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ABSTRACT. The Maxwell-Jiittner distribution pertains to the speeds of particles in a hypothetical gas of
relativistic particles. We consider the generalized form of this law in R?, and show how to generate a ran-
dom variate from this distribution. In particular, one can sample the radius of the d-dimensional random
vector in expected time uniformly bounded over all dimensions d and shape parameters (temperatures).
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1. Introduction

The relativistic Maxwell or Jiittner-Synge distribution, now called the Maxwell-Jiittner distri-
bution (Jiittner, 1911; Synge, 1957; Maxwell, 1860) is a spherically symmetric distribution in R? with a
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where o > 0 is a shape parameter, and Ko is the modified Bessel function of the second kind, also known

density given by

as the Macdonald function. In particle simulations, « is inversely proportional to the plasma temperature.

The radius = = ||y|| = /y? +y3 + yg has density given by
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Using the the Macdonald function (Abramowitz and Stegun, 1972, p. 376) defined by
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the d-dimensional generalizations of the densities are
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respectively. Such d-dimensional generalizations were considered, e.g., by Chacon-Acosta, Dagdug and

Morales-Tecotl (2009). In R? 1/« can be shown to coincide with the thermodynamic definition of
temperature.

The objective of this note is to propose two algorithms for generating random variates from the
radial density for general d > 3. The simpler algorithm has expected time proportial to d, uniformly
over all values of a. The more advanced algorithm has expected time uniformly bounded over all values
of d > 3 and o > 0. It should be noted that once the radius R has been generated, a random variate
uniformly distributed on (the surface of) the ball in R? is easily obtained in time proportional to d. For

example, it suffices to generate d i.i.d. standard normal random variables (X7q,..., Xy) and return
R
—(X1,..., Xy),
[1X1
where || X]|| is the Ly norm of (X7i,...,Xy). Simulations show that for small values of d, the simpler

algorithm is faster, but that ranking is flipped for all large values of d.

Simulation from the radial density (2) for d = 3 was started by Sobol (1976) and Pozdnyakov,
Sobol and Sunyaev (1977, 1983). The first algorithm that was uniformly fast in the parameter o was
due to Canfield, Howard and Liang (1987). That algorithm was refined and improved by Zenitani and
Nakano (2022). Another uniformly fast algorithm was proposed by Swisdak (2013). That too was refined
later by Zenitani (2024).



2. A simple algorithm

We generalize the method first suggested by Canfield, Howard and Liang (1987) for d = 3 by
applying the transformation
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so that density (2) (in z) is transformed into the following density (in z),
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where c is a constant depending upon « and d. In the remainder of this section, we show how to generate
a random variate Z with density (3) in O(d) expected time, uniformly over all values of & > 0. A random
variate with density (2) can then be obtained by setting
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If d is even, then we define s def (d — 2)/2, use the binomial expansion of the factor (z + 2a)",

and rewrite g as a mixture of gamma densities. For that purpose, we will use the notation
Iafl e~
z)=—7——,2 >0,
) = T

for the gamma density with parameter a > 0. Then
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and ¢ = ZOS%’SR,ISJS2 ¢;; is a normalization factor. In other words, one first picks a pair (4,j) with
probabilities proportional to g; ; and then returns a gamma random variable with parameter x + i + j.
The former can be done in time O(d), while for gamma random variables, there is an enormous choice of
methods, including the algorithms by Marsaglia and Tsang (1981), Schmeiser and Lal (1980), Cheng and
Feast (1979), Cheng (1977), Le Minh (1988), Marsaglia (1977), Ahrens and Dieter (1982), and Devroye
(2014). All of the aforementioned methods have expected time uniformly bounded when the gamma
parameter is at least one. See the surveys in Devroye (1986) and Luengo (2022) for more references.

When d is odd, we proceed by setting x = (d — 3)/2, and use the inequality
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If Z is a random variable with density proportional to h, then by von Neumann’s rejection method (see,
e.g., Devroye, 1986), if we accept Z with probaility

VZ +2a

VZ+2a’
then, upon acceptance, Z has the desired density g. The expected number of steps in this rejection
method does not exceed /2.

For h, we can proceed as in the case when d is even, as k is integer-valued. Using the binomial
expansion once again, the density proportional to h can be rewritten as

ql’.j
S Hyiina)
0<i<r3<j<6 1

where
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and ¢ = > g<;<, 3<;<6 T,j 15 a normalization factor. So, one first picks a pair (i,7) with probabilities
proportional to ¢; ; and then returns Z, a gamma random variable with parameter x 44 + j/2.

For d = 3, and thus x = 0, we rediscover the method of Canfield, Howard and Liang (1987). For
large values of d, the computation of the weights ¢; ; in the gamma mixture may become cumbersome
because of word size limitations. Luckily, one can generate random variates from (2) in constant expected

time uniformly over both a and the dimension d, as we will show in the next section.

3. An advanced algorithm

For the advanced algorithm, we once again proceed by first generating a random variate Z with
the transformed density g defined in (3). To this end, we note that g is log-concave and thus unimodal.
It is convenient to work with p(z) = log(g(z)/c). Observe that, with x = (d — 2)/2,

p(z) =log(z + a) + klog(z + 2a) + klog(z) — z, (4)
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Formally, we have g(z) = 0 for z < 0 and thus p(z) = —co for z < 0. The mode m occurs as the unique

positive real solution of the third order polynomial equation p’(m) = 0, which has three real roots. That
equation can be written as

m3+am2+bm+c:0,a:3a—1—2n,b:2a2—2a—4a1~@,c:—2042,%.

To this end, we can use Viete’s formula (see, e.g., Nickalls, 2006), which describes the three real roots as
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where

1
p=b—a?/3,q= 2—7(2a3 — 9ab + 27¢).

In our case, the unique positive solution occurs for the choice k = 0 in Viete’s formula.
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Since p" > 0 everywhere, p” is monotonically increasing. Thus, by Taylor’s theorem with

remainder,
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Therefore, for z < m, there is a simple gaussian bound. This leaves us with the problem of bounding
p(z) for z > m. Taylor’s series expansion suggests that around the mode, p(z) can be approximated by
p(m) + p"(m)(z — m)?/2. Following the ideas developed in Devroye (2014), we can hope to develop a
good upper bound for g by a flat part around the mode and an exponential tail that starts at a point z
where p(z) = p(m) — 1. Taylor’s approximation suggests the cut-off point 2+ = m + A, where

2
A=\ T

The upper bound on g now follows by the concavity of p:

_ (z—m)2
def LM if z < m,
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Here, § = (p(m) — p(21))/|p'(27)]| is picked such that the bounding line is tangential to log(h) at the
point z7.
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Figure 1. The transformed Maxwell-Jiittner density (3) is shown for @ = 10 and dimension d = 10, after
rescaling the value at the mode m to one. The top curve is used for rejection: it consists of a gaussian left
tail, an exponential right tail, and a flat mid-section.

When the upper bound h is used in von Neumann’s rejection method, one realizes that the
cumbersome constant ¢ does not matter. The areas under the left and right tail bound and the flat
middle section of h are, respectively,

eP(m) /T A eP(m)
T2 PTG
We summarize the proposed algorithm in which we use the fact that an exponential random variable FE
is distributed as log(1/U), where U is uniformly distributed on [0, 1]. Also, we note that if N is standard
normal, then N2/2 can be obtained by the Box-Miiller method (see, e.g., Devroye, 1986), as E cos?(wU)
or as E(1 + cos(nU))/2.

,and p, = e?™ (A — §).
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the algorithm for density (2)

input: parameter a > 0, dimension d >3

set k= (d—2)/2

define the functions p,p’ and p” as in (4-6)

let m be the location of a mode of g by solving a cubic equation

define A =/2/[p"(m)[, 2" =m+A, §=(p(m)—p(z"))/p'(z")]

P(m)A p(m)
#, prz‘pe/(?)', pm:(A_(s)ep(m)’ P=p¢+DPm+Dpr

repeat let V be uniform on [0,1]
if V < pp/p then
set Z «—m —

set py =

A|N|
V2
where N is a standard normal random variate

Accept « [Z >0]N[p(m) — N?/2 — E' < p(Z)]
where E’ is standard exponential
if V> 1—p;/p then
set Z—m+A-6+E/|p(z")
where F is standard exponential
Accept  [p(m) — E — E' < p(Z)]
where E’ is standard exponential
if py/p <V <1—p,/p then
set Z—m+U(A-9)
where U is uniform on [0,1]
Accept « [p(m) — E' < p(Z)]
where E’ is standard exponential
until Accept
(Z now has density (3))
return X « /((Z +a)/a)2 -1
(X has density (2))

The design was based on a heuristic. We are now left with the task of showing that the expected
number of iterations in the rejection algorithm is bounded by a constant, uniformly over all « > 0 and
d> 3.

THEOREM 1. The algorithm given above halts after an expected number of iterations not exceeding

)

where k = (d — 2)/2.



PROOF. As pointed out above, p(z1) > p(m) — 1. As the expected number of steps is
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we first lower bound [;°g/c = [;°e?(?) dz by AerzT) > (A/e)ep ), ignoring the contributions from

all other parts of the halfline but [m,z7]. Slnce pT = /M) /|p/(z1)|, we upper bound Jhbyp=
po+Dr +pm < (/10 (27| + (A = 8)(1 + /7/4))eP(™). The ratio of upper over lower bound is not more
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Since k > 1/2 and p"(m) < (2k + 1)/m?, we have
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where in the last inequality, we used the fact that A < \/2m?2/k. Therefore, the expected number of
iterations in the algorithm is not more than

e(1+ /7/4) + 2e(1 + \/2/r).

O

We observe that the proof above uses various loose bounds and can be tightened. We also note that as
the dimension tends to co, the bound in Theorem 1 tends to e(3 + \/M) In addition, the algorithm can
be tightened a bit by optimizing the position of the tangent point 2T for the bounding function. Finally,
the design principle for log-concave densities based on the manner of obtaining A can be used in many
other examples as well.
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