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Abstract. The Maxwell-Jüttner distribution pertains to the speeds of particles in a hypothetical gas of

relativistic particles. We consider the generalized form of this law in Rd, and show how to generate a ran-

dom variate from this distribution. In particular, one can sample the radius of the d-dimensional random

vector in expected time uniformly bounded over all dimensions d and shape parameters (temperatures).
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1. Introduction

The relativistic Maxwell or Jüttner-Synge distribution, now called the Maxwell-Jüttner distri-

bution (Jüttner, 1911; Synge, 1957; Maxwell, 1860) is a spherically symmetric distribution in R3 with a

density given by
α

4πK2(α)
e
−α
√

1+(y12+y22+y23), y = (y1, y2, y3) ∈ R3,

where α > 0 is a shape parameter, and K2 is the modified Bessel function of the second kind, also known

as the Macdonald function. In particle simulations, α is inversely proportional to the plasma temperature.

The radius x = ‖y‖ =
√

y21 + y22 + y23 has density given by

f(x) =
αx2

4πK2(α)
e−α
√

1+x2 , x ≥ 0.

Using the the Macdonald function (Abramowitz and Stegun, 1972, p. 376) defined by

Kn(z) =

√
π(z/2)n

Γ(n+ 1/2)

∫ ∞

1
(t2 − 1)n−1/2e−zt dt,

the d-dimensional generalizations of the densities are

α
d−1
2

2
d+1
2 π

d−1
2 K d+1

2
(α)

e−α
√

1+‖y‖2 , y = (y1, . . . , yd) ∈ Rd, (1)

and

f(x) =
dxd−1√παd−1

2

2
d+1
2 Γ

(

d
2 + 1

)

K d+1
2

(α)
e−α
√

1+x2 , x ≥ 0, (2)

respectively. Such d-dimensional generalizations were considered, e.g., by Chacon-Acosta, Dagdug and

Morales-Tecotl (2009). In Rd, 1/α can be shown to coincide with the thermodynamic definition of

temperature.

The objective of this note is to propose two algorithms for generating random variates from the

radial density for general d ≥ 3. The simpler algorithm has expected time proportial to d, uniformly

over all values of α. The more advanced algorithm has expected time uniformly bounded over all values

of d ≥ 3 and α ≥ 0. It should be noted that once the radius R has been generated, a random variate

uniformly distributed on (the surface of) the ball in Rd is easily obtained in time proportional to d. For

example, it suffices to generate d i.i.d. standard normal random variables (X1, . . . , Xd) and return

R

||X || (X1, . . . , Xd),

where ||X || is the L2 norm of (X1, . . . , Xd). Simulations show that for small values of d, the simpler

algorithm is faster, but that ranking is flipped for all large values of d.

Simulation from the radial density (2) for d = 3 was started by Sobol (1976) and Pozdnyakov,

Sobol and Sunyaev (1977, 1983). The first algorithm that was uniformly fast in the parameter α was

due to Canfield, Howard and Liang (1987). That algorithm was refined and improved by Zenitani and

Nakano (2022). Another uniformly fast algorithm was proposed by Swisdak (2013). That too was refined

later by Zenitani (2024).
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2. A simple algorithm

We generalize the method first suggested by Canfield, Howard and Liang (1987) for d = 3 by

applying the transformation

z = α
(
√

1 + x2 − 1
)

, x =

√

(

z + α

α

)2

− 1

so that density (2) (in x) is transformed into the following density (in z),

g(z) = cz
d−2
2 (z + 2α)

d−2
2 (z + α)e−z , z ≥ 0, (3)

where c is a constant depending upon α and d. In the remainder of this section, we show how to generate

a random variate Z with density (3) in O(d) expected time, uniformly over all values of α > 0. A random

variate with density (2) can then be obtained by setting

X =

√

(

Z + α

α

)2

− 1.

If d is even, then we define κ
def
= (d − 2)/2, use the binomial expansion of the factor (z + 2α)κ,

and rewrite g as a mixture of gamma densities. For that purpose, we will use the notation

γa(x) =
xa−1e−x

Γ(a)
, x > 0,

for the gamma density with parameter a > 0. Then

g(z) =
∑

0≤i≤κ,1≤j≤2

qi,j
q

γκ+i+j(z),

where

qi,j =

(

κ

i

)

(2α)κ−iα2−j(κ+ i + j − 1)!,

and q =
∑

0≤i≤κ,1≤j≤2 qi,j is a normalization factor. In other words, one first picks a pair (i, j) with

probabilities proportional to qi,j and then returns a gamma random variable with parameter κ + i + j.

The former can be done in time O(d), while for gamma random variables, there is an enormous choice of

methods, including the algorithms by Marsaglia and Tsang (1981), Schmeiser and Lal (1980), Cheng and

Feast (1979), Cheng (1977), Le Minh (1988), Marsaglia (1977), Ahrens and Dieter (1982), and Devroye

(2014). All of the aforementioned methods have expected time uniformly bounded when the gamma

parameter is at least one. See the surveys in Devroye (1986) and Luengo (2022) for more references.

When d is odd, we proceed by setting κ = (d− 3)/2, and use the inequality

g(z) = czκ+1/2(z + 2α)κ+1/2(z + α)e−z

= czκ(z + 2α)κ(z3/2 + α
√
z)
√
z + 2αe−z

≤ czκ(z + 2α)κ(z3/2 + α
√
z)
(√

z +
√
2α
)

e−z

= czκ(z + 2α)κ
(

z2 + z3/2
√
2α+ αz +

√
2α3
√
z
)

)e−z

def
= h(z).
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If Z is a random variable with density proportional to h, then by von Neumann’s rejection method (see,

e.g., Devroye, 1986), if we accept Z with probaility
√
Z + 2α√
Z +
√
2α

,

then, upon acceptance, Z has the desired density g. The expected number of steps in this rejection

method does not exceed
√
2.

For h, we can proceed as in the case when d is even, as κ is integer-valued. Using the binomial

expansion once again, the density proportional to h can be rewritten as
∑

0≤i≤κ,3≤j≤6

qi,j
q

γκ+i+j/2(z),

where

qi,j =

(

κ

i

)

(2α)κ−iα
6−j
2 (
√
2)jmod2 Γ(κ+ i+ j/2)

and q =
∑

0≤i≤κ,3≤j≤6 qi,j is a normalization factor. So, one first picks a pair (i, j) with probabilities

proportional to qi,j and then returns Z, a gamma random variable with parameter κ+ i+ j/2.

For d = 3, and thus κ = 0, we rediscover the method of Canfield, Howard and Liang (1987). For

large values of d, the computation of the weights qi,j in the gamma mixture may become cumbersome

because of word size limitations. Luckily, one can generate random variates from (2) in constant expected

time uniformly over both α and the dimension d, as we will show in the next section.

3. An advanced algorithm

For the advanced algorithm, we once again proceed by first generating a random variate Z with

the transformed density g defined in (3). To this end, we note that g is log-concave and thus unimodal.

It is convenient to work with ρ(z) = log(g(z)/c). Observe that, with κ = (d− 2)/2,

ρ(z) = log(z + α) + κ log(z + 2α) + κ log(z)− z, (4)

ρ′(z) =
1

z + α
+

κ

z + 2α
+

κ

z
− 1, (5)

and

ρ′′(z) = − 1

(z + α)2
− κ

(z + 2α)2
− κ

z2
. (6)

Formally, we have g(z) = 0 for z < 0 and thus ρ(z) = −∞ for z < 0. The mode m occurs as the unique

positive real solution of the third order polynomial equation ρ′(m) = 0, which has three real roots. That

equation can be written as

m3 + am2 + bm+ c = 0, a = 3α− 1− 2κ, b = 2α2 − 2α− 4ακ, c = −2α2κ.

To this end, we can use Viète’s formula (see, e.g., Nickalls, 2006), which describes the three real roots as

follows:

m = −a

3
+ 2

√

−p

3
cos

(

2

3
arctan

√

√

−4p3 −
√

27q2
√

−4p3 +
√

27q2
− 2πk

3

)

, k = 0, 1, 2,
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where

p = b− a2/3, q =
1

27
(2a3 − 9ab+ 27c).

In our case, the unique positive solution occurs for the choice k = 0 in Viète’s formula.

Since ρ′′′ ≥ 0 everywhere, ρ′′ is monotonically increasing. Thus, by Taylor’s theorem with

remainder,

ρ(z) ≥ ρ(m)− (z −m)2
|ρ′′(m)|

2
, z ≥ m,

and

ρ(z) ≤ ρ(m)− (z −m)2
|ρ′′(m)|

2
, z ≤ m.

Therefore, for z ≤ m, there is a simple gaussian bound. This leaves us with the problem of bounding

ρ(z) for z > m. Taylor’s series expansion suggests that around the mode, ρ(z) can be approximated by

ρ(m) + ρ′′(m)(z −m)2/2. Following the ideas developed in Devroye (2014), we can hope to develop a

good upper bound for g by a flat part around the mode and an exponential tail that starts at a point z

where ρ(z) = ρ(m)− 1. Taylor’s approximation suggests the cut-off point z+ = m+∆, where

∆ =

√

2

|ρ′′(m)| .

The upper bound on g now follows by the concavity of ρ:

g(z)/c ≤ h(z)
def
=















e
ρ(m)− (z−m)2

∆2 if z < m,

eρ(m) if m ≤ z ≤ z+ − δ ,

eρ(m)+ρ′(z+)(z−z++δ) if z > z+ − δ.

Here, δ = (ρ(m) − ρ(z+))/|ρ′(z+)| is picked such that the bounding line is tangential to log(h) at the

point z+.
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Figure 1. The transformed Maxwell-Jüttner density (3) is shown for α = 10 and dimension d = 10, after
rescaling the value at the mode m to one. The top curve is used for rejection: it consists of a gaussian left
tail, an exponential right tail, and a flat mid-section.

When the upper bound h is used in von Neumann’s rejection method, one realizes that the

cumbersome constant c does not matter. The areas under the left and right tail bound and the flat

middle section of h are, respectively,

pℓ =
eρ(m)√π∆

2
, pr =

eρ(m)

|ρ′(z+)| , and pm = eρ(m) (∆− δ).

We summarize the proposed algorithm in which we use the fact that an exponential random variable E

is distributed as log(1/U), where U is uniformly distributed on [0, 1]. Also, we note that if N is standard

normal, then N2/2 can be obtained by the Box-Müller method (see, e.g., Devroye, 1986), as E cos2(πU)

or as E(1 + cos(πU))/2.
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the algorithm for density (2)

input: parameter α > 0, dimension d ≥ 3

set κ = (d− 2)/2

define the functions ρ, ρ′ and ρ′′ as in (4-6)

let m be the location of a mode of g by solving a cubic equation

define ∆ =
√

2/|ρ′′(m)|, z+ = m+∆, δ = (ρ(m)− ρ(z+))/|ρ′(z+)|
set pℓ =

eρ(m)∆
√
π

2 , pr =
eρ(m)

|ρ′(z+)|, pm = (∆− δ)eρ(m), p = pℓ + pm + pr

repeat let V be uniform on [0, 1]

if V < pℓ/p then

set Z ← m− ∆|N |√
2

where N is a standard normal random variate

Accept ← [Z ≥ 0] ∩ [ρ(m)−N2/2− E′ ≤ ρ(Z)]

where E′ is standard exponential

if V > 1− pr/p then

set Z ← m+∆− δ + E/|ρ′(z+)|
where E is standard exponential

Accept ← [ρ(m)− E − E′ ≤ ρ(Z)]

where E′ is standard exponential

if pℓ/p ≤ V ≤ 1− pr/p then

set Z ← m+ U(∆− δ)

where U is uniform on [0, 1]

Accept ← [ρ(m)− E′ ≤ ρ(Z)]

where E′ is standard exponential

until Accept

(Z now has density (3))

return X ←
√

((Z + α)/α)2 − 1

(X has density (2))

The design was based on a heuristic. We are now left with the task of showing that the expected

number of iterations in the rejection algorithm is bounded by a constant, uniformly over all α > 0 and

d ≥ 3.

Theorem 1. The algorithm given above halts after an expected number of iterations not exceeding

e

(

3 +

√

π

4
+

√

8

κ

)

,

where κ = (d− 2)/2.
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Proof. As pointed out above, ρ(z+) ≥ ρ(m)− 1. As the expected number of steps is
∫∞
0 h(z) dz

∫∞
0 (g(z)/c) dz

,

we first lower bound
∫∞
0 g/c =

∫∞
0 eρ(z) dz by ∆eρ(z

+) ≥ (∆/e)eρ(m), ignoring the contributions from

all other parts of the halfline but [m, z+]. Since pr = eρ(m)/|ρ′(z+)|, we upper bound
∫

h by p =

pℓ + pr + pm ≤ (1/|ρ′(z+)|+ (∆− δ)(1 +
√

π/4))eρ(m). The ratio of upper over lower bound is not more

than

e(1 +
√

π/4) +
e

∆|ρ′(z+)| .

Now,

|ρ′(m+∆)| = |ρ′(m+∆)− ρ′(m)| ≥ κ

m
− κ

m+∆
=

κ∆

m(m+∆)
.

Thus,

∆|ρ′(z+)| ≥ κ∆2

m(m+∆)
=

2κ

m(m+∆)|ρ′′(m)| .

Since κ ≥ 1/2 and ρ′′(m) ≤ (2κ+ 1)/m2, we have

∆|ρ′(z+)| ≥ 2κ

(2κ+ 1)(1 + ∆/m)
≥ 1

2(1 + ∆/m)
≥ 1

2(1 +
√

2/κ)
,

where in the last inequality, we used the fact that ∆ ≤
√

2m2/κ. Therefore, the expected number of

iterations in the algorithm is not more than

e(1 +
√

π/4) + 2e(1 +
√

2/κ).

We observe that the proof above uses various loose bounds and can be tightened. We also note that as

the dimension tends to∞, the bound in Theorem 1 tends to e(3+
√

π/4). In addition, the algorithm can

be tightened a bit by optimizing the position of the tangent point z+ for the bounding function. Finally,

the design principle for log-concave densities based on the manner of obtaining ∆ can be used in many

other examples as well.
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