have, almost surely for all large n, en (pbn ,F(x);·)/(2pbn1og(1/pbn» 

E S£/4P. Now we make the obvious remark that if h E S, then the 
-1/2 function defined by hv(s) - v h(vs) for O~s~l and O<v~l satisfies 

hv E S. Thus, by choosing v-~nI(pbn) E [l/p2,l], it follows that, 

a.s., for all large nand xE(c,d), we have en(~n,F(x); .)/ 

(2~n1og(1/pbn»1/2 E S£/4. Finally, a simple argument based on the 

fact that (log(l/An»/log(l/pbn) ~ 1 shows that en(~n,F(x);·)/ 
1/2 £/2 

(2~nlog(1/An» E S a.s. for all large nand xE(c,d). In other 

words, there exists a function h E S such that for all O~~l, 
1/2 

I(Qn(F(x)+~nv)-Qn(F(x»)/(2~n1og(1/An» -h(v) 1<£/2. This, in turn, 

implies, by choosing 6 ~ £2/4p, that for all 0~us1 

1/2 
I(Qn(F(x+AnU» - Qn(F(x»)/(2~n1og(1/An» - h(u) 1<£/2 

+ sup[lg(u)-g(v)1 :O~u, v~l, lu-vl ~ p6, g E S} ~ £/2 + JPS ~ £. 

This last inequality, combined with (2.12), shows that 

lim sup 
n~ 

1/2 - - 1/2 
n An(fn(x)-Efn(x»/(2~n1og(1/An» 

~ sup[-f1 f(u)dK(u) :fES} + £f1 IdK(u)1 , o 0 

where f 1 IdK(U)1 denotes the total variation of K. By Schwarz's o 

(2.13) 

inequality, we see that If1f(u)dK(u)1 = If1f(u)K(u)dul~(f1IK2(U)du)1/2. 
o 0 0 

Recalling the definition of ~n and using the fact that £>0 can be 
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chosen as small as desired, we see that, given any 0>0, we may choose 

an ~>O such that, whenever O<d-c<~, we have 

(2.14) 

By (2.14), it follows readily that, almost surely, 

f (fn(X) -Efn(X») ( n>'n ) 1/2\ ( 1- ) 1/2 
lim SUP\ sup ± j 21 (1/>.) f~ I K2(u)du . 
n~ c~~d f(x) og n 0 

(2.15) 

For the second half of (2.8), we will make use of the observation 
that, for an) £>0 and hES, there exists a finite sequence 
h(l), ... ,heN of functions belonging to S such t~at, for any 
1/p2~II~l, there exists a j=j(lI) such that Ilh-h(J II < £/4 (recall that 
gll(u) = g(lIu)/j~ for O~~l). Following the sa~e steps as those used 
in the proof of (2.13), we see from Theorem A that there exists an N£ 
< ~ such that for any j=l, ... ,N, there exists an xn:jE(c,d) such that 

~En(pbn,F(Xn:j);·)/(2pbnlog(1/pbn»1/2-h(j)~~£/4p. 

By choosing II = ~n/(pbn)E[1/p2,ll and j=j(lI) , it follows that 

(2.16) 

Finally, by imposing the condition that 0<d-c<8 sufficiently small, 
we see that the same arguments as those used in (2.13), in 
combination with (2.16), show that 

(2.17) 

Recalling that our assumptions imply that suP(I~n/(>'nf(x»-ll :c~~d} 
may be rendered arbitrarily small, by imposing the condition that 
0~d-c~8 is small enough, we see that (2.17) implies that 

.. f (fn(X)-Efn(X»)( n>'n )1/2\ 11m 1nf' sup ± .....:.::----=-=---- f 
n~ 'C~~D jf(x) 2log(1/>'n) 

(2.18) 

Since the choice of h E S is arbitrary, we may choose 
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For such a choice of h, the right-hand side of (2.18) is equal to 

(I:K2(U)du) 1/2. This, in combination with (2.15), completes the proof 

of Theorem 2.1. The proof of Theorem 2.2 is very similar and will 

therefore be omitted. • 

Remark 2.1. A close examination of the proof of Theorems 2.1-2.2 just 
given shows that Assumptions (L.l)-(L.2) may be replaced by the 
assumption that An (n;x;X 1 , •.. ,Xn)/bn is almost surely bounded away 
from zero and infinity, uniformly over the interval C~~D, and 
satisfies a uniform Lipschitz condition in this interval. 

~orollary 2.1. Assume that An - (2~n)/fn(x) is as in (2.3), where 
fn is as in (1.2), and (~n,~l} satisfies the [CRS] conditions. Then 

(fn(X) -Efn(x») ( n~n ) 1/2 _ (j ) 1/2 lim sup ± K2(u)du a.s. (2.19) 
n~ C~~D Jf(x) 2log(1/~n) -00 

Proof. It follows readily from Theorem 2.1 combined with the results 
of Example 2.1. • 

Remark 2.2. Corollary 2.1 describes the limiting oscillation behavior 
of the plug-in estimator discussed by Moore and Yackel (1977) and 
Mack and Rosenblatt (1979). Similar results could be obtained by 
choosing for An a function of a preliminary estimate of the density f 
and of n. 

"-

Corollary 2.2. Assume that An - An is as in Example 2.2, and 
satisfies (2.7). Then 

+ (fn(X)-Efn(X») ( nAn )1/2_(j )1/2 lim sup K2(u)du 
n~ C~~D - Jf(x) 2log(1/An) -00 

(2.20) 

in probability. Moreover, in (2.20) we may replace An by Xn . 

Proof. It follows readily from Theorem 2.2 combined with the results 
of Example 2.2. Recall that Xn is defined in (1.8) .• 

Remark 2.3. Corollary 2.2 describes the limiting oscillation behavior 
of the classical MISE cross-validated data-driven estimator. 
Interestingly enough, this behavior is (up to the order given in 
(2.20» asymptotically identical to that of the exact optimum MISE 
estimator obtained when An - Xn , and Xn is as in (1.8). 

Remark 2.4. We may use the argument of Hall (1990) to show that the 
assumption (K.3) is not necessary for the validity of the conclusion 
of Theorems 2.1 and 2.2. We omit the details of this argument. 



3. CONCllJSION 

The preceding examples show the power of the methods based on 
functional LIL's for increments of empirical processes for obtain­
ing LIL's for density estimators. In this section, we review some 
of the results due to Deheuvels and Mason (1990) and Deheuvels 
(1990) for ranges not covered by the [eRS] conditions. In the first 
place, we consider the case where the sequence of constants {an' 
~l} satisfies 
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(5.4) 

The following Theorem D is due to Deheuvels and Mason (1990). 

Theorem D. Let (an,~l} be a sequence satisfying (5.4). Denote by 
~v the set of all absolutely continuous non-decreasing functions g 
on [0,1], having Lebesgue derivative g such that 

with the convention that OlogO = O. Then, for any c>O, there 
exists almost surely an nc < ~ such that for all ~nc' 

(3.1) 

(3.2) 

Moreover, for any g E ~v' there exists, almost surely an N£ < ~ such 
that for all n ~ Nc , there exists, a 0 ~ t=tn,£,g ~ l-an such that 

(3.3) 

Proof. 5ee Deheuvels and Mason (1990), §2 .• 

Theorem E below is due to Deheuvels (1990) and covers the case where 

(log(ljan»jloglogn ~ we(O,oo). (5.5) 

Theorem E. Let (an,~l} be a sequence satisfying (5.1)-(5.5). Then, 
for any c>O, there exists almost surely an nc < ~ such that, for all 
n ~ n c ' 

(3.4) 

Moreover, we have infinitely often in n with probability one 

(3.5) 

Proof. See Deheuvels (1990) .• 

The range covered by Theorem D corresponds typically to bandwidths 
for which the density estimators are not uniformly consistent. On 
the other hand, Theorem E corresponds to very large bandwidths (of 
the order of a negative power of logn) , which are not likely to be 
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used in statistical practice. Therefore, both theorems correspond to 
boundary situations outside the range of interest which is covered by 
the [CRS] conditions. For this reason, we will not state here the 
versions of Theorems 2.1 and 2.2 which correspond to these theorems. 
They have, however, the advantage of giving a complete description of 
the increment of the uniform empirical process when combined with 
Theorem A. 

Similar results, to be published in the near future, enable us to 
treat the almost sure pointwise behavior of density estimators. 
Also, extensions of these results to higher dimensions will be 
provided in forthcoming publications. 
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EXPONENTIAL INEQUALITIES IN NONPARAMETRIC ESTIMATION 

Luc DEVROYE 
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University of California at Davis 
Davis, CA. 95616 USA 

ABSTRACT. We derive exponential inequalities for the oscillation of functions of ran­
dom variables about their mean. This is illustrated on the Kolmogorov-Smirnov statistic, 
the total variation distance for empirical measures, the Vapnik-Chervonenkis distance, 
and various performance criteria in nonparametric density estimation. We also derive 
bounds for the variances of these quantities. 

1. Introduction. 

Hoeffding (1963) showed that for independent random variables Xl, X 2 , • •• , Xn with 
ai::; Xi::; bi, 

p {I~ (Xi - EXi)1 > t} ::; 2e-2t2 / E:':1(b.-a.)2 , t > O. 

Perhaps the best known form of this inequality is obtained when the Xi'S are i.i.d. 
Bernoulli (p) random variables. In that case, we obtain Chernoff's bound (1952) for the 
binomial distribution: if X is binomial (n,p), then 

P {IX - npl > t} ::; 2e- 2t2 / n , t > O. 

Various extensions of these inequalities have been developed over the years. The gener­
alization to martingales due to Hoeffding (1963) and Azuma (1967) has led to interesting 
applications in combinatorics and the theory ofrandom graphs (for a survey, see McDi­
armid, 1989). We have used it in density estimation (Devroye, 1988, 1989). 

In this paper, we collect various extensions of Hoeffding's inequality and highlight 
their applications in the nonparametric estimation of densities and distribution functions. 
For completeness, the proofs of the inequalities are sketched as well. In the last section, 
we present new bounds for the variance of functions of independent random variables. 
The inequalities are illustrated on examples in nonparametric estimation, and are shown 
to be sharper than those obtained from the Efron-Stein inequality. 
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2. Inequalities for martingale difference sequences. 

Hoeffding (1963) mentioned that his inequalities would also be valid when applied to 
martingale difference sequences. To make things a bit more precise, let us consider a 
probability space (0, F, P), and a nested sequence Fo = {0, O} ~ Fl ~ ... ~ F of sub­
er-fields of F. A sequence of integrable random variables X O,Xll X 2 , ••• is a martingale 
if 

E {Xn+1 I Fn} = Xn a.s., each n ~ O. 

A sequence of integrable random variables Y1 , Y2 , ••• is a martingale difference sequence 
if for every n ~ 0, 

E {Yn +1 I Fn} = 0 a.s .. 

Note that any martingale X 0, Xl, X 2, ... leads to a natural martingale difference sequence 
by defining 

Yn = Xn - Xn_ll n ~ 1. 

And any martingale difference sequence Y1 , Y2 , • •• in turn yields a natural martingale by 
defining Xo in an arbitrary fashion and setting 

n 

Xn = LYi +Xo· 
i=l 

For any nested sequence of sub-er-fileds Fo = {0, O} ~ F1 ~ F 2 •• • ~ F and any 
integrable random variable X, we can define Doob martingale by setting 

Thus, Xo = EX, and if X is Fn-measurable, then Xn = X, and 

n 

X - EX = L(Xi - Xi_i) .' 
i=l 

We begin with an inequality along the lines suggested by Hoeffding (1963) and 
Azuma (1967) (see McDiarmid, 1989): 

THEOREM 1. Let Fo = {0, O} ~ Fl ~ F 2 ••• ~ Fn be a nested sequence of er-fields. Let 
the integrable random variable X be Fn -measurable, and define the Doob martingale 
X k = E {X I Fk }. Assume that for k = 1, .. . n, there exist random variables Zk, F k - 1-

measurable, and constants Ck such that 

Then for t > 0, 
2/",- 2 P {X - EX ~ t} ~ 2e-2t L..,=1 c, , t > 0, 
2/",n 2 

p {X - EX ~ -t} ~ 2e-2t L. ... =1 c, , t > o. 

This Theorem uses a simple Lemma due to Hoeffding (1963): 



LEMMA 1. Let X be a random variable with EX = 0, a ::; X ::; b. Then for A > 0, 

E {eAX} ::; e A2(6-a)2/ 8 • 

PROOF. Note that by convexity, 

2:-a b-z A 
e A., < __ e A6 + --e a a < 2: < b 

- b-a b-a' - - , 

EeAX < _b_eAG _ _ a_eA6 
- b-a b-a 
= (1 - p + peA(6-a»)e-pA(6-a) , where p = _a_ E [0,11 

a-b 
~f <p(u) - e , 

where u = A(b - a), <;(u) = -pu + log(1 - p+ peU). But it is easy to see that 

<;'(u) = -p+ p+ (1 ~ p)e-u ' 

<;"(u) = p(1- p)e-U 
2 < ~ , 

(p+ (1- p)e-u) - 4 

<;(0) = <;'(0) = 0 , 

and by Taylor's series expansion with remainder, 

u 2 A2(b _ a)2 
<;(u) ::; "8 = 8 .• 
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PROOF. Set Yk = X k - Xk _ 1 , Sk = E~=l Yi = X k - Xo. Note that S" = X" - EX = 
X - EX. Also, 

p {X - EX ~ t} = P is" ~ t} 
::; e-A1E {e ASn } forA> 0 (by Chernoff's bounding method) 

= e-A1E {eASn-1E {eAYn l.1",,_d} 
2 2/ ::; e-A1E {eASn_1} e A cn 8 (Lemma 1) 

::; e-Ale(A2/8)E~=1 c~ (iterate previous argument) 

i=l 

The second inequality in Theorem 1 is obtained when we replace X by -X .• 

3. McDiarmid's extension of Hoeffding's inequality. 

The following extension of Hoeffding's inequality is useful for random variables that are 
complicated functions of independent random variables, and that are relatively robust 
to individual changes in the values of the random variables. 
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THEOREM 2. (McDiarmid, 1989) Let X b ... ,X .. be independent random variables tak­
ing values in a set A, and assume that 1 : A" --+ R satisfies 

Then 

sup II(Zh ... ,Z .. ) - I(Zl, ... ,Zi_l,Z~,Zi+l, ... ,z .. )1 ~ Ci, 1 ~ i ~ n. 
~1""',~'" 

%I t ••• ,:r;,,,EA 

PROOF. Define Y = Y .. = I(Xb ... ,X,,), and let F .. be the O'-field generated by 
Xl, ... , X". Define 

Y" = E {YIF,,} , Z" = ess inf {Y" IF"-l} , W" = ess sup {Y" IF"-l} , 

so that Z" ~ Y" ~ W". We can apply Theorem 1 directly to Y" if we can show that 
W" - Z" ~ c". But this follows from 

W" = ess sup {E {f(Xb . .• , X .. ) IF,,} IF"-1} 

4. Applications. 

~ sup E{f(X1, ... ,X"_hZ,XHb .. . ,X .. )IF,,} 
"eA 

= sup E {f(X1 , •• • ,X"_h Z, X"+l, ... ' Xn )IF"_1} 
"eA 

~ inf E{f(Xh ... ,X"_bZ,XHh ... ,X,,)IF"_1} + c" 
"eA 

~ essinf {E {f(Xl , ... , X,,)IF,,} IF"-1} + c" 

= Z" + c" .• 

4.1. CHERNOFF'S BOUND. 

Let Xb ... ' X" be Bernoulli (P1) , ... , Bernoulli (P .. ) random variables, and consider 
Z:::=1 Xi . Clearly, the conditions of Theorem 2 are fulfilled with Ci == 1. Thus, 

p {It(Xi -Pi)1 ~ t} ~ 2e-2t2 /" • 

As a special case, Pi == P for all i, we obtain Chernoff's bound (1952) for a binomial 
( n, p) random variable X: 
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4.2. THE KOLMOGOROV-SMIRNOV STATISTIC. 

Let F" be the standard empirical distribution function based upon an i.i.d. sample 
X 1, .•. , X" drawn from a distribution function F on the real line. The Kolmogorov­
Smirnov distance is 

sup IF,,(z) - F(z)1 . 
" 

Note that changing one point Xi can increase or decrease F" by at most lin over a 
certain interval. Thus the condition of Theorem 2 is fulfilled with c; == lin. We have 

p {hp IF,,(z) - F(z)l- Es~p IF .. (z) - F(z)11 ~ In} ~ 2e- 2t2 • 

In this respect, we note that Dvoretzky, Kiefer and Wolfowitz (1956) showed that 

p {s~p IF,,(z) - F(z)J ~ In} ~ Ce- 2t2 

for some C > 0, while Massart (1990) proved that one can take C = 2. Massart's bound 
and the inequality derived from Theorem 2 do not imply each other. 

4.3. NONPARAMETRIC DENSITY ESTIMATION: THE L1 NORM. 

Let I .. be the Parzen-Rosenblatt kernel estimate of a density I based upon an i.i.d. 
sample X 1o " ., X" drawn from I (Rosenblatt, 1956; Parzen, 1962): 

1 .. 
I .. (z) = 1,,(z;X1o" .,X,,) = - LKh(z - Xi) . 

n i=1 

Here K is a given function (the kernel) integrating to one, Kh(U) = kK(~), and h > 0 is 
a smoothing factor. An important criterion for evaluating the performance of a density 
estimate is J II .. - II· This random variable satisfies the conditions of Theorem 2 with 
Ci == 2 J IKl/n as we will now see. Take any numbers Z1o ••• , z .. and z~, ... , z~ with 
z: = Zi except for i = j. Then, 

I I 1/ .. (z; Z1," ., z,,) - l(z)1 dz - I 1/ .. (z; z~, ... , z~) - l(z)1 dzl 

~ I 1/,,(z; Z1o' •• , z,,) - I,,(z; z~, ... , z~)1 dz 

~ ~ I IKh(z - z;) - Kh(Z - zj)1 dz 

< 2JIKI . 
- n 

Thus, dropping the (.) and dz, we have 

p {II II .. - 11- E I II .. - III> t} ~ 2e-.. t2 / 2 j2I K I . 

This inequality improves over one first published in Devroye (1988), where the exponent 
had the constant 32 instead of 2. The present improvement was independently pointed 
out to me by Pinelis (1990). 
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REMARK 1. We recall that vInE J II .. - II -+ 00 for the kernel estimate when one of 
these conditions holds: 

(1) lim.. .... oo h = OJ 
(2) The characteristic function for I has unbounded supportj 
(3) J,fJ = 00. 

See e.g. Devroye and Gyam (1985) or Devroye (1988). When this is the case, a simple 
application of Chebyshev's inequality shows that 

J II .. - II 1· b bili·t EJI/ .. _ 11-+ mpro a y. 

In other words, the L1 eror behaves asymptotically like a deterministic sequence, just as 
averages do when the weak law of large numbers applies. 

REMARK 2. For the standard histogram estimate, regardless of the bin width, we have 

p {II II .. - 11- E I II .. - III> t} ::; 2e-.. t2 / 2 • 

Thus, just as for the kernel estimate, we have an inequality that is valid for all I and 
n, and for all choices of the bin widths and the smoothing factors. The non-asymptotic 
character of the inequalities will undoubtedly make them useful tools for further appli­
cations. 

REMARK 3. By the boundedness of J II .. - II, we note that J II .. - 11-+ 0 in probabil­
ity if and only if E J II .. - II -+ o. But if these quantities tend to zero in the indicated 
senses, by the results of this section, for every £ > 0 and t > 0, it is possible to find no 
such that for n > no, 

p {I II .. - II > t} ::; 2e-.. (1-0)t2/2 j2IK I . 

Thus, weak convergence of the Ll error implies complete convergence. This observation 
is at the basis of the equivalence results of Devroye (1983), but the present proof is 
much shorter. We note that a sufficient condition for the weak (and thus complete) 
convergence for the kernel estimate is that h -+ 0 and nh -+ 00 as n -+ 00 (see Devroye, 
1987, where a proof is given based upon results of Sche1fe (1947) and Glick (1974)). 
When the kernel K has at least one non-vanishing moment, then these conditions are 
necessary as well. 

REMARK 4. The condition in Theorem 2 demands that each individual sample point 
have a limited influence on J II .. - II. This may not be the case for some data-based 
methods of choosing h. 
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4.4. Lp NORMS. 

Define the Lp norm of 9 by Ilgllp = (J IgIP)l/p, where P 2: 1 is fixed. If f .. is shorthand for 
f .. (z; Zl, •.. ,z .. ), g .. == fn(z; z~, ... ,z~) and if Zl) ... ,Z .. and z~, ... ,z~ are sequences of 
numbers with Zi = z: except for i = j, then 

Illf .. - flip -llgn - fllpl ~ Ilf .. - gnllp 

~ II~Kh(Z -zo) - ~Kh(Z - zIo)11 nh J nh J p 

< 2 
- nh1-1/pIIKlip 

by Minkowski's inequality. From Theorem 2, we then deduce the following inequality: 

p {III fn - flip - E II In - flip 12: t} ~ 2e-nt2h2-2/. /(2I1KII~) . 

The inequality remains formally valid even if p = 00, in which case we obtain the 
supremum norm. 

Assume for the sake of simplicity that K is a bona fide density. We claim that 
the relative stability result, i.e., 

Ilfn - Illp 1· b b·li 
E Ilf .. _ flip -+ In pro a 1 ty, 

holds whenever h -+ 0, nh -+ 00 and 1 ~ P < 2. Of course, for the norms to make sense, 
we have to additionally assume that K, f E Lp. Assume for simplicity that K 2: o. To 
prove the claim, we first havve to establish that for any density f, there exists a constant 
c > 0 such that 

Ellfn - flip 2: cmax(h2,1/~) . 

Under smoothness and tail conditions on f, this result is rather standard. The gen­
eralization to all f requires some work. Back to the statement. It clearly suffices to 
show that the variance of IIfn - flip is o(E2 1lfn - flip) by Chebyshev's inequality. The 
variance is O(1/(y'nh1- 1/ P )) - this follows from the exponential bound shown above. 

If h ~ n- 1/ 5 , then the statement is easily verified since h!-; -+ 00. If h 2: n- 1/ 5 , then 
we need only verify that y'nh3- 1/ P -+ 00. 

Interestingly, the first p for which the relative stability result fails is p = 2. We 
can only obtain it from the inequality shown above when nh5 -+ 00, a condition that 
is known to yield suboptimal values for h for all densities (not just all smooth ones!). 
However, this does not mean that the relative stability result is not valid in L2 for 
h", n- 1/ 5 • Indeed, Hall (1982) proved that 

--,1,,-,1f,-".n_-~f.:.:.;II~"""2 -+ 1 in probability, 
Ellfn - fll2 

under certain conditions on f, h and K. 
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4.5. UNIFORM DEVIATION OF EMPIRICAL MEASURES. 

An i.i.d. sampleX h ... , X" with common probability measure JL on the Borel sets B of 
Rd induces an empirical probability measure p". by 

1 " 
p".(B) = - LIB(X;) , 

n ;=1 

where I is the indicator function, and B E B. The total variation distance between p". 

and JL is 

T" ~£ sup IJL,,(B) - JL(B)I . 
BeS 

Clearly, T" == 1 if JL is nonatomic, so the total variation distance is rather restrictive. 
Vapnik and Chervonenkis (1971) considered instead 

V" ~£ sup IJL,,(B) - JL(B)I 
AeA 

where A is a suitable subclass of the Borel sets. For example, if A = {( -00, zl : z E R} 
and d = 1, then V" is the standard Kolmogorov-Smirnov distance discussed above. They 
showed in particular that 

2 
P {Vn ;:: t} ~ 4s(A,2n)e-nt /8 , nt2 ;:: 1, 

where 

s(A,n) = max NA(ZI,''''Z,,) 
%l,.··,x,.)ERcl.n 

and N A(ZI,' .. , z,,) is the number of different sets in 

For many families A that are not too rich, such as all halfspaces, all intersections of a 
finite number of halfspaces, all balls, etc., s(A, n) ~ nD for a finite D (the "Vapnik­
Chervonenkis dimension"), so that the Vapnik-Chervonenkis bound decreases exponen­
tially with n. For extensions and discussions, see Devroye (1982), Gaenssler (1983), 
Pollard (1984) and Alexander (1984). 

If we replace Xj in the sample by Xi while holding all the other elements fixed, 
V" changes by at most lin, so that from Theorem 2, 

P {IV" - EV"I ;:: t} ~ 2e- 2"C
2 

• 

This implies that y'n(V" -EV,,) = 0(1) in probability. For the limit law theory of y'nV", 
we refer to Dudley (1978). 



4.6. VARIABLE KERNEL ESTIMATES. 

Breiman, Meisel and Purcell (1977) introduced the variable kernel estimate 

1 " 
In(z) = - L KH,(z - Xi) , 

n i=l 
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where Hi is a function of Xi and the data, Xl,'" ,Xn. If Hi is a function of Xi and n 
only, then the inequality of section 4.3 applies unaltered. 

A more interesting choice of Hi is that in which it becomes a function of the 
distance between Xi and its k-th nearest neighbor among the data. Replacing Xi by X: 
affects at most ck of the Hi's, where e is some universal constant depending upon the 
dimension only. This is seen by noting that Xi can be among the k nearest neighbors 
of at most e'k of the X/s, where e' depends upon d only (Devroye and Penrod, 1986). 
Thus, f lIn - II changes by at most ek/n. Hence, 

p {II lIn - II - E I If" - "I > t} ::; 2e-2nt2/(c2k2) . 

Thus, Var{f lIn - II} = O(k2/n). Depending upon the choice of k, this can be used to 
establish the relative stability of the estimate. 

4.7. RECURSIVE KERNEL DENSITY ESTIMATES. 

The bound of section 4.2 remains valid for density estimates of the form 

1 n 

In(z) = - L Kh,(z - Xi) , 
n i=l 

where ht depends upon i only; this is an estimate attributed to Wolverton and Wag­
ner (1969). Consider estimates of the form 

" 
In(z) = LPiKdz - Xi) , 

i=1 

where (P1, ... ,Pn) is a probability weight vector, and both Pi and ht depend upon i and 
possibly n. This general form of estimate goes back to Deheuvels (1973). The condition 
of Theorem 2 holds with ei == 2Pi f IKI. Clearly, 

~e~=4~p~(/'K,)2 ::;4~i~Pi(fIKI)2. 
This in turn can be used in the upper bound of Theorem 2. 

Deheuvels (1973) proposed the latter estimate, based upon a fixed sequence 
h1' h2' ... , with Pi = hi / L:~=1 hi' Assume furthermore that h" oscillates so slightly 
that L:~=1 h~ ::; Anh; and L:~=1 hi ~ Bnh" for some positive constants A, B. Then we 
see that upon proper substitution of the various bounds, 
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Deheuvels' estimate is relatively stable for all I, whenever h -+ 0, nh -+ 00, K has 
at least one non-vanishing moment, and h satisfies the regularity condition mentioned 
above. 

5. Inequalities for the variance. 

In many applications, one would like to obtain information about the variance, or the 
oscillation, of a random variable of the form I(X1 , ••• ,X,,) where XII'" ,X" are LLd. 
random vectors. Often, 1(' ) is a rather complicated function of the data (see the ex­
amples in the previous section). One of the first general tools in this respect is the 
Efron-Stein inequality (Efron and Stein, 1981; see also Vitale, 1984). 

THE EFRON-STEIN INEQUALITY. Let! be a symmetric function of its n arguments, 
and let Xl!' .. , X"+1 be i.i.d. random vectors. Define 

and 

Then 

S; = I(XII ... ,Xi-hXHh .. "X"+1) ' 

S = S"+l = !(Xh .. . ,X,,) , 

_ 1 ,,+1 
S=-~Si' 

n + 1 ;=1 

,,+1 { 2} { 2} Var{S} $ {;E (s; - S) = (n+ l)E (S - S) 

When the right-hand-side of the inequality is worked out, and some further 
bounding is used, we obtain the following result: 

Var{S} $ (n + l)E { (n: if (~(S -S;)r} 

{ ,,+1 . } 
$ n: 1 E (n + 1) {; (S - S;)2 

,,+1 
= ~E{(S - S;)2} 

;=1 .. 
= ~E{(S - S;)2} 

;=1 

=nE{(SZ- Sl)Z} . 

Assume next that a condition similar to that of Theorem 2 holds: 

sup I/(zlI''''Z'') - l(zb,,,,z;_IIZ:,ZH1, ... ,z,,)1 $ c, 1 $ i $ n. (*) 
Zl,""S" 

Sif ... ,s~eA 
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The derivation given here is that of Devroye (1987), where it was used to show 
that for the kernel estimate, regardless of the choice of h or the nature of I, 

In 1986, Steele obtained a related inequality: 

STEELE'S INEQUALITY. Let 1 be an arbitrary function of its n arguments, and let 
Xl, ... , X",X~, ... , X~ be i.i.d. random vectors. Define 

Si = I(Xb .. . ,Xi_bX:,XHb .. . ,X,,) , 
and 

Then 

Note that the symmetry of f is no longer a requirement. Also, under condition 
(*), Var{S} :s; nc2 /2. This yields an improvement by a factor of2 over the Efron-Stein 
based bound. It is possible to improve these results even further, as in Theorem 3 below. 

THEOREM 3. Let X h ... , X" be independent random variables taking values in a set A, 
and assume that 1 : A" -> R satisfies 

Then 

sup 1/(:l:b ... 'z,,)- 1(:l:l, ... ,zi-h:l:;,zHb ... ,z,,)I:S; Ci, 1:S; i:S; n. 
~l,···,;:J;n 

3:1 1 ... ,xn EA 

PROOF. Let:Fi be the q-algebra generated by Xb ... ,Xi. Let Y = Y" = f(X b ... ,X,,). 
Then Yi = E{Y IF;} forms a Doob martingale process. We formally set, as usual, 
:Fo = {0, n}, so that Yo = EY. Thus, 

Var{Y} = E {(Y - YO)2} 

= E { (~(Yi - Yi_l)f} 

= E {~(Yi - Yi-d } + 2 l~~~" E {(Yi - Yi-d(Yj - Yj-l)} 

= E {~(Yi - Yi_d 2 } , 
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where we used the martingale property to show that the cross product terms are zero: 
for i < j, we have 

E {(l'i - l'i-l)(Yi - Yi-d I .1";-tl 
= (l'i - l'i-d (E {Yi 1.1";-l} - Yi-l) = 0 almost surely. 

Theorem 3 follows from the above result if we can show that 

E {(l'i - l'i_l)21~_l) ~ cU4 . 

To see this, we observe that if 

Zi = essinf{l'i -l'i-ll~-tl , Wi = esssup{l'i -l'i-ll~-l} , 

then, as shown in the proof of Theorem 2, Wi ::; Zi+Ci, and thus, given .1"i-1o }i-l'i-l is a 
zero mean random variable taking values in the set [Zi, Zi + Ci]. But an arbitary random 
variable X taking values in a set [a, 6] has variance not exceeding E(X - (a + 6)/2)2 ~ 
(6 - a)2/4, so that 

E {(l'i - l'i_l)21~_l) ~ cU4 . 
This concludes the proof of Theorem 3 .• 

REMARK 1. For the kernel estimate, we obtain 

Var {J II .. - II} ::; t lKI , 
which is an improvement by a factor of 4 over the inequality shown in Devroye (1987), 
which was based upon the Efron-Stein bound. This improvement was suggested to me by 
Pinells (1990), who mentions a range of inequalities in a much more general framework. 

REMARK 2. For the histogram estimate, we obtain 

Var {J II .. - II} ::; ; , 

REMARK 3. Without further work, we also have 

Var {sup IF .. (z) - F(z)l} ::; ~ 
'" 4n 

for the Kolmogorov-Smirnov distance. Similarly, borrowing the notation of section 4.5, 
we have 

Var {sup 1p,,(A) - p(A)I} ~ ~ . 
AeA 4n 
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ABSTRACT 

In this paper conseNative confidence bands for the regression function, closely related to 
those proposed by Hall and Titterington (1988) are considered. However we allow to appear 
dependence between the local averages which will lead to more etticent confidence bands. 
Confidence bands based on local medians are also considered and for both cases we find optimal 
choices of the number of obseNations to use at each cell and the number of subinteNals to be 
considered. A comparison between both methods is given and some examples are considered. 
The proposal is very simple and gives confidence bands for which calculation of widths is very 
easy. 

1. Introduction. 

In a very nice paper Hall and Trtterington (1988) propose conseNative confidence bands 
for the regression function related to those of Knafl, Sacks and Ylvisaker (1988), in that they are 
based on linear (in the data) estimates of the regression function at any given point. However 
their proposal is much simpler and gives confidence bands for which calculation of widths are very 
easy. Some related work have also be done by Wahba (1983) and by Silverman (1985) from a 
Bayesian point of view, that leads to splines methods to construct confidence bands. See also 
Hardie and Bowman (1988) for an asymptotic approach based on bootstrapping techniques. 

Basically the idea is to divide the inteNal where we are working, let say the inteNal [0,1) into 
r subinteNals [(i-1)h, ihj, 1:s; i :s;r, h=mS for m an integer that satisfy n=mr, where n is the sample 
size and ~ is the distance between points at which obseNations are taken. At each of these cells 

using a local average of the response variables in the subinteNal, Vi = m-1(Y(i_1)m + ... + Yim-1) 
construct a confidence inteNal for the average of the regression function 9 on the cell, and obtain 
from it a confidence band for the function g(x) , x E[(i-1)h. ih) using some constraint in the local 
behaviour of the function g. Since the obseNations that are used at each cell are independent. 
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the confidence band at the whole interval is just obtained by working with the product of those 
probabilities. 

Following the same idea we will consider two extensions: 
(i) allowing to appear dependence between the local averages Vi by using more observations than 
those who are in the corresponding cell to construct the confidence band at each cell. 
(ii) using local medians instead of local means in order to obtain robust confidence bands. In this 
last case we will also allow to appear the kind of dependence described on (i). 

In both cases we will not require to the distribution of the errors to be gaussian. However for 
(i) we will need to calculate percentiles of averages of variables with the error's distribution. 

We will show that for a fixed m, conservative confidence bands using k observations, k>m, 
at each local average can be obtained that, in general, lead to more efficient confidence bands. 
Optimal k values can be found for a fixed m, and also an optimal pair (k,m) can be obtained under 
mild assumptions. Since n=mr we will refer in what follows to the pairs (k, r). 

Some examples are given for (i) and (ii) together with tables that compares the lenght of 
different confidence bands. Also optimal k and (k, r) values are given. They can be easily 
computed at each problem since the bandwidth lenght does not depend on the data except on 
the error's distribution, the distance between points and a bound for the derivative of the 
regression function. The case of unknown variance is also considered for local means under 
normality assumptions. 

2. Conservative Confidence Bands Based on Local Averages. 

Let us consider the following regression model: Y(x) = g(x) + e(x), where g is a continuous 
function and e(x) a white noise. We will give some conservative confidence bands for g(x) when 
observations are avalaible at the points Xj =j8, Le. , when we have 

j=0,1, ... ,n (2.1) 

where B is a positive number, {ej: j~O} is a sequence of LLd. random variables with E(ej)=O or 
symmetric around o. We may assume without loss of generality that we are dealing with the interval 
[0,1]. In this case 8n=1. 

As in Hall and Titterington (1988) we divide the interval [0,1) into r subintervals [(i-1)h,ih] 
1Sisr, h=mB for m an integer that satisfies n=mr. Each j8 will belong to some cell [(i-1)h,ih]. At 
each cell we consider a local average of k data points 

(2.2) 

where Pi = (i-1)m -[(k-m)/2] ,and [x] denotes the greatest integer less or equal than x. 

Note that if k=m th..!!!s~ are the local averages considered by Hall and Titteringto!:' (1988), 
while if k>m the variables Vi, Vi+ 1 will be correlated. For instance if k=2m the sequence {Vi, i~1} is 
3-dependent. 

Throughout this section we will only assume: 

H1. g(x) is a continuous function that verifies a Lipschitz condition on each subinterval 
li=[Pi8,(Pi+k)8] with constant Ci i=1, ... , r. 

We will consider the case when k<m, k=m and k>m. For the first two cases the variables 
{Vi: i=1, ... , r} are independent while in the last case, as noted above, they are dependent. 
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However we will show that for a fixed m, conservative confidence bands using k>m can be 
obtained that, in general, leads to more efficient confidence bands (shorter ones) depending on 
the relationship between c=max{ci : i=l .... ,n} and F. For this case optimal k values can be found 

relative to some bounds given in Lemma 2.1. On the other hand also an optimal pair (k, r) can be 
found when ci=c for i=l , ... , r. In both cases optimal values can be obtained from the distribution F 
and the values of n, c and the confidence level. (In the normal case it will depend on ell, n,c and 
the confidence level). 

The results on this section are based on the following two Lemmas. 

Lemma 2 1 Assume H1 and let Xi=Pi(), Z=Xi+yk() for [(k-m)/2]/lc;;;yS;[(k+m)/2]/k and 
k-l 

9i=k-l I. 9(Xi+h() . Then we have that 
h=O 

Ig(Z)-9il ~k,i 

where ~k,i=Cj()(k2 +m2 +2m)/4k if IQm and k-m is even; ~,i=Ci()(k2 +m2 -1)/4k if IQm and k-m is 
odd; ~k,i=(m+ 1 )/2 if k<m and m-k is even and ~k,i=m/2 if k<m and m-k is odd. 
The proof can be found in the Appendix. 

Lemma 22. a) Let Ul ,U2, ... ,U(r-l )p+k be Li.d. random variables with common continuous 
distribution function F, p~l, p+ 1 S;k<2p+ 1 and consider the following sums of random variables: 

Us = U(s-l)p+l + U(s-1)p+2 + ... + U(s-l)p+k for s=l, ... ,r 

each of which have distribution function Fk*, the k-convolution of F with itseH. 
Let Vl, V2, ... ,Vr be independent random variables with the same distribution function Fk* 

as 1.1.1 (Le. independent copies of 1.1.1, U2, ... ,Ur) . Then we have that 

and 

b) Moreover, the same result holds for Ip+ 1 S;kS;(I+ 1 )p+ 1 and 1~1. 
The proof can be found in the Appendix. 
Remark 2 1 Note that in (a), the sequence {Uk k~l} is 2-dependent, and in the general case 
considered in (b) the same sequence is (I+l)-dependent. 
Remark 2 2 For the gaussian case, Lemma 2.2 can be derived directly from Slepian Lemma (see 
for instance Leadbetter, Lindgren and Rootzen (1983), Normal comparison Lemma on page 81). 
Conversely Slepian inequality can be derived from Lemma 2.2. 
Remark 2 3 Lemma 2.2 will allow us to obtain conservative confidence bands when we use k>m. 
In particular if F is symmetric we have that 

P(lUlls;u, ... ,IUrlS;u)~ 2P(V1S;U, ... ,Vr:S;u) - 1 

as can be easily seen from the well known inequality P(ArB)~P(A)+P(B) - 1 with 
A={V1S;U, ... ,VrS;u} and B={Vl~-U, ... ,Vr~-u}. 
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Corollary 2,1 Let 1.1.1 , .. "Ur and Vl , .. "V r be as in Lemma 2,2 and normally distributed, and 9 a 
positive random variable independent of {Ul , .. "Ur ,Vl , .. "Vr }, Then we have that 

P(U1 ~u , .. ,,..!!r~) > P~~u , .. "Vr~u), 
9 9 - 9 9 

(2,3 ) 

In particular we can apply this result to the case 9= (vIs) 1/2 where v has a chi-square 
distribution with s degrees of freedom, 

The conclusion follows inmediately from 

E [ E(1 { max Uh~ 9u} 19)] ~ E [ E(1 { max Vh~ 9u} 19)] 
h=l .. "r h=l .. "r 

where 1 A is the indicator function of the set A. 

Moreover when 9=(v/s)ll2 and v has a chi-square distribution with s degrees of freedom (2, 3) is 
just 

00 00 j P(h~,rUhs'U(V/S) 1I2/V=l;;)fv(QdC ! j P(h~ ,rVhs'U(V/S) 1/2/v=C)fv(QdC 

where fy{,) is the chi-square density for s degrees of freedom, 

2,1 CONFIDENCE BANDS FOR THE REGRESSION FUNCTION WHEN ci?- IS KNOWN, 

For the lack of simplicity let us consider the case when {ej :j>l} is a gaussian white noise, 
From (2,1) we have that 

Pi+k-1 

Vi-9i = \('1 ,Lej = ei 
J=Pi 

where Vi is defined in (2,2) ,9i is defined in Lemma 2,1 and ei is a gaussian random variable with 
zero mean and variance ci?-Ik, Therefore by Lemma 2,2 and Remark 2,3, given 0<(1<1 we can find 
a>O such that 

1-(1 ~ P( -a< ei < a for i=l , .. "r) = P( Vi - a < 9i < Vi + a for i=l , .. "r), (2,4) 

More precisely the value a in (2,4) is obtained from the relationship 

P(, max leil~a)=P(klI2O'"l, max leilgklI20'"1)~2cU(aklI20'"1)-1 
i-l .. "r i=l .. "r 

where cl» stands for the standard normal distribution function, choosing a=<Jk-l12cl»-l [( 1-a/2) llr ], 

On the other hand from the proof of Lemma 2,1 it is easy to see that 

Ig(Z)-9il ~i~ [k+6y-1+2yk(y-1)V2 = Ak/(Y) fory~ 

and 
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Ig(z)-9i1 ~(k-1-2yk)/2 = Ak,r(Y) for y< O. (2.5 ) 

(We recall that IQm implies y~.) 
Then the confidence bands are given by 

1-a S P(Vi-a- ~,i (y) s g(z) s Vi + a + ~,i (y) V z Eli, i=1 , ... ,r) 

where ~,i (y) is ~,i+(Y) or ~,r-(y) respectively. However in practice if rna is small enough we 

will use the uniform bounds ~,i given in Lemma 2.1 instead of ~,i (y), (which corresponds to a 

minimax situation) to obtain the confidence bands. 
With straightforward modifications we can obtain an analogous resun for the non-gaussian 

case in terms of the percentiles of the distribution function of the error's average. 

2.2 WIDTHS OF CONFIDENCE BANDS FOR FIXED R AND DIFFERENT VALUES OF K. 

In this Section we will compare the efficiency of the conservative confidence bands for 
different values of rand k at the gaussian case using the uniform bounds ~,i =6k. From the last 
Section we have that the width of a conservative confidence band with level 1-a at each 
subinterval Ii is given by 

The difference between Lm and Lk is given by 

In this case it is easy to see that if k<m, then ~~m-1 and 6m-1 is essentially equal to 6m 
(the difference is CiIil2). Therefore the case k<m will lead to widther confidence bands. However if 

we use ~(y) instead of 6k and k<m, it will happens that ~(y) > .t1m-1 (y) for some y 

values and ~(y) <6m-1 (y) for other y values. For instance if cl-=o, k=1 will be an optimal 

selection for some values of y but not for all the possible values at the subinterval. If IQm we have 
that 

2[6m -~ ] = cj5(m+ 1 - (k2+m2+2m)/2k) = - cia(k-m)(k-m-2)/2k (2.6) 

if k-m+ 1 is even, and 

2[6m -~ I = ci5(m+1-(k2+m2-1)/2k) = - cj5[(k-m)2-2k-1Y2k (2.7) 

otherwise. 

Then 
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with p(k) being the right hand member of (2.S ) or (2.7 ) respectively divided by -CiS. 
This relationship does not depend on the data except on the values of cr, Ci and S. 
Then, we can also find an optimal pair (k,r). In Table I we give the bandwiths lenght for 

different values of k and r and the optimal selection for a real example of radiocarbon age and tree­
ring age already considered by Hall and Titterington (1988, Example 5.2 pag. 245 ) using the 
estimated variance given there, S=2400/180 and Ci=c=1. We recall that the bandwidth lenght 
does not depend on the data except on those values,so for each problem an optimal solution, in 
this sense, can be found easily. The best value for m=k is obtained at m=S. However the pair 
(m,k)=(S,11) gives a smaller band and at the pair (4,9) we obtain the minimal value, with a relative 
efficency increased on 22.7% ((Lm-Lk)1 Lk». 

In Table II we give the bandwidth lenght for different values of a, n, S, cr, Ci, rand k for 
normal errors, which shows the optimal k value for each r (or m) and its relative efficiency. 

R.ADIOCAABON AG E AND TRE EHNG AGE EX.AMP L E 
CONFIDENCE LEVEL=0.95,n=180,C= 1 

In 6 5 4 3 9 15 

[ 30 36 45 60 20 12 

!.p.timal 
k value 11 10 9 8 14 20 

Lenght 
196.3 191.4 188.32 188.33 218.6 275.6 for Lie 

Lenght 
for Lm 231.2 233.9 242.5 265.7 242 292.95 

Table I 

CONFIDENCE LEVEL=.9,r= 1 0,&:.0 I,C= 1 CONFIDENCE LEVEL=.95,r=50, ,s:.0005,C= 1 

CJ 1 .8 .4 .01 CJ 1 .8 .4 .2 .0001 

optimal 
65 57 37 11 

optimal 559 481 305 195 41 Ie value Ie value 

Lie length .969 .837 .536 .115 Lic length .417 .36 .227 .144 .020' 

Lm length 1.73 1.41 .759 .12! Lm length 1.06 .85 .434 .227 .0206 

TABLE II 
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In Table III we find the optimal pair (k.r)=(66.4) for 0.=0.1. n=1 00 ~=0.01 0=c=1. 

CONFIDENCE LEVEL=0.9, n= 1 00, &=0.01, CJ=C= 1 

I: 1 2 4 5 10 20 25 50 100 

t· 100 77 66 65 65 68 69 73 75 

Lt· 1.338 .992 .927 .93 .969 1.02 1.037 1.086 1.133 

Lm 1.338 1.06 1.153 1.216 1.734 2.563 2.92 4.389 6.586 

TABLE III 

In Figure 2.1 a scatterplot of generated data points (Vj. j~) j=0 •...• 2000 for normal errors with 
:ero mean and variance 0.04. ~=0.0005 verifying the model 

Vj=0.5 -1~-0.51 + ej 

; given. In Figure 2.2 a graph of the step function which takes values B+i and B-i • i=1 •...• r. where 

ti and B-i denotes the upper and lower bounds of a 95% confidence band. which are plotted by 

)ining succesive values by straight lines together with the graph of the true function is given. 
He consider additional 77 data points at each extreme of the [0.1] interval). We use for r=50 the 
ptimal k value of 195 which gives a bandwidth lenght of 0.1446. In this case the confidence band 
orresponding to k=m=40 has a length of 0.2276. 

2000 DATA FROM Y-=0.5-ABS(X-0.5)+ERROR --.....---toll 
t., , 
u 
U 
0..7 
U 
U 
cw 
u 
CUI 
0.., 

0 
-0..' 
-0..:11 
-0..:11 --~ 
~ + --0.7 
~ 

0 0.., 0..7 

Figure 2.1 
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Figure 2.3 shows a similar scatterplot of 400 double-exponential generated data points 
with variance 1/16, verifying the model 

Yj=0.5 -1~-0.51 + ej 
(Cj=co=1). A conservative 90% uniform confidence band based on local means is plotted (r=10, 
k=131) together with the true function. A conservative method based on a Berry-Esseen type 
bound was considered to obtain the critical values. Details are given in the Appendix. 

~ 

i 
i 

I 
i , 

o 

90% UNIFORM CONFIDENCE BANDS 

0., 

... 
.:t + 

+ 

+ 

... • + 
+ 

• 

0.7 

Figure 2.3 
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2.3 CONFIDENCE BANDS FOR THE REGRESSION FUNCTION WHEN cfi?IS UNKNOWN AT THE 

GAUSSIAN CASE. 

If cfi? is unknown we may construct a slight overestimate of it,as in Hall and Titterington 
(1988). Since the difference of two LLd. normal variables is independent of their sum the set of 
differences Y2j-Y2j-1 will be independent of the estimates used to construct the confidence 
bands H we consider only those differences for which the corresponding sums appears in the 
error's average. If k=m it is just to exclude those dHferences for which 2j or 2j-1 is of the form im for 
some integer L We denote this set by S. Then H 

S2=(s-1r1{ L (Y2j-Y2j-1)2 -s-1 [L (Y2j-Y2j-1)]2} 
jES jES 

where s is the number of elements in S, we have that (S-1)S2/cfi? has a chi-square distribution with 

s-1 degrees of freedom and a noncentrality parameter which depends on the function g. 
Therefore using now Corollary 2.1 we obtain conservative confidence bands now related to the 
Student's distribution function with s-1 degrees of freedom instead of the normal distribution. 

A remark on the asymptotic behaviour We have seen that for normal data 

(2.8) 

Let us suppose that r--}oo, m--}oo (therefore n=mr--}oo) and Ci=Co. Then since 

(210grf1/2<1>-1[(1-a/2)lIrl~1 (see for instance, Leadbetter, Lindgren and Rootzen (1983)) we 
will have that Lm,i~O provided that logr/m~. Actually, the first term in the right hand of (2.8) 
converges to zero, as well as eo(m+ 1 )~=Co(m+ 1 )/mr converges to zero. 

If we choose k~m in such a way that kln~O, and kllogr--}oo, for r--}oo, we arrive to 
the same conclusion for Lk. 

Similar results can be obtained in the non gaussian case, which will depend on the tail 
behaviour of the distribution F. 

3. Conservative confidence bands based on local medians. 

In this Section we will obtain conservative confidence bands based on local medians, that 
will have natural robustness properties with high breakdown point. These results can be applied 
to nonparametric regression models without any requirement to the distribution of the errors F 
(even without any moment condition or symmetry assumptions). Moreover, the confidence bands 
based on local medians will also be conservative in the sense that their level, obtained for a given 
F, will be larger for any other distribution funcion G which is stochastically smaller than F. From a 
robust point of view the confidence bands obtained for a given F can be applied when the true 
distribution G lies in a whole neigborhood that is controlled by F in the sense that F is more heavy 
tailed than G. 

As before, we will also consider the case when k>m when the bands are constructed from 
local medians of groups of observations with some overlapping, which will introduce dependence 
between the local medians, in order to attain more efficiency. 
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When the regression function 9 is monotonic. we will also be able to reduce the bandwidth 
lenght of the conservative band. 

The results are based on two Lemmas. similar to those on the preceeding Section. one 
who deals with the "interpolation" error and the other one who deals with the stochastic error. that 
has some interest by itself. 

Let Y(x) = g(x) + e(x) where 9 is a continuous function and e(x) is a white noise with 
distribution function F. median(F) = O. Observations are avalaible as before at the points Xj=jl) i.e. 

i=D •...• n (3.0) 

where l) is a positive number and {er j~} is a sequence of Li.d. random variables with distribution 
F. 

As before we divide the interval [0.1] into r subintevals [(i-1)h.ih] 1:5;is;r. h=ml) for man 
integer. n=mr. Each jl) will belong to some cell [(i-1 )h.ih]. At each cell we consider a local median 
of lenght k Vi=median(Ypi' ...• Ypi+k-1) for Pi=(i-1)m-[(k-m)/2] and 

Gi=median(g(xi). 9(Xi+/)) ..... 9(Xi+(k-1)l))) = median(g(xi+sl)). s=0 •...• k-1) 
for xi=pjl). Then we have that 

Vi=median((g(xi+s()) + ep.+s) • s=0 •...• k-1) = 
I 

Gi + median((g(xi+s())-Gi + ep;+s) • s=0 •...• k-1) . 
I 

(3.1) 

I.Jtmm.a. 3..1. Let zE[(i-1 )h.ih] and assume that 9 verifies a Lipschitz condition of order one with 
constant Cj in the subinterval [Pil). (Pi+k-1)l)]. Then 

a) Ig(Z)-Gil :!>Oil) max( (k+1)/4; (m+1)/2). 

b) If in addition 9 is monotonic. then Ig(z)-Gil :!>Oil) (m+1)/2. 
The proof can be found in the Appendix. 

Lemma 3 2. a) Let U1 .U2 ..... U(r-1 )p+k be i.Ld. random variables with common continuous 
distribution function F. p:<:1. p+ 1 :5;k<2p+ 1 and consider the following random vectors: 
Us = (U(s-1)p+1. U(s-1)p+2 •...• U(s-1)P+kl for s=1 •...• r. 

Let V1. V2 •...• Vr be independent copies of U1. U2 •...• Ur (Le. {V,. V2 •...• Vr} is a 
independent set of random vectors. each of them with the same distribution function as U1). 

Denote by Us (h) the h-order statistics of the vector Us • (h=1.2 •...• k) and Vs (h) the h-order 
statistics of the vector Vs • s=1.2 •...• r. Then we have that 

and 
P(U1 (h»t. U2(h»t •...• Ur(h»t ) ~P(V1 (h»t. V2(h»t •.... Vr(h»t ) 

for all real 1. 

b) Moreover. the same result holds for Ip+ 1 :5;k:5;(I+ 1 )p+ 1 and 1:<:1. 
The proof can be found in the Appendix. 
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3.1 CONFIDENCE BANDS BASED ON LOCAL MEDIANS. 

We will now construct conservative confidence bands based on local medians by using 

Lemma 3.1 and Lemma 3.2. Let xE[(i-1)h.ih] and suppose that g verifies the condition given in 

Lemma 3.1. Then we have that 

19(Xi+sO)-Gi I 5 Cja (k+ 1 )/2. 

Therefore 

-Cja (k+1)/2 + median(Up.+s. s=O ..... k-1)5median(g(xi+sa)-Gi +Up.+s .s=O ..... k-1)5 
I I 

Cia (k+1)/2 + median(Up.+s. s=O ..... k-1). 
I 

On the other hand by Lemma 3.1 

Ig(X)-GiI5cia max( (k+1)/4 ; (m+1)/2). 

Putting things together we have 

Vi - median(Up.+s • s=O ..... k-1) - Cia (k+1 )/2 - Cia max( (k+ 1 )/4 ; (m+ 1 )/2) 5 g(x) 5 
I 

Vi - median(Up.+s. s=O ..... k-1) + Cia (k+1)/2 + cia max( (k+1)/4; (m+1)/2) 
I 

and so if A and B are such that Mmedian(Up.+s • s=O ..... k-1)58 we have that 
I 

Vi - 8 _ cia [(k+1)/2 + max( (k+1)/4; (m+1)/2)]5g(X)5 

Vi - A - Cia [(k+1)/2 + max( (k+1)/4; (m+1)/2)] 

for xE[(i-1)h. ih]. 

Finally if a and b are such that 

(1-a) 1/r =P(a5median(Up-+s. s=O ..... k-1)5b) 
I 

we get our robust uniform confidence bands by using Lemma 3.2. Effectively. 

p{ V i - b - Cia [ (k+ 1 )/2 + max( (k+ 1 )/4 ; (m+ 1 )/2)]5g(X)5 

Vi - a + Cia [(k+1)/2 + max( (k+1)/4; (m+1)/2)]} ~ 

(3.2) 
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p{~median(Up.+s ,s=0, ... ,k-1):s;;b,i=1 , ... ,r}~p r {~median(Up.+s , s=0, ... ,k-1):s;;b}=(1-a) 
I I 

(3.3) 
We summarize this result in the following Theorem. 

Theorem 3.1. Let Y1, ... , Yn be observations verifying (3.0) and assume that for a fixed ~m at 
each subinterval [Pi5, (Pi+k)5] i=1 , ... ,r the function 9 satisfy a Lipchitz condition of order one with 
constant Ci. Then a 1-a conservative confidence band is given by the left hand side of (3.3) with a 
and b verifying (3.2). 

In the symmetric case we take a=-b. 

Corollary 31 In the monotone case, max«k+1)/4;(m+1)/2) can be replaced by (m+1)/2 in (3.3). 
Moreover, if we know that the function 9 is nondecreasing, then each cell can be divided into two 
subintervals. At the left one we just need to add the interpolation term (m+ 1 )/2 to the lower 
bound. while in the right one we only need to add it to the upper bound. If g is nonincreasing the 
same result holds changing left by right subintervals. 

Remark 3 1 As in the case of local means it can be shown that if r/k ~O as r-+oo and kin ~O, 
the bandwidth lenght Lk converges to zero for all F symmetric around zero with density f(x). 
Efectively, under these assumptions it can be proved that 

F(bk)=1/2+1/2[(1ogr)/k]1/2 + o([(logr)/k]1/2) 

where bk is such that 

P(median(;t. ...• ;2k+I> E (-bk.bk»=(l-a)lIr 

and {;i, i=1 , ... ,2k+ 1} are LLd. random variables with common symmetric distribution F. On the 
other hand the condition kin ~O, ensures that the "interpolation error" converges also to zero, 
which entails the desired result. 

3.2 SOME EXAMPLES OF CONSERVATIVE BANDS. 

Some artificial examples are considered in what follows. In Figure 3.1 a 90% confidence 
band based on local means is constructed from 200 data verifying the model 

Yi=0.25 - IXi-0.51 + ei for i=1 , ... ,200 

for ei with distribution function F1 (.14), where F1 is the standard Cauchy distribution, while using 
percentiles from a normal distribution with variance 1/16. Figure 3.1 shows clearly how bad can be 
the bands constructed from local means when the error's distribution have heavy tails. Note that 
not only the real function has nothing to do with the constructed interval but also there is no 
possible continuous function in this band. The bandwidth length of 90% conservative bands 
constructed from local means with Cauchy percentiles is also given in Figure 3.9. 
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BEHAVIOUR OF 90" CONFIDENCE BANDS 

t 
I 
I 
I 

Figure 3.1 

Figures 3.2 and 3.3 corresponds to 200 data from a linear model Yi=0.5 Xi + ei i=1 •... 200 
(monotone case). when the error's distribution is F1(.110) and 95% confidence bands are 
constructed from local means and medians respectively. for r=10. k=41. a=0.005 and c=0.5. For 
local means we have now used percentiles from clI(X/10). For the same model. in Figure 3.4 a 
95% confidence band is constructed based on 200 data when the error's distribution is F2(.110) 
and F2 is a Student distribution with 3 degrees of freedom. 
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