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1. Introduction

In 1984, the author of this note published a black-box style rejection algorithm that can be used

for any log-concave density f on the real line for which the location of a mode m is known. Defining

M = f(m), it is based on the inequality

f(x) ≤M min
(

1, e1−|x−m|M
)

.

An extension to discrete distributions on the integers followed in 1987. As the integral over the bounding

curve is precisely 4, this implies that one can develop a simple von Neumann rejection algorithm (von

Neumann, 1951) for generating random variates from f such that the expected time is uniformly bounded

over the entire family of distributions. However, one has to know m and be able to compute f(m). In

some cases, we do not know where m is, but have information in another form, such as the value of the

mean µ or the variance σ2. In other cases, we only know f up to an unknown normalization constant.

The purpose of this note is to fill in the gaps, and provide uniformly fast random variate generation

algorithms when only partial information is available. The primary goal in this work is to develop

simulation algorithms that are uniformly fast over all log-concave densities for which we have access to

one or more parameters such as m, µ or σ2.

We will introduce a logical nomenclature for our algorithms, as listed in the table below, where

LC refers to “log-concave”.

name f available m known µ known σ2 known

LC−f −m yes yes

LC−f − µ− σ yes no yes yes

LC−f − µ yes no yes

LC−g −m up to normalization constant yes

LC−g −m− σ up to normalization constant yes yes

LC−g − µ− σ up to normalization constant no yes yes

Table 1: Nomenclature for the algorithms in this note.

For all these cases, we derive appropriate inequalities that will permit to develop simple black

box “off-the-shelf” rejection algorithms that are uniformly fast over the class of all log-concave densities.

The expected number of iterations in von Neumann’s rejection method is equal to the area under the

bounding curve. This enables us to see what price we must pay for having only partial information. All

algorithms can be adapted to discrete log-concave distributions but that will be done elsewhere.

Past work on random variate generation for log-concave densities includes Devroye (1984 and

1986, section 8.2), where the first uniformly fast algorithms were developed. An extension to discrete

log-concave distributions followed in 1987. Hörmann, Leydold and Derflinger (2004) (see also Hörmann

and Leydold, 2000, 2001) designed black-box automated random variate generators. In some of that work,

they assume the availability of the derivative of f in black-box format. For example, they automate the
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method of finding a threshold beyond which an exponentially decreasing cap is used, and perform an

optimization along the way. Their methods are fast and efficient, but a uniform performance guarantee

is still missing. Further black box attempts include Devroye (2012). If many random variates are needed

for a fixed distribution, then one could use table methods—adaptive or not—to break the line up into

intervals on which we can to a good job bounding f . See, e.g., the book of Devroye (1986, chapter 8),

Hörmann’s table method (Hörmann, 1995), or the articles of Gilks (1992) and Gilks and Wild (1992,

1993), who developed the ars algorithm, which stands for adaptive rejection sampling. The original

paper of Gilks and Wild (1992) required also the derivative of f at various places (in black-box style),

but Gilks (1992) did not need that. See also an exercise in Devroye (1986, chapter 8.2) about adaptive

rejction sampling. In any case, we are not aware of any uniform performance bounds for any of these

methods.

The paper is organized as follows. We begin in sections 2 and 3 with foundational inequalities

for log-concave densities. In section 4, we deal with densities for which the normalization constant is

known or computable up to a certain explicit margin, and the mode is known. This algorithm is used in

sections 5 through 9 to develop or outline uniformly fast algorithms for all gamma and beta densities, the

Pearson IV density, Losev’s density and Chernoff’s density. In section 11, we deal with rather common

situations in which a mode is not explicitly known, such as is the case for polynomially tilted secant and

cosecant distributions, and Sitenko’s distribution. In section 12, the mode is known, but the normalization

constant is not known. One can still develop a uniformly fast generator when the variance is known. In

section 13, we deal with an unknown mode and unknown normalization constant, provided that both

mean and variance are known.

2. Some useful properties of univariate log-concave desnities

A density is log-concave if log(f) is concave. Log-concave densities are unimodal, but may have

an interval of modes. Examples of log-concave densities include the normal distribution, the gamma (a)

distribution for a ≥ 1, the exponential distribution, the uniform distribution on [0, 1], the logistic distri-

bution, Gumbel’s extreme value distribution, the Laplace distribution, the hyperbolic secant distribution,

the chi-square distribution with n ≥ 2 degrees of freedom, the beta (a, b) distribution for a, b ≥ 1, and

the Weibull (a) distribution with a ≥ 1.

Saumard and Wellner (2014) survey the main properties of log-concave distributions. Of partic-

ular utility to us is the distance between µ and m, starting with the Johnson-Rogers inequality (1951)

|m− µ| ≤
√
3σ,

which is valid for all unimodal distributions, which implies that it is valid for log-concave distributions. See

also Dharmadhikari and Joag-Dev (1988) and Bottomley (2004). Bobkov and Ledoux (2019, proposition

B2) give the following inequalities, valid for all log-concave densities with mode m, mean µ and variance

σ2:
1

e
√
3
≤ σf(µ) ≤ 1,

1√
12
≤ σf(m) ≤1.
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The left-hand side of the second inequality is valid for all densities, not just the log-concave densities (see

Statulevicius (1965) and Hensley (1980)). The right-hand-side of the second inequality is due to Fradelizi

(1999; see also Bobkov and Chistyakov, 2015). Other inequalities of this type include

f(x) ≥ 2f(m)min(F (x), 1 − F (x)),

where F is the distribution function for f (Bobkov and Ledoux, 2019). The above inequalities imply for

example that f(µ) ≤ f(m) ≤ e
√
3f(µ).

3. When the density can be computed exactly and its mode is known

When f can be computed in a black box format, and we know the position of a mode m, we are

back in the situation dealt with in Devroye (1984, 1986). For completeness, we briefly recall the main

inequality:

Theorem 1. If f is log-concave with a mode at m, then

f(x) ≤M min
(

1, e1−|x−m|M
)

, (1)

where M = f(m). The area under the upper bound (1) is 4. There is an infinite sequence of better

bounds, the first one being

f(x) ≤M min

(

1, e−|x−m|M+|x−m|Me1−|x−m|M
)

. (2)

Proof. Without loss of generality, assume that m = 0 and M = 1. Then we only need to show that

for all x > 1, f(x) ≤ e1−x. For such an x, the value of f(x) is maximized if f(y) = 0 for y 6∈ [0, x] and

f(y) = e1−ay, y ∈ [0, x]. Since we must have a density,
∫ x
0 e1−ay = (1 − e−ax)/a = 1, so

f(x) ≤ e−ax

where 1 − a = e−ax (note that a = a(x) is a function of x, and is related to the Lambert W function

(see, e.g., Lehtonen and Rees, 2016), a multivalued function that represents the branches of the converse

relation of the function f(w) = wew, where w is any complex number. If b(x) is any function with

1− b(x) ≥ e−b(x)x, then b(x) ≤ a(x), and therefore,

f(x) ≤ e−b(x)x.

We first try b(x) = 1− 1/x, recalling that x > 1. Then

sup
x>0

xe−x =
1

e

leads to the sought inequality,

1− b(x) =
1

x
≥ e1−x = e−b(x)x.

But using this as a starting point, we can generate an infinite sequence of better lower bounds b(x) =

b0(x) < b1(x) < · · ·, just by setting

bk+1(x) = 1− e−bk(x)x, k ≥ 0.
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For example, with

b1(x) = 1− e1−x,

we obtain the bound

f(x) ≤ e−x+xe1−x
, x ≥ 1.

remark: monotone log-concave functions If f is log-concave with mode at m, 0 to the left of m

and nonincreasing to the right of m, then the areas under the upper bounds in Theorem 1 get halved, to

2 for (1) and e/(e− 1) for (2).

The rejection algorithm implied by (1) can be implemented as follows:

algorithm LC−f −m

let m be the location of a mode of log-concave density f

set M = f(m)

repeat let B be Bernoulli (1/2)

let S be a random sign

let U be uniform on [0, 1]

if B = 1, then let V be uniform on [0, 1]

set X ← m+ SV/M

Accept ← [UM ≤ f(X)]

else let E be exponential

set X ← m+ S(1 + E)/M

Accept ← [UMe−E ≤ f(X)]

until Accept

return X

(note that X has density f)

When f is monotone decreasing log-concave with support on [m,∞), one can just set S = 1 in

the above algorithm. In that case, the expected number of iterations is 2.

Conversely, we may apply the rejection method by an inversion trick, using the fact that

f(x) ≤ min(1, e1−x), x > 0,

if and only if

x ≤ 1 + log

(

1

f(x)

)

or

f inv(y) ≤ 1 + log

(

1

y

)

,
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where f inv denotes the inverse of f . The rejection method is based on the fact that if (X,Y ) is uniformly

distributed on A
def
= {(x, y) : y ≤ f(x)}, then X has density f . But for monotonically decreasing f on

[0,∞), we also have A = {(x, y) : x ≤ f inv(y)}. As 1 + log(1/x) is the density of U1U
B
2 , where U1, U2

are i.i.d. uniform random variables, and B is Bernoulli (1/2), the following rejection method works for

all decreasing log-concave densities on [0,∞) with mode at 0 and M = 1:

algorithm LC−f −m, restated

Note: This assumes f is a decreasing log-concave density on [0,∞)

with mode f(0) = M = 1 at 0

repeat let U1 be uniform on [0, 1], and set Z ← U1

with probability 1/2, set Z ← ZU2, where U2 is uniform on [0, 1]

(note that Z has density 1 + log(1/z) on [0, 1])

set Y ← 1 + log(1/Z)

let U3 be uniform on [0, 1]

let X ← U3Y

(note: (X,Y ) is uniform in A defined above)

until Z ≤ f(X)

return X

(note that X has density f)

The expected number of iterations of this algorithm is equal to the area of A, which is precisely two.

If f is log-concave and is supported on R with mode at 0, and f(0) = 1, then the above algorithm

is easily modified by treating the positive and negative axes separately by replacing U3 by a uniform

random variable on [−1, 1]. In that case, the expected number of iterations is 4. If X has a decreasing

density on [m,∞) and is log-concave on that interval, then use the former algorithm with f(x) replaced

by Mf(|x −m|M), where M = f(m). If f is log-concave and is supported on R with mode at m, then

use the latter algorithm with f(x) replaced by Mf(|x−m|M), where M = f(m).

4. When the density can be computed up to a normalization constant

The log-concave target density with mode at m can be written as

f(x) = f(m)h(x),

where M = f(m) is defined to be the normalization constant. Assume that the function h is easy

to compute but the normalization constant, which in many cases involves transcendental functions or

cumbersome integrals, is not. It is understood that the user has access to the function h afdjusted such

that h(m) = 1. Assume that we know that

M− ≤M ≤M+.
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Then from (1), we have

h(x) ≤ min
(

1, e1−|x−m|M
)

≤ min
(

1, e1−|x−m|M−
)

.

This leads straightforwardly to the following rejection algorithm:

algorithm LC−g −m: version I

Let m be the location of a mode of log-concave density f

Note: We have access to a function h such that f(x) = f(m)h(x)

and know a constant M− such that M = f(m) ≥M−

repeat let B be a fair coin flip

let S be a random sign

let U be uniform on [0, 1]

if B = 1, then let V be uniform on [0, 1]

set X ← m+ SV/M−
Accept ← [U ≤ h(X)]

else let E be exponential

set X ← m+ S(1 + E)/M−
Accept ← [Ue−E ≤ h(X)]

until Accept

return X

(note that X has density f)

The expected number of iterations is

4× M

M−
,

and thus depends only upon the relative accuracy of the inequality M ≥ M−. Two examples, shown in

the next two sections, illustrate this procedure.

5. Example 1: the log-gamma distribution.

There is no shortage of algorithms for efficiently generating gamma random variates Ga with

parameter a > 0. However, the cases a < 1 and a ≥ 1 are usually dealt with separately because of

the different physionomies of the density—for a ≥ 1, the density is log-concave, while for a < 1, it is

monotone with an infinite peak at zero. However, log(Ga) has a log-concave density for all a > 0:

f(x) =
eax−ex

Γ(a)
, x ∈ R.

Its mode is m = log(a). We define

M = f(m) =
1

Γ(a)

(a

e

)a
.
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Thus, f(x) = Mh(x), with h(x) = exp (a(x−m) + a− ex). Assume now that we do not wish to rely on

a program that computes the gamma function. We can get a good and easy-to-compute lower bound for

M via an upper bound on Γ(a). Among the myriad of bounds on the gamma function, we could use one

developed by Batir (2008):

e4/9√
π

(a

e

)a
√

2π(a+ 1/2)

a
e
− 1

6(a+3/8) ≤ Γ(a) ≤
(a

e

)a
√

2π(a+ 1/2)

a
e
− 1

6(a+3/8) .

Using
√
π/e4/9 < 1.136462649, this leads to the bounds

M− =
a

√

2π(a+ 1/2)
e

1
6(a+3/8) ,

M+ = 1.136462649
a

√

2π(a+ 1/2)
e

1
6(a+3/8)

The expected number of iterations in the algorithm that avoids computing Γ(a) is

4M

M−
≤ 4M+

M−
= 4 ∗ 1.136462649< 4.55.

The algorithm for the log-gamma distribution is given below. In the acceptance condition, it is convenient

to replace [U < h(X)] (where U is uniform on [0, 1]) by −E′ < log(h(X)), where E′ is exponential.

universal log-gamma generator

set m = log(a) /a mode of f/

set M− = a√
2π(a+1/2)

e
1

6(a+3/8)

repeat let B be a fair coin flip

let S be a random sign

let E′ be exponential

if B = 1, then let V be uniform on [0, 1]

set X ← m+ SV/M−
Accept ← [−E′ ≤ a(X −m) + a− eX ]

else let E be exponential

set X ← m+ S(1 + E)/M−
Accept ← [−E − E′ ≤ a(X −m) + a− eX ]

until Accept

return X

(note that X
L
= log(Ga))

(note that eX
L
= Ga)

If one has access to the gamma function, one can replace M− in the above algorithm by M throughout,

and reduce the expected number of iterations to 4. We make no claims regarding the actual efficiency of

this method when implemented. Luengo (2022) offers a recent survey and comparative timing. The fact
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that the log-gamma is log-concave for all parameters was already noted in Devroye (2012) and Xi, Tan

and Liu (2013). The rejection method of Schmeiser and Lal (1980) remains a robust standard.

6. Example 2: the beta distribution.

A beta (a, b) random variate Ba,b with a, b > 0 can be generated quite efficiently in a variety of

direct ways, and also as a ratio of independent gamma random variables, Ga/(Ga + Gb). If Y is Ba,b,

and X is related to Y by the logistic transform

Y =
1

1 + eX
,

X = log

(

1− Y

Y

)

,

then X has the log-concave density

f(x) =
ebx

B(a, b) (1 + ex)a+b
, x ∈ R,

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the beta function. The mode is

m = log

(

b

a

)

.

Once again, we have the possibility of getting a simple uniformly fast algorithm over the entire parameter

range. Here we note that

M = f(m) =
aabb

(a+ b)a+bB(a, b)
.

Using Batir’s inequalities given above, setting

ρ ==
ab

a+ b

√

a+ b+ 1/2

2π(a+ 1/2)(b+ 1/2)
e

1
6(a+3/8)

+ 1
6(b+3/8)

− 1
6(a+b+3/8) ,

we get

M− =
ρ

1.136462649
,M+ = 1.1364626492ρ.

Finally, we have f(x) = f(m)h(x), with

h(x) = eb(x−m)
(

e−m + 1

e−m + ex−m

)a+b

.

The algorithm below uses an expected number of iterations not exceeding

4M+

M−
= 4× 1.1364626493 = 5.87 . . . .
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universal beta generator

set m = log(b/a) /a mode of f/

set M− = 1
1.136462649

ab
a+b

√

a+b+1/2
2π(a+1/2)(b+1/2)

e
1

6(a+3/8)
+ 1

6(b+3/8)
− 1

6(a+b+3/8)

repeat let B be a fair coin flip

let S be a random sign

let E′ be exponential

if B = 1, then let V be uniform on [0, 1]

set X ← m+ SV/M−
Accept ←

[

−E′ ≤ b(X −m) + (a+ b) log
(

a+b
a+beX−m

)]

else let E be exponential

set X ← m+ S(1 + E)/M−
Accept ←

[

−E − E′ ≤ b(X −m) + (a+ b) log
(

a+b
a+beX−m

)]

until Accept

return X

(note that X
L
= log((1/Ba,b)− 1))

(note that 1/(1 + eX)
L
= Ba,b)

If one has access to the gamma function, one can replaceM− in the algorithm above byM throughout, and

reduce the expected number of iterations to 4. The early beta random variate algorithms were surveyed

by Devroye (1986). The most recent comparative survey and study is by Luengo and Gragera (2023),

who recommend Derflinger, Hörmann and Leydold’s ninigl method (2010), Schmeiser and Babu’s b4pe

or b2pe algorithms (1980, 1983), the switching method by Atkinson and Whittaker (1976, 1979) and

Cheng’s ba algorithm (1978). We do not claim that the algorithm given above is practically competitive.

7. Example 3: Chernoff’s density

Chernoff’s density is that of the symmetric random variable

X = sup{t ∈ R : W (t)− t2 is maximal},

where W (t) denotes the standard two-sided Brownian motion starting from zero. An important density

in the study of Grenander’s estimate of a monotone density, it was shown by Balabdaoui and Wellner

(2012, 2014) to be log-concave, as it can be written as a product of two log-concave functions, each having

a Laplace transform that is inversely proportional to the Airy function. We know that Chernoff’s density

is symmetric about zero, but the value of the density at any point can only be obtained by iterative

computation. Halting that numerical computation at any point can give bounds. In particular, the value

of the mode at zero can be bounded from above and below. When developing a sampling method for

Chernoff’s density, which will be done elsewhere, a good starting point is the algorithm LC−g−m, which

can do with bounds on the value at a mode.
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8. Example 4: The log-Pearson IV density

Undoubtedly, the most enigmatic member of Pearson’s family of distributions (Pearson, 1895) is

the Pearson IV distribution, which is characterized by two shape parameters, a > 1/2 and s ∈ R. Its

density on the real line is given by

f(x) =
ρ es arctan(x)

(1 + x2)a
,

where, by Legendre’s duplication formula,

ρ
def
=

|Γ(a− is/2)|2
Γ(a)Γ(a− 1/2)Γ(1/2)

=
4a−1 |Γ(a− is/2)|2

πΓ(2a− 1)
,

and Γ is the complex gamma function. We write Pa,s to denote a Pearson type IV random variable with

the given parameters. As Pa,s
L
= −Pa,−s, we can assume without loss of generality that s ≥ 0. As noted

in Exercise 1 on page 308 in Devroye (1986), when a ≥ 1, arctan(Pa,s) has a log-concave density on

[−π/2, π/2] given by

f(y) =

{

ρesy(cos2(y))a−1 if |y| ≤ π
2 ,

0 else.

The mode of h occurs at m = arctan(β), where we set β = s/(2(a− 1)). Also,

f(m) = ρes arctan(β)
(

1

1 + β2

)a−1

= ρ

(

e2β arctan(β)

1 + β2

)a−1

.

If we have constant time access to the value of ρ—which requires the complex gamma function—, then

we may proceed by the standard log-concave method given by algorithm LC−f − m. However, tight

upper and lower bounds exist for the norms of the complex gamma function, requiring only standard

mathematical operations such as the exponential, logarithm and arc tangent. See, e.g., Boyd’s inequality

(Boyd, 1994; see also (5.11.11) in Olver et al., 2023). These bounds can be used in algorithm based on

LC−g −m. See Devroye and Hill (2024) for more details.

9. Example 5: Losev’s density

Losev (1989) introduced the density

f(x) =
ρ

e−ax + ebx
, x ∈ R,

where a, b > 0 and the normalization constant is

ρ =
a+ b

π
sin

(

πb

a+ b

)

.

As this density is log-concave and its mode is located at

m =
1

a+ b
log
(a

b

)

,

we can apply algorithm LC−f − m for uniformly fast performance. Losev also considered densities

proportional to (f(x))r for r > 0. Here the normalization constant becomes unwieldy, yet we know a

mode, which still is m. As f r too is log-concave, we are in a situation in which we can hope to compute

upper or lower bounds on the normalization constant. This is precisely the case dealt with in the algorithm
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LC−g −m. To be precise, the value of the normalized function h with h(m) = 1 for simulating from f r

is given by

h(x) =

(

e−am + ebm

e−ax + ebx

)r

.

What matters for computing bounds on the normalization constant is the behavior of h near m. Since

e−ax is close to e−am(1− a(x−m)+ a2(x−m)2/2) and ebx is close to ebm(1+ b(x−m)+ b2(x−m)2/2),

h(x) ≈
(

e−am + ebm

e−am + ebm + (bebm − ae−am)(x −m) + (x−m)2(b2ebm + a2e−am)/2

)r

=

(

1

1 + δ(x −m)2

)r

where

δ =
b
2a+b
a+b a

b
a+b + a

2b+a
a+b b

a
a+b

2

(

(b/a)
a

a+b + (a/b)
b

a+b

) .

Since 1 = M
∫

h, we see that if
∫

h ≤ H , then M ≥ 1/H , and thus we can set M− = 1/H in our

algorithm. Setting δ(x −m)2 = 1/r would yield a value h(x) ≈ 1/e for r large enough. Thus, by lower

bounding the area under h by that of a rectangle, we obtain
∫

h ≥ 1√
rδ
×max

(

h(m+ 1/
√
rδ), h(m− 1/

√
rδ)
)

.

The upper bound should be of the same order of magnitude. This suggests the choice

M− =

√
rδ

max
(

h(m+ 1/
√
rδ), h(m− 1/

√
rδ)
) .

This is all that is needed to apply algorithm LC−g −m.

10. Example 6: Symmetric log-concave densities.

The mode of any symmetric log-concave density is zero. Yet, we often do not explicitly know the

normalization constant, as is the case of a density proportional to

h(x) = exp

(

−
K
∑

i=0

a2ix
2i

)

,

where a0, . . . , aK > 0. Noting that h(0) = 0, we can compute an appropriate value for M−, mimicking

the argument presented above for Losev’s density so that algorithm LC−g − m can be applied. More

specifically, borrowing an example from Gradshteyn and Ryzhik (2015, formula 3.324), we can consider

h(x) = exp
(

−a2x2 − 2x4
)

.

Its mode is at the origin, and the integral is

e
1

2a2 K1/4(1/(2a
2))

2a
√
32

,
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where K denotes the Bessel function of imaginary argument. Those wishing to avoid the computation

of the latter function can still generate random variables from this log-concave density via algorithm

LC−g −m (version I) provided that simple inequalities for this function are known.

11. An unknown mode

Sometimes, we have a log-concave density f in a black box setting, but do not know the location

of a mode m. This happens for example when the analytic form of f is unwieldy. As we will see in this

section, it suffices to have a location parameter to anchor the density. For example, knowledge of the

mean µ will do. We begin with a few examples, which illustrate the point that it is quite often the case

that one has easier access to the mean than to a mode.

Example 7: Sums of log-concave random variables. As the convolution of two log concave

functions is log concave, the sum X+Y of two independent log-concave random variables is a log-concave

random variable. The mean is the sum of the means, but often, a mode of X +Y is not readily available.

That would be the case if we add a gaussian random variable with a beta random variable, for example,

when both beta parameters are at least one. If we have the sum of k independent log-concave random

variables, then generating them independently and summing them would incur a time complexity at least

equal to k. So, it is advantageous to generate that sum directly, but then a mode is unknown, while the

mean and variance are.

Example 8: Polynomially-tilted hyperbolic secant and cosecant distributions. In what

follows, ζ denotes Riemnann’s zeta function. The following polynomially-tilted hyperbolic secant distri-

butions are all log-concave on [0,∞):

ρ1(a)
xa−1

cosh(x)
, where ρ1(a) =

2a−1

Γ(a)
∑∞

k=0(−1)k
(

2
2k+1

)a , a ≥ 1,

ρ2(a)
xa−1

sinh(x)
, where ρ2(a) =

2a−1

(2a − 1) Γ(a)ζ(a)
, a ≥ 2,

ρ3(a)
xa−1

cosh2(x)
, where ρ3(a) =

2a−2

(1− 22−a) Γ(a)ζ(a− 1)
, a > 1,

ρ4(a)
xa−1

sinh2(x)
, where ρ4(a) =

2a−2

Γ(a)ζ(a − 1)
, a ≥ 3,

In the third example, we have ρ3(a) = 1/ log(2) when a = 2. To verify that these are indeed proper

distributions, see Gradshteyn and Ryzhik (2015, formulas 3.523 and 3.527). In the four examples, the

mode can only be computed by binary search or another numerical method. On the other hand, the

means are explicitly available: we have

µi =
ρi(a)

ρi(a+ 1)
, 1 ≤ i ≤ 4.

In the same vein, we even have simple explicit expressions for the variances.
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Example 9: Polynomially and exponentially tilted hyperbolic secant distributions. Con-

sider the log-concave density

f(x) = ρ(a, b)xa−1e−bx sinh(x), x ≥ 0,

with parameters b > a ≥ 1, and normalization constant (see Gradshteyn and Ryzhik, 2105, 3.501)

1

ρ(a, b)
=

Γ(a)

2

(

(b − 1)−a − (b+ 1)−a) .

Its mode can only be acomputed by an iterative algorithm. Yet, we know the mean, ρ(a+1, b)/ρ(a, b).

Example 10: Sitenko’s and related distributions. The error function

Φ(x) =
2√
π

∫ x

0
e−z2 dz

is of crucial importance in electromagnetics, and appears in many distributions in that literature. It is

the distribution function of |N |/
√
2, where N is a standard normal random variable. The following are

some densities on the positive halfline, drawn from Gradshteyn and Ryzhik (2015, 8.28):

f1(x) = ρ1(a)x
2a−1(1− Φ(x)), a ≥ 1/2,

f2(x) = ρ2(a)(1 − Φ(x))e−ax2 , a > 0,

f3(x) = ρ3(a)Φ(x)e
−ax2 , a > 0,

f4(x) = ρ4(a)xΦ(x)e
−ax2 , a > 0.

Density f4 is called Sitenko’s function (1982). The log-concavity of all densities can be verified using

Mills’ ratio. The normalization constants are relatively simple functions:

ρ1(a) =
2
√
πa

Γ(2a− 1)
,

ρ2(a) =

√
πa

arctan(
√
a)

,

ρ3(a) =

√
πa

π/2− arctan(
√
a)

,

ρ4(a) = 2a
√
a+ 1.

Unfortunately, the modes are not explicitly computable. Yet, the means are readily available. To wit, the

mean of f3 is ρ3(a)/ρ4(a), and that of f1 is ρ1(a+ 1/2)/ρ1(a). Again, we are in the situation dealt with

in this section. To apply the rejection methods of this paper, one would need to integrate the alternating

series method to make the correct acceptance conditions (see Devroye, 1981, 1986). For this, it suffices

to have convergent series for Φ(x) or for Mills’ ratio (1−Φ(x))ex
2
. Explicit algorithms will be dealt with

elsewhere.
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Theorem 3. For any log-concave density with mean µ and variance σ2, for which we know functions

M+ and M− of µ and/or σ2 such that

M− ≤M = f(m) ≤M+,

we have

f(x) ≤



















M+ if |x− µ| ≤ 1+
√
3

M+
,

1+
√
3

|x−µ| if 1+
√
3

M+
≤ |x− µ| ≤ 1+

√
3

M− ,

M− exp
(

1 +
√
3− |x− µ|M−

)

if |x− µ| ≥ 1+
√
3

M− .

The area under the bounding curve is

4 + 2
√
3 + 2(1 +

√
3) log

(

M+

M−

)

.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5-0.5-1.0-1.5-2.0-2.5-3.0-3.5

0

1

2

3

4

5

6

7

8

Figure 1. Five bounding envelopes are shown, for the values M = 1 +
√
3, µ = 0, M+ = αM ,

M− = M/α, and α ∈ {1, 1.5, 2, 2.5, 3}.
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Proof. Using inequality (1), we have

f(x) ≤M min
(

1, e1−|x−m|M
)

≤M min
(

1, e1+Mσ
√
3−|x−µ|M

)

(since |m− µ| ≤ σ
√
3)

≤M min
(

1, e1+
√
3−|x−µ|M

)

(since Mσ ≤ 1)

≤ max
M−≤t≤M+

tmin
(

1, e1+
√
3−|x−µ|t

)

=



















M+ if |x− µ| ≤ 1+
√
3

M+
,

1+
√
3

|x−µ| if 1+
√
3

M+
≤ |x− µ| ≤ 1+

√
3

M− ,

M− exp
(

1 +
√
3− |x− µ|M−

)

if |x− µ| ≥ 1+
√
3

M− .

The area under the bounding function is

2(1 +
√
3) + 2(1 +

√
3) log

(

M+

M−

)

+ 2.

Examples for the choices of M− and M+ include the following:

(i) When only µ is known, we can use the choices as suggested by these inequalities:

M−
def
= f(µ) ≤M = f(m) ≤ f(µ)e

√
3
def
= M+.

As M+/M− = e
√
3, we obtain an area under the bounding curve equal to

6 + 4
√
3 + (1 +

√
3) log(3) = 15.92 . . . .

(ii) When both µ and σ2 are known, we could opt for these choices:

M−
def
=

1

σ
√
12
≤M = f(m) ≤ 1

σ

def
= M+.

As M+/M− =
√
12, we obtain an area under the bounding curve equal to

4 + 2
√
3 + (1 +

√
3) log(12) = 14.25 . . . .

(iii) When both µ and σ2 are known, and one does not mind computing f(µ), we could combine the

inequalities given above as follows:

M− = max

(

f(µ),
1

σ
√
12

)

,

M+ = min

(

f(µ)e
√
3,

1

σ

)

.

This yields an area bound that is better than both (i) and (ii):

4 + 2
√
3 + 2(1 +

√
3) log

(

√
12

min(1, f(µ)σe
√
3)

max(1, f(µ)σ
√
12)

)

.

Depending upon the value of f(µ)σ, a quantity sandwiched between 1/(e
√
3) and 1, the upper

bound can be as good as 4 + 2
√
3 = 7.46 . . ., and as bad as the bound given in (ii), 4 + 2

√
3 +

(1 +
√
3) log(12) = 14.25 . . ..
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Lemma 1. A random variate with density proportional to 1/x on [a, b] with 0 < a < b can be obtained

as aU b1−U where U is uniform on [0, 1].

The generic rejection algorithm based on the bound of Theorem 3 is as follows:

algorithms LC−f − µ and LC−f − µ− σ, version I

let µ and σ2 be the mean and variance of a log-concave density f

let M+ and M− be functions of µ and σ

as in Theorem 3 and the examples given above

set p1 = 1 +
√
3, p2 = (1 +

√
3) log(M+/M−), p3 = 1, q = p1 + p2 + p3

repeat let S be a random sign

let U and V be uniform on [0, 1]

if V q ≤ p1 then let W be uniform [0, 1]

set X ← µ+ SW (1 +
√
3)/M+

Accept ← [UM+ ≤ f(X)]

else if V q ≤ p1 + p2 let W be uniform on [0, 1]

set Y ← (1 +
√
3)/(MW

+ M1−W
− )

set X ← µ+ SY

Accept ← [U(1 +
√
3)/Y ≤ f(X)]

else let E be exponential

set X ← µ+ S(1 +
√
3 + E)/M−

Accept ← [UM−e−E ≤ f(X)]

until Accept

return X

(note that X has density f)

One can slightly improve matters with a more careful analysis, at the expense of an algorithm that takes

fewer iterations on average, but requires a few more computations in each iteration. This is based on the

following Theorem.
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Theorem 4. For any log-concave density with mean µ and variance σ2 > 0, we have

f(x) ≤



















1
σ if |x− µ| ≤ (1 +

√
3)σ ,

1
|x−µ|−σ

√
3

if (
√
3 +
√
12)σ ≥ |x− µ| ≥ (1 +

√
3)σ ,

1
σ
√
12
e
3
2−

|x−µ|
σ
√
12 if |x− µ| ≥ (

√
3 +
√
12)σ .

The area under the bounding curve is 2(2 +
√
3) + log(12) = 9.94900 . . ..

Proof. We begin with the inequality

f(x) ≤M min
(

1, e1−|x−m|M
)

, x ∈ R.

By the Johnson-Rogers inequality (1951), |x−m| ≥ |x− µ| − |µ−m| ≥ |x− µ| − σ
√
3. Thus,

f(x) ≤M min
(

1, e1+
√
3σM−|x−µ|M

)

≤ max
1√
12σ

=M−≤t≤M+= 1
σ

tmin
(

1, e1+
√
3σt−|x−µ|t

)

=















M+ if |x− µ| ≤
√
3σ + 1

M+
,

1
|x−µ|−σ

√
3

if
√
3σ + 1

M− ≥ |x− µ| ≥
√
3σ + 1

M+
,

M−e1+
√
3σM−−|x−µ|M− if |x− µ| ≥

√
3σ + 1

M− .

=



















1
σ if |x− µ| ≤ (1 +

√
3)σ ,

1
|x−µ|−σ

√
3

if (
√
3 +
√
12)σ ≥ |x− µ| ≥ (1 +

√
3)σ ,

1
σ
√
12
e
3
2−

|x−µ|
σ
√
12 if |x− µ| ≥ (

√
3 +
√
12)σ.

The area under the bounding curve is

2(1 +
√
3) + 2 log(

√
12) +

√
12√
3

= 2(2 +
√
3) + log(12) = 9.94900 . . . .

The rejection method based on the bound of Theorem 4 requires the weights (areas) of each of the three

parts of the bounding curve, namely, p1 = 1 +
√
3, p2 = log(

√
12), and p3 = 1.
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algorithm LC−f − µ− σ, version II

let µ and σ2 be the mean and variance of a log-concave density f

set p1 = 1 +
√
3, p2 = log(

√
12), p3 = 1, q = p1 + p2 + p3

repeat let S be a random sign

let U and V be uniform on [0, 1]

if V q ≤ p1 then let W be uniform [0, 1]

set X ← µ+ SW (1 +
√
3)σ

Accept ← [U/σ ≤ f(X)]

else if V q ≤ p1 + p2 let W be uniform [0, 1]

set Y ← (
√
12)W

set X ← µ+ Sσ(
√
3 + Y )

Accept ← [U/(σY ) ≤ f(X)]

else let E be exponential

set X ← µ+ S(
√
3 +
√
12(1 + E))σ

Accept ← [Ue−E/(σ
√
12) ≤ f(X)]

until Accept

return X

(note that X has density f)

The penalty for not knowing a mode m is at worst less than 150%. In any case, the expected complexity of

the algorithm is uniformly bounded over all choices of µ and σ2, so the algorithm given above can be used

“off the shelf”. One can imagine that there are situations in which one knows about the log-concavity

of f and is given µ but not σ2. Thanks to the inequality in Theorem 5, a uniformly fast sampler is still

available.

Theorem 5. For any log-concave density with mean µ, we have

f(x) ≤



















f(µ)e
√
3 if |x− µ| ≤ 1+1/(e

√
3)

f(µ)
,

1
|x−µ|−1/f(µ)

if 2
f(µ)

≥ |x− µ| ≥ 1+1/(e
√
3)

f(µ)
,

f(µ) exp
(

2− |x−µ|
f(µ)

)

if |x− µ| ≥ 2
f(µ)

.

The area under the bounding curve is 6 + 2e
√
3 + log(3) = 16.51 . . ..

—  —



Proof. We begin with the inequality

f(x) ≤M min
(

1, e1−|x−m|M
)

, x ∈ R.

By a simple argument and the unimodality of f , |µ − m|f(µ) ≤ 1. Thus, using the inequality f(µ) ≤
M ≤ f(µ)e

√
3,

f(x) ≤M min

(

1, e
1+ M

f(µ)
−|x−µ|M

)

≤ max
f(µ)=M−≤t≤M+=f(µ)e

√
3
tmin

(

1, e
1+ t

f(µ)
−|x−µ|t

)

=



















M+ if |x− µ| ≤ 1
f(µ)

+ 1
M+

,
1

|x−µ|−1/f(µ)
if 1

f(µ)
+ 1

M+
≤ |x− µ| ≤ 1

f(µ)
+ 1

M− ,

M−e
1+

M−
f(µ)

−|x−µ|M−
if |x− µ| ≥ 1

f(µ)
+ 1

M−

=



































f(µ)e
√
3 if |x− µ| ≤

(

1+ 1
e
√
3

)

f(µ)
,

1
|x−µ|− 1

f(µ)

if

(

1+ 1
e
√
3

)

f(µ)
≤ |x− µ| ≤ 2

f(µ)
,

f(µ)e
2− |x−µ|

f(µ) if |x− µ| ≥ 2
f(µ)

.

The area under the bounding function is

2



f(µ)e
√
3

(

1 + 1
e
√
3

)

f(µ)
+ log(e

√
3) +

f(µ)

f(µ)



 = 6 + 2e
√
3 + log(3) = 16.51 . . . .
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algorithm LC−f − µ, version II

let µ be the mean of a log-concave density f

set p1 = 1 + e
√
3, p2 = 1 + log(

√
3), p3 = 1, q = p1 + p2 + p3

let M+ = f(µ)e
√
3 and M− = f(µ)

repeat let S be a random sign

let U and V be uniform on [0, 1]

if V q ≤ p1 then let W be uniform on [0, 1]

set X ← µ+ S(1 + 1/(e
√
3))W/M−

Accept ← [UM+ ≤ f(X)]

else if V q ≤ p1 + p2 let W be uniform on [0, 1]

set Y ← 1/(MW
+ M1−W

− )

set X ← µ+ S(1/M− + Y )

Accept ← [U/Y ≤ f(X)]

else let E be exponential

set X ← µ+ S(2 + E)/M−
Accept ← [UM−e−E ≤ f(X)]

until Accept

return X

(note that X has density f)

12. The mode is known but not the normalization constant

Assume that we can compute h, a function proportional to the target density f . Then h(x) =

f(x)/M , where M = f(m) and m is a mode of f . Thus, we have h(m) = 1 and h(x) ≤ exp(1−|x−m|M).

As we need an upper bound that does not depend upon the computation of f at any point, it is necessary

to obtain a lower bound for M to proceed, such as

M ≥ 1

σ
√
12

.

This yields the bound

h(x) ≤ min
(

1, exp(1− (|x −m|/(σ
√
12)))

)

,

which leads directly to a rejection algorithm with bounding area constant

4σ
√
12

∫

h
= 8
√
3f(m)σ ≤ 8

√
3 = 13.85 . . . ..

As f(m)σ ≥ 1/
√
12, the upper bound above can be as good as 4.
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algorithm LC−g −m− σ: version II

let m be the location of a mode of log-concave density f

let h be a function proportional to f scaled so that h(m) = 1

let σ2 be the variance of f

repeat let B be a fair coin flip

let S be a random sign

let U be uniform on [0, 1]

if B = 1, then let V be uniform on [0, 1]

set X ← m+ SV σ
√
12

Accept ← [U ≤ h(X)]

else let E be exponential

set X ← m+ S(1 + E)σ
√
12

Accept ← [Ue−E ≤ h(X)]

until Accept

return X

(note that X has density f)

13. Neither a mode nor the normalization constant is known

In some applications, we do not know the location of a mode, and do not have access to the

values f(x) but only to those of a function h proportional to f . Assume however that we know the mean

µ and variance σ2. We calibrate h such that h(µ) = 1. Combining the bound of the previous section with

the Johnson-Rogers inequality, and h(m) ≤ h(µ)× e
√
3 = e

√
3, we obtain

h(x) =
f(x)

f(µ)
≤ h(m)min

(

1, exp

(

1− |x−m|
σ
√
12

))

≤ h(m)min

(

1, exp

(

1 +
|m− µ|
σ
√
12
− |x− µ|

σ
√
12

))

≤ h(m)min

(

1, exp

(

3

2
− |x− µ|

σ
√
12

))

≤ e
√
3 min

(

1, exp

(

3

2
− |x− µ|

σ
√
12

))

.

The ratio of the areas under the bounding curve and
∫

h = 1/f(µ) is

2e
√
3

1/f(m)
×
(

3σ
√
12

2
+ σ
√
12

)

= 30ef(m)σ ≤ 30e = 81.54 . . . ,

as f(m)σ ≤ 1.
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algorithm LC−g − µ− σ

let h be a function proportional to f calibrated so that h(µ) = 1

let µ and σ2 be the mean and variance of f

repeat let B be Bernoulli (3/5)

let S be a random sign

let U be uniform on [0, 1]

if B = 1, then let V be uniform on [0, 1]

set X ← µ+ SV σ
√
27

Accept ← [Ue
√
3 ≤ h(X)]

else let E be exponential

set X ← µ+ S(1 + E)σ
√
12

Accept ← [U
√
3e1−E ≤ h(X)]

until Accept

return X

(note that X has density f)

14. Conclusion

We developed ”off-the-shelf” algorithms that are uniformly efficient across the entire family of

univariate log-concave densities. These generators are versatile and operate under a variety of conditions.

For instance, if the density f is provided in a black-box format, knowing just a mode or the mean is suffi-

cient. When f is available in analytic form, even more options become accessible, and the normalization

constant is not required. For example, knowledge of the mean and variance alone suffices. Furthermore,

by extending the methods presented in this paper, generators can be developed even when the mode,

mean, or variance are only known within certain bounds.

Extending these results to log-concave densities in Rd introduces new challenges. Avoiding an

exponential explosion in computational complexity with respect to dimension appears nearly inevitable.

Of particular interest are uniform densities on compact convex sets in Rd, which present both theoretical

and practical opportunities for further exploration.
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