
Journal of Statistical Theory and Practice (2024) 18:11
https://doi.org/10.1007/s42519-023-00364-1

ORIG INAL ART ICLE

Random Variate Generation for the First Hit of a Ball for the
Symmetric Stable Process inRd

Luc Devroye1 · John P. Nolan2,3

Accepted: 12 December 2023 / Published online: 1 February 2024
© The Author(s) 2024

Abstract
We provide uniformly efficient random variate generators for a collection of distribu-
tions for the hits of the symmetric stable process in R

d .

Keywords Random variate generation · Simulation · Monte Carlo method · Expected
time analysis · Stable processes · Hitting times

Mathematics Subject Classification 65C10 · 65C05 · 11K45 · 68U20

1 Introduction

In this note, random variate generators that are uniformly fast in starting location
are derived for a family of distributions of hits of symmetric stable processes. The
motivation for this work is for use in [6], where these methods are used to estimate
Riesz α-capacity for general sets. More precisely, let {X(t); t ≥ 0} (d ≥ 2) be the
symmetric stable process in R

d of index α with 0 < α ≤ 2. When 0 < α < 2, it is a
process with stationary independent increments whose continuous transition density,

This article is part of Special Issue: International Conference on Statistical Distributions and Applications
(ICOSDA 2022) guest edited by Narayanaswamy Balakrishnan, Indranil Ghosh, Hon Keung Ng,
Kalimuthu Krishnamoorthy, and Helton Saulo.

B John P. Nolan
jpnolan@american.edu

Luc Devroye
lucdevroye@gmail.com

1 School of Computer Science, McGill University, Montreal, Canada

2 Department of Mathematics and Statistics, American University, Washington, DC, USA

3 Applied and Computational Mathematics Division, National Institute of Standards, Gaithersburg,
MD, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-023-00364-1&domain=pdf
http://orcid.org/0000-0002-9669-382X

11 Page 2 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

relative to Lebesgue measure in Rd , is

p(t, x) = (2π)−d
∫

ei(x,ξ)−t |ξ |α dξ,

where x, ξ ∈ R
d , t > 0, dξ is Lebesgue measure, (x, ξ) is the inner product in R

d

and |ξ |2 = (ξ, ξ). We have X(0) = x . Define

T = inf{t ≥ 0 : |X(t)| > 1},
T ∗ = inf{t ≥ 0 : |X(t)| < 1}.

Thus, T and T ∗ are the first passage times to the exterior and interior of the unit ball,
respectively. Define

μ(dy) = P{X(T) ∈ dy, T < ∞}, |y| ≥ 1,

μ∗(dy) = P{X(T ∗) ∈ dy, T ∗ < ∞}, |y| ≤ 1.

These describe the distributions of the hits of the unit ball when X(0) = x . The
measures are well-known, and are both given by

fx (y)dy
def= ϕ(x)(

1 − |y|2)α/2 × |x − y|d
dy.

where

ϕ(x) = �(d/2) sin(πα/2)
(
1 − |x |2)α/2

π1+d/2 .

More precisely,

μ(dy) = fx (y)dy, |y| ≥ 1,

if 0 < α < 2, |x | < 1, and

μ∗(dy) = fx (y)dy, |y| ≤ 1,

if α < d, |x | > 1, or if α = d = 1, |x | > 1. Special cases of these results are
due to [9] and [11]. The full result, including a more detailed description of the case
d = 1 < α < 2, |x | > 1, is given by [1]. For a survey and more recent results, see [5].

When α = 2, |x | > 1, we set T ∗ = inf{t > 0 : |X(t)| = 1}, and note that X(T ∗)
is supported on the surface of the unit ball.

In this paper, we are interested in generating a random vector Y in the unit ball
B = {y : |y| ≤ 1} of Rd with density proportional to fx (y) when |x | > 1. Figure1
shows an example of simulated hitting points of the unit ball in R

3 generated by the
methods described below. Throughout the paper, Sd−1 = {x ∈ R

d : |x | = 1} denotes
the surface of B, and Zd is a random variable uniformly distributed on Sd−1. We only

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 3 of 19 11

Fig. 1 A sample of n = 5000
hitting points of the unit ball in
dimension 3 for α = 1.5 with
starting point marked in red.
Points are spread throughout the
ball, but more concentrated near
the starting point x = (1.5, 0, 0)

deal with the case d > 1. We drop the dependence upon x in the notation and extend
the family of distributions to include the cases α = 0 and α = 2. For α ∈ [0, 2), we
define

f (y)
def= 1(

1 − |y|2)α/2 × |x − y|d
,

which is proportional to a density on B. For α = 2, we define the measure on the
surface Sd−1 of B that is given by the Poisson kernel; it is proportional to |x − y|−d .
This corresponds to the hit position of Sd−1 for standard Brownian motion started at
x where |x | > 1. While formally, f is a density for all values α ∈ (−∞, 2), we will
not be concerned here with negative values of α.

For the sake of normalization, we define x = (λ, 0, 0, . . . , 0), where λ > 1.
Finally, we will name our algorithms for easy reference later. For the Brownian

case (α = 2), we have B0, B2, B3 and Bd, while for general α ∈ (0, 2), they are called
R0, R1 and R2.

2 HittingDistribution for Exiting the Unit BallWhen Starting at |x| < 1

Before focusing on simulating hitting of a ball, we discuss how the related problem of
exiting a ball can be solved. When the starting point is x = 0, we can simulate directly
the hitting distribution for the exiting the sphere problem. Recall that it also uses the
density f (y) and that when x = 0,

f (y) = π−(d/2+1)�(d/2) sin(πα/2)

(|y|2 − 1)α/2|y|d , |y| > 1.

Since this is radially symmetric, it can be simulated by X = RZd , where R = |X |
is the amplitude/magnitude of X and Zd is uniform on the unit sphere Sd−1. Using

123

11 Page 4 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

radial symmetry, the density of R is

h(r) = f ((r , 0, ..., 0)) · Area(Sd−1) · rd−1 = 2 sin(πα/2)

πr(r2 − 1)α/2 , r > 1.

A change of variable shows that R
L= 1/

√
T where T

L= Beta(α/2, 1 − α/2) has
density h. Surprisingly, there is no dependence on dimension d in the distribution of
R.

We can also simulate the hitting distribution for the complement of the unit ball
when we start at x �= 0. The duality property in [8], which is also described in Section
3 of [1], states that if 0 < |x | < 1, and if x∗ = x/|x |2 is its spherical inverse outside
the unit ball, and if Y ∗ ∈ B has the hitting distribution for the ball starting from x∗,
its spherical inverse Y = Y ∗/|Y ∗|2 has the hitting distribution outside B when started
at x ∈ B.

3 Warm-Up: The Case˛ = 2—BrownianMotion

Recall that Y = (Y1, . . . ,Yd) = X(T ∗) ∈ Sd−1 is the point of entry of the unit ball
B for Brownian motion started at x = (λ, 0, 0, . . . , 0), λ > 1, given that Brownian
motion hits B. The density of Y with respect to the uniform measure on Sd−1 is
proportional to 1/||x − y||d , where we recall that x = (λ, 0, . . . , 0) and y ∈ Sd−1. As
||x − y|| ≥ λ − 1, we can apply this simple rejection method:

(algorithm B0 for Brownian motion, any d)
repeat

Generate U uniformly on [0, 1], Y = (Y1, . . . ,Yd) uniform on Sd−1

until U ≤
(

(λ−1)2

λ2+1−2λY1

)d/2

return Y

In this algorithm, we tacitly used the fact that

λ − 1

||x − Y || =
√

(λ − 1)2

λ2 + 1 − 2λY1
.

The expected number of iterations grows as ((λ + 1)/(λ − 1))d , which makes it clear
that for λ near one, a more efficient algorithm is needed. The algorithms presented
below all take expected time uniformly bounded over all values of λ.

We write W = Y1. A simple geometric argument shows that W has density pro-
portional to

f (w)
def= (1 − w2)(d−3)/2

(
1 − w2 + (λ − w)2

)d/2 , |w| ≤ 1.

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 5 of 19 11

Fig. 2 The unnormalized functions f are shown for d = 2 (top) to d = 6 (bottom) for a value of λ = 1.5

If Zd−1 denotes a uniform point on Sd−2, i.e., on the surface of the unit ball of Rd−1,
then we note that

Y
L=(W ,

√
1 − W 2Zd−1),

where W and Zd−1 are independent. The generation of Zd−1 is easily achieved by
taking d−1 independent standard normal random variates and normalizing them to be
of total Euclidean length one, see [2], for general notions of random variate generation.
We now describe how to generate W .

An inspection of the density, e.g., Fig. 2, shows three regimes: for d = 2, it is
U -shaped; for d = 3, it is monotonically increasing on [−1, 1]; and for d > 3, the
density is unimodal, and zero at both endpoints of the interval. The cases d = 2 and
d = 3 have simple explicit solutions. After presenting these, wewill propose amethod
for d ≥ 3 that is uniformly fast over all values of λ.

3.1 The Planar Case: d = 2

The starting density on [−1, 1] is proportional to

f (w)
def= 1

1 + λ2 − 2λw
× 1√

1 − w2
.

123

11 Page 6 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

Set γ = 2λ
1+λ2

, and note that γ ∈ [0, 1]. Observe that f (w) + f (−w) is proportional
to

g(w) = 1

1 − (γw)2
× 1√

1 − w2
,

where we initially will try to generate a random variate W with density proportional
to g on [0, 1]. Given such a W , it suffices then to replace W by −W with probability
f (−W)/(f (W) + f (−W)), i.e., with probability

(1 + λ2)2 − (2λw)2

2(1 + λ2)(1 + λ2 + 2λW)
= 1 + λ2 − 2λW

2(1 + λ2)
= 1 − γW

2
.

Note that g(w) ≤ h(w), where

h(w) = 1

1 − γw
× 1√

1 − w
.

The density of Y = 1/
√
1 − W is proportional to

1

1 + δy2
, y ≥ 1,

where δ = (1 − γ)/γ = (λ − 1)2/2λ. Thus, R = √
δY has density proportional to

1/(1 + r2) on [√δ,∞). If U denotes a uniform [0, 1] random variable, then by the
inversion method,

Y
L=

tan
(
arctan(

√
δ) +U

(
π
2 − arctan(

√
δ)

))
√

δ
.

As W = 1 − 1/Y 2, we can obtain a random variate from g by the rejection method
by accepting W with probability

g(W)

h(W)
= 1 − γW

1 − (γW)2
×

√
1 − W√
1 − W 2

= 1

(1 + γW)
√
1 + W

.

Observe that this acceptance probability is at least 1/(
√
2(1+γ)) ≥ 1/

√
8. Therefore,

this method is uniformly fast over all choices of λ > 1. The algorithm:

(algorithm B2 for Brownian motion, d = 2)
define γ = 2λ

1+λ2
, δ = (λ − 1)2/2λ

repeat
generate U , V , i.i.d. and uniformly on [0, 1]

Y ←
tan

(
arctan(

√
δ) +U

(
π
2 − arctan(

√
δ)

))
√

δ

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 7 of 19 11

Set W = 1 − 1/Y 2

until V ≤ 1

(1 + γW)
√
1 + W

generate V ′ uniformly on [0, 1]
if V ′ ≤ 1−γW

2 then replace W by −W
return (W , S

√
1 − W 2), where S = ±1 is a random sign

3.2 The Cubic Case: d = 3

Just for d = 3, the density of W simplifies dramatically, so that we can find a direct
solution by the inversion method.We obtain that ifU is uniformly distributed on [0, 1]
then

W
L= λ

2
+ 1

2λ

⎛
⎜⎝1 − 1(

1
λ+1 + 2U

λ2−1

)2
⎞
⎟⎠

has density proportional to

1(
1 − w2 + (λ − w)2

)3/2 , |w| ≤ 1.

This will be called algorithm B3. Exact one-liners have been known for over two
decades. See, e.g., [3] and [4]. Theses are basically equivalent to the method suggested

above. As λ → ∞, we obtain W
L= 2U − 1, which is uniformly distributed on [0, 1].

This confirms Archimedes’s theorem which states that a uniform point on S2 has
uniform marginals.

3.3 The General Case: d ≥ 3

For d > 2, we proceed by simple rejection. Using the notation for W from above,
we still use the notation f for the density of W on [−1, 1] (see above). We define
g(w) = f (|w|), and observe that f (w) ≤ g(w) for all w ∈ [−1, 1], yet ∫

g ≤ 2,
so rejection from g is entirely feasible. As g is symmetric about zero, it suffices to
find an efficient way of generating a random variable Z with density proportional to g
on [0, 1], and then note that SZ has density g on [−1, 1] where S is an equiprobable
random sign. Define

γ = (λ − 1)2

2λ
.

We observe that g(w) is proportional to

(1 − w2)(d−3)/2

(γ + (1 − w))d/2 ≤ h(w)
def= (2(1 − w))(d−3)/2

(γ + (1 − w))d/2 .

123

11 Page 8 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

If H has density proportional to h on [0, 1], then T = γ /(1 − H) has a density that
is proportional to

φ(t) = 1√
t(1 + t)d/2

, t ≥ γ.

We will give a generator for T that has uniformly bounded expected time over all
values of γ (and thus λ). This can be used in a simple rejection algorithm that inherits
the uniform expected complexity:

(algorithm Bd for Brownian motion, d ≥ 3)
repeat forever:

Generate U , V uniformly on [0, 1]
Generate a random sign S
Generate T
Set W ← 1 − γ /T

If U ≤ (1+W
2

)(d−3)/2

then
if S = 1
then exit the loop

else if V ≤
(

γ+(1−W)
γ+(1+W)

)d/2

then (W ← −W and exit the loop)
generate Zd−1 uniformly on Sd−2

return (W ,
√
1 − W 2Zd−1)

3.4 A Generator for T

There are two cases, according to whether γ ≥ 2/d or γ < 2/d. If γ ≥ 2/d, we
bound φ(t) ≤ 1/(

√
γ (1 + t)d/2). A random variate with density proportional to the

dominating function is given by

T = (1 + γ)U−2/(d−2) − 1,

where U is uniform on [0, 1]. Thus, one can repeat generating uniform [0, 1]2 pairs
(U , V) until V ≤ √

γ /T , and return T . The expected complexity is bounded from
above by a function of d times

√
1 + 1/γ , and is therefore uniformly bounded over

all γ ≥ 2/d. So assume that γ < 2/d. We bound

φ(t) ≤
⎧⎨
⎩

φ1(t) = 1√
t(1+γ)d/2 if 2

d > t ≥ γ,

φ2(t) = 1√
2
d (1+t)

d
2

if t ≥ 2
d .

Random variates T1 and T2 with densities φ1 and φ2 can be obtained as(√
γ +U

(√
2
d − √

γ

))2

and
(
1 + 2

d

)
U−2/(d−2) −1, respectively, whereU is uni-

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 9 of 19 11

form on [0, 1]. We summarize the rejection algorithm, where p = ∫ 2/d
γ

φ1(t) dt and
q = ∫ ∞

2/d φ2(t) dt :

(generator for T , case γ < 2/d)
p ← 2(

√
2/d − √

γ)/(1 + γ)d/2

q ←
√

d
2

2
d−2

1(
1+ 2

d

)(d−2)/2

repeat
generate U , V , V ′ uniformly on [0, 1]
if V ′ ≤ p

p+q

then set T ←
(√

γ +U

(√
2
d − √

γ

))2

Accept ←
[
V ≤

(
1+γ
1+T

)d/2
]

else set T ← (
1 + 2

d

)
U−2/(d−2) − 1

Accept ←
[
V ≤

√
2
dT

]

until Accept
return T

The probability of accepting T1 is E

{(
1+γ
1+T1

)d/2
}
, which is greater than 1/(1 +

2/d)d/2. The latter tends to 1/e as d → ∞. The probability of accepting T2 is

E
{√

2
dT2

}
, which is bounded from below by a strictly positive constant uniformly

over all d > 2. Thus, the expected time taken by the rejection algorithm for T is
uniformly bounded from above over all values of γ > 0 and d > 2.

4 A Simple Rejection AlgorithmWhen 0 < ˛ < 2

Recalling

f (y)
def= 1(

1 − |y|2)α/2 × |x − y|d
,

we see that

f (y) ≤ 1(
1 − |y|2)α/2 (λ − 1)−d .

This leads to a simple rejection algorithm, as a random variable with density propor-
tional to

(
1 − |y|2)−α/2

on B can be obtained as RZd , where R is distributed as

√
Beta

(
d

2
, 1 − α

2

)
.

123

11 Page 10 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

Here is the rejection algorithm:

(algorithm R0)
repeat

Generate Q ← Beta
(d
2 , 1 − α

2

)
Generate U uniformly on [0, 1].
Generate Zd uniformly on Sd−1.
Set Y ← √

QZd .
until U (λ − 1)−d ≤ 1/|x − Y |d (where x = (λ, 0, 0, . . . , 0))
return Y

Since |x − Y | ≤ (λ + 1), we can conservatively upper bound the expected number of
iterations of this algorithm by

(
λ + 1

λ − 1

)d

.

This performance deteriorates quickly when λ approaches 1. In the next section, we
construct an algorithm with uniformly bounded expected time.

5 A Uniformly Fast Algorithm for˛ ∈ [0, 2)
Again, we let Y = (Y1, . . . ,Yd) = X(T ∗) ∈ B be the point of entry of the unit
ball B of Rd when the symmetric stable process of parameter α ∈ (0, 2) starts at
X(0) = (λ, 0, 0, . . . , 0), λ > 1, given that the process enters the ball (i.e., T ∗ < ∞).

We write W = Y1, and H =
√∑d

i=2 Y
2
i , see Fig. 3. A simple geometric argument

shows that (W , H) has density proportional to

(1 − (h2 + w2))−α/2hd−2

(
h2 + (λ − w)2

)d/2 , |w| ≤ 1, h2 + w2 ≤ 1, h ≥ 0.

Given (W , H), note that

Y
L= (W , HZd−1),

where (W , H) and Zd−1 are independent. Therefore, we have reduced our problem
to a two-dimensional one. For d = 2, in particular, note that Zd−1 is merely a random
sign.

Instead of working with (W , H), it is helpful to use coordinates (Q, R), where

Q = H2 + W 2,

R = 1 − W/
√
H2 + W 2,

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 11 of 19 11

Fig. 3 Definition of the (W , H)
coordinates

and (Q, R) ∈ [0, 1] × [0, 2]. Vice versa,

W = (1 − R)
√
Q,

H =
√
2R − R2

√
Q.

The joint density of (Q, R) (in terms of (q, r)) is proportional to

(1 − q)−α/2q(d−2)/2(2r − r2)(d−3)/2

(
q(2r − r2) + (λ − (1 − r)

√
q)2

)d/2 , 0 ≤ q ≤ 1, 0 ≤ r ≤ 2.

We introduce the function γ = γ (q, r) for the denominator without the exponent:

γ = q(2r − r2) + (λ − (1 − r)
√
q)2.

Observe that (λ − 1)2 ≤ γ ≤ 1 + λ2. Thus, for λ ≥ 5/4, the ratio of upper to lower
bound for γ is ≤ 41, the maximum being reached at λ = 5/4. For that case, we use
rejection from a density proportional to

(1 − q)−
α
2 q(d−2)/2(2r − r2)(d−3)/2,

where the first part is a beta (d/2, 1−α/2) density, and the second part is proportional
to the density of two times a beta ((d − 1)/2, (d − 1)/2) random variable. Thus,
the following algorithm, which can be used for all values of the parameters, uses an
expected number of iterations not exceeding 41d/2 for all choices of α ∈ [0, 2), λ ≥
5/4:

123

11 Page 12 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

(algorithm R1)
repeat

Generate Q ← Beta
(d
2 , 1 − α

2

)
Generate Q′ ← Beta

(d−1
2 , d−1

2

)
Set R ← 2Q′.
Generate a uniform [0, 1] random variable U .

until U
2
d ≤ (λ−1)2

γ (Q,R)

set (W , H) = ((1 − R)
√
Q,

√
2R − R2

√
Q)

generate a uniform point Zd−1 on Sd−2
return Y ← (W , HZd−1)

This leaves us with the case λ ∈ (1, 5/4]. To ensure uniform speed over all these
choices of λ and α, we will employ a rejection method over a partition of the space.
Assume that a generic density f is bounded by a function gk , where {Ak, k ≥ 1} is a
partition of the space. Let pk = ∫

Ak
gk , p = ∑

k pk . Assume furthermore that there
is a constant c > 0 such that

∫
Ak

f ≥ c
∫
Ak

gk . Then the following general rejection
method requires an expected number of iterations that does not exceed 1/c:

repeat
Generate integer K according to distribution pk/p, k ≥ 1.
Generate X according to a density proportional to gK on AK .
Generate U uniformly on [0, 1].

until UgK (X) ≤ f (X)

return X

Remark 1 Straightforward evaluation of Ug ≤ f is numerically unstable in certain
cases, so it is better to test if U (g/ f) ≤ 1, where g/ f is algebraically simplified on
each of the regions A j .

To verify the claim, observe that
∫

f = 1, and
∑

k

∫
Ak

gk ≤ 1/c. We use a partition
into five sets. The basic function of interest is

f (q, r) = ζ(q)ρ(r)

(γ (q, r))d/2 ,

where

ζ(q) = (1 − q)−α/2q(d−2)/2,

ρ(r) = (2r − r2)(d−3)/2,

γ (q, r) = q(2r − r2) + (λ − (1 − r)
√
q)2.

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 13 of 19 11

0 1 2

0
1

r

q

A1

A2

A3 A4

A5

−1 0 1

−1
0

1

x1

x 2

A1

A2 A3

A4

A4

A5

Fig. 4 Partition of the region for method R2 when d = 2. The left plot shows the partition for A1, . . . , A5
in the (r , q) coordinates; the right plot shows the preimage of these sets in the (x1, x2) coordinates

The regions are defined as follows, see Fig. 4:

A1 : r ≥ 1/16, q ≥ 1/2.

A2 : q ≤ 1/2.

A3 : r ≤ (λ − 1)2, q ≥ 3 − 2λ.

A4 : (λ − 1)2 ≤ r ≤ 1/16, 4r ≥ (1 − q)2.

A5 : 1/2 ≤ q ≤ 3 − 2λ, 4r ≤ (1 − q)2.

Since we employ the rejection method, it suffices to bound all three factors of
f (q, r) from above and below on each of the five regions. We begin with γ (q, r):

γ (q, r) = q(2r − r2) + ((λ − 1) + (1 − √
q) + r

√
q)2

≥ q(2r − r2) + (λ − 1)2 +
(
1 − q

2

)2

+ r2q

= (λ − 1)2 +
(
1 − q

2

)2

+ 2rq

≥ max

(
(λ − 1)2,

(
1 − q

2

)2

, 2rq

)
,

≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/16 onA1 ∪ A2

(λ − 1)2 onA3

r onA4(
1−q
2

)2
onA5.

123

11 Page 14 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

and similarly,

γ (q, r) ≤ q(2r − r2) + ((λ − 1) + (1 − √
q) + r

√
q)2

≤ 3q(2r − r2) + 3(λ − 1)2 + 3 (1 − q)2 + 3r2q

= 3(λ − 1)2 + 3 (1 − q)2 + 6rq,

= 3(λ − 1)2 + 12

(
1 − q

2

)2

+ 6rq,

≤ 18max

(
(λ − 1)2,

(
1 − q

2

)2

, 2rq

)

and thus,

γ (q, r) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

12 onA1

8.3 onA2

36(λ − 1)2 onA3

36r onA4

36
(
1−q
2

)2
onA5.

We define the upper bound used for rejection in each of the five regions as ζ(q)ρ(r)
times the upper bound on γ (q, r)−d/2 derived above. In a few cases, we use an even
larger upper bound that increases the bound at most by a multiplicative factor that
does not depend upon α or λ, and thus will not affect the claim that the method is
universally fast over all α ∈ (0, 2), λ ∈ (1, 5/4]. The bounds are all of the form

f (q, r) ≤ g(q, r)

where we observe that for d ≥ 3,

f (q, r) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4d (1 − q)−α/2q(d−2)/2(2r − r2)(d−3)/2 on A1 ∪ A2
1

(λ−1)d
(1 − q)−α/2q(d−2)/2(2r − r2)(d−3)/2 on A3

(1 − q)−α/2q(d−2)/2r−3/2(2 − r)(d−3)/2 on A4

2d(1 − q)−d−(α/2)q(d−2)/2(2r − r2)(d−3)/2 on A5

≤ g(q, r)
def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4d (1 − q)−α/2q(d−2)/2(2r − r2)(d−3)/2 on A1 ∪ A2
2(d−3)/2

(λ−1)d
(1 − q)−α/2r (d−3)/2 on A3

2(d−3)/2 (1 − q)−α/2r−3/2 on A4

2d 2(d−3)/2 (1 − q)−d−(α/2)r (d−3)/2 on A5.

For d = 2, the factor 2(d−3)/2 in the expressions dealing with A3, A4 and A5 in the
definition of g(q, r) should be replaced by 4/

√
31. By inspection of each of these sets

of inequalities, it is clear that in each region, the compound upper bound on f (q, r)

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 15 of 19 11

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

alpha= 2

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

alpha= 1.5

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

alpha= 1

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

alpha= 0.5

Fig. 5 First hitting locations on the unit ball starting from x = (1.2, 0) for varying α in dimension d = 2.
When α = 2, the locations are on the surface. When α < 2, the points are on the interior and get more
uniform as α decreases to 0

used for rejection, divided by f (q, r) is bounded by a universal constant that depends
upon d but not on λ or α. Thus, the rejection method that is based on the bounds given
here is uniformly fast:

Proposition 1 (a) (Speed) For fixed d, the expected number of iterations performed by
algorithm R2 below is uniformly bounded over λ ∈ (1, 5/4], α ∈ (0, 2). Algorithm R0
is uniformly fast over all λ ≥ λ∗ > 1 and α ∈ (0, 2), while algorithm R1 is uniformly
fast over all λ ≥ 5/4, α ∈ (0, 2).
(b) (Validity) Algorithms R0 and R1 can be used for all values of the parameters.
Algorithm R2 is valid for λ ∈ (1, 5/4], α ∈ (0, 2).

123

11 Page 16 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

lambda= 2

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

lambda= 1.25

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

lambda= 1.1

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

lambda= 1.01

Fig. 6 First hitting locations on the unit ball starting from x = (λ, 0), where α = 1.5 is fixed and λ varies
as shown in dimension d = 2

6 Putting Things Together

There are two tasks left to do. First we need to compute

pk =
∫
Ak

g(q, r) dqdr .

To facilitate computations, we call A0 = A1 ∪ A2, define p0 = ∫
[0,1]×[0,2] g(q, r),

where g is the upper bound for A0 extended to the entire space, and will reject all
random vectors that do not fall in A0. This does not affect the validity of proposition 1.
Define

p = p0 + p3 + p4 + p5.

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 17 of 19 11

The values shown below include expressions that involve the beta function B(a, b) =
�(a)�(b)/�(a + b), and were obtained using the identity

∫ 2
0 (2r − r2)(d−3)/2 dr =

2d−2B ((d − 1)/2, (d − 1)/2).

p0 = 4d B

(
d

2
, 1 − α

2

)
× 2d−2B

(
d − 1

2
,
d − 1

2

)

p3 = 2(d−3)/2

(λ − 1)α/2

23−(α/2)

(2 − α)(d − 1)

p4 = 2(d−3)/2 24−α/2

α(2 − α)

(
(λ − 1)−α/2 − (1/4)−α/2

)

p5 = 2(d−3)/2 8

α(d − 1)

(
(2(λ − 1))−α/2 − (1/2)−α/2

)
.

For d = 2, the factor 2(d−3)/2 in the expressions for p3, p4 and p5 should be replaced
by 4/

√
31.

On each Ak , we need to show how to generate a random pair (Q, R) with density
proportional to g. Except for A4 and A5, this is quite straightforward, as we will see
below.

The full algorithm:

(algorithm R2; λ ∈ (1, 5/4])
repeat

Generate a random integer K with P{K = k} = pk/p, k ∈ {0, 3, 4, 5}.
Generate a random pair (Q, R) ∈ AK with density proportional to g on AK .
Generate U uniformly on [0, 1].

until Ug(Q, R) ≤ f (Q, R) and either K > 0 or (K = 0, Q ≤ 1/2) or
(K = 0, R ≥ 1/16)

set W ← (1 − R)
√
Q

set H ← √
2R − R2

√
Q

generate Zd−1 uniformly on Sd−2
return Y ← (W , HZd−1)

The individual generators for g are as follows, where V1 and V2 denote independent
uniform [0, 1] random variables:

(for A0) Generate Q ← Beta
(d
2 , 1 − α

2

)
Generate R ← 2 Beta

(d−1
2 , d−1

2

)
(for A3) Generate U , V uniformly on [0, 1]

Compute Q ← 1 − 2(λ − 1)V 2/(2−α)

Compute R ← (λ − 1)2U 2/(d−1)

(for A4) Generate U , V uniformly on [0, 1]
Set
 ← (

(λ − 1)−α/2 − (1/4)−α/2
)

Compute R ← (
(1/4)−α/2 +U

)−4/α

Compute Q ← 1 − √
4RV 2/(2−α)

(for A5) Generate U , V uniformly on [0, 1]
Set
 ← (

(2(λ − 1))−α/2 − (1/2)−α/2
)

123

11 Page 18 of 19 Journal of Statistical Theory and Practice (2024) 18 :11

Table 1 Timing in milliseconds
per random vector for the two
methods with α = 1.1

n d λ Simple rejection Uniform bound

100,000 2 1.5 0.0648 0.6170

100,000 2 1.25 0.1206 0.1187

100,000 2 1.1 0.3620 0.1850

100,000 2 1.01 7.8300 0.0912

1000 2 1.001 210.6600 0.0714

100,000 3 1.5 0.1721 0.1618

100,000 3 1.25 0.5636 0.5138

100,000 3 1.1 3.5275 0.5900

1000 3 1.01 675.72 0.1800

10 3 1.001 261,175 0.1157

100,000 4 1.5 0.4796 0.4277

100,000 4 1.25 2.6138 2.2930

100,000 4 1.1 36.0969 2.1580

100 4 1.01 65572.40 0.4516

1 4 1.001 ∞ 0.2050

100,000 5 1.5 1.4049 1.2400

100,000 5 1.25 12.5658 11.118

100,000 5 1.1 374.1918 8.6331

10 5 1.01 4,067,144 1.4519

1 5 1.001 ∞ 0.5021

Simple rejection refers to algorithm R0 in the text. Uniform bound
refers to the algorithms R2 (for 1 < λ ≤ 1.25) and R1 (for λ ≥ 1.25).
The sample size n was 100,000 for all entries under “uniform bound”;
the figures given above for n are for R0 only. The time value of ∞
refers to a simulation that did not halt within eight hours for a single
variate

Compute Q ← 1 − (
(1/2)−α/2 + V

)−2/α

Compute R ← (1−Q)2

4 U 2/(d−1)

7 Practical Considerations

These algorithms have been coded using the open source R language, see [7]. Figures5
and 6 show the hitting locations of the unit ball in the plane for varying values of α

and λ.
We compared the simple rejection algorithm R0 with the uniformly fast algorithms

R1 and R2. The timing shown in Table 1 shows that the performance of R0 deteriorates
quickly as λ gets close to one. Furthermore, method R1 worsens with the dimension.
We should point out that neither method is uniformly bounded in the dimension d. For
one thing, any algorithm should take time at least linearly increasing with d.

The methods described above assume a starting point on the first axis. For a general

starting point x , first rotate this point to the x1 axis, e.g., x → x∗ def= (|x |, 0, . . . , 0).

123

Journal of Statistical Theory and Practice (2024) 18 :11 Page 19 of 19 11

Then apply the algorithms given above with starting point x∗ to produce an output Y ∗,
and then reverse the above rotation to get the final Y . This rotation back to the original
direction is accomplished by using d Given’s rotations.

8 TheWork Ahead

While the algorithm above is uniformly fast over all λ > 1, α ∈ [0, 2), it is not
uniformly fast over all dimensions d. Thus an improvement in that respect is desirable.

It would be quite interesting to develop an algorithm that can efficiently generate
the pair (X , T), where X is the location of entry in the unit ball and T is the time of
entry. For the Brownian case (α = 2), the joint distribution is, e.g., given in [10].

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Blumenthal RM, Getoor RK, Ray DB (1961) On the distribution of first hits for the symmetric stable
processes. Trans Am Math Soc 99(3):540–554

2. Devroye L (1986) Non-uniform random variate generation. Springer Verlag, New York
3. Given JA, Hubbard JB, Douglas JF (1997) A first-passage algorithm for the hydrodynamic friction and

diffusion-limited reaction rate of macromolecules. J Chem Phys 106(9):3761–3771
4. Kang EH, Mansfield ML, Douglas JF (2004) Numerical path integration technique for the calculation

of transport properties of proteins. Phys Rev E 69:031918
5. Kyprianou AE (2018) Stable processes, self-similarity and the unit ball. ALEA Lat Am J Probab Math

Stat 15:617–690
6. Nolan JP, Audus D, Douglas J (2023) Computation of α-capacity Cα of general sets inRd using stable

random walks. SIAM J Appl Math (To appear)
7. R Core Team (2023) R: a language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna
8. Riesz M (1938) Intégrales de Riemann-Liouville et potentiels. Acta Sci Math Szeged 9:1–42
9. Spitzer F (1958) Some theorems concerning 2-dimensional Brownian motion. Trans AMS 87:187–197

10. Uchiyama K (2016) Density of space-time distribution of Brownian first hitting of a disc and a ball.
Potential Anal 44:497–541

11. Widom H (1961) Stable processes and integral equations. Trans Am Math Soc 98(3):430–449

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Random Variate Generation for the First Hit of a Ball for the Symmetric Stable Process in mathbbRd
	Abstract
	1 Introduction
	2 Hitting Distribution for Exiting the Unit Ball When Starting at |x| < 1
	3 Warm-Up: The Case α= 2—Brownian Motion
	3.1 The Planar Case: d=2
	3.2 The Cubic Case: d=3
	3.3 The General Case: dge3
	3.4 A Generator for T

	4 A Simple Rejection Algorithm When 0 < α< 2
	5 A Uniformly Fast Algorithm for αin[0,2)
	6 Putting Things Together
	7 Practical Considerations
	8 The Work Ahead
	References

