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1. Introduction

First discussed by Judea Pearl as tree-decomposable distributions to generalize star-decomposable dis-
tributions such as the latent class model (Pearl, 1988, Section 8.3), latent tree models are probabilistic
graphical models defined on trees, where only a subset of variables is observed. Mourad et al. (2013),
Zhang (2004), Zhang and Poon (2017) extended our theoretical understanding of these models. We
refer to Zwiernik (2018) for more details and references.

Latent tree models have found wide applications in various fields. They are used in phylogenetic
analysis, network tomography, computer vision, causal modelling, and data clustering. They also con-
tain other well-known classes of models like hidden Markov models, the Brownian motion tree model,
the Ising model on a tree, and many popular models used in phylogenetics. In generic high-dimensional
problems, latent tree models can be useful in various ways. They share many computational advantages
of observed tree models but are more expressible. Latent tree models have been used for hierarchical
topic detection (Côme et al., 2021) and clustering.

In phylogenetics, latent tree models have been used to reconstruct the tree of life from the genetic ma-
terial of surviving species. They have also been used in bioinformatics and computer vision. Machine-
learning methods for models with latent variables attract substantial attention from the research com-
munity. Some other applications include latent tree models and novel algorithms for high-dimensional
data (Chen, Chen and Zhang (2019)), and the design of low-rank tensor completion methods (Zhang
et al. (2022)).

Structure learning

The problem of structure or parameter learning for latent tree models has been extensively studied. A
seminal work in this field is by Choi et al. (2011), where two consistent and computationally efficient
algorithms for learning latent trees were proposed. The main idea is to use the link between a broad
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class of latent tree models and tree metrics studied extensively in phylogenetics, a link first established
by Pearl (1988) for binary and Gaussian distributions. This has been extended to symmetric discrete
distributions by Choi et al. (2011). The proof in (Zwiernik, 2018, Section 2.3) makes it clear that the
only essential assumption is that the conditional expectation of every node given its neighbour is a
linear function of the neighbour.

From the statistical perspective, testing the corresponding algebraic restrictions on the correlation
matrix was studied by Shiers et al. (2016). Sturma, Drton and Leung (2022) revisited this problem. For
the machine learning perspective, see Aizenbud et al. (2023), Anandkumar et al. (2011), Huang et al.
(2020), Jaffe et al. (2021), Kandiros et al. (2023), Zhou, Wang and Guo (2020). Most of these papers
build on the idea of local recursive grouping as proposed by Choi et al. (2011). In particular, they all
start by computing all distances between all observed nodes in the tree.

Our contributions

Our work is motivated by novel applications where the dimension 𝑛 is so large that computing all the
distances—or all correlations between observed variables—is impossible. We propose a randomized
algorithm that queries the distance oracle and show that the expected query time for our algorithm is
𝑂 (Δ𝑛 logΔ (𝑛)), where 𝑛 is the number of observed variables and Δ is the maximal degree of the under-
lying tree. A special case of our problem is the problem of phylogenetic tree recovery. In this case, our
approach resembles other phylogenetic tree recovery methods that try to minimize query complexity
(see Afshar et al. (2020) for references) and seems to be the first such method that is asymptotically
optimal; see King, Zhang and Zhout (2003) for the matching lower bound. More importantly, our al-
gorithm can deal with general latent tree models and in this context, it is again the first such algorithm.
As we show in the last section, our algorithm can be easily adjusted to the case of noisy oracles, which
is relevant in statistical practice.

2. Preliminaries and basic results

2.1. Trees and semi-labeled trees

A tree 𝑇 = (𝑉, 𝐸) is a connected undirected graph with no cycles. In particular, for any two 𝑢, 𝑣 ∈ 𝑉
there is a unique path between them, which we denote by 𝑢𝑣. A vertex of 𝑇 with only one neighbour
is called a leaf. A vertex of 𝑇 that is not a leaf is called an inner vertex or internal node. An edge of
𝑇 is inner if both ends are inner vertices; otherwise, it is called terminal. A connected subgraph of 𝑇
is called a subtree of 𝑇 . A rooted tree (𝑇, 𝜌) is simply a tree 𝑇 = (𝑉, 𝐸) with one distinguished vertex
𝜌 ∈ 𝑉 .

A tree 𝑇 is called a semi-labeled tree with labeled nodes 𝑊 ⊆ 𝑉 if every vertex of 𝑇 of degree ≤ 2
lies in 𝑊1. We say that 𝑇 is a phylogenetic tree if 𝑇 has no degree-2 nodes and 𝑊 is exactly the set of
leaves of 𝑇 . If 𝑣 ∈𝑊 , then we say that 𝑣 is regular and we depict it by a solid vertex. If |𝑊 | = 𝑛 then we
typically label the vertices in 𝑊 with [𝑛] = {1, . . . , 𝑛}. A vertex that is not labeled is called latent. An
example semi-labeled tree is shown in Figure 1.

By definition, all latent nodes are internal and have degree ≥ 3. Therefore, if |𝑊 | = 𝑛, then |𝑇 | ≤
2𝑛 + 1.

1This differs slightly from the regular definition of semi-labeled trees (or X-trees) in phylogenetics, where regular nodes can get
multiple labels; see Semple and Steel (2003).
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Figure 1. A semi-labeled tree with five regular nodes labeled with {1,2,3,4,5} and two latent nodes.

2.2. Tree metrics

Consider metrics on the discrete set 𝑊 induced by semi-labeled trees in the following sense. Let 𝑇 =

(𝑉, 𝐸) be a tree and suppose that ℓ : 𝐸→ R+ is a map that assigns positive lengths to the edges of 𝑇 . For
any pair 𝑢, 𝑣 ∈ 𝑉 by 𝑢𝑣 we denote the path in𝑇 joining 𝑢 and 𝑣. We now define the map 𝑑𝑇,ℓ :𝑉×𝑉→ R
by setting, for all 𝑢, 𝑣 ∈ 𝑉 ,

𝑑𝑇,ℓ (𝑢, 𝑣) =
{∑

𝑒∈𝑢𝑣 ℓ(𝑒), if 𝑢 ≠ 𝑣,
0, otherwise.

Suppose now we are interested only in the distances between the regular vertices.

Definition 2.1. A function 𝑑 : [𝑛] × [𝑛] → R is called a tree metric if there exists a semi-labeled tree
𝑇 = (𝑉, 𝐸) with 𝑛 regular nodes 𝑊 and a (strictly) positive length assignment ℓ : 𝐸→ R+ such that for
all 𝑖, 𝑗 ∈𝑊

𝑑 (𝑖, 𝑗) = 𝑑𝑇,ℓ (𝑖, 𝑗).

Example 2.2. Consider a quartet tree with edge lengths as indicated on the left in Figure 2. The dis-
tance between vertices 1 and 3 is 𝑑 (1,3) = 2 + 5 + 2.5 = 9.5 and the whole distance matrix is given on
the right in Figure 2, where the dots indicate that this matrix is symmetric.
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3.5

2

1

2.5 
0 5.5 9.5 8
· 0 11 9.5
· · 0 3.5
· · · 0

 ,

Figure 2. A metric on a quartet tree.

It is easy to describe the set of all possible tree metrics.

Definition 2.3. We say that a map 𝑑 : [𝑛] × [𝑛] → R satisfies the four-point condition if for every four
(not necessarily distinct) elements 𝑖, 𝑗 , 𝑘, 𝑙 ∈ [𝑛],

𝑑 (𝑖, 𝑗) + 𝑑 (𝑘, 𝑙) ≤ max
{
𝑑 (𝑖, 𝑘) + 𝑑 ( 𝑗 , 𝑙)
𝑑 (𝑖, 𝑙) + 𝑑 ( 𝑗 , 𝑘).
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Since the elements 𝑖, 𝑗 , 𝑘, 𝑙 ∈ [𝑛] in Definition 2.3 need not be distinct, every such map is a metric
on [𝑛] given that 𝑑 (𝑖, 𝑖) = 0 and 𝑑 (𝑖, 𝑗) = 𝑑 ( 𝑗 , 𝑖) for all 𝑖, 𝑗 ∈ [𝑛]. The following fundamental theorem
links tree metrics with the four-point condition.

Theorem 2.4 (Tree-metric theorem, Buneman (1974)). Suppose that 𝑑 : [𝑛] × [𝑛] → R is such that
𝑑 (𝑖, 𝑖) = 0 and 𝑑 (𝑖, 𝑗) = 𝑑 ( 𝑗 , 𝑖) for all 𝑖, 𝑗 ∈ [𝑛]. Then, 𝑑 is a tree metric on [𝑛] if and only if it satisfies
the four-point condition. Moreover, a tree metric uniquely determines the defining semi-labeled tree
and edge lengths.

Note that the assumption about strictly positive lengths of each edge in Definition 2.1 is crucial for
uniqueness in Theorem 2.4.

2.3. Recovering a tree from a tree metric

Our problem is to recover the semi-labeled tree 𝑇 based on a few queries of the distance matrix
𝐷 = [𝑑 (𝑢, 𝑣)], which contains the distances between the regular nodes of 𝑇 (Abdi (1990), Felsenstein
(2004), Warnow (1999), Wu, K.-Chao and Tang (1999)). We consider the query complexity, which mea-
sures the number of queries of the distance matrix, also called queries of the distance oracle. Trivially,
we can reconstruct the tree with query complexity

(𝑛
2
)

(Batagelj, Pisanski and Simoes-Pereira (1990),
Boesch (1968), Culberson and Rudnicki (1989), Gusfield (1997), Hakimi and Yau (1964), Nakhleh et al.
(2005), Waterman et al. (1977)).

To provide a more refined analysis of the query complexity, we introduce the maximum degree of
the tree:

Δ := max
𝑖∈𝑉

degree(𝑖).

When the query complexity is jointly measured in terms of 𝑛 and Δ, a lower bound for both worst-case
and expected query complexity is Ω(Δ𝑛 logΔ (𝑛)) (King, Zhang and Zhout (2003)). For another proof
of the lower bound for the expected complexity, see Bastide and Groenland (2024).

When 𝑇 is a phylogenetic tree (𝑊 is the set of leaves of 𝑇), the distance queries are sometimes
referred to as “additive queries” (Waterman et al. (1977)). This case has been extensively studied in the
literature; see Jansson (2016) for a recent overview. When the maximum degree Δ is bounded, Hein
(1989) demonstrated that the problem can be solved using 𝑂 (𝑛 log(𝑛)) distance queries. When Δ is
unbounded, Culberson and Rudnicki (1989) proposed an algorithm that was claimed to achieve a query
complexity matching the lower bound for trees where all edge weights are equal to 1. However, as noted
by Reyzin and Srivastava (2007), the algorithm’s actual runtime is 𝑂 (𝑛3/2√Δ).

Complementing this work on phylogenetic recovery, Kannan, Lawler and Warnow (1996) proposed
an algorithm with 𝑂 (Δ𝑛 log(𝑛)) query complexity for the noisy-ultrametric model, a special compu-
tational framework that is not directly related to “additive queries”. In the same computational model,
Brodal et al. (2001) presented an algorithm matching the lower bound of 𝑂 (Δ𝑛 logΔ (𝑛)); see also Kao,
Lingas and Östlin (1999) for related results. For additional references on this and other specialized
computational models, we refer to Afshar et al. (2020). Further discussions and generalizations of phy-
logenetic tree reconstruction can be found in Buneman (1971), Csürös (2002), Daskalakis, Mossel and
Roch (2006, 2009), Gąsieniec et al. (1999), Gronau, Moran and Snir (2012).

Our objective is to develop a randomized algorithm with expected query complexity 𝑂 (Δ𝑛 logΔ (𝑛))
for the general semi-labeled tree reconstruction problem, regardless of how Δ varies with 𝑛. Similar to
the seminal work of Hein (1989), we focus on pairwise distance queries. This problem generalizes the
phylogenetic tree reconstruction problem, as it allows internal non-latent nodes to have degree two, and
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regular nodes are not necessarily leaves. Consequently, methods designed specifically for phylogenetic
tree reconstruction are no longer directly applicable.

3. The new algorithm

The proposed algorithm uses a randomized version of divide-and-conquer. We will use the notion of
a bag 𝐵 ⊆ 𝑉 . The algorithm maintains a queue, consisting of sets of bags. Initially, there is only one
bag, containing all regular nodes, that is, 𝐵 =𝑊 . The procedure takes a bag 𝐵. One node in this set,
denoted by 𝜌(𝐵), is marked as a representative, which can be thought of as a root. A set of edges that
jointly form a tree is called a skeleton and is typically denoted by the mnemonic 𝑆. Our algorithm starts
with an empty skeleton and incrementally constructs the skeleton of the sought tree, which we call the
tree induced by 𝐵.

Algorithm 1: Outline of our algorithm

Let 𝜅 = Δ ;
Pick a node 𝑢 ∈𝑊 , and set 𝜌(𝑊) ← 𝑢 (note:𝑊 is now a bag);
Make an empty queue 𝑄 ;
Add𝑊 to 𝑄 ;
Set 𝑆←∅ ;
while |𝑄 | > 0 do

Remove bag 𝐵 from the front of 𝑄 ;
if |𝐵 | ≤ 𝜅 then

Query all
( |𝐵 |

2
)

distances between nodes in 𝐵;
Find 𝑆∗, the full skeleton for the tree induced by 𝐵 ;
𝑆← 𝑆 ∪ 𝑆∗;

else
Apply procedure BIGSPLIT (𝐵). This procedure outputs a skeleton 𝑆∗ (connecting nodes
from 𝐵 and possibly latent nodes) and bags 𝐵1, . . . , 𝐵𝑘 where 𝐵𝑖 overlaps with the
nodes of the skeleton in 𝜌(𝐵𝑖) only, and are non-overlapping otherwise (i.e.,
(𝐵𝑖 \ 𝜌(𝐵𝑖)) ∩ (𝐵 𝑗 \ 𝜌(𝐵 𝑗 )) = ∅) ;
𝑆← 𝑆 ∪ 𝑆∗ ;
Add 𝐵1, . . . , 𝐵𝑘 to the rear of 𝑄 ;

Return the skeleton 𝑆 ;

The procedure BIGSPLIT takes a bag 𝐵 and a random set of nodes in it, 𝑢1, . . . , 𝑢𝜅 , and forms the
subtree that connects 𝑢1, . . . , 𝑢𝜅 and 𝜌(𝐵). The edges of this subtree give the skeleton that is the output.
The remaining nodes of 𝐵 are collected in bags that “hang” from the skeleton. The representatives of
these bags are precisely those nodes where the bags overlap the skeleton. Note that the skeleton may
contain latent nodes not originally in 𝐵. Within BIGSPLIT, all representatives of the hanging bags have
their distances to all nodes in their bags queried, so for all practical purposes, the newly discovered
latent nodes act as regular nodes. The bags become smaller as the algorithm proceeds, which leads to
a logarithmic number of rounds. The main result of the paper is the following theorem, whose proof is
given in Section 4 below.

Theorem 3.1. Given a distance oracle 𝐷 between the regular vertices of a semi-labeled tree 𝑇 , Al-
gorithm 1 with parameter 𝜅 = Δ correctly recovers the induced tree with expected query complexity
𝑂 (Δ𝑛 logΔ (𝑛)).
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The procedure BIGSPLIT uses two sub-operations, called BASIC and EXPLODE that we describe
next.

3.1. The “basic” operation

Let 𝐵 be a bag with representative 𝜌 = 𝜌(𝐵), and let 𝛼 ∈ 𝐵 be a distinct regular vertex. In our basic
step, we query 𝑑 (𝑣, 𝛼) for all 𝑣 ∈ 𝐵, and set

𝐷 (𝑣) = 𝑑 (𝑣, 𝛼) − 𝑑 (𝑣, 𝜌). (1)

We group all nodes 𝑣 according to the different values 𝐷 (𝑣) that are observed. Ordering the sets in this
partition of 𝐵 from small to large value of 𝐷 (·), we obtain bags 𝐵1, . . . , 𝐵𝑘 . It is clear that 𝜌 ∈ 𝐵𝑘 and
𝛼 ∈ 𝐵1. Within each 𝐵𝑖 , we let 𝑢𝑖 be the node of 𝐵𝑖 closest to 𝛼. If

𝑑 (𝑢𝑖 , 𝛼) + 𝑑 (𝑢𝑖 , 𝜌) = 𝑑 (𝛼, 𝜌),

then 𝑢𝑖 (a regular node) is on the path from 𝛼 to 𝜌 in the induced tree. We set 𝜌(𝐵𝑖) = 𝑢𝑖 . If, however,

𝑑 (𝑢𝑖 , 𝛼) + 𝑑 (𝑢𝑖 , 𝜌) > 𝑑 (𝛼, 𝜌),

then we know that there must be a latent node 𝑤𝑖 that connects the (𝛼, 𝜌) path to the nodes in 𝐵𝑖 . In
fact, for all 𝑣 ∈ 𝐵𝑖 , we have

𝑑 (𝑣, 𝑤𝑖) =
1
2
(𝑑 (𝑣, 𝛼) + 𝑑 (𝑣, 𝜌) − 𝑑 (𝛼, 𝜌)) . (2)

These values can be stored for further use. So, we add 𝑤𝑖 to 𝐵𝑖 and define 𝜌(𝐵𝑖) = 𝑤𝑖 . In this manner,
we have identified 𝑆∗, the part of the final skeleton that connects 𝛼 with 𝜌:

(𝜌(𝐵1), 𝜌(𝐵2)), . . . , (𝜌(𝐵𝑘−1), 𝜌(𝐵𝑘)).

Algorithm 2: BASIC(𝐵, 𝛼)
Input: a bag 𝐵, and 𝛼 ∈ 𝐵;
Set 𝜌 = 𝜌(𝐵);
for 𝑣 ∈ 𝐵 do

Compute 𝐷 (𝑣) in (1);
Assign all 𝑣 ∈ 𝐵 to bags 𝐵1, . . . , 𝐵𝑘 according to decreasing values of 𝐷 (𝑣);
for 𝑖 = 1, . . . , 𝑘 do

𝑢𝑖 = arg min𝑣∈𝐵𝑖
𝑑 (𝑣, 𝛼);

if 𝑑 (𝜌, 𝑢𝑖) + 𝑑 (𝑢𝑖 , 𝛼) = 𝑑 (𝜌, 𝛼) then
𝜌(𝐵𝑖) = 𝑢𝑖

else
Identify latent node 𝑤𝑖;
Add 𝑤𝑖 to 𝐵𝑖;
Set 𝜌(𝐵𝑖) = 𝑤𝑖;
Update the distance oracle by calculating 𝑑 (𝑤𝑖 , 𝑣) for all 𝑣 ∈ 𝐵𝑖 using (2);

Return 𝐵1, . . . , 𝐵𝑘 and the skeleton (𝜌(𝐵1), 𝜌(𝐵2)), . . . , (𝜌(𝐵𝑘−1), 𝜌(𝐵𝑘));

The query complexity of Algorithm 2 is bounded by 2|𝐵 | − 3.
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ρ(B1)

bag B1

ρ(B2)

bag B2

ρ(B3)

bag B3

ρ(B4)

bag B4

ρ(B5)

bag B5

α ρ(B)

bag B

Figure 3. In a basic operation, a bag 𝐵 with root 𝜌(𝐵) and query node 𝛼 is decomposed into several smaller bags,
with root nodes on the skeleton.

3.2. The operation “explode”

Another fundamental operation, called explode, decomposes a bag 𝐵 into smaller bags 𝐵1, . . . , 𝐵𝑘—all
having the same representative 𝜌(𝐵)—according to the different subtrees of 𝜌(𝐵) that are part of the
tree induced by 𝐵. For arbitrary nodes 𝑢 ≠ 𝑣 ∈ 𝐵, 𝑢, 𝑣 ≠ 𝜌(𝐵), we note that 𝑢 and 𝑣 are in the same
subtree if and only if

𝑑 (𝑢, 𝑣) < 𝑑 (𝑢, 𝜌(𝐵)) + 𝑑 (𝜌(𝐵), 𝑣).

Thus, in query time 𝑂 ( |𝐵 |), we can determine the nodes that are in the same subtree as 𝑢. Therefore,
we can partition all nodes of 𝐵 \ {𝜌(𝐵)} into disjoint subtrees of 𝜌(𝐵) (without constructing these trees
yet) in query time at most |𝐵 |Δ by peeling off each set in the partition in turn. These sets are output as
bags denoted by 𝐵1, . . . , 𝐵𝑘 .

Algorithm 3: EXPLODE(𝐵)
Input: a bag 𝐵 ;
while |𝐵 | > 1 do

Take 𝑢 ∈ 𝐵, 𝑢 ≠ 𝜌(𝐵);
Set 𝐵∗ = {𝑣 ∈ 𝐵, 𝑣 ≠ 𝜌(𝐵) : 𝑑 (𝑢, 𝑣) < 𝑑 (𝑢, 𝜌(𝐵)) + 𝑑 (𝑣, 𝜌(𝐵))} ∪ {𝜌(𝐵)};
Set 𝜌(𝐵∗) = 𝜌(𝐵);
Output 𝐵∗ ;
Set 𝐵← {𝜌(𝐵)} ∪ (𝐵 \ 𝐵∗);

The query complexity of Algorithm 3 is bounded by ( |𝐵 | − 1)Δ.
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ρ(B)

bag B

ρ(B)

bag B1

ρ(B)

bag B2

Figure 4. In the explode operation, a bag 𝐵 with root 𝜌(𝐵) is decomposed into several smaller bags, each with
root 𝜌(𝐵). All other nodes of 𝐵 end up in only one of the smaller bags.

3.3. The procedure bigsplit

We are finally ready to provide the details of the procedure BIGSPLIT, which takes as input a bag 𝐵 and
distinct nodes 𝑢1, . . . , 𝑢𝑘 in 𝐵 not equal to 𝜌(𝐵).

Algorithm 4: BIGSPLIT(𝐵)
Let C = {𝐵} ;
Let 𝑆 be a skeleton. Initially, 𝑆 = ∅ ;
Let 𝑀 = max𝐵′∈C |𝐵′ | ;
while 𝑀 > |𝐵 |/

√
Δ do

Sample uniformly at random and without replacement nodes 𝑢1, . . . , 𝑢𝜅 from 𝐵 \ {𝜌(𝐵)};
Let B be a collection of bags. Initially, B = {𝐵};
Let 𝑆 be a skeleton. Initially, 𝑆 = ∅ ;
for 𝑖 = 1 to 𝜅 do

Find the bag 𝐵∗ in B to which 𝑢𝑖 belongs ;
if 𝑢𝑖 ≠ 𝜌(𝐵∗) then

Apply BASIC(𝐵∗, 𝑢𝑖), which outputs a skeleton 𝑆∗ and bags 𝐵1, . . . , 𝐵𝑘 ;
B←B \ {𝐵∗};
B←B ∪∪𝑘

𝑗=1{𝐵 𝑗 };
𝑆← 𝑆 ∪ 𝑆∗ ;

Let C be a collection of bags. Initially, C is empty;
for all 𝐵 ∈ B do

EXPLODE(𝐵), which leaves output 𝐵1, . . . , 𝐵ℓ ;
Add 𝐵1, . . . , 𝐵ℓ to C;

Let 𝑀 = max𝐵′∈C |𝐵′ | ;
Output 𝑆 ;
Output all bags in C ;
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ρ(B)u1

u2

u3

Figure 5. Illustration of BIGSPLIT(𝐵). Each bag anchored on the skeleton is further exploded into smaller bags
(not shown).

4. The query complexity

4.1. Proof of Theorem 3.1

For a bag 𝐵, and nodes 𝑢1, . . . , 𝑢𝜅 taken uniformly at random without replacement from 𝐵 \ {𝜌(𝐵)},
let 𝑀 be the size of the largest bag output by BIGSPLIT (𝐵), where |𝐵 | ≥ 𝜅 + 1, and 𝜅 = Δ. Lemma 4.1
below shows that

P

{
𝑀 >

|𝐵 |
√
Δ

}
≤ 1

2
.

The while loop in BIGSPLIT is repeated until 𝑀 ≤ |𝐵 |/
√
Δ. Thus, we can visualize the algorithm in

rounds, starting with 𝑊 . In other words, in the 𝑟-th round, we apply BIGSPLIT to all bags that have
been through a BIGSPLIT 𝑟 − 1 times. In every round, all bags of the previous round are reduced in size
by a factor of 1/

√
Δ. Therefore, there are ≤ log√

Δ
(𝑛) = 2 logΔ (𝑛) rounds. The query complexity of one

BIGSPLIT without the EXPLODE operations is at most (𝜅 + 1) (2|𝐵 | − 1). The total query complexity
due to all EXPLODE operations is at most Δ( |𝐵 | − 1), for a grand total bounded by

𝜅 + 1 + (|𝐵 | − 1) × (2 + 2𝜅 + Δ).
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Then the (random) query complexity for splitting bag 𝐵 is bounded by

𝑋 (𝜅 + 1) + 𝑋 ( |𝐵 | − 1) × (2 + 2𝜅 + Δ) = 𝑋 (Δ + 1) + 𝑋 ( |𝐵 | − 1) × (2 + 3Δ) , (3)

where 𝑋 is geometric (1/2). The expected value of this is 2(Δ + 1) + 2( |𝐵 | − 1) (2 + 3Δ). Summing
over all bags 𝐵 that participate in one round yields an expected value bound of 𝑂 (Δ) times the sum of
|𝐵 | − 1 over all participating 𝐵. But the bags do not overlap, except possibly for their representatives.
Hence the sum of all values ( |𝐵 | − 1) is at most 𝑛, as each proper item in a bag is a regular node. As
𝜅 = Δ, the expected cost of one round of splitting is at most 2(Δ + 1) + 𝑛(4 + 6Δ).

There is another component of the query complexity due to the part in which we construct the
induced tree for a bag 𝐵 when |𝐵 | ≤ 𝜅. A bag 𝐵 dealt with in this manner is called final. So the total
query complexity becomes the sum of

( |𝐵 |
2
)

computed over all final bags of size at least two. Let the
sizes of the final bags be denoted by 𝑛𝑖 . Noting that

∑
𝑖 (𝑛𝑖 − 1) ≤ 𝑛, we see that the query complexity

due to the final bags is at most∑︁
𝑖

𝑛𝑖 (𝑛𝑖 − 1)
2

≤ max
𝑖
𝑛𝑖

∑︁
𝑖

𝑛𝑖 − 1
2
≤ 𝜅𝑛

2
< Δ𝑛. (4)

The overall expected query complexity does not exceed

𝑛Δ + (Δ + 𝑛(4 + 6Δ)) × 2 logΔ (𝑛). (5)

This finishes the proof of Theorem 3.1.
□

4.2. The main technical lemma

Lemma 4.1. For a bag 𝐵, and random nodes 𝑢1, . . . , 𝑢𝜅 taken uniformly at random without replace-
ment from 𝐵 \ {𝜌(𝐵}, let 𝑀 be the size of the largest bag output by BIGSPLIT (𝐵), where |𝐵 | ≥ 𝜅 + 1,
and 𝜅 = Δ. Then

P

{
𝑀 ≥ 1 + |𝐵 |√

Δ

}
≤ 1

2
.

Proof. Consider 𝜌(𝐵) as the root of the tree induced by 𝐵, on which we perform DFS (depth-first-
search). Note that each of the bags left after BIGSPLIT (𝐵, 𝑢1, . . . , 𝑢𝜅 ) corresponds to a subtree with root
on the skeleton output by BIGSPLIT and having root degree one. We list the regular nodes in DFS order
and separate this list into 𝜅 + 1 sublists, all separated by 𝜌(𝐵), 𝑢1, . . . , 𝑢𝜅 . Call the sizes of the sublists
𝑁0, 𝑁1, . . . , 𝑁𝜅 . Note that the bags consist of regular nodes, except possibly their representatives on the
skeleton. Each bag is either contained in a sublist or a sublist plus one of the nodes 𝜌(𝐵), 𝑢1, . . . , 𝑢𝜅 .
Thus,

𝑀 ≤ max
𝑖
𝑁𝑖 + 1.

If we number the nodes by DFS order, starting at 𝜌(𝐵), then picking 𝑘 nodes uniformly at random
without replacement from all nodes, 𝜌(𝐵) excepted, shows that the 𝑁𝑖’s correspond to the cardinalities
of the intervals defined by the selected nodes. Therefore, 𝑁0, . . . , 𝑁𝜅 are identically distributed. In
addition, for an arbitrary integer 𝑘 ,
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ρ(B)

u1 u2 u3

u4

Figure 6. Illustration of BIGSPLIT(𝐵). The skeleton induced by {𝜌(𝐵), 𝑢1, 𝑢2, 𝑢3, 𝑢4} is shown in thick lines.
The remainder of the tree induced by 𝐵 is shown in thin lines. The nodes traversed by DFS between visits of
{𝜌(𝐵), 𝑢1, 𝑢2, 𝑢3, 𝑢4} are grouped.

P {𝑁0 ≥ 𝑘} =
|𝐵 | − 1 − 𝑘
|𝐵| − 1

× |𝐵| − 2 − 𝑘
|𝐵 | − 2

× · · · × |𝐵 | − 𝜅 − 𝑘|𝐵 | − 𝜅

≤
(
1 − 𝑘

|𝐵 | − 1

) 𝜅
≤ exp

(
− 𝑘𝜅

|𝐵 | − 1

)
.

Thus, by the union bound,

P

{
𝑀 ≥ 1 + |𝐵 |√

Δ

}
≤ (𝜅 + 1) exp

(
− |𝐵 |𝜅
( |𝐵 | − 1)

√
Δ

)
≤ (𝜅 + 1) exp

(
− 𝜅 + 1
√
Δ

)
(as |𝐵 | ≥ 𝜅 + 1)

≤ (Δ + 1) exp
(
−Δ + 1
√
Δ

)
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≤ 4 exp
(
− 4
√

3

)
(as the expression decreases for Δ ≥ 3)

= 0.39728 . . .

<
1
2
.

4.3. More refined probabilistic bounds

In this section we refine Theorem 3.1 by offering more detailed distributional estimates for the query
complexity of Algorithm 1.

Theorem 4.2. The query complexity 𝑍 of Algorithm 1 with parameter 𝜅 = Δ has

E{𝑍} ≤ 19Δ𝑛 logΔ (𝑛).

Furthermore, if logΔ (𝑛) →∞ as 𝑛→∞, then P{𝑍 ≥ 2E{𝑍}} = 𝑜(1). Finally, if logΔ (𝑛) =𝑂 (1), then

𝑍/(Δ𝑛)
𝑠𝑡.
≤6𝑋 + 𝑜𝑝 (1), where

𝑠𝑡.
≤ denotes stochastic domination, 𝑋 is a geometric (1/2) random vari-

able, and 𝑜𝑝 (1) is a random variable tending to 0 in probability.

Proof. With the choice 𝜅 = Δ, using (3) for the complexity due to bag splitting and (4) for the complex-
ity due to the final treatment of bags, the algorithm’s query complexity can be bounded by the random
variable

𝑍 = Δ𝑛 +
∑︁
𝑘

∑︁
bags 𝐵 split in round 𝑘

(Δ + 𝑋𝐵 (2 + 3Δ) ( |𝐵 | − 1)) ,

where all 𝑋𝐵 are i.i.d. geometric (1/2) random variables. Using (5), we have

E{𝑍} ≤ Δ𝑛 + (Δ + (4 + 6Δ)𝑛) × 2 logΔ (𝑛) ≤ 19Δ𝑛 logΔ (𝑛).

As argued in the proof of Theorem 3.1 in each round the bags get reduced by a factor of 1/
√
Δ. Thus,

given all bags 𝐵 in all levels, we see that the variance V{𝑍} is not more than∑︁
𝑘

∑︁
bags 𝐵 split in round 𝑘

V{𝑋𝐵}(2 + 3Δ)2 ( |𝐵 | − 1)2

≤ (2 + 3Δ)2
∑︁
𝑘

𝑛

Δ𝑘/2

∑︁
bags 𝐵 split in round 𝑘

2( |𝐵 | − 1)

≤ 2𝑛(2 + 3Δ)2
∑︁
𝑘

𝑛

Δ𝑘/2

≤ 32(𝑛Δ)2

1 − 1/
√
Δ

≤ 90(𝑛Δ)2.
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There are two cases: if logΔ (𝑛) →∞, then by Chebyshev’s inequality,

P{𝑍 > 2E{𝑍}} → 0 ,

where we used the fact that E(𝑍) = Ω(Δ𝑛 logΔ (𝑛)) (King, Zhang and Zhout (2003)). If on the other
hand, logΔ (𝑛) ≤ 𝐾 for a large constant 𝐾 , i.e., Δ ≥ 𝑛1/𝐾 , then

𝑍 ≤ Δ𝑛 + Δ + 𝑋 (2 + 3Δ)𝑛 + 𝑍 ′ ≤ 6𝑛Δ𝑋 + 𝑍 ′,

where 𝑍 ′ is defined as 𝑍 with level 𝑘 = 0 excluded. Arguing as above, we have

V{𝑍 ′} ≤ 32(𝑛Δ)2
√
Δ − 1

= 𝑜

(
(E{𝑍})2

)
,

so that by Chebyshev’s inequality,

𝑍

𝑛Δ
≤ 6𝑋 + 𝑜𝑝 (1),

where 𝑜𝑝 (1) denotes a quantity that tends to zero in probability as 𝑛→∞. In other words, the sequence
of random variables 𝑍/(𝑛Δ) is tight.

Remark 4.3. For fixed Δ ≥ 3, the complexity grows as 𝑛 log𝑛. In many cases, this is exponential in the
diameter of the tree. For example, in a complete Δ-ary tree, the number of leaves is at least 𝑛/2, while
the diameter is about 2 logΔ 𝑛. Reconstruction of such trees is impossible without performing at least
𝑛/4 distance computations.

5. Graphical models on semi-labeled trees

We present a family of probabilistic models over partially observed trees for which the distance-based
Algorithm 1 recovers the underlying tree. Although the Gaussian and the binary tree models (also
known as the Ising tree model) discussed in Section 5.1 are probably the most interesting, with little
effort we can generalize this, which we do in Section 5.2 and Section 5.3.

Given a tree 𝑇 = (𝑉, 𝐸) and a random vector 𝑌 = (𝑌𝑣)𝑣∈𝑉 with values in the product space Y =∏
𝑣∈𝑉 Y𝑣 , consider the underlying graphical model over 𝑇 , that is, the family of density functions that

factorize according to the tree

𝑓𝑌 (𝑦) =
∏
𝑢𝑣∈𝐸

𝜓𝑢𝑣 (𝑦𝑢, 𝑦𝑣) for 𝑦 ∈ Y, (6)

where 𝜓𝑢𝑣 are non-negative potential functions (Lauritzen (1996)). The underlying latent tree model
over the semi-labeled tree 𝑇 with the labelling set 𝑊 = [𝑛] is a model for 𝑋 = (𝑋1, . . . , 𝑋𝑛), which is
the sub-vector of 𝑌 = (𝑋, 𝐻) associated to the regular vertices. The density of 𝑋 is obtained from the
joint density of 𝑌 by marginalizing out the latent variables 𝐻

𝑓 (𝑥) =
∫
H
𝑓𝑌 (𝑥, ℎ)dℎ.

Note that in the definition of a semi-labeled tree, we required that all nodes of 𝑇 of degree ≤ 2 are
regular. The restriction complies with this definition; c.f. Section 11.1 in Zwiernik (2018).
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5.1. The binary/Gaussian case

We single out two simple examples where 𝑌 is jointly Gaussian or when𝑌 is binary. In the second case,
the model on a tree coincides with the binary Ising model on 𝑇 . In both cases, we get a useful path
product formula for the correlations, which states that the correlation between any two regular nodes
can be written as the product of edge correlations for edges on the path joining these nodes

𝜌𝑖 𝑗 =
∏
𝑢𝑣∈𝑖 𝑗

𝜌𝑢𝑣 for all 𝑖, 𝑗 ∈ [𝑛] . (7)

The advantage of this representation is that (7) gives a direct translation of correlation structures in
these models to tree metrics via 𝑑 (𝑖, 𝑗) := − log |𝜌𝑖 𝑗 | for all 𝑖 ≠ 𝑗 ; see also (Pearl, 1988, Section 8.3.3).
To make this explicit we formulate the following proposition.

Proposition 5.1. Consider a latent tree model over a semi-labeled tree 𝑇 . Whenever the correlations
Σ = [𝜌𝑖 𝑗 ] in the underlying tree model admit the path-product formula (7), Algorithm 1, applied to the
distance oracle defined by 𝑑 (𝑖, 𝑗) = − log |𝜌𝑖 𝑗 | for all 𝑖 ≠ 𝑗 , recovers the underlying tree.

Note that our algorithm recovers all the edge lengths, so we can also find the absolute values of the
correlations between the latent variables. In the Gaussian case, this yields parameter identification.

Remark 5.2. In the Gaussian latent tree model over a semi-labeled tree 𝑇 , Algorithm 1 recovers the
underlying tree and the model parameters up to sign swapping of the latent variables.

It turns out that the basic binary/Gaussian setting can be largely generalized. We discuss three such
generalizations:

(1) General Markov models
(2) Linear models
(3) Non-paranormal distributions

We briefly describe these models for completeness. The former two are dealt with in Section 11.2 in
Zwiernik (2018).

5.2. General Markov models and linear models

By general Markov model, we mean a generalization of the binary latent tree models, where each
Y𝑣 = {0, . . . , 𝑑 − 1} for some finite 𝑟 ≥ 1. Denoting by 𝑃𝑢𝑣 the 𝑑 × 𝑑 matrix representing the joint
distribution of (𝑌𝑢,𝑌𝑣), and by 𝑃𝑣𝑣 the diagonal 𝑑 × 𝑑 matrix with the marginal distribution of 𝑌𝑣 on
the diagonal, we can define for any two nodes 𝑢, 𝑣

𝜏𝑢𝑣 :=
det(𝑃𝑢𝑣)√︁

det(𝑃𝑢𝑢) det(𝑃𝑣𝑣)
. (8)

It turns out that for these new quantities, an equation of type (7) still holds, namely, 𝜏𝑖 𝑗 =
∏
𝑢𝑣∈𝑖 𝑗 𝜏𝑢𝑣 ,

so we again obtain the tree distance 𝑑 (𝑖, 𝑗) = − log |𝜏𝑖 𝑗 |.

Proposition 5.3. In a general Markov model over a semi-labeled tree 𝑇 we can recover 𝑇 using Algo-
rithm 1 from the distances 𝑑 (𝑖, 𝑗) = − log |𝜏𝑖 𝑗 | with 𝜏𝑖 𝑗 defined in (8).
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More generally, suppose that 𝑌𝑣 are now potentially vector-valued, all in R𝑘 , and it holds for every
edge 𝑢𝑣 of 𝑇 that E[𝑌𝑢 |𝑌𝑣] is an affine function of 𝑌𝑣 . Let

Σ𝑢𝑣 = cov(𝑌𝑢,𝑌𝑣) = E𝑌𝑢𝑌⊤𝑣 − E𝑌𝑢E𝑌⊤𝑣 .

In this case, defining 𝜏𝑢𝑣 as

𝜏𝑢𝑣 := det(Σ−1/2
𝑢𝑢 Σ𝑢𝑣Σ

−1/2
𝑣𝑣 ), (9)

we reach the same conclusion as for general Markov models; see Section 11.2.3 in Zwiernik (2018) for
details.

Proposition 5.4. In a linear model over a semi-labeled tree 𝑇 we can recover recover 𝑇 using Algo-
rithm 1 from the distances 𝑑 (𝑖, 𝑗) = − log |𝜏𝑖 𝑗 | with 𝜏𝑖 𝑗 defined in (9).

5.3. Non-paranormal distributions

Suppose that 𝑍 = (𝑍𝑣) is a Gaussian vector with underlying latent tree 𝑇 = (𝑉, 𝐸). Suppose that 𝑌
is a monotone transformation of 𝑍 , so that 𝑌𝑣 = 𝑓𝑣 (𝑍𝑣) for strictly increasing functions 𝑓𝑣 , 𝑣 ∈ 𝑉 .
The conditional independence structure of 𝑌 and 𝑍 are the same. The problem is that the correlation
structure of 𝑌 may be quite complicated and may not satisfy the product path formula in (7). Suppose
however that we have access to the Kendall-𝜏 coefficients 𝐾 = [𝜅𝑖 𝑗 ] for 𝑋 with

𝜅𝑖 𝑗 = corr(sgn(𝑋𝑖 − 𝑋 ′𝑖 ), sgn(𝑋 𝑗 − 𝑋 ′𝑗 )), (10)

where 𝑋 ′ is an independent copy of 𝑋 . Then we can use the fact that for all 𝑖 ≠ 𝑗

corr(sgn(𝑋𝑖 − 𝑋 ′𝑖 ), sgn(𝑋 𝑗 − 𝑋 ′𝑗 )) = corr(sgn(𝑍𝑖 − 𝑍 ′𝑖 ), sgn(𝑍 𝑗 − 𝑍 ′𝑗 )) =: 𝜅𝑍𝑖 𝑗 .

As observed by Liu et al. (2012), since 𝑍 is Gaussian, we have a simple formula that relates 𝜅𝑍
𝑖 𝑗

to the
correlation coefficient 𝜌𝑖 𝑗 = corr(𝑍𝑖 , 𝑍 𝑗 ), for all 𝑖 ≠ 𝑗

𝜌𝑖 𝑗 = sin( 𝜋2 𝜅
𝑍
𝑖 𝑗 ) = sin( 𝜋2 𝜅𝑖 𝑗 ).

Applying a simple transformation to the oracle 𝐾 gives us access to the underlying Gaussian correlation
pattern, which now can be used as in the Gaussian case.

Proposition 5.5. In a non-paranormal distribution over a semi-labeled tree 𝑇 we can recover 𝑇 using
Algorithm 1 from the distances

𝑑 (𝑖, 𝑗) := − log | sin( 𝜋2 𝜅𝑖 𝑗 ) |,

where 𝜅𝑖 𝑗 is the Kendall-𝜏 coefficient defined in (10).

6. Statistical guarantees

In this section, we illustrate how the results developed in this paper can be applied in a more realistic
scenario when the entries of the covariance matrix cannot be measured exactly. In particular, suppose a
random sample of size 𝑁 is observed from a zero-mean distribution with covariance matrix Σ. Assume
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that Σ𝑖𝑖 = 1 for all 𝑖 = 1, . . . , 𝑛 and the correlations Σ𝑖 𝑗 = 𝜌𝑖 𝑗 satisfy parametrization (7) for some
semilabeled tree. In this case 𝑑 (𝑖, 𝑗) = − log |𝜌𝑖 𝑗 | for all 𝑖 ≠ 𝑗 forms a tree metric.

Denote by 𝜌̂𝑖 𝑗 a suitable estimator of the correlations based on the sample and let 𝑑 (𝑖, 𝑗) = − log | 𝜌̂𝑖 𝑗 |
be the corresponding plug-in estimator of the distances. Since the 𝑑 (𝑖, 𝑗) do not form a tree metric, we
cannot apply directly Algorithm 1. The algorithm uses distances at five places:

1. In Algorithm 2, to compute 𝐷 (𝑣).
2. In Algorithm 2, to decide if 𝜌(𝐵𝑖) is latent or not.
3. In the case when 𝜌(𝐵𝑖) is latent, Algorithm 2 also uses the distances to calculate 𝑑 (𝜌(𝐵𝑖), 𝑣) for

all 𝑣 ∈ 𝐵𝑖 .
4. In Algorithm 3, to group nodes in 𝐵 according to the connected components obtained by removing
𝜌(𝐵).

5. When recovering the skeleton of a small subtree in the case when |𝐵 | ≤ 𝜅.

In order to adapt the algorithm to the “noisy” distance oracle, we first propose the noisy versions of
BASIC and EXPLODE. The procedure BASIC.noisy is outlined in Algorithm 5, and EXPLODE.noisy in
Algorithm 6. The performance of the procedure depends on the following quantities

ℓ := min
𝑖≠ 𝑗

𝑑 (𝑖, 𝑗), u := max
𝑖≠ 𝑗

𝑑 (𝑖, 𝑗), (11)

where the minimum and maximum are taken over all regular nodes.
The algorithms have an additional input parameter 𝜖 > 0 that is an upper bound for the noise level.

More precisely, the algorithms work correctly whenever max𝑖≠ 𝑗 |𝑑 (𝑖, 𝑗) − 𝑑 (𝑖, 𝑗) | ≤ 𝜖 .

Algorithm 5: BASIC.noisy(𝐵, 𝛼, 𝜖)
Input: a bag 𝐵, 𝛼 ∈ 𝐵, and 𝜖 > 0;
for 𝑣 ∈ 𝐵 do

Compute 𝐷 (𝑣) = 𝑑 (𝑣, 𝛼) − 𝑑 (𝑣, 𝜌);
Order 𝑣 ∈ 𝐵 according to the decreasing value of 𝐷 (𝑣);
If |𝐷 (𝑢) − 𝐷 (𝑣) | ≤ 4𝜖 , assign 𝑢, 𝑣 to the same bag;
Denote the resulting bags by 𝐵1, . . . , 𝐵𝑘 ;
for 𝑖 = 1, . . . , 𝑘 do

𝑢𝑖 = arg min𝑣∈𝐵𝑖
𝑑 (𝛼, 𝑣);

if |𝑑 (𝜌, 𝑢𝑖) + 𝑑 (𝑢𝑖 , 𝛼) − 𝑑 (𝜌, 𝛼) | ≤ 3𝜖 then
𝜌(𝐵𝑖) = 𝑢𝑖

else
Identify latent node 𝑤𝑖;
Add 𝑤𝑖 to 𝐵𝑖;
Set 𝜌(𝐵𝑖) = 𝑤𝑖;
Calculate 𝑑 (𝑤𝑖 , 𝑣) for all 𝑣 ∈ 𝐵𝑖 using (2);

Return 𝐵1, . . . , 𝐵𝑘 and the skeleton (𝜌(𝐵1), 𝜌(𝐵2)), . . . , (𝜌(𝐵𝑘−1, 𝜌(𝐵𝑘)));

The next simple fact is used repeatedly below.

Lemma 6.1. Suppose max𝑖≠ 𝑗 |𝑑 (𝑖, 𝑗) − 𝑑 (𝑖, 𝑗) | ≤ 𝜖 for all regular 𝑖 ≠ 𝑗 and let 𝑎 ∈ R(
𝑛
2) . Then |𝑎⊤ (𝑑 −

𝑑) | ≤ ∥𝑎∥1𝜖 . In particular,

(i) if 𝑎⊤𝑑 = 0 then |𝑎⊤𝑑 | ≤ ∥𝑎∥1𝜖;
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(ii) if 𝑎⊤𝑑 ≥ 𝜂 then 𝑎⊤𝑑 ≥ 𝜂 − ∥𝑎∥1𝜖 .

Algorithm 6: EXPLODE.noisy(𝐵, 𝜖)
Input: a bag 𝐵 ;
while |𝐵 | > 1 do

Take 𝑢 ∈ 𝐵, 𝑢 ≠ 𝜌(𝐵);
Set 𝐵∗ = {𝑣 ∈ 𝐵, 𝑣 ≠ 𝜌(𝐵) : 𝑑 (𝑢, 𝜌(𝐵)) + 𝑑 (𝑣, 𝜌(𝐵)) − 𝑑 (𝑢, 𝑣) > 3𝜖} ∪ {𝜌(𝐵)};
Set 𝜌(𝐵∗) = 𝜌(𝐵);
Output 𝐵∗ ;
Set 𝐵← {𝜌(𝐵)} ∪ (𝐵 \ 𝐵∗);

In what follows, we condition on the random event

E(𝜖) =
{
max
𝑖≠ 𝑗
|𝑑 (𝑖, 𝑗) − 𝑑 (𝑖, 𝑗) | ≤ 𝜖 for all regular 𝑖 ≠ 𝑗

}
(12)

=

{
max
𝑖≠ 𝑗

����log
���� 𝜌̂𝑖 𝑗𝜌𝑖 𝑗

�������� ≤ 𝜖 for all regular 𝑖 ≠ 𝑗

}
.

Proposition 6.2. Suppose that in the current round, the event E(𝜖) holds with 𝜖 < ℓ/4. Then Algo-
rithm 5 and Algorithm 6 applied to the noisy distances gives the same output as Algorithm 2 and
Algorithm 3 applied to their noiseless versions.

Proof. In the first part, Algorithm 5 computes 𝐷 (𝑣) for all 𝑣 and it uses this information to produce
bags 𝐵1, . . . , 𝐵𝑘 . The bags in Algorithm 2 are obtained by grouping nodes based on the increasing val-
ues of 𝐷 (𝑣). By Lemma 6.1(i), if 𝐷 (𝑢) = 𝐷 (𝑣) then |𝐷 (𝑢) − 𝐷 (𝑣) | ≤ 4𝜖 . Moreover, if 𝐷 (𝑢) > 𝐷 (𝑣)
then it must be that 𝐷 (𝑢) − 𝐷 (𝑣) ≥ 2ℓ and so, by Lemma 6.1(ii), 𝐷 (𝑢) − 𝐷 (𝑣) > 2ℓ − 4𝜖 > 4𝜖 .
This shows that this step of Algorithm 5 provides the same bags as Algorithm 2. In the second
part of the algorithm, we decide whether or not the corresponding path nodes 𝜌(𝐵𝑖) are regular.
Let 𝑢̂𝑖 = arg min𝑣∈𝐵𝑖

𝑑 (𝛼, 𝑣) and 𝑢𝑖 = arg min𝑣∈𝐵𝑖
𝑑 (𝛼, 𝑣). If 𝑢̂𝑖 ≠ 𝑢𝑖 then 𝑑 (𝜌, 𝑢̂𝑖) − 𝑑 (𝜌, 𝑢𝑖) ≥ ℓ. By

Lemma 6.1(ii),

𝑑 (𝜌, 𝑢̂𝑖) − 𝑑 (𝜌, 𝑢𝑖) ≥ ℓ − 2𝜖 ≥ 2𝜖,

which contradicts the fact that 𝑢̂𝑖 = arg min𝑣∈𝐵𝑖
𝑑 (𝛼, 𝑣). We conclude that 𝑢̂𝑖 = 𝑢𝑖 . Now consider the

problem of deciding whether 𝜌(𝐵𝑖) = 𝑢𝑖 . Suppose first that 𝑑 (𝜌, 𝑢𝑖) + 𝑑 (𝛼, 𝑢𝑖) − 𝑑 (𝜌, 𝛼) = 0 (i.e.,
𝜌(𝐵𝑖) = 𝑢𝑖). By Lemma 6.1(i),

|𝑑 (𝜌, 𝑢𝑖) + 𝑑 (𝛼, 𝑢𝑖) − 𝑑 (𝜌, 𝛼) | ≤ 3𝜖 .

If 𝑑 (𝜌, 𝑢𝑖) + 𝑑 (𝛼, 𝑢𝑖) − 𝑑 (𝜌, 𝛼) > 0 then, since 𝐷 is a tree metric, it must be 𝑑 (𝜌, 𝑢𝑖) + 𝑑 (𝛼, 𝑢𝑖) −
𝑑 (𝜌, 𝛼) ≥ 2ℓ. Then, by Lemma 6.1(ii) and by the fact that 𝜖 < ℓ/4

𝑑 (𝜌, 𝑢𝑖) + 𝑑 (𝛼, 𝑢𝑖) − 𝑑 (𝜌, 𝛼) ≥ 2ℓ − 3𝜖 > 5𝜖 .

This shows the correctness of the second part of Algorithm 5.
Since 𝑑 (𝑣, 𝛼) + 𝑑 (𝑣, 𝜌) − 𝑑 (𝛼) ≥ 2ℓ, we get 𝑑 (𝑣, 𝛼) + 𝑑 (𝑣, 𝜌) − 𝑑 (𝛼) ≥ 2ℓ − 3𝜖
We can similarly show that Algorithm 6 gives the same output as Algorithm 3.
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The problem with applying Proposition 6.2 recursively to each round is that the event E(𝜖) only
bounds the noise for distances between the 𝑛 originally regular nodes. As the procedure progresses,
new nodes are made regular; if 𝜌(𝐵𝑖) is latent we make it “regular” by updating distances 𝑑 (𝑤𝑖 , 𝑣) for
all 𝑣 ∈ 𝐵𝑖 using (2).

Lemma 6.3. Suppose that event E(𝜖) holds. After 𝑅 rounds of the algorithm, we have |𝑑 (𝑖, 𝑗) −
𝑑 (𝑖, 𝑗) | ≤ (1 + 𝑅2 )𝜖 for all 𝑖, 𝑗 ∈ 𝐵 that are regular in the 𝑅-th round.

Proof. Consider the first run of Algorithm 5. In this case, 𝜌(𝐵) and 𝛼 are both regular. If 𝑤𝑖 is identified
as a latent node, we calculate 𝑑 (𝑤𝑖 , 𝑣) for all 𝑣 ∈ 𝐵𝑖 using (2). By the triangle inequality, |𝑑 (𝑤𝑖 , 𝑣) −
𝑑 (𝑤𝑖 , 𝑣) | ≤ 3

2 𝜖 and this bound is sharp. This establishes the case 𝑅 = 1. Suppose the lemma bound holds
up to the (𝑅 − 1)-st round. In the 𝑅-th round, 𝜌(𝐵) may be a latent node added in the previous call but
𝛼 is still sampled from the originally regular nodes. If 𝜌(𝐵𝑖) is identified as a latent node, we calculate
𝑑 (𝜌(𝐵𝑖), 𝑣) for all 𝑣 ∈ 𝐵𝑖 . Since 𝑣 is also among the originally regular nodes, we conclude |𝑑 (𝑣, 𝛼) −
𝑑 (𝑣, 𝛼) | ≤ 𝜖 . By induction, |𝑑 (𝑣, 𝜌(𝐵)) − 𝑑 (𝑣, 𝜌(𝐵)) | ≤ (1 + 𝑅−1

2 )𝜖 and |𝑑 (𝛼, 𝜌(𝐵)) − 𝑑 (𝛼, 𝜌(𝐵)) | ≤
(1 + 𝑅−1

2 )𝜖 . By the triangle inequality,

|𝑑 (𝜌(𝐵𝑖), 𝑣) − 𝑑 (𝜌(𝐵𝑖), 𝑣) | ≤ 1
2 (𝜖 + (1 +

𝑅−1
2 )𝜖 + (1 +

𝑅−1
2 )𝜖) = (1 +

𝑅
2 )𝜖 .

The result now follows by induction.

It is generally easy to show that the event E(𝜖) holds with probability at least 1 − 𝜂 as long as the
sample size 𝑁 is large enough. Let 𝛿 = 1 − 𝑒−𝜖 and suppose that the following event holds

E′ (𝛿) :=
{
| 𝜌̂𝑖 𝑗 − 𝜌𝑖 𝑗 | ≤ |𝜌𝑖 𝑗 |𝛿 for all regular 𝑖 ≠ 𝑗

}
.

Since 𝛿 < 1, under the event E′ the signs of 𝜌̂𝑖 𝑗 and 𝜌𝑖 𝑗 are the same. It is easy to see that E′ ⊆ E.
Indeed, under E′, 𝜌̂𝑖 𝑗

𝜌𝑖 𝑗
> 0 and for all 1 − 𝛿 ≤ 𝑥 ≤ 1 + 𝛿 we have log(1 − 𝛿) ≤ log(𝑥) ≤ log(1 + 𝛿). It

follows that ����log
𝜌̂𝑖 𝑗

𝜌𝑖 𝑗

���� ≤ max {log(1 + 𝛿), | log(1 − 𝛿) |} = − log(1 − 𝛿) = 𝜖 .

It is then enough to bound the probability of the event E′. To illustrate how this can be done without
going into unnecessary technicalities, suppose max𝑖 E𝑋4

𝑖
≤ 𝜅 for some 𝜅 > 0. In this case var(𝑋𝑖𝑋 𝑗 ) ≤

𝜅, and therefore one may use the median-of-means estimator (see, e.g., Lugosi and Mendelson (2019))
to estimate 𝜌𝑖 𝑗 = E[𝑋𝑖𝑋 𝑗 ]. We get the following result.

Theorem 6.4. Suppose a random sample of size 𝑁 is generated from a mean zero distribution with
covariance matrix Σ satisfying Σ𝑖𝑖 = 1 and suppose max𝑖 E𝑋4

𝑖
≤ 𝜅 for some 𝜅 > 0. Let ℓ,u be as defined

in (11). Fix 𝜂 ∈ (0,1) and suppose

𝜖 ≤ ℓ

4(1 + logΔ (𝑛))
and 𝑁 ≥ 64𝜅 log(𝑛/𝜂)

(1 − 2𝑒−𝜖 ) 𝑒
2u

then the noisy version of the Algorithm 1 correctly recovers the underlying semi-labeled tree with
probability 1 − 𝜂.

Proof. Suppose the event E(𝜖) holds. Like in the proof of Theorem 3.1 we modify the procedure by
repeating BIGSPLIT.noisy until the largest bag is bounded in size by |𝐵 |/

√
Δ. With this modification,
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the algorithm stops after each round. With our choice of 𝜖 , by Lemma 6.3, we are guaranteed that
all computed distances satisfy |𝑑 (𝑢, 𝑣) − 𝑑 (𝑢, 𝑣) | ≤ 𝜖 in the first 2 logΔ (𝑛) rounds. By Proposition 6.2,
all these subsequent calls of BIGSPLIT.noisy return the same answer as BIGSPLIT applied to noiseless
distances. The proof now follows if we can show that, with probability at least 1− 𝜂, event E(𝜖) holds.
We show that E′ (𝛿) with 𝛿 = 1−𝑒−𝜖 holds, which is a stronger condition. Recall that E𝑋2

𝑖
= 1, E𝑋4

𝑖
≤ 𝜅

and, in consequence, var(𝑋𝑖𝑋𝑖) ≤ 𝜅. We want to estimate E(𝑋𝑖𝑋 𝑗 ) = 𝜌𝑖 𝑗 . By Theorem 2 in Lugosi and
Mendelson (2019), the median-of-means estimator 𝜌̂𝑖 𝑗 (with an appropriately chosen number of blocks
that depends on 𝜂 only) satisfies that with probability at least 1 − 2𝜂/

(𝑛
2
)

| 𝜌̂𝑖 𝑗 − 𝜌𝑖 𝑗 | ≤

√︄
32𝜅 log(

(𝑛
2
)
/𝜂)

𝑁
.

Thus, we get that with probability at least 1 − 𝜂, all 𝜌̂𝑖 𝑗 satisfy simultaneously that | 𝜌̂𝑖 𝑗 − 𝜌𝑖 𝑗 | ≤ |𝜌𝑖 𝑗 |𝛿
as long as

𝑁 ≥ 64𝜅 log(𝑛/𝜂)
𝛿2 min𝑖≠ 𝑗 𝜌2

𝑖 𝑗

=
64𝜅 log(𝑛/𝜂)
𝑒−2u𝛿2 .

The inequality 𝜖 < ℓ
4(1+logΔ (𝑛) )

is equivalent to 𝛿 < 1 − 𝑒−
ℓ

4(1+logΔ (𝑛) ) . Thus, we require

𝑁 ≥ 64𝜅 log(𝑛/𝜂)

𝑒−2u (1 − 2𝑒
− ℓ

4(1+logΔ (𝑛) ) )
.

Note that the required sample size 𝑁 grows exponentially with the diameter 𝑢 of the tree. While this
seems undesirable, in the setup of this section, such a dependence is easily seen to be necessary, as the
correlations along any path decrease exponentially, and any estimator of the correlations needs to have
accuracy at the same scale.
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