ABSTRACT. We present and analyze various algorithms for generating positive integer-
valued random variables when the distribution is described either through the generating

ALGORITHMS FOR GENERATING DISCRETE
RANDOM VARIABLES WITH A GIVEN GENERATING
FUNCTION OR A GIVEN MOMENT SEQUENCE

Luc Devroye
School of Computer Science
McGill University

function Z;’io p;s® or via the sequence of moments.

Table of contents.

© 0N o WD

—
- O

— e =
AR

KEYWORDS AND PHRASES. Generating function, random variate generation, algorithms,
moment problem, rejection method, expected time analysis. AMS Subject Classifica-

Introduction.

Properties of the generating function.

The choice of an algorithm.

Rejection algorithms.

Expected time per random variate.

Dominating probability vectors.

Tables of probabilities.

The inversion method.

Expected time per random variate for the inversion method.
Finite distributions: extension of the guide table method.
The moment problem.

Rejection algorithms in the moment problem.

Expected time per random variate in the moment problem.
Monotone distributions.

References.

tions. Primary 65C10. Secondary 65C05.

Authors’ address: School of Computer Science, McGill University, 3480 University Street, Montreal,
Canada H3A 2K6. The authors’ research was sponsored by NSERC Grant A3456 and FCAR Grant

90-ER-0291.

1. Introduction.

Let X be a nonnegative integer-valued random variable taking the value ¢ with
probability p;. The purpose of this paper is to suggest methods for generating X when
the user is only given the probability generating function (or simply generating function)

k(s) = E(s¥) & Zpisi(s e [0,1]).

The p;’s are not explicitly given; if they have to be used, they should to be computed from
k(s) (which is possible since the generating function uniquely determines the distribution
of X).

For many discrete distributions, the explicit form of the p;’s is more complicated
than that of the generating function. This has greatly contributed to the popularity and
importance of the generating function in probability theory and mathematical statistics.
In many situations, distributions are defined in terms of a generating function first. A case
in point are the branching processes, where the generating function of the reproduction
distribution determines the extinction probability and the Malthusian (or: rate of growth)
coefficient in case of a surviving population.

In the table below, some generating functions are shown for well-known distribu-

tions.
DISTRIBUTION GENERATING FUNCTION D;
Binomial (n, p) (1—p+ps)t (Tzl)pz(l —)"0 < i < n)
Geometric (p) ﬁ (1 —p)ip(i > 0)
n . .

Negative binomial (n, p) (ﬁ) (n+2@—1) (1—p)ip"(i > 0)
Poisson () e~ AtTAS A—Zf,i(z >0)
Logarithmic series (p) % m(z >1)

; 1—sntt 1 -
Uniform on {0,...,n} =9 n—+1(0 <i<mn)

In the next section, we look at some well-known and not-so-well-known properties
of the generating function. In the other sections, we derive and analyze some algorithms
for our problem. We are not proposing these algorithms in lieu of more classical algo-
rithms that require the exact knowledge of the p;’s, because they are usually more time-
consuming. They are primarily geared towards cases in which the p;’s are not explicitly
given. Nevertheless, since the p;’s are approximated in a simple fashion, considerable time

2

savings can be gained for distributions for which evaluations of k(s) take only a fraction
of the time of evaluations of p;.

2. Properties of the generating function.

The generating function k(s) is nondecreasing on [0, 1], and takes the value 1 at
s = 1. For every s € [0, 1], it is defined as a convergent Taylor series

k(s) = Zpis’ = Z z'()sz,
i=0 '

1=0

which implies that it is analytic on [0, 1]. This entails that derivatives can be taken under
the summation. Thus, it is easy to see that every derivative k£ is nondecreasing, and
possesses a convergent Taylor series for s € [0, 1).

The generating function of a convex combination (mixture) of distributions is the
same convex combination of the individual generating functions. The generating function
of a sum of independent random variables is the product of the individual generating
functions.

The behavior of k£ near s = 1 gives us information regarding the tail behavior of
the p;’s. One aspect of this is captured in the well-known property that

FO1) = B(X(X — 1)+ (X —r+1)),

the r-th factorial moment of X. To see this, observe that
o0

EO(s) = i(i—1) -+ (i —r+ Lpss' "

i=r

Hence all the moments of X, if they exist, can be derived from the sequence of
values k(") (1). The behavior of £ (0) on the other hand provides us with information
about the p;’s:

kT (0) = rlp,.

(This can be obtained from the series for k(") (s) shown above, or by equating Taylor series
expansions for k(s).) Our problem would be solved if we had access to k(") (s) for all r,
but unfortunately we do not. One might propose a solution in which p, is estimated
by the r-th derivative of k(s), and this estimate is treated as the correct probability in
some classical algorithm. This is unacceptable since it introduces an error with unknown
consequences in the user’s application. It is therefore essential that we estimate p, in a
controlled manner (with explicit error bounds), so that we can design an exact algorithm.

3

To obtain such estimates, we introduce for a function f(x) on the real line the difference
of order r, defined by

24 S (7)o

i=0
which can be computed in time proportional to r if all binomial coefficients and evaluations
of f are available at unit cost. It can also be obtained recursively from

Apf(z) = A7 fl@+1) — A7 f(2).

This too requires r + 1 computations of f, but about O(r?) subtractions. Differences of
order r are commonly used in approximations of functions, see e.g. Lorentz (1986, p. 47).
The tool we will need is given in Lemma 1.

LeEMMA 1. Inequalities for the probabilities. Assume that tr < 1,t >0, r > 0. Then,
ATK(O) _ AjK(0)

g 2P 2 — ((1 — Tt)_(H'l) — 1) sup p;.

T!tr i>r

PROOF. We begin with a very convenient representation for differences of order r (see
Lorentz, 1986, p. 47):

t t
A;k(aj‘):/o' .../0 k(r)(x+y1+...+yr)dy1...dyr'

Since all £(")’s are upa, it is obvious that
ATk(z) > t"ED (z)
for all z, and hence,
ATE(0) > k™ (0) = t"rlp,.
The second half of the proof follows again from the integral representation, applied
with x = 0:

ATK(0)/t" < K7 (rt)

- Zpi (Z i' 7”)' (Tt)i_r

i=r

oo .
¢ i—
=rlp, 4 r! Z Di <r> (rt)="

1=r+1

4

- L+ ;
:r!pr+r!2pi+r<)(rt)Z

- r
=1

nd 1+
< rl > rp;r! t)?
< rlp; +sup TW;< .)(7“)

= rlp, +sup > rp;r! (1 — rt)) 1).0
i

As by-products of the representation used in the proof of Lemma 1, we observe
that A7k(x) is increasing in ¢ when r, z are kept fixed, and in = when ¢, 7 are held fixed
(see also Widder (1972, p. 150)).

3. The choice of an algorithm.

Lemma 1 provides us with a method for estimating every p; to any desired accuracy
based upon evaluations of k(s) only, for we note that the error committed when p, is
estimated by A7k(0)/(r!t") is not greater than

(1—7rt)~*Y —1 5 0ast 0.

Interestingly, this is all we need to be able to design an exact algorithm. If p, is estimated
by A7k(0) for some small ¢, there may be a serious loss of accuracy on small wordsize
machines, as we need an r-times iterated difference. We won’t be concerned with this issue
here, preferring instead to give machine-invariant algorithms operating on real numbers.

There are basically three (partially overlapping) methods for generating discrete
random variates (see e.g. Schmeiser (1983) or Devroye (1986)): table methods, inversion
methods and rejection methods. Table methods are generally the most efficient methods
(see e.g. Marsaglia (1963), Chen and Asau (1974), Walker (1974,1977), Ahrens and Kohrt
(1981) and Peterson and Kronmal (1982)). Unfortunately, they require storage of the
probabilities p;. If they are to be used here, they should be modified in two directions,
since the p;’s are known up to some small error, and since the number of possible values
of X may not be finite. The way infinite tails are handled is necessarily based upon
another method. The inversion and rejection methods are capable of handling infinite
tails, and don’t require long set-up times. They seem prime candidates for our problem.
We begin with the rejection method, noting that the rejection method requires some extra
knowledge in the form of a dominating probability vector (a probability vector ¢;(i > 0)
is said to dominate the vector of p;’s when there exists a constant ¢ such that p; < cg;
for all ¢). The inversion method does not require any additional information, but is (not
surprisingly) the slowest of all methods.

4. Rejection algorithms.
If we knew all p;’s without error, we could use the standard rejection method:

repeat
Generate X with probability vector gqo,qi,- ...
Generate a uniform [0,1] random variate U.
until Accept (U, X)
(where Accept (U, X) % [Ueqx < px]).
return X.

Here, as in the previous section, ¢ is a constant with the property that p; < cg; for
all i. Tt is known that the expected number of iterations is ¢. The decision [Ucgy < px]
does not require exact knowledge of px: it suffices to have a series of estimates of px
approximating py. This technique has been developed in Devroye (1981) for example.

The function “Accept (U, X)” needed in the algorithm can be implemented as
follows:

T « Ucqx
t <+ ¢(X)/2 (¢ is defined in the next section;
e.g. the value () =¢/(z(x +1)3¢(2)
for some € >0 and a function ¢(z) =2+ 1 will do)
while True do

V o AME(0)/(rit")

if T">V then return False

else if T<V —(1—Xt) &) 41
then return True
t < t/2

A few words of explanation are in order here. A decision is made to accept or
reject only when Ucgx does not fall in the interval around py defined by the inequalities
of Lemma 1, i.e.

AXk(0) AFk(0)
rltr rltr |

Here t is varied in a geometric fashion starting with ¢ = ¢(X)/2, so that it travels through

the sequence ©(X)/2° (i = 1,2,...) until the interval is small enough and a decision can be

Ucgxnot € | —(1-Xt)—(X +1)) +1,

reached. At this point, there is no special reason why we should consider such a sequence.

6

The function “Accept” remains valid for any sequence ¢ | 0. The proposed geometric
sequence of t’s leads to easily controllable expected times before halting.

A slight improvement may result in the algorithm if we bound the error not by
(1 = Xt)—(X +1)) — 1, but by min(1,sup,s y c¢g;) times this quantity. This is especially
useful when the dominating probability vector is monotone 4, or when all ¢;’s are small.
For a similar improvement when the p;’s are known to be monotone, we refer to section
13.

The next two sections are devoted to the two key issues, the expected time needed
per random variate, and the construction of dominating probability vectors g;.

5. Expected time per random variate.

The time required before halting can be measured in terms of the number of uniform
[0, 1] random variates needed, in terms of the number of evaluations of k, and so forth.
It is helpful to isolate a counting method that is representative of the real time taken by
the algorithm. One quickly realizes that the evaluations of AXk(0) are at the heart of the
matter. However, all evaluations of the difference function are not alike. If old values are
not stored, then one evaluation takes time proportional to X +1 when binomial coefficients
are available in constant time, and time proportional to (X +1)? if the difference of order
X is computed recursively. To unify the treatment, let ¢(r) be the time required to
evaluate A7k(0). The expected time of the algorithm, assuming that all other operations
take time zero (without loss of generality) will be called E(T).

For fixed X = r, let N be the number of iterations in the function “Accept” before
a decision is reached. We observe that

0;
P(N >1) < —

Car
where 6; = (1 —rt)—(r + 1)) — 1, and ¢ is the i-th value of ¢. This statement follows from
the nature of the decision process and the fact that U is uniform [0, 1]. We recall that the
i-th value of ¢ is (r)/2¢. Thus, for fixed X = r, the expected number of evaluations of

Aj is
Y P(N>i)< 1+Zi.
i=0 im1 COr
- r(r+1)t
— cq, (L —r(r+1)t)
(use (1 —rt)"+1>1—r(r+1)t)

<1+

7

r(r+1)p(r)

ST+ Do)

The expected time taken by the function “Accept” for fixed X = r is bounded
from above by 1 (r) times the previous upper bound. The expected time, averaged over
all X is bounded from above by

. ng(r) (1 e r(r+1)¢(r)) _ i <qu¢(r) Ll 1)<p(7“)w(7“)>

L—r(r+1)p(r)) — L—r(r+1)p(r)

where we used Wald’s equation (which explains why we can bring the ¢ outside; see

Theorem I1.3.5 of Devroye (1986)). The upper bound has two components, one that can’t
be avoided,

cE((X))(X has probability vector {g;})

(which can be considered as the absolute cost of the algorithm, regardless of how the
sequence of t’s is picked), and a t-dependent but distribution-invariant term

o0

3 r(r+1D)p(r)e(r)

L—r(r+1)p(r)

r=0
which can be made as small as desired by picking the ¢’s small enough. Consider for
example, for X =r,

_ (1) der € :
T A M S P

for some € € (0,1]. Then the second contributing term in the expected time is bounded
by

o0 €

2

- (’"“)j — EZZ + O(€?).
r=0 ~ $)(r+1)?

This can be made as small as desired by the proper choice of e.

It should not come as a surprise that even if all A}’s were precisely equal to the
corresponding p,’s (and we would know this), the expected time per variate is equal to
cE(¢(X)), the product of the rejection constant ¢, and a penalty factor indicative of the
size of the tail of X. The penalty factor can in some cases be infinite, but this does not
invalidate the algorithm, as it still halts with probability one.

6. Dominating probability vectors.

Dominating probability vectors can be found in a variety of manners. We will
introduce just a few, based upon the inequalities of the next Lemma. Note that the
p;’s should be bounded from above in terms of simple quantities involving the generating
function only, as other information should not be assumed to be available.

LEMMA 2. Upper bounds for probabilities. The following exponential bounds are valid:
k(s)

gt

IN

(s > 0).

Pi
Furthermore, for all integer [> 0, the following polynomial inequality is valid:
k(l)(l)
;< >
e Py oy ry S pA G
Al k<1>(1)
i(t=1)-- (i =141

| AN

(all £ > 0).

ProoF. The first and second inequalities follow from the fact that

EO(s) = =1®i(i—1)- (i — 1+ L)ps’ — 1.
The first inequality is obtained by setting [= 1, and omitting all but the i-th term on the
right hand side. The second inequality is obtained by setting s = 1. O

The inequalities of Lemma 2 are but a small sampling of simple bounds depending
upon the generating function only. Observe for example that the last inequality is a
special form of Chebyshev’s inequality

E(XX D (X —1+1)
> Z(l_l)"'(l—l—l—l)
= (1) ,
_i(i—1)...(i_l+1)(22l).

This simple argument highlights the weakness of the bounding technique employed in

Lemma 2. It is usually unacceptably gross to bound individual probabilities by tail prob-
abilities including the individual probability. There is one well-known exception to this:
for exponential or subexponential tails, the probabilities are comparable in size to the
tails defined from the index in question upwards. In these small-tailed cases, the first

9

inequality of Lemma 2 is useful. Just consider an arbitrary s > 1 to be picked further
on. Then the bound p; < k(s)s™ when used for all i yields a geometrically decreasing
dominating probability vector. It is, of course, only useful when k(s) < oo for some s > 1.
The usefulness of the bound to us can be measured in terms of the rejection constant

c= ;k(s)si = S

This should be minimized with respect to s, if this is feasible. A random variate with the
dominating probability vector {>ts™* (i > 0)} can be generated as |F/log(s)], where
E is an exponential random variate. The distribution-dependent contribution to the
expected time, cE(¢(X)), is bounded by

E) = Sak(s)(1+ Tog(s)) (Y(r) =r+1)
log(s)” | k() 1+ iy +) (W) = (r+1)?)

cE(1)(

For distributions with heavier-than-exponential tails, the first bound of Lemma 2
is obviously useless. One should resort to a polynomial Chebyshev-like inequality, or use
additional information.

7. Tables of probabilities.

Let us briefly illustrate how tables of inexact probabilities can be kept to reduce
the time of the rejection method. Omne should not confuse this with a table method, in
which the table itself is needed for generating X, obviating the need for a dominating
probability vector.

The idea is to fix a table size, and to store in the table records with three com-
ponents, (u,d,t), where u = ATk(0)/(r!t") is an upper bound for p,, t is the ¢ value used
in computing this value, and ¢ is the bound on the error, (1 — 7¢)="+Y — 1 (thus, u — ¢
bounds p, from below). In a dynamic table, there is no information at the beginning. As
random variates are being generated, the table is gradually filled in. After some time,
most ¢’s in the table will be so small that the expected time per random variate is virtually
indistinguishable from that of the rejection method with a priori given p,’s.

For the sake of completeness, we indicate how the function “Accept” should be
altered.

10

[An initially empty table of values (u,,0,t.),r >0 is assumed.]
T « Ucqx
[Quick table-based decision.]
if table entry at X present
then if T <uy — 0y
then return True
else if T > uy
then return False
else t < tx/2 (new t needed for better estimate of pyx)
else t < p(X)/2 (for definition of ¢, see above)
[Standard acceptance based upon converging approximations.]
while True do
V o+ AXE(0)/(X1Y)
6« (1 = Xt)"(X+1) _ 1 (for monotone | p;’s, use V times this quantity)
Update table: (ux,dx,tyx) < (V,6,t)
if 7> Vthen return False
else if T'<V —§ then return True
t < t/2

Dynamic tables like the one suggested here have the pleasing feature that they
require work bounded above by the number of random variates generated. Thus, the
dilemma of how much time should be spent (or “wasted”) on setting up tables is auto-
matically resolved. The tables suggested here improve with time. To see this, assume that
cE((X)) < oo. With ¢(r) =€/(r(r + 1)3)(r)) (as suggested in the previous section), it
can be shown that the expected number of evaluations of £ per random variate tends to
zero as more and more random variates are being generated.

8. The inversion method.
We extend the ideas of the previous sections to design an inversion algorithm that

is applicable to all generating functions, without exception. Let us recall the raw inversion
method for a probability vector of p;’s:

11

X 0.
S py. (S holds) . .ypi.)
Generate a uniform [0,1] random variate U.
while U > S do
X<+~ X+1
S+ S+px
return X.

The expected number of evaluations of probabilities p; before halting is £ (1 + X).
This is an unavoidable cost. We note in passing that the inversion method is best suited
for small-tailed distributions and distributions with monotonely decreasing probabilities.
To show that the inversion method is not different in terms of decision making than what
we have seen for the rejection method, let us rewrite the algorithm in terms of a function
“Accept (U, X)”, similar to the one used for the rejection method. It accepts X when
U <> .. pi and rejects X otherwise.

X 0.
Generate a uniform [0,1] random variate U.
while True do
if Accept (U, X)
then return X
else X «+— X +1

The tool we will need is given in Lemma 3.

LEMMA 3. Inequalities for camulative probabilities. Assume thatr > 0, and t, =€, /((r+
1)2" + 1) for some sequence of €,’s with 0 < ¢, < e <1, all . Then,

A} k(O A} k(2¢

Z z'tl Z—Z z'tz 1=

=0

12

PrROOF. The upper bound for the cumulative probability is immediate from Lemma 1.
For the lower bound, we again apply Lemma 1, and the fact that

r

230_4m—@+1y4)g§:T§%§%%;
i€/2i+1

< Z 1 — ie/2it1

0 i6/2i+1
i=0 =3

2€
1 _

IN

£
4

For the implementation of the function “Accept”, we immediately proceed with
the dynamic table version. The table can be stored in an array, but is preferably held in a
linked list. Since the inversion method increments X by one in each iteration, the linked
list structure seems appropriate. Each cell in the linked list holds at least a 7-tuple, (1) the
index i of the current p;; (2) the t-value used in the computation of Alk(0); (3) an upper
bound for p;, Alk(0)/(i't"); (4) a lower bound for p;, Alk(0)/(ilt") —(1 —at)—(i + 1) + 1;
(5) an upper bound for > i<i i (6) a lower bound for > i<iPii (7) a pointer to the next
cell, if not nil.

Items in the linked list are only improved as more variates are generated, i.e. t-
values are replaced by smaller ones. One possible implementation is as follows:

[X also refers to the cell holding X.]
[pi(X), pu(X), P(X) and Py(X) are the individual and cumulative lower and upper bounds
while True do
if X is not in the list (X has never been considered before)
then compute all values in its cell, based upon ¢ =¢/((X +1)32%).
if U< P(X)
then return True
else if U > P,(X) then return False
Update all cells 0,...,X by halving the ¢’s for each cell.

The size of the linked list after n random variates have been generated is precisely
equal to F(max(Xy,...,X,)), where the X;’s are iid with the given generating function
k. The function “Accept” stops and returns a value in (random) finite time, since the
interval around the cumulative sum shrinks with time. It is possible to generate all the

13

information “on the fly” for each random variate generated. Obviously, it is advantageous
to store information as we did in the linked list. Even without a linked list, we will now
see that the expected time taken by the algorithm can be controlled very nicely.

9. Expected time per random variate for the inversion method.

Let N be the number of evaluations of £ needed in the course of the generation of
one random variate by the inversion method. In the algorithms with memory described
in the previous sections, E(N) decreases with time as more and more random variates
are generated. So we will take the pessimistic viewpoint that N refers to the first random
variate only.

LEMMA 4. In the inversion algorithm, E(N) is bounded from above by Ty + Ty + T3,
where

Ty = (2 + logy e) (s + 6p2 + 1141 + 3) /6,
def - .
(1 = i'pj)
§=0

i3+ 62+ 11i+3
DI)

5 dlog, e,
iip; >0
i3 +6i>+ 110+ 3)
1:p; <4 pi

Here 0 = 2¢/(1 — ¢/4), and € is as in Lemma 3.

PROOF. For fixed U in the X-th interval (U is the uniform random variable to be inverted,
and X is the generated random variable), the number of evaluations of k is Ny + - - -+ Nx
where N; refers to the number due to the decision not to accept i. Now, NN; is bounded
from above by 14+2+---+(i1+1) = (i+1)(i+2)/2 = (4> + 3i +2) /2 times the number of
iterations before a decision is reached. Note that in each iteration, the ¢-values are halved.
If this number of iterations is n = n(U), we note that n > 1, and, in view of Lemma 3,
puttingu:U—Zj <ipj fori < X andu:zjgxpj—Ufori:X,
)
2n — 1

<VU,

where 0 = 2¢/(1 — €/4). Hence,
)
n > logy(=) + 1,
u

14

and thus, a safe upper bound for n is
4]
2 + max(log,(—), 0).
u
It is clear that u is uniformly distributed on [0, px], so that we obtain the following upper
bound for the expected number of evaluations of k:

B <Y [ot

= Z ;N (p;)

where 1; = (j2 4 3j + 2)/2 (see above), ¥; = Z;ZO Y; = (i* + 6i* + 117 + 3)/6, and
N(z) = [; n(u)du. It is easy to verify that

ed
N(z) = 22+ zlogy (%) (0< 2 <6) .
2z +0log, e (0 < 2)
This gives the bound

Zi:pigd W;p;logy (6

E(N) < (2 +log,€) Z‘I’ipi + Z W;dlogy e + b

=0 ;>0

)

which was to be shown. [J

Lemma 4 reveals that the expected time is finite if the entropy-related term T3 is
finite; note that this implies at the very least that the third moment of the distribution is
finite. Roughly speaking, all three terms in the upper bound are indices of the size of the
tail of the distribution. The second and third terms can be made as small as desired, if
they are finite, by choosing ¢ small enough. Thus, 77 is an unavoidable cost, inherent in
the algorithm; no choice of the parameters affects 7). The mere fact that 7} is proportional
to the third moment of the distribution renders the inversion method very inefficient; one
should recall however that no requirements were imposed on the generating function; the
inversion method is a true “black box” method that can be used as a last resort.

10. Finite distributions: extension of the guide table method.

In the case of finite probability vectors with a known bound n for the support
(i.e., p; = 0 for ¢ > n), it is perhaps best to create a guide table of size n (Chen
and Asau, 1974) for generating a random variate with probability vector proportional
to {Alk(0)/(i'"),0 < i < n} for a given ¢ where ¢ can possibly depend upon i. Since this
vector dominates the p;-vector (see Lemma 1), we can apply the rejection method.

15

[ADJUSTED GUIDE TABLE METHOD.]
[One time initialization.]
FOR 7:=0 TO n do wu; + Alk(0)/(i't").
(t is allowed to depend upon ¢, see below.)
S > i
Set up the necessary structures for applying the guide table method to the probability v
[Generation.]
repeat Generate X with probability vector {u;/S} by the guide table method.
Generate a uniform [0,1] random variate U.
until Accept (U,X) (i.e. Uuy <px)
return X.

A few words about the efficiency are in order here. The set-up step requires
quadratic or cubic time in n, depending upon the manner in which the A%’s are computed.
This is, of course, a one-time cost. For a tight fit, it is important to take ¢ as small as
possible. The relationship between ¢ and n is explained below. If a set-up is to be avoided
altogether, one should probably start from the only guaranteed dominating probability
vector, u; = 1,0 < i < n; or from u; = 1/(i +1),0 < i < n, in the case of nonincreasing
probabilities.

The rejection constant is the expected number of uses of the guide table method
before halting. It is well-known that the guide table method takes expected time uniformly
bounded by a constant over all distributions (see e.g. Devroye (1986)). Hence, the rejection
constant is a good index of the expected time contribution of the adjusted guide table
method. A simple upper bound for the rejection constant is given below.

LeEMMA 5. The rejection constant in the adjusted guide table algorithm with t = t; is

T OALE("+ 1)t
SLAKO) gy S Dl
Z!ti i =0 1— Z(Z + 1)tz
If we take t; = m where € € (0,1), then the rejection constant is not greater than
i 1 - n+1 1 - n+1

This is O(1) for fixed € > 0, and converges to 1 as € | 0.

16

PrOOF. From Lemma 1, the rejection constant is not greater than
D ALE0) < T+supp Yy ((1—ity)—(i+1) — 1)
=0 ! i=0

n s
i(i + 1)t
SR e

If we take t; of where € € (0,1), then the last expression does not exceed

i(i+1)€(n+1)

€

n+1 n+1

Lemma 5 provides us with a simple tool for making the rejection algorithm as
efficient as desired; one could for example take t; = 0.05/(i(: + 1)(n + 1)).

We will see that it is even more to our advantage to take ¢; = §/(i(i + 1)ni(7))
where 6 € (0,1] is a constant and (i) is a work function usually equal to i + 1. To
see this, it is necessary to analyze the second component in the total expected time, the
expected number of evaluations of k. For this analysis, we give the function “Accept
(U, X)” explicitly:

V < ux (upper bound for, and approximation of px)
T UUX
t <ty (for definition, see Lemma 5)
while True do
if T<V—(1-Xt)=(X+1)+1 (I <V —ZgH will do too)
then return True
else if 7'>V then return False
t < t/2 (get a better approximation)

V e AXE(0)/(X1HY)

For fixed X = 4, the expected number of evaluations of A! is not greater than

i(i + 1)t; /27

M

7=1
where we followed an argument as in section 5. Note that in the first iteration, we exit
with large probability without evaluating Ak (0). With the choice of t; = §/(i(i+1)n (7))
(6 € (0,1]) suggested in the discussion following Lemma 5, the upper bound becomes

—~_ 0/(ny(1)2)
ui(1—=6/(ne(i)27))

17

M

J=1

Each evaluation of the difference of order 7 takes time ¢ (7) (which is either i+1 or (i +1)?
depending upon one’s model); hence, the overall expected time contribution from the
evaluations of the generating function is bounded from above by

= o/(mi)2 <5l
Z““” (Z Ty) Zw (Z = o ()2)))
“)
S.z:<n—1/2)

n—+1
n—1/2

Here too we can control the complexity by d: the bound can be made as small as desired

=9

by picking 0 small enough. In fact, for § very small, the performance of the algorithm
should be virtually indistinguishable from that of the guide table method based upon a
table of correct probabilities.

It is possible to replace the guide table by Walker tables (Walker (1974, 1977);
Peterson and Kronmal (1982)). It is perhaps interesting to note that the set-up of the
tables often requires much less time than for the case of known probabilities because most
discrete probabilities are of a combinatorial nature and hence involve computing factorials,
iterated products, Stirling numbers and the like. Generating functions on the other hand
are in many cases surprisingly “simple” functions of s.

11. The moment problem.

Assume that we are not given the generating function, but that the distribution is
specified indirectly in the form of values of the factorial moments

o0
MY T psi(i = 1) (= i+ 1) = B(X(X = 1)+ (X —i+1))(i 2 0).

j=0
Under some tail conditions, these moments determine the distribution; they generally
don’t when one of the moments is infinite. And even if all moments are finite, the distri-
bution is not necessarily uniquely defined: Stoyanov (1987) has constructed two families
of distributions on the integers each sharing the same infinite moment sequence. We will
show here how one can generate a random integer with a given moment (or factorial
moment) sequence under the condition that

E(1+u)=E((1+u)?") <inf

for some u > 1. (This is also a sufficient condition for the moment sequence to determine
the distribution.) The algorithm is not necessarily efficient, but at least it is conceptually

18

simple.

Since there are trivial linear relationships between the ordinary moments p; and
the factorial moments, giving the first ¢ factorial moments is equivalent to giving the first
¢ ordinary moments. We have

Wi = Z Sij M
=0
where S;j is Stirling number of the second kind, defined for example through the formula
. (] Y
5= Y = 0rai (1) (-1 - 0
!

See Johnson and Kotz (1969). There are similar formulas relating M; to the p;’s for
0 < j < involving Stirling numbers of the first kind (F}j):

J
M; = Z Fij ;.-
i=0

For easy reference, it suffices to note that F;7 = 0 when 7 > 0 and either ¢ > j or ¢ < 0.
Furthermore, Fy0 = 0 and Fj;,1 = F;_1; — jFj; for j > ¢ > 1. Hence we will assume
without loss of generality that the factorial moments M, are available.

Under the condition that k(1 + u) < oo, we see that k is a convergent power series
for |s| < 14 u. Thus, we can expand it in a Taylor series around s = 1, so that for any
point s € (—(1 +u), 1 + u),

=0 7=0]
o0 o0) MZ
:ZZS”(—U“J [(; l
== gt i —4)
) 5 00 zMJ+Z
- F Z(_) il
=0 /" =0

Under certain conditions, this series can be identified on a term-by-term basis with the
original defining power series for k(s). This would yield

LS qyi M
=0

19

For sufficient conditions under which this argument is valid, see Lemma 6 below. The
formula for p; is mentioned for compact support distributions in standard textbooks, such
as Kendall and Stuart (1977, p. 96). For it to be useful to us, we require some information
about the error committed when the oo in the series is replaced by a finite integer n.

LEMMA 6. Assume that k(14 u) < oo for some u > 1. Let p,j be an n-term approxima-
tion of p; defined by

Z J+z
n ' M

Then, for all even n, p,j > p;, while for all odd n, p,j < p;. Furthermore, for all j,

lim p,j = p;.
n—o0

PROOF. k(s) is absolutely summable on A = (—(1 + u), 1+ u), and hence is analytic on
A (Dieudonne, 1969, p. 203). Therefore, k(s) can be expanded in a unique absolutely
summable power series around every point in the interior of A. The same is true for all
derivatives of k. In particular, we have

for s <14 u, and

(s 1)
- Z il Mji.
We know that jlp; = k(j)(()). To apply the last series expansion at s = 0, we need to
require that the radius of convergence be greater than one, and hence that k(1 + u) < co
for v > 1. It is also known that if we truncate the last sum to include only the terms
0 <1 < n, then the remainder is

(S _ 1)n+1

CEm] kU ()
n .

for some s < # < 1. The remainder for s = 0 is therefore negative if and only if n is even.
Thus, the partial series alternately underestimates and overestimates p;.

20

The last statement of Lemma 6 follows from the observation that

and thus, M, < Cnlu~" for some constant C. From this, for fixed j,

nly! n

)u(nﬂ') < C(n +j)juf(n+j).
This tends to zero when w > 1. This implies the convergence of p,j to p; as n — oo. O

The sandwiching inequalities in Lemma 6 are also referred to as Bonferroni’s in-
equalities. They are in fact universally valid. The condition on k£ in fact implies that for
large n the inequalities are also tight. The series representation for p; given in Lemma 6
can be used for designing general algorithms for generating random variables with a given
moment sequence. These algorithms would not involve partial solutions of the well-known
moment problem (discussed for example in Widder (1972)). Since this has been an open
problem for a long time, it is perhaps worth our while to provide clues as to how one
might proceed. Note that the treatment here parallels that of the generating function.
It should be noted however that our algorithms can’t possibly work when the moments
do not uniquely define the distribution. This can be seen as a drawback since it would
seem that the additional freedom would make the generation problem simpler. The reader
can verify that our algorithms don’t halt when for some j, the sequence M;.;/i! does not
tend to zero as ¢« — oo. The algorithms are thus intimately linked to the solution of the
moment problem (see e.g. Feller (1971)). In the next two sections, we will take the liberty
of referring to our generation problem as “the moment problem”.

12. Rejection algorithms in the moment problem.

Rejection can be dealt with as in section 4. We need of course a dominating
probability vector. Since we assume that k(1 4+ u) < oo for some u > 1 (Lemma 6), we
can use the bound

pj < k(L +u)(l+u),
if the k-value in question, or an upper bound for it, is available. In any case, we always
have

p; < min(u,/j",1)
for all fixed r, where p, is the r-th moment. We should not forget that y, can be computed

from the first r factorial moments M;,1 < ¢ < r. Random variates with the polynomially
decreasing probability vector can be generated by the rejection method. To see this,

21

construct a function g(x) via

0 r<-—1
g(x) el —-1<z<e o Lu}«/rj
pr/x" x>

This function has the property that g(x) > p; forall j—1 < z < j and all j > 0. Thus, for
the rejection algorithm, we can proceed as follows, after noting that the constant portion
of ¢ has integral ¢ + 1, and that the polynomial tail has integral p,./((r — 1)c"™1):

[Rejection algorithm for {min(u,/j",1)}.]
while True do
Generate iid uniform [0,1] random variates U,V .

if U< ﬁ_i)%
then return X < [—1+ (¢+ 1)V
(use fact that p; =1 for j <c)
else YV < ¢/V'/(r —1) (Y has tail-of-g density)
X « [Y]
Generate a uniform [0,1] random variate W.

if W< (%)r then return X

The expected number of iterations in the algorithm is the area under g, i.e.,

/J’T 1/1" /J’T
Al = [+ 1+
(r=Tet 77 (r=1)(Lw""])r !
i

< T T+1+

(r = 1)([p)7
<24yl
r—1

The rejection algorithm for the moment problem is as in section 4, provided that
we take cg; o min(p, /7", 1), and that the function “Accept (U, X)” is implemented as
follows:

22

V < Umin(u, /X", 1)X!
(get ready for testing whether V = Ucqx X! < pxXD
n < 0.
S+ My
while True do
if n even
then if V > S THEN return False (reject)
else if V < S then return True (accept)
n<n+1
S« S+ (—1)"Mx +n/n! (next approximation)

The validity of the algorithm follows from the fact that the approximations of each
p; converge, and that consecutive approximations are underestimates and overestimates
respectively.

13. Expected time per random variate in the moment problem.

In this section, we determine the efficiency of the algorithm under the assumption
that the j-th factorial moment is available at unit cost, or in the worst case at cost 7 + 1
(when it has to be computed from the first j standard moments). For this purpose, let N
be the number of evaluations of a factorial moment. We have:

LEMMA 7. Assume that k(u) < oo for some u > 3 where k is the factorial moment
generating function of some random variable. The expected number E(N) of factorial
moments required by the rejection algorithm for the moment problem is bounded by

c+k(3)

where c is the rejection constant (see previous section).

Proor. Fix X = r, and consider the number of moments NV, needed before a decision
is reached whether to reject or accept. It is known that by Wald’s theorem, E(N) =
Yoo cqrE(N;) where ¢ is the rejection constant, and ¢, is the dominating probability
vector.

We have

M,+75-1
PN, 12)< 5t
ri(j —1)leg,

(j=1)

23

and
P(N, —1>0)=1.

Here we use Lemma 6 on alternate over— and underestimates of p,. Thus,

BV, ~1) = 3PN, <13)

o0

SZM,+j—1

= ri(j — 1)leq,
o~ M+

= rljleq,

2L k(1)
= rljleq,

B k1 (2)

 rleq

Thus,

provided that k(u) < oo for some v > 3. O

In practice, the bound of Lemma 7 is all but useless except for very short-tailed
distributions. Indeed, by Jensen’s inequality, k(3) > 3E(X). Nevertheless, the bound
is intuitively appealing since it shows a rejection component (c¢), and a distributional
rejection-less component k(3). The latter component describes a cost we can’t do without,
since it is present even if we have 100% acceptance probabilities (¢ = 1). In other words,
it can be considered as a cost inherent in the series approximation of probabilities by
means of moments or factorial moments. On the positive side, it should be mentioned
that k(u) < oo (all w > 0) for many important distributions, such as all finite distributions
and all distributions with a subexponential tail (i.e., for any C' > 0, p; < e~ for all 4
large enough).

Even though the algorithm is valid when k(u) < oo for some u > 2, Lemma 7
does not provide a finite expected time guarantee when k(u) < oo for some u € (2, 3] but

24

k(u) = oo for all u > 3.

When the r-th factorial moment is not available at unit cost, but at cost ¥(r),
“N, + 17 should be replaced in the argument by "' 1 (i). Although we won’t pursue
this any further, it suffices to mention that for ¢(r) = 7! (I integer), the condition for
finite expected time becomes k() (3) < oo.

Just as in the first half of this paper, the rejection algorithm can be replaced by
a usually less efficient but universally applicable inversion algorithm. In the moment
problem, such an algorithm can be based upon the series representation

M+j
P(X > 1>1
(Z 2_1|Z]+Z(_)

(see e.g. Laurent (1965, p. 437)).

The ideas presented here for the moment problem can be applied (with modifica-
tions) to continuous random variables as well. It suffices to observe that the distribution
function can be represented as a converging series depending upon the moments only, pro-
vided that the moments uniquely define the distribution. See for example Theorem 2 on
p.227 of Feller (1971). We will present results for the general moment problem elsewhere.

14. Monotone distributions.

If in addition to the generating function k(s), we know that the p;’s are mono-
tonically |, it is possible to improve upon the rejection and inversion algorithms given in
sections 4 through 10, basically because we have

LEMMA 8. Inequalities for monotone probabilities. Assume that tr < 1, t > 0, r > 0.
Then,
AVk(0)

ritr

(1= ((1—rt)y=D —1)).

Lemma 8 is an immediate corollary of Lemma 1. The function “Accept (U, X)”
used in the rejection algorithm can now be improved as follows:

25

T+ Ucqx
tp(X)/2
while True do
V « AXE(0)/(rlt7)
if T>V
then return False
else if T <V (2— (1 — X¢t)~X**D) (improved step)
then return True
t<t/2

This modification has some implications on the expected time. We note that in
the notation of section 5, ATk(0)/(r!t") < p./(1 —¢;), so that
ATK(0)6; 0iDr
Cqr qu(l - 51)

where ¢ is the i-th value of ¢. A little work, too tedious to reproduce here, shows that the

expected time per random variate is bounded from above by

o0

r(r+1e(r)v(r)p,
CE($(X)) + Z f_*;rif (+)fffp(),fj

where X has probability vector {¢;}. This is nearly always smaller than the corresponding
bound for the original rejection algorithm (see section 5).

In terms of a dominating probability vector, we can also slightly improve on what
we have seen before, since now

(s — 1)k(s) ,
i < Siﬂi_l(s> L;i >0).
The latter inequality is best obtained by the following argument:
Si—l—l -1 i) i)
P =pi)8 <Y ps! <k(s),

=0 =0

The area under the bounding curve becomes

k(s)

o0

1
—~1+s+ 48

)

which is better than the corresponding area obtained without monotonicity (see section
6). Unfortunately, there does not seem to be a simple way of generating a random variable
with probability vector proportional to 1/(s*** — 1) except via rejection from a geometric

random variable with probability vector proportional to s=.

26

15. References.

J. H. Ahrens and K. D. Kohrt, “Computer methods for efficient sampling from largely ar-
bitrary statistical distributions,” Computing, vol. 26, pp. 19-31, 1981.

H. C. Chen and Y. Asau, “On generating random variates from an empirical distribu-
tion,” AIIE Transactions, vol. 6, pp. 163-166, 1974.

L. Devroye, “The series method in random variate generation and its application to
the Kolmogorov-Smirnov distribution,” American Journal of Mathematical and Manage-
ment Sciences, vol. 1, pp. 359-379, 1981.

L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.
J. Dieudonne, Foundations of Modern Analysis, Academic Press, New York, 1969.

W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, John Wi-
ley, New York, N.Y., 1971.

N. L. Johnson and S. Kotz, Distributions in Statistics: Discrete Distributions, John Wi-
ley, New York, N.Y., 1969.

M. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 1, 4th Ed., Macmil-
lan, New York, 1977.

A. G. Laurent, “Probability distributions, factorial moments, empty cell test,” in: Clas-
sical and Contagious Discrete Distributions, pp. 437-442, Proceedings of the Interna-
tional Symposium on Classical and Contagious Distributions, Montreal, Pergamon Press,
New York, 1965.

G. G. Lorentz, Approximation of Functions, 2nd Ed., Chelsea Publisjing Company, New
York, 1986.

G. Marsaglia, “Generating discrete random variables in a computer,” Communica-
tions of the ACM, vol. 6, pp. 37-38, 1963.

A. V. Peterson and R. A. Kronmal, “On mixture methods for the computer genera-
tion of random variables,” The American Statistician, vol. 36, pp. 184-191, 1982.

B. W. Schmeiser, “Recent advances in generating observations from discrete ran-
dom variables,” in: Computer Science and Statistics: The Interface, ed. J. E. Gen-
tle, pp. 154-160, North-Holland, 1983.

J. Stoyanov, Counterexamples in Probability, John Wiley, Chichester, U.K., 1987.

A. J. Walker, “New fast method for generating discrete random numbers with arbitrary fre-
quency distributions,” Electronics Letters, vol. 10, pp. 127-128, 1974.

27

A. J. Walker, “An efficient method for generating discrete random variables with gen-
eral distributions,” ACM Transactions on Mathematical Software, vol. 3, pp. 253-256,
1977.

D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, N.J., 1972.

28

