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Abstract. The Marchenko-Pastur law (Marchenko and Pastur, 1967) describes the limit law of eigen-

values of large rectangular matrices. We give two efficient algorithms for simulating random variables

from this distribution.
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1. Introduction

The Marchenko-Pastur law (Marchenko and Pastur, 1967) describes the limit law of eigenvalues

of large rectangular random matrices. In general, it is a mixture of an atomic law with atom at 0 and an

absolutely continuous distribution with density given by

f(x) =

√

λ+ − x)(x − λ−)

2πσ2x
, λ− ≤ x ≤ λ+,

where σ ∈ (0, 1] is a shape parameter, λ+ = (1+ σ)2, and λ− = (1− σ)2. We will write Xσ for a random

variable with this density, and note that E{Xσ} = 1 and V{Xσ} = σ2. See, e.g., Bai and Silverstein

(2010) for an overview of such limit laws in random matrix theory. The standard description for the

Marchenko-Pastur law depends on a parameter λ > 0: if λ ≤ 1, then it is the law of Xσ with λ = σ2. If

λ > 1, it is a mixed distribution: with probability 1/λ, it is X1 and with probability 1 − 1/λ, it has an

atom at 0.
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Figure 1. Marchenko-Pastur densities for σ equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9, from right to left.

In this note, we point out how one can generate random variates from this distribution.

In their R-package RMTstat, Johnstone, Ma, Perry, Shahram and Biederstedt (2022) used the

inverse transformtion method to generate random variates from this distribution. This is necessarily

slow and inaccurate if the iterative approximation is halted after a finite number of steps. We offer two
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alternatives, one suggested by a distributional identity due to Ledoux, and one based on an efficient

rejection method.

2. Ledoux’s formula

In 2004, Ledoux derived a remarkable decomposition that lends itself quite naturally to simula-

tion. To that end, let Ba,b denote a beta random variable with parameters a, b > 0. A key role is played

by the arcsine law. The arcsine law on [0, 1] is that of a B1/2,1/2:

f(x) =
1

π
√

x(1− x)
, 0 < x < 1.

The arcsine random variable ξ on [−1, 1] has density

1

π
√
1− x2

, |x| < 1.

If U = B1,1 denotes a uniform random variable on [0, 1], independent of ξ, then Ledoux obtained the

following remarkable representation, adapted for presentation in this note:

Xσ
L
= 1− σ2 + 2σ2U + 2σξ

√
U
√

1 + σ2(U − 1). (1)

It is immediate from this representation that E{Xσ} = 1 as ξ is symmetric. Furthermore, as

σ ↑ 1,

Xσ
L→ 2U(1 + ξ)

L
= 4UB1/2,1/2

L
= 4B1/2,3/2,

where
L→ and

L
= denote convergence in distribution, and equality in distribution, respectively. This limit

behavior is illustrated in Figure 1. As σ ↓ 0, Xσ → 1 in probability: representation (1) fails to yield a

proper nontrivial limit law. However, we observe from (1) that

Xσ − 1

σ

L→ 2
√
Uξ

L
= 4B3/2,3/2 − 2,

where we note that the latter is Wigner’s semicircle law, with density

1

2π

√

4− x2, |x| ≤ 2.

That behavior, too, is illustrated in Figure 1.

Finally, we recall that ξ can be obtained as cos(πV ), where V is uniform on [0, 1], or as N2/(N2+

N ′2), where N and N ′ are standard gaussian random variables.
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3. A rejection algorithm

It is convenient to write Xσ = λ− + 4σY , where Y has density

f(y) =
8
√

y(1− y)

π(λ− + 4σy)
, 0 ≤ y ≤ 1.

We pick a threshold σ∗ ∈ (0, 1), and propose using the rejection method (see, e.g., Devroye, 1986) based

on these inequalities:

f(y) ≤







2
πσ

√

1−y
y if σ ≥ σ∗,

8
πλ

−

√

y(1− y) if σ < σ∗.

We recognize the two limit laws, B1/2,3/2, and B3/2,3/2 in these bounds. The areas under the envelopes

are 1/σ and 1/λ−, respectively. The best choice for the threshold is when both areas are equal, which

yields one minus the golden ratio,

σ∗ =
3−

√
5

2
=

2

3 +
√
5
= .38196601125010515180 . . . .

Applying the rejection algorithm would require an expected number of iterations not exceeding 1/σ∗ =

2.61803398874989484820 . . .. More importantly, as σ approaches 0 or 1, the expected number of iterations

tends to one, making the method quite efficient.

When σ ≥ σ∗, we would generate independent pairs (U, Y ) (with U uniform on [0, 1] and Y

independent and B1/2,3/2) until U(λ− + 4σY ) ≤ 4σY and return Xσ = λ− + 4σY . When σ < σ∗, we

would generate independent pairs (U, Y ) (with U uniform on [0, 1] and Y independent and B3/2,3/2) until

U(λ− + 4σY ) ≤ λ− and return Xσ = λ− + 4σY . As pointed out earlier, a B1/2,3/2 random variable can

be obtained as V B1/2,1/2 = V (1 + cos(πW ))/2, where V and W are independent uniform [0, 1] random

variables. Finally, a B3/2,3/2 random variable can be generated as (1 +
√
V cos(πW ))/2.

One by-product of the rejection method developed above is that for both limits as σ ↓ 0 and

σ ↑ 1, the total variation error converges, something that cannot directly be deduced from (1).

All algorithms were tested, with timings of Ledoux’s method about 25 percent faster on an iMac

machine using the interpreted Postscript language.
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